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Abstract

The goal of speech processing systems is to handle natural, free-flowing speech across

diverse conditions such as homes, offices, restaurants, and noisy cocktail parties. Each of

these present unique challenges for system design. Building a universal and robust system

capable of managing such a complex goal is achieved by combining different speech

processing approaches, where each contributes with complementary types of information.

A key trend towards the development of generic models is to integrate multiple tasks and

leverage methods from other fields to extract sufficiently diverse information. Deep

neural networks have significantly advanced speech technology systems, but research

still continues to focus on improving performance, interpretability, and adapting cross-

domain solutions.

This thesis investigates speaker representations for speaker recognition and diarization

tasks, proposing optimization strategies to improve systems while retaining speaker-

specific information. It further introduces explainable, discriminative representations for

diarization and develops generic methods for joint diarization and separation, effective in

both low- and high-overlap speech. The research contributions are presented through a

series of five publications focused on speaker recognition and diarization tasks.

The first two of these publications focus on the speaker recognition task. The speaker

recognition system involves several steps, the core of which is the extraction of speaker

representations. In this thesis, the extraction method is based on a deep neural network

approach. Two angular-based speaker objective functions are introduced, which adapt

their hyperparameter values based on network performance and convergence in the

current training step. Next, multiple proposals are presented for the architecture itself that

increase processed temporal resolution, preserve and enhance processed information.

The next three publications concern the speaker diarization task. The development

is based on an end-to-end approach to diarization, where the model directly estimates

speaker activity from the input. An important procedure in this context is the estimation

of the so-called attractors, which are representations of the speakers present in a given

recording. In this thesis, the method of Non-Autoregressive Attractor (NAA) estimator is



introduced. The approach estimates speaker representations for diarization by leveraging

the properties of the embeddings present in the structure of the diarization model, pro-

viding a more explainable process of the attractor generation for the speaker diarization

task, in contrast to the more obscure standard autoregressive method. The proposed

NAA approach has been developed further and applied for joint speaker diarization and

separation, at the same time aiming to bridge the gap between diarization and speech

separation tasks.
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Streszczenie

Celem systemów przetwarzania mowy jest możliwość przetwarzania naturalnej wypo-

wiedzi w różnorodnych warunkach takich jak zacisze domowe, biura, restauracje, czy

głośne imprezy. Każdy z zaprezentowanych scenariuszy stawia odmienne wyzwania

podczas projektowania systemu. Opracowanie uniwersalnego i niezawodnego systemu

zdolnego do realizacji tego złożonego zadania może zostać osiągnięte poprzez połącze-

nie różnych systemów przetwarzania mowy, z których każdy wnosi komplementarne

rodzaje informacji. Istotnym kierunkiem badań jest dążenie do systemów generycznych,

poprzez łączenie wielu zadań i wykorzystywanie metod z innych dziedzin w celu uzyska-

nia różnorodnych informacji. Głębokie sieci neuronowe (ang. deep neural networks)

znacząco rozwinęły możliwości technologii mowy, niemniej jednak nadal trwają badania

koncentrujące się na poprawie wydajności, interpretowalności oraz integracji rozwiązań

z różnych dziedzin.

Niniejsza praca bada reprezentacje mówców dla zadań rozpoznawania mówców i dia-

ryzacji, proponując strategie optymalizacji służące poprawie systemów przy jednoczes-

nym zachowaniu informacji charakterystycznych dla mówcy. W dalszej części wprowadza

wyjaśnialne, dyskryminatywne reprezentacje dla diaryzacji i rozwija generyczne metody

dla zadania jednoczesnej diaryzacji i separacji, skutecznych zarówno dla nagrań zawie-

rających w niewielkim, jak i znaczącym stopniu mowę wielu osób wypowiadających się

jednocześnie (ang. overlap speech). Wkład naukowy pracy jest zaprezentowany w postaci

serii pięciu publikacji skupiających się na zadaniach rozpoznawania i diaryzacji mówców.

Pierwsze dwie publikacje dotyczą zadania rozpoznawania mówców. System rozpoz-

nawania mówców zawiera kilka etapów, gdzie kluczowym jest ekstrakcja reprezentacji

mówcy. W tej pracy metoda ekstrakcji opiera się na podejściu wykorzystującym głębokie

sieci neuronowe. Zaproponowano dwie funkcje kosztu oparte na mierze kątowej, których

wartości hiperparametrów adaptują się w zależności od poprawności odpowiedzi sieci

oraz jej zbieżności w bieżącym kroku treningu. Następnie przedstawiono szereg propozy-

cji dla samej architektury modelu, które pozwalają na zwiększenie przetwarzanej rozdziel-

czości czasowej oraz zachowują i wzmacniają przetwarzaną informację.

Kolejne trzy publikacje dotyczą zadania diaryzacji mówców. Rozwój metody jest oparty

na podejściu typu end-to-end dla diaryzacji, gdzie model bezpośrednio estymuje akty-

wność mówców na podstawie informacji wejściowej. Ważną procedurą w tym zakresie jest

estymacja tzw. atraktorów, czyli reprezentacji mówców występujących w danym nagraniu.

W niniejszej pracy zaproponowano nieautoregresywną estymację atraktorów (ang. Non-

Autoregressive Attractor (NAA) estimation). Podejście to wyznacza reprezentacje mówców



poprzez wykorzystanie właściwości wektorów osadzeń (ang. embeddings) obecnych w ar-

chitekturze modelu diaryzacji, zapewniając bardziej wyjaśnialny (ang. explainable) proces

estymacji atraktorów dla zadania diaryzacji mówców, w przeciwieństwie do standard-

owego podejścia autoregresywnego. Opracowaną metodę rozszerzono i wykorzystano

w zadaniu jednoczesnej diaryzacji i separacji mówców, aby zniwelować istniejącą lukę

pomiędzy tymi procesami.
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Streszczenie Rozszerzone

Wprowadzenie

W ostatnich latach możemy zaobserwować coraz więcej postępów technologicznych,

które mają na celu ułatwienie i usprawnienie naszego życia, takich jak wirtualna i rozsze-

rzona rzeczywistość (ang. virtual and augmented reality), Internet Rzeczy (ang. Internet

of Things), „inteligentne” domy (ang. ‘smart’ homes) czy asystenci/agenci konwersacyjni

wykorzystujący sztuczną inteligencję, np. ChatGPT, Google Gemini, Grok i wiele innych.

Rozwiązania te są zaprojektowane w taki sposób, aby były łatwe i intuicyjne w użyciu. Jed-

nym ze sposobów realizacji tego celu jest integracja technologii mowy, która może służyć

jako naturalny środek do nawigacji i sterowania, a także stanowić istotne źródło informa-

cji o użytkowniku lub prowadzonej konwersacji. W istocie, technologia mowy już teraz

znajduje zastosowanie w wielu codziennych zadaniach, takich jak głosowe wybieranie

numeru, dyktowanie i wypowiadanie komend dla inteligentnych asystentów, tłumacze-

niu wypowiedzi na wybrany język w czasie rzeczywistym (ang. on-the-fly), częściowej

automatyzacji obsługi klienta, czy też poprzez zapytania do asystentów głosowych (np.

Siri lub Alexa). Zasadne jest również odniesienie się do niedawnej sytuacji pandemicznej,

która wymusiła przejście znacznej części użytkowników na tryb pracy zdalnej i wykorzysty-

wanie narzędzi audiowizualnych do prowadzenia spotkań. Narzędzia te implementują

algorytmy detekcji aktywności głosowej oraz poprawy jakości sygnału mowy, co umożliwia

uzyskanie lepszej jakości komunikacji. Aktualne kierunki badawcze koncentrują się na ob-

szarze tzw. inteligencji konwersacyjnej (ang. conversational intelligence), w ramach której

interakcje pojedynczego użytkownika z systemem przetwarzającym informacje w sposób

pasywny ewoluują w stronę systemów aktywnie zaangażowanych zdolnych do realizacji

złożonych zadań, takich jak automatyczne generowanie dokumentacji ze spotkań, wery-

fikacja faktów, ekstrakcja informacji o uczestnikach spotkania czy też wspieranie procesów

tzw. uczenia się we współpracy (ang. collaborative learning) np. w grupach rówieśniczych.

Tego typu systemy składają się z komponentów wykorzystujące różnorodne modalności,

między innymi systemy dialogowe (ang. dialogue systems) odpowiedzialne za podążanie

za kontekstem wypowiedzi, przetwarzanie obrazu wideo (ang. video processing) i eks-

trakcja informacji, mechanizmy rozumowania oparte na wiedzy zdroworozsądkowej

(ang. common-sense reasoning), a także moduły umożliwiające analizę konwersacji

wieloosobowych.

Celem systemów przetwarzających mowę jest zdolność do analizy swobodnych wypo-

wiedzi w różnorodnych warunkach, np. zacisza domowego, biura, restauracji, czy też



przyjęcia (lub sytuacjach typu ‘cocktail party’), co jednocześnie stwarza szerokie spektrum

wyzwań i uwarunkowań akustycznych. Aby opracować uniwersalny system przetwarza-

nia mowy, który jest odporny na zróżnicowane warunki oraz zdolny do rozwiązywania

złożonych zadań, konieczne jest połączenie różnych systemów zaprojektowanych do po-

jedynczych problemów. Na przykład, systemy do transkrypcji (ang. transcription systems)

mogą składać się z połączenia systemów: poprawy jakości mowy (ang. speech enhance-

ment) lub separacji mowy (ang. speech separation), automatycznego rozpoznawania

mowy (ang. automatic speech recognition), rozpoznawania mówców (ang. speaker recog-

nition) oraz diaryzacji mówców (ang. speaker diarization). Celem pierwszego z tych

systemów, tj. poprawy jakości mowy, jest redukcja lub całkowite usunięcie niepożą-

danych inferencji, takich jak szum czy pogłos, które utrudniają zrozumienie i pogarszają

jakość sygnału mowy. Zadaniem separacji mowy jest wydzielenie wypowiedzi jednej

lub wielu osób do odrębnych strumieni audio. Automatyczne rozpoznawanie mowy

służy do rozpoznawania wypowiedzianych słów (czyli ich transkrypcji). Rozpoznawanie

mówców służy rozpoznaniu tożsamości danego mówcy. W ramach tego zadania wyróżnia

się dwa podtypy: identyfikację oraz weryfikację. Pierwszy z nich polega na ustaleniu

tożsamości danej osoby, z kolei drugi ma na celu potwierdzenie lub odrzucenie, czy dana

osoba jest tym, za kogo się podaje. Diaryzacja mówców jest zadaniem polegającym na

segmentacji nagrania wypowiedzi wieloosobowych na fragmenty, ze wskazaniem kiedy

mówi ta sama osoba. Diaryzacja jest często wykorzystywana jako ogniwo łączące różne

zadania, np. transkrypcja wywiadu otrzymana z systemu rozpoznawania mowy może

dostarczać wypowiedzi mówców w postaci jednego ciągłego tekstu, bez rozróżnienia

wypowiedzi poszczególnych mówców. W połączeniu z systemem diaryzacji tekst może

zostać przyporządkowany do poszczególnych rozmówców – np. do osoby prowadzącej

wywiad i respondenta – co pozwala na uzyskanie pełniejszej informacji i lepszego zrozu-

mienia nagrania. W związku z tym, że niniejsza praca koncentruje się na reprezentacjach

mówców w kontekście wybranych zadań systemów przetwarzania mowy, istotne jest

podkreślenie znaczenia zadania rozpoznawania mówców, którego rozwiązania są często

implementowane jako nowe metody dla innych obszarów, takich jak diaryzacja mówców,

rozpoznawanie języka, rozpoznawanie emocji, czy też detekcja chorób na podstawie

mowy.

Problemy oraz cele badawcze

Rozwiązania oparte na głębokich sieciach neuronowych (ang. deep neural networks)

przyniosły znaczący przełom w możliwościach współczesnych systemów technologicz-
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nych. Niemniej jednak społeczność naukowa nadal podejmuje intensywne wysiłki w

celu poprawy wydajności, zrozumienia oraz interpretacji decyzji podejmowanych przez

głębokie sieci neuronowe. Jedną z popularnych praktyk jest przenoszenie rozwiązań

z jednej dziedziny do innej (np. stosowanie metod przetwarzania obrazów w systemach

przetwarzania mowy), co przyczynia się do postępu w nowym obszarze. Jednakże zdarza

się, że proponowane metody nie są dostosowane do specyfiki domeny mowy. Kolejnym

istotnym trendem w tej dziedzinie jest dążenie do budowy uniwersalnych systemów,

które integrują wiele zadań, umożliwiając opracowanie generycznych modeli zdolnych

do ekstrakcji różnorodnych informacji.

Niniejsza praca doktorska bada reprezentacje mówców w kontekście zadań rozpoz-

nawania oraz diaryzacji mówców. Prezentuje ona metody zaprojektowane do poprawy

systemów rozpoznawania mówców, ze szczególnym uwzględnieniem optymalnego pro-

cesu uczenia oraz zachowania cech i informacji charakterystycznych dla poszczególnych

mówców. Praca dodatkowo wprowadza wyjaśnialne (ang. explainable) i dyskryminaty-

wne reprezentacje mówców w kontekście zadania diaryzacji. Na zakończenie, w oparciu

o poprzednie wyniki i wnioski, zaprezentowane są badania, których celem jest zapełnie-

nie luki w domenie jednoczesnej diaryzacji oraz separacji mówców (ang. joint speaker

diarization and separation) poprzez zaproponowanie generycznych metod, które działają

skutecznie w warunkach naturalnej konwersacji, kiedy wypowiedzi nakładają się w sposób

nieznaczny (ang. low-overlap speech) oraz w warunkach, kiedy wiele osób mówi niemalże

jednocześnie (ang. high-overlap speech).

Opisane metody są ujęte w postaci następujących celów badawczych i hipotez:

1. Odpowiednie wartości hiperparametrów funkcji celu opartej na mierze kątowej

(ang. angular-based loss function) poprawiają wydajność oraz zbieżność (ang.

convergance) procesu uczenia systemu rozpoznawania mówców;

2. Zastosowanie cech wieloskalowych (ang. multi-scale features), zwiększenie rozdziel-

czości czasowej oraz uwzględnienie zależności częstotliwościowych przyczyniają

się do poprawy skuteczności modeli rozpoznawania mówców;

3. Informacje zakodowane w wektorach osadzeń kodera na poziomie ramek (ang.

frame-level encoder embeddings) modelu diaryzacji niosą względne informacje

o mówcach i umożliwiają ich rozróżnianie w obrębie jednego nagrania;
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4. Informacje o mówcach, wyekstrahowane przy użyciu metod zaproponowanych dla

diaryzacji, mogą być wykorzystane w modelu jednoczesnej diaryzacji i separacji

mówców, co pozwala na poprawę działania dla obu zadań.

Osiągnięcia badawcze pracy

Osiągnięcia i propozycje ukierunkowane na rozwiązanie przedstawionych problemów

zostały zaprezentowane w formie serii pięciu publikacji obejmujących zagadnienia zwią-

zane z rozpoznawaniem oraz diaryzacją mówców. Zaproponowane rozwiązania potwier-

dzają postawione hipotezy i wnoszą istotny wkład w rozwój metod rozpoznawania oraz

diaryzacji mówców poprzez optymalizację podejść opartych na głębokich sieciach neu-

ronowych.

Pierwsze dwie publikacje skupiają się na zadaniu rozpoznawania mówców. System

rozpoznawania mówców zawiera kilka etapów, gdzie kluczowym jest ekstrakcja reprezen-

tacji mówcy. W przypadku zadania weryfikacji, reprezentacje te są w kolejnych krokach

przetwarzane i porównywane między sobą, zwracając wynik ich podobieństwa, który

pozwala stwierdzić, czy nagrania pochodzą od tego samego mówcy, czy też nie. Obec-

nie ekstraktory reprezentacji mówców są oparte na głębokich sieciach neuronowych.

W literaturze dużo uwagi jest poświęcone modyfikacjom i poprawie architektury sieci

neuronowej, jej komponentów, uwzględniając również funkcję straty zastosowaną do

treningu modelu. W niniejszej pracy zaproponowano dwie funkcje celu oparte o mi-

arę kątową. Rodzina tych funkcji jest szeroko stosowana i wykazuje poprawę wyda-

jności systemów rozpoznawania mówców poprzez wprowadzenie modyfikacji, które

prowadzą do odpowiedniej separacji reprezentacji pochodzących od różnych mówców

(ang. between-class distance) przy jednoczesnym dążeniu do jak najbardziej zbliżonych

reprezentacji dla wypowiedzi pochodzących od tego samego mówcy (ang. within-class

distance). Istotnym wkładem zaproponowanych funkcji kosztu jest automatyczna adap-

tacja hiperparameterów, których wartości dostosowują się do poprawności odpowiedzi

sieci i jej zbieżności w bieżącym kroku treningu. Przedstawiona propozycja wpłynęła na

poprawę skuteczności oraz przyspieszenie zbieżności treningu sieci dla zadania rozpoz-

nawania mówców. Następnie zaproponowano wiele rozwiązań dla samej architektury

sieci. W pierwszej publikacji zmodyfikowano powszechnie stosowaną strukturę, tzw.

model rezydualny (ang. residual model), czyli ResNet [69], poprzez zwiększenie rozdziel-

czości czasowej oraz dostosowanie architektury do zadania rozpoznawania mówców, co

skutkuje poprawą skuteczności. Druga z publikacji także wprowadza dalsze ulepszenia

dla modelu rezydualnego. Ta powszechnie stosowana struktura może zostać scharaktery-
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zowana jako model ze zmniejszającą się skalą (ang. scale-decreased design). Oznacza

to, że informacja wraz z przetwarzaniem przez sieć jest jednostajnie podpróbkowywana.

Tego typu przetwarzanie może się przyczynić do utraty części informacji. Aby temu za-

pobiec dla zadania mówców zaadoptowany został model ze skalą permutowaną (ang.

scale-permuted design), tzw. SpineNet [42]. Struktura ze skalą permutowaną oznacza, że

rozmiar przetwarzanej informacji, tzw. mapy cech (ang. feature map) może się dowolnie

zwiększać lub zmniejszać w trakcie przetwarzania. Ponadto, zaimplementowana struktura

pozwala na łączenie map cech wieloskalowych, na podstawie których generowana jest

reprezentacja mówcy, podczas gdy w standardowym podejściu wykorzystywana jest ostat-

nia mapa cech, która jest najbardziej podpróbkowana. Przeprowadzono również badania,

które pozwalają na integrację dodatkowych modułów w celu dalszej poprawy wydajności

informacji uzyskanej z nagrania, a mianowicie Res2Net [52] oraz Time-Squeeze-and-

Excitation (T-SE) [76, 87]. Oba moduły zostały pierwotnie zaproponowane dla zadania

przetwarzania obrazów dla modeli o architekturze rezydualnej. Blok Res2Net modyfikuje

bazowe bloki struktury rezydualnej w celu poszerzenia pola recepcyjnego (ang. recep-

tive field) oraz umożliwia uchwycenie cech wieloskalowych o drobniejszej rozdzielczości

w ramach pojedynczego bloku rezydualnego. Z kolei celem bloku T-SE jest rekalibracja

zależności pomiędzy mapami cech wzdłuż wymiaru kanałów oraz częstotliwości.

Kolejne trzy publikacje dotyczą zadania diaryzacji mówców. Zaproponowane metody

są oparte na podejściu diaryzacyjnym typu end-to-end, co oznacza, że model bezpośred-

nio określa wynik diaryzacji (aktywności poszczególnych mówców), na podstawie otrzy-

manych danych wejściowych. Kluczową cechą tego podejścia jest transformacja sekwencji

wejściowej sieci na sekwencję wektorów osadzeń (ang. embedding sequence), gdzie na

każdy zestaw cech przypada jeden wektor. W literaturze wektory osadzeń na poziomie

ramek (ang. frame-level embeddings) były wykorzystywane na wiele sposobów w celu

ekstrakcji informacji diaryzacyjnej, informacji na temat mówców, czy też do określania

liczby mówców w nagraniu. W tym zakresie ważną procedurą jest estymacja atraktorów

(ang. attractors), które określają reprezentacje mówców występujących w danym nagraniu.

Najbardziej popularne jest podejście autoregresywne (ang. autoregressive), znane jako

Encoder-Decoder-based Attractors [73], gdzie osadzenia na poziomie ramek są wyko-

rzystane do oszacowania atraktorów. W niniejszej pracy zaproponowana została metoda

nieautoregresywnej estymacji atraktorów (ang. Non-Autoregressive Attractor estimation

- NAA). Główna różnica między podejściem autoregresywnym a nieautoregresywnym

polega na tym, że w podejściu autoregresywnym kolejne atraktory estymowane są sekwen-

cyjnie na podstawie poprzednich wyników, natomiast w podejściu nieautoregresywnym
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wszystkie atraktory wyznaczane są równocześnie. Zaprezentowane podejście wyznacza

reprezentacje mówców dla zadania diaryzacji poprzez wykorzystanie właściwości osadzeń

na poziomie ramek występujących w strukturze modelu diaryzacji, zapewniając bardziej

wyjaśnialny proces estymacji atraktorów, w przeciwieństwie do standardowego podejś-

cia autoregresywnego. Ważne, aby wspomnieć, że w literaturze zostały zaproponowane

inne nieautoregresywne rozwiązania, jednakże po raz pierwszy w kontekście diaryzacji

zostało ono zaproponowane przez autorkę tej pracy. Początkowo, metoda NAA była za-

prezentowana jedynie na nagraniach zawierających dwóch mówców oraz z założeniem,

że liczba mówców w nagraniu jest znana. W toku dalszych badań, procedura estymacji

atraktorów została rozwinięta i rozszerzona poprzez zaproponowanie wariacji NAA, które

pozwoliły na jej zastosowanie do warunków bardziej generycznych, obejmujących zmi-

enną, większą niż dwa i nieznaną liczbę mówców. Ewaluacje systemów uwzględniały

wiele baz danych, zarówno nagrań symulowanych, jak i rzeczywistych. Kolejnym kro-

kiem w rozwoju metody NAA było jej zintegrowanie z modelem dla zadania jednoczesnej

diaryzacji i separacji mówców. Badania miały na celu zniwelowanie luki pomiędzy

zadaniami diaryzacji i separacji, które są w zasadzie bardzo podobne. Celem diaryzacji

jest wskazanie aktywności każdego z mówców, co może być zaprezentowane poprzez

wskazanie prawdopodobieństwa występowania danego mówcy w danej ramce czasowej.

Z kolei separacja mówców, która polega na rozdzieleniu sygnałów audio odpowiadających

poszczególnym mówcom, typowo jest wykonywana poprzez estymację masek, które mogą

być interpretowane jako aktywności mówców w domenie czasowo-częstotliwościowej.

W związku z tym zaproponowano rozwiązanie w formie pojedynczej struktury trenowanej

jednocześnie dla obu zadań, które pozwala na ekstrakcję zarówno wyniku diaryzacji,

jak i separacji. Metoda NAA została również z sukcesem zaimplementowana do tego

zadania oraz rozszerzona dla nagrań o małym udziale mówców wypowiadających się

równocześnie, reprezentujących spokojną konwersację (typowe dla zadania diaryzacji)

oraz nagrań zawierających duży udział mowy osób wypowiadających się jednocześnie

(typowe dla separacji), co udowadnia wszechstronność metody NAA.
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Chapter 1

Introduction

1.1 Motivation and relevance of the research

Technological advancements are driven by the need to make our lives better. The rapid

development of modern hi-tech solutions has led to the appearance of technologies such

as virtual reality, Internet of Things, ‘smart’ homes and many more. Many proposed

advances are developed so that they are interactive and natural to use. Speech is the most

natural way of communication between humans, thus, it often constitutes the crucial part

of advanced solutions. Since the development of the first speech recognition systems over

50 years ago, speech technology innovations and solutions have been integrated into our

daily lives via applications such as voice dialing, translating spoken expressions on-the-fly,

semi-automated customer service, or asking Siri or Alexa for a weather forecast. Let us

also take into consideration the recent pandemic situation, which forced many people to

work remotely and to use audio-video tools for on-line meetings. A lot of us are unaware

that these tools have active voice activity detection and speech enhancement algorithms

to facilitate meetings at a high quality (e.g. Cisco Webex, Microsoft Teams). Currently, the

research direction is focused on conversational intelligence. Single-user interactions with

passive systems evolve into actively engaging systems that enable completing complex

tasks such as generating documentation during meetings (including medical records at

doctor appointments), verifying facts, extracting information about meeting participants,

or supporting collaborative learning within peer groups. Such systems are composed of

intelligent components that span over diverse modalities, i.a. dialogue systems for context

handling, video processing for information extraction, common-sense reasoning, analysis

and recognition for multi-speaker conversations.
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Introduction

Figure 1.1: The general depiction of examples of the selected speech processing tasks.

One of the common goals and challenges of speech processing systems is to effec-

tively handle free-flowing speech across diverse conditions and scenarios, such as home

environments, offices (e.g. business meetings), restaurants, and cocktail parties. These

conditions in fact provide a huge variety of speech characteristics due to the amount and

type of noise, the amount of speech, recording length, the possibility of the occurrence of

overlapping speech, multiple number of speakers, background speech, the type of device

used, or even the character of the conversation (which influences the amount of silence,

speaker turns, speech overlap, and the number of speakers). Obtaining high-quality

and accurate results often involves an ensemble of multiple systems. For example, in

transcription pipelines this may include automatic speech recognition (ASR), speaker

recognition (SR), and speaker diarization. Furthermore, since overlapping speech presents

a significant challenge for these systems, speaker separation or other similar enhancement

techniques are often used to improve performance.

The mentioned speech processing systems represent different tasks, each addressing a

specific aspect of analysing and understanding spoken language. Their general scheme is

presented in Figure 1.1. ASR is a task that answers the question "what was said". Speaker

recognition, which is represented by subtasks of speaker identification and verification,

answers "who is speaking" (identification) or "are the words spoken by the particular

person" (verification). Diarization is the task of segmenting audio into speaker-specific

segments, answering the question "who spoke when". Diarization model often facilitates

the combination of speech and speaker recognition. The goal of speaker separation is to

isolate and extract the speech of multiple speakers into separate individual audio streams.

It should be noted that such systems often constitute a preprocessing step for spoken

2



1.2 Problem statement and research objectives

language understanding systems whose goal is to extract the meaning of the spoken

sentence, and represent another human-computer interaction technology.

One of the key aims of current speech technology development is to process conver-

sations, particularly those occurring ’in the wild’ with multiple speakers involved. Such

multi-speaker interactions fall under the so-called cocktail-party problem, which includes

not only conversational speech but also situations with heavy speech overlap and back-

ground noise. Deep neural network (DNN) based representations have brought significant

improvement and possibilities for speech applications. Nevertheless, their reliability can

still be improved through further research. The most prominent challenges include ad-

verse acoustic conditions in the recorded signal e.g. room reverberation, environmental

noise and background speech, overlapping speech, different domains among recordings

(e.g. the microphone and telephone speech often have different sampling frequency),

short duration of recordings, and others. The described difficulties have been addressed

in different conference challenges, which emphasize the importance of the presented

problems, e.g. Short-duration Speaker Verification Challenge [204], Far-Field Speaker

Verification Challenge [148], VoxSRC Challenge [121] - speaker verification and diarization,

VOiCES from a Distance Challenge [124], CHiME Challenge [193] - speech separation,

recognition and diarization in multi-speaker scenario, DIHARD Speech Diarization Chal-

lenge [161], DISPLACE Challenge [86] - speaker diarization, language diarization, speech

recognition on multilingual data.

The main theme of the thesis is centred around speaker representations, investigated

from the perspectives of speaker recognition and diarization tasks. For this reason, it is

important to emphasize that the advances in the field of speaker recognition are versatile

and often contribute to the milestones in other speech and signal processing domains. Let

us consider as evidence the example of x-vectors [175] - one of the state-of-the-art speaker

embeddings (representations) - which soon after its proposal has been successfully ap-

plied for speaker diarization [167], language recognition [172], and emotion recognition

[164] or even for estimation of room acoustics [92]. Several recent works employ x-vectors

for health applications, e.g. Parkinson’s disease detection [83, 120] or Alzheimer’s detection

[139, 143] from speech.

1.2 Problem statement and research objectives

In recent decades, deep neural networks (DNNs) have provided breakthroughs in many

fields of speech processing technology, due to access to large amounts of data, the avail-

3
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ability of better computational resources, as well as due to the contribution of the research

community and proposals of methods that further develop existing techniques. However,

proposed methods often are not properly adjusted for the particular speech task as they

are typically borrowed from other signal processing domains. At the same time, as the

systems become better tailored for single tasks, the research community tries to address

and develop more generic systems that handle multi-modal information and leverage

mutual properties to achieve better performance, robustness to adverse conditions, and

capability to interpret the real-life conditions environment at least on par with human

accuracy.

The research presented in this thesis explores various aspects of speaker character-

ization systems, with a primary focus on investigating speaker representations across

different tasks. It presents optimization methods that are tailored for better speaker recog-

nition systems, focused on optimal training and preservation of speaker information.

Next, it introduces explainable and discriminative speaker representations for the speaker

diarization task. Finally, using the proposals of the previous work, this thesis tries to ad-

dress the joint speaker diarization and separation task, by proposing generic methods that

are efficient in both conversational (low speech overlap) and highly overlapped speech

conditions, for both simulated and real-life recordings.

Described problems lead to the following research objectives and hypotheses, focusing

on several aspects of speaker characterization systems:

1. Proper hyperparameter values of the angular-based objective function improve the

performance and training convergence of speaker recognition system;

2. Multi-scale features, increasing the temporal resolution, and focusing on frequency

dependencies improves the effectiveness of speaker recognition;

3. The frame-level encoder embeddings carries relative speaker information and en-

ables discrimination between them within a recording;

4. Relative speaker information extracted with methods proposed for diarization can

be successfully employed in joint speaker diarization and separation enabling im-

proved performance for both tasks.
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1.3 Contributions

1.3 Contributions

The research contributions present advancements and optimizations of the structures

for speaker recognition, speaker diarization, and joint speaker diarization and separation

tasks. This thesis presents its contributions in the form of a publication series, discussed

in further sections of this document:

I. M. Rybicka and K. Kowalczyk, "On Parameter Adaptation in Softmax-Based Cross-

Entropy Loss for Improved Convergence Speed and Accuracy in DNN-Based Speaker

Recognition", Interspeech, Shanghai, China, 2020.

II. M. Rybicka, J. Villalba, P. Żelasko, N. Dehak, K. Kowalczyk, "Spine2Net: SpineNet

with Res2Net and Time-Squeeze-and-Excitation Blocks for Speaker Recognition",

Interspeech, Brno, Czech Republic, 2021.

III. M. Rybicka, J. Villalba, N. Dehak and K. Kowalczyk, "End-to-End Neural Speaker

Diarization with an Iterative Refinement of Non-Autoregressive Attention-based

Attractors", Interspeech, Incheon, South Korea, 2022.

IV. M. Rybicka, J. Villalba, T. Thebaud, N. Dehak and K. Kowalczyk, "End-to-End Neural

Speaker Diarization with Non-Autoregressive Attractors", IEEE/ACM Transactions

on Audio, Speech, and Language Processing, 2024.

V. M. Rybicka, K. Kowalczyk, T. Thebaud, N. Dehak, J. Villalba, "Joint Diarization

and Separation Using SepFormer with Non-Autoregressive Attractors", IEEE Signal

Processing Letters, 2025.

In the following part of this thesis these publications will be referenced by their Roman

numerals. The full texts are included in the Appendix of the thesis.

The main contributions are in the areas of speaker recognition, speaker diarization

and joint speaker diarization and separation and can be summarized as follows:

• Proposal of an angular-based speaker recognition objective function with adaptive

hyperparamters, which is a softmax-based cross-entropy loss function that adapts

its hyperparameters based on neural network’s performance and convergence at the

current training step. The proposed approach improves performance and speeds

up network convergence for the speaker recognition task;

• Adaptation and modification of ResNet architecture by increasing temporal resolu-

tion of the model for improved speaker recognition performance;
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• Adaptation of the scale-permuted architecture to preserve speaker information,

along with an exploration of modules that enhance model resolution for the speaker

recognition task;

• Proposal of Non-Autoregressive Attractor estimator for the speaker diarization task

– a method for estimating speaker representations for diarization, which allows to

leverage properties of the frame-level embeddings present in the structure of the

diarization model, providing a more explainable attractor generation in speaker

diarization;

• Extension of Non-Autoregressive Attractor method to generic conditions of a flex-

ible and unknown number of speakers, presented for several simulated and real

scenarios for the speaker diarization task;

• Extension of the separation model into a unified framework for joint speaker di-

arization and separation, enabling efficient and effective performance of these two

tasks;

• Incorporation of the Non-Autoregressive Attractor estimation method for joint

speaker diarization and separation, with adaptation to both conversational and high-

overlap speech conditions, demonstrating competitive or superior performance

compared to models designed for either the joint task or the individual subtasks.

1.4 Author’s research in the topic

In addition to the Publications presented in Section 1.3, the author has co-authored other

papers related to the field, participated in challenges, and contributed to various research

projects. This section provides an overview of the author’s additional work beyond the

main contributions of this thesis.

Conference Papers:

1. M. Witkowski, M. Rybicka and K. Kowalczyk, "Speaker Recognition from Distance

Using X-Vectors with Reverberation-Robust Features", 2019 IEEE Signal Processing:

Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland,

2019;
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1.4 Author’s research in the topic

The paper presented research in the field of speaker recognition, focusing on reducing

the negative impact of reverberation by exploring reverberation-robust features (acoustic

representations of the audio).

2. M. Witkowski, M. Rybicka and K. Kowalczyk, "Sparse Linear Prediction-based Dere-

verberation for Signal Enhancement in Distant Speaker Verification", 2021 IEEE

European Conference on Signal Processing (EUSIPCO), Dublin, Ireland, 2021;

The paper introduced a novel dereverberation method of audio recording, which was inves-

tigated as a preprocessing step for robust speaker recognition. The method was examined

with the state-of-the-art speaker modeling method, as well as the method proposed in the

Publication I.

3. J. Villalba, B. J. Borgstrom, S. Kataria, M. Rybicka, C. D. Castillo, J. Cho, L. P. García-

Perera, P. A. Torres-Carrasquillo, N. Dehak "Advances in Cross-Lingual and Cross-

Source Audio-Visual Speaker Recognition: The JHU-MIT System for NIST SRE21",

Odyssey, Beijing, China, 2022;

The paper presented a description of the speaker recognition system for NIST SRE21 eval-

uation, developed by the team of researches from Johns Hopkins University (JHU) and

Massachusetts Institute of Technology (MIT). Speaker Recognition Evaluation (SRE), or-

ganized by the National Institute of Standards and Technology (NIST), is one of the most

important evaluations of speaker recognition systems. It attracts participants from uni-

versities and companies worldwide, aiming to advance and evaluate the state-of-the-art

in speaker recognition. This evaluation addressed speaker recognition using multilingual

conversational telephone speech (CTS) and audio from video (AfV). It included multimodal

tracks with cross-source verification by comparing speaker identities across CTS and AfV

recordings, as well as cross-language trials, where the system verified whether the recordings

spoken in different languages belong to the same speaker. The author’s contribution to

this publication involved the investigation and development of invariant representation

learning (IRL), aimed at making the speaker recognition system invariant and robust to

language mismatch.

4. S. Kacprzak, M Rybicka, and K. Kowalczyk, "Spoken Language Recognition with

Cluster-Based Modeling", IEEE 2022 International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Singapore, 2022.

The paper investigated the language recognition problem, which is a topic related to speaker

recognition. The presented research used unsupervised cluster-based modeling in the lan-
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guage recognition system, which served as an approach to construct multiple independent

language models.

Technical reports and challenges

1. VOiCES from a Distance Challenge 2019, Fixed Condition of Speaker Recognition

task (2019)

The VOiCES from a Distance Challenge 2019 aimed to advance research in speaker recog-

nition and automatic speech recognition (ASR), with a particular focus on single-channel

far-field audio in diverse noisy environments. The author and her team (researchers from

AGH University of Krakow) participated in the Fixed Condition of the Speaker Recognition

task, where a speaker recognition system is developed using only a predefined, limited (i.e.

fixed) set of training data.

2. Short-duration Speaker Verification Challenge 2020, Task 2: Text-independent

Speaker Verification (2020)

This challenge focused mainly on speaker verification systems for short recordings. The

author and her team (researchers from AGH University of Krakow) participated in Task 2:

Text-independent Speaker Verification, which means that the speaker verification was

conducted regardless of the words spoken in the compared recordings (which is contrary to

the text-dependent speaker verification). In this task, the recordings for creating the speaker

reference model ranged from 3 to 120 seconds in duration, while the test recordings ranged

from 1 to 8 seconds. The task presented an additional challenge by including two scenarios:

(1) both the model and test recordings were in the same language (Persian), and (2) the

model and test recordings were in different languages (Persian and English). The submitted

system included the speaker modeling architecture method proposed in Publication I.

3. NIST 2021 Speaker Recognition Evaluation (SRE21) (2021)

The author participated in the challenge as a part of the research team from Johns Hopkins

University, during the research visit in 2021. The team included researchers from Johns

Hopkins University (JHU) and Massachusetts Institute of Technology (MIT) and resulted in

the joint article, described above (subsection Conference Papers: "Advances in Cross-Lingual

and Cross-Source Audio-Visual Speaker Recognition: The JHU-MIT System for NIST SRE21").

The challenge itself has also been summarized in the description provided in the referenced

article.
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4. Second Multimodal Information Based Speech Processing (MISP) Challenge, Track 1,

Audio-Visual diarization systems (2022)

The author participated in the challenge as a part of the research team from Johns Hopkins

University, during the research visit in 2022. The challenge, part of the ICASSP 2022 Signal

Processing Grand Challenge, focused on speech processing in home scenarios with multiple

simultaneous conversations, background noise, and reverberation. It promotes the use of

both audio (far-, middle-, and near-field) and video (far- and middle-field) modalities to

improve performance under these challenging conditions. Track 1 specifically addressed

Audio-Visual Speaker Diarization. The proposed system incorporated an approach intro-

duced in Publication III.

Conference presentations

1. 09/2019: poster presentation at 2019 IEEE Signal Processing: Algorithms, Architec-

tures, Arrangements, and Applications (SPA), Poznan, Poland.

Paper presented: M. Witkowski, M. Rybicka and K. Kowalczyk, "Speaker Recognition

from Distance Using X-Vectors with Reverberation-Robust Features".

2. 10/2020: oral presentation at Interspeech 2020 conference, Shanghai, China (con-

ference was held as virtual due to pandemic situation).

Paper presented: M. Rybicka and K. Kowalczyk, "On Parameter Adaptation in

Softmax-Based Cross-Entropy Loss for Improved Convergence Speed and Accuracy in

DNN-Based Speaker Recognition".

3. 08/2021: oral presentation at Interspeech 2021 conference, Brno, Czech Republic.

Paper presented: M. Rybicka, J. Villalba, P. Żelasko, N. Dehak, K. Kowalczyk, "Spine2Net:

SpineNet with Res2Net and Time-Squeeze-and-Excitation Blocks for Speaker Recog-

nition".

For this conference, the author was awarded with Travel Grant, which is presented to stu-

dents and young scientists to support their participation in the conference. Award granted

by the organizers of Interspeech 2021 and the International Speech Communication Associ-

ation (ISCA).

4. 09/2022: poster presentation at Interspeech 2022 conference, Incheon, South Korea.

Paper presented: M. Rybicka, J. Villalba, N. Dehak and K. Kowalczyk, "End-to-

End Neural Speaker Diarization with an Iterative Refinement of Non-Autoregressive

Attention-based Attractors".
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5. 04/2025: poster presentation at 2025 IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), Hyderabad, India.

Paper presented: M. Rybicka, J. Villalba, T. Thebaud, N. Dehak and K. Kowalczyk,

"End-to-End Neural Speaker Diarization with Non-Autoregressive Attractors".

Projects

1. 2018-2021: Audio Processing using Distributed Acoustic Sensors (APDAS), First

TEAM Program, Foundation for Polish Science (FNP)

This research project aimed to develop methods for distributed signal processing in order

to enable acoustic scene analysis. The goal was the enhancement of speech intelligibility

in hands-free communication and robust voice-based human-computer interfaces over a

distance. The authors role in the project was algorithm implementation, evaluation, and

result analysis in the field of deep neural network based speaker recognition, collaboration

with other project members in order to develop robust speaker recognition system in

reverberant conditions, and research in the area of speaker diarization.

2. 2022: Machine Learning for Spatial Audio Processing (MLSAP), OPUS Program,

National Science Centre (NCN)

The project investigated how classical signal processing and machine learning could be inte-

grated to process audio and speech more effectively. It aimed to design innovative methods

that harnessed the complementary strengths of both approaches, with the goal of advancing

sound event detection and localization, signal extraction, and the classification of speech

and audio signals. The authors role was development of algorithms, their implementation,

evaluation, and analysis of results in the field of speaker recognition and diarization based

on deep neural networks.

3. 2024-2025: Intelligent voice assistant for managing medical records according to

doctor recommendations (LINGE), INFOSTRATEG IV Program, Narodowe Centrum

Badań i Rozwoju

The goal of the project is creating a universal system designed to support and simplify

physicians’ work by automating the completion of Electronic Medical Records and related

documents, such as prescriptions, referrals, and sick leave forms. The system integrates

voice-based modules for automatic speech recognition and natural language processing

with the medical form solutions developed by the project partner. The expected result
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is less time spent on completing medical records, allowing doctors to focus more on in-

depth patient consultations. The authors role in the project was algorithm implementation,

evaluation, and result analysis in the field of diarization and target-speaker voice activity

detection (speech activity detection of a specific person).

4. 2024-2025: Acoustic Intelligence – towards self-supervised deep neural acoustic

analysis (Acoustic Intelligence), OPUS Program, National Science Centre, Poland

(NCN)

The project explores the use of self-supervised learning for audio, allowing models to learn

from unlabeled data and identify patterns with higher robustness than traditional supervised

methods. Its goal is to develop innovative approaches, such as Universal Audio Representa-

tion, Universal Acoustic Analysis, and Universal Constituent Audio Signal Enhancement, to

build intelligent systems capable of independent improvement across a wide range of audio

tasks. Additionally, the project goal is to investigate the domains of self-supervised acoustic

signal enhancement and acoustic scene analysis. The author’s role was development of

algorithms, their implementation, evaluation, and analysis of results in the field of speaker

separation based on deep neural networks.

Research visits

During the Ph.D. pursuit, the author established collaboration and visited prof. Najim

Dehak’s group at Center for Language and Speech Processing (CLSP), Johns Hopkins

University (JHU), Baltimore, USA, and worked under supervision of prof. Jesús Villalba

and prof. Najim Dehak. The visits were organized as part of the projects:

1. 09/2021 - 11/2021 – Audio Processing using Distributed Acoustic Sensors project,

funded by the Foundation for Polish Science within the First TEAM Program;

2. 10/2022 - 08/2023 – Fulbright Junior Research Award;

3. 11/2023 - 09/2024 – funding international research visits of young employees and

doctoral students, Excellence Initiative - Research University program, AGH Univer-

sity of Krakow.

The collaboration was initiated in 2020 and since then has resulted in 3 research visits

and 5 joint publications. During this period, the author was in continuous contact with

professors, holding weekly meetings and consultations on research progress, either in

person or remotely.
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During my research visits, I had the opportunity to participate in regular team meet-

ings, where I presented my work and became familiar with the research of other doctoral

students. During the first visit, the research focused on the development of the speaker

recognition task. I had the opportunity to be part of the JHU-MIT team at the NIST SRE21

evaluation and work on the robustness of the speaker recognition system to multilingual

speaker recording representations.

The next 10-month visit was with a project awarded with Fulbright Junior Research

Award. Fulbright is one of the largest exchange programs with the United States. The Ful-

bright Junior Research Award provides support and funding for Ph.D. students to perform

a research project at scientific institutions in the USA. During this stay, I worked on devel-

oping the diarization system, initially proposed in the Interspeech 2022 conference paper

(which was also the result of a collaborative effort) and began preparing a manuscript for

the IEEE/ACM Transactions on Audio, Speech, and Language Processing. I also joined

the JHU team in the Multimodal Information Based Speech Processing (MISP) Challenge

2022 (described in more detail above) as part of this research visit. In addition to my main

research work, I had the opportunity to actively participate in scientific events organized

at CLSP. I volunteered during the preparations for the 2023 Frederick Jelinek Memorial

Summer Workshop on Speech and Language Technologies (JSALT), an annual multi-week

workshop that produces numerous innovative solutions in the field of speech processing.

At the end of the research visit, I had the opportunity to share my research findings and

conclusions by giving a talk about my research at the Human Language Technology Center

of Excellence, JHU.

My third stay, which was an 11-month extension of the project, focused on continuing

work on diarization and initiating a new research direction in joint speaker diarization and

separation. During this period, I developed a framework that integrated diarization and

separation, incorporated diarization methods into separation, and combined both tasks

in joint training. In addition, the proposed methods were developed to handle recordings

with high and low speech overlap. The research resulted in a publication in IEEE Signal

Processing Letters published in July 2025. Moreover, during this stay, I continued the

work on a manuscript for the IEEE/ACM Transactions on Audio, Speech, and Language

Processing, which was eventually published in August 2024. I participated in two projects

that focused on improvements in speech separation and diarization, and information

extraction with foundational audio models and large language models. Throughout all my

visits, I had the opportunity to participate in the “Reading Group” sessions attended by

CLSP doctoral students, where the latest developments in speech and natural language
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processing were discussed. I also attended CLSP seminars led by researchers from other

universities and industry, which allowed me to establish professional contacts. At the end

of my visit, I was invited to share my research findings and conclusions during one of

these seminars.

1.5 Outline of the Thesis

The following chapters of this thesis describe the fundamentals and contributions of the

research presented in Publications I, II, III, IV, and V.

Chapter 2 presents the state-of-the-art, related work and general fundamentals for the

research described in this thesis in the areas of speaker recognition, speaker diarization,

and joint speaker diarization and separation. Moreover, Section 2.3 of this Chapter ex-

plains the metrics used to evaluate the proposed systems, and Section 2.4 presents general

descriptions of the datasets used in the experiments and highlights other datasets that are

widely adopted in the domain.

The next Chapter 3 provides a concise overview of the work, contributions, and serves

as an introduction to the series of publications. Section 3.1 outlines Publications I and

II and their contributions to the field of speaker recognition. Section 3.2 details the

developments of the non-autoregressive approach, with Subsection 3.2.1 focusing on

its application to speaker diarization, as presented in Publications III and IV. Finally,

Subsection 3.2.2 demonstrates the versatility of the non-autoregressive approach within

the proposed framework for the joint speaker diarization and separation tasks.

Chapter 4 summarizes the thesis and contributions of the presented Publications, and

draws out potential future work.

The end of this thesis concludes the Appendix, which contains full texts of five Publi-

cations that this thesis is based on.
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Chapter 2

Research background

The purpose of this chapter is to present an overview of the background, fundamentals,

and state-of-the-art relevant to the presented research. The review presented in the

following sections does not aim to be exhaustive, but rather covers the works that are

important and relative to the contributions presented in this thesis, as well as introduce the

most important aspects of the investigated research areas. For a more in-depth discussion,

the reader is referred to a comprehensive review of publications that examine these topics

in greater detail, such as [9, 67, 116, 140].

2.1 Speaker recognition

The speaker recognition task plays an important role in the speech processing field. The

methods developed in this domain are often the basis for other speaker characterization

tasks, e.g. speaker diarization, emotion recognition, disease detection, etc. In speaker

recognition, we can distinguish two distinctive tasks: speaker verification and speaker

identification, both depicted in the general diagrams in Figure 2.1. The goal of speaker

verification is to make a binary decision as to whether the person is who they claim to

be, i.e., answering the question "is it person X speaking?". Speaker identification aims to

determine the identity of the speaker present in a particular recording, i.e., to answer the

question "who is speaking?". When speaker identification is limited to a predefined group

of known (registered) speakers, the task is referred to as a closed set identification. When

speaker identification allows speakers out of the registered group (i.e. unknown speakers),

then the identification is from an open set. Speaker recognition systems can also be divided

into text-dependent and text-independent systems. Text-dependent systems require the
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speaker to always use a specific phrase/password. In contrast, text-independent systems,

which are investigated in this thesis, do not impose such a constraint.

Figure 2.1: The general examples of the speech recognition tasks: identification and
verification.

A more detailed diagram of the speaker verification process is presented in Figure 2.2.

The process has two phases: enrollment and test. During the enrollment phase, a voice

recording or recordings of a particular person are provided. Based on these, the reference

speaker representation is computed. Next, in the test phase the test voice recording is

provided from which in a similar way the speaker representation is extracted. Using

the enrollment and test models, their similarity is evaluated in the backend (presented

as the "Comparison" block in Figure 2.2). This stage produces a score/likelihood as

to how models are similar, in order to assess whether they are from the same speaker.

The obtained score is compared with an empirically selected threshold and returns a

binary decision whether the voice samples are from the same speaker or not. Speaker

identification task can be seen as N speaker verification operations: given a voice sample,

the system performs comparisons with all N speaker models. The model that yields the

highest score is selected as the identification result, provided that, in case of open-set

identification, the score also exceeds a predefined threshold. For this reason, speaker

recognition research focuses on the speaker verification task, as the development in

verification can be easily scaled for the identification task. In this thesis, proposed methods

were developed for the speaker verification task.

Figure 2.2: The general diagram of the speaker verification process.
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2.1.1 Speaker verification system processing steps

The general processing of the speaker verification system can be divided into the following

steps: preprocessing, feature extraction, speaker (representation) modeling, and backend

scoring.

Preprocessing

The preprocessing step includes any algorithms that process the raw input signal. Usually

the Voice Activity Detection (VAD) is applied in order to filter out non-speech time frames,

and keep only speech fragments for further processing. The simplest and most commonly

used VAD is the energy-based algorithm [145], which processes the recording frame by

frame, computes the energy for each frame, compares it to a predefined threshold, and

then evaluates the proportion of voiced and unvoiced frames within a contextual window.

More detailed analysis of VAD techniques can be found in [112]. Signal preprocessing is

also a stage in a speaker recognition system where methods such as speech enhancement,

denoising, dereverberation, and speech separation can be employed to improve the

robustness of speaker representation under adverse acoustic conditions.

Feature extraction

In most of the speaker verification system, preprocessed signal is followed by feature ex-

traction step. In fact, feature extraction that is robust to adverse conditions and enhances

the discriminative property of speaker modeling has also been an important research

topic, presenting different variants [7, 34, 152, 71, 195, 142, 114]. For many years, the

most well-established features have been Mel-Frequency Cepstral Coefficients (MFCC)

[34]. Since MFCC extraction is a standard procedure for many speech processing tasks,

its processing steps will be shortly outlined. The overall workflow is summarized in Fig-

ure 2.3. First, the signal undergoes pre-emphasis filtering to boost high frequencies. It is

then divided into short, overlapping frames, typically 20 ms in length with a 10 ms stride,

and multiplied by a window function such as Hamming or Hanning. This ensures the

assumption of stationarity of the speech signal within each frame [1]. Each frame is then

transformed using the Fast Fourier Transform (FFT) to compute its power spectrum. Next,

triangular filters distributed along the Mel scale are applied. The Mel scale reflects human

auditory perception, offering finer resolution at lower frequencies and coarser resolution

at higher ones. Finally, a Discrete Cosine Transform (DCT) is applied to decorrelate the

filterbank coefficients and produce a compact representation. With the development
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of DNN-based speaker modeling techniques, the coefficients of (log-)Mel-filterbanks

(FBanks) emerged as a strong competitor to MFCC [9]. Mel-filterbank extraction follows

the same steps as MFCC, but omits the DCT, and in some cases also the logarithmic

operation.

Figure 2.3: The general steps of the MFCC features extraction.

Speaker modeling

The core of the verification system is the speaker modeling part. Robust and discriminative

speaker representation extraction/modeling is the area in the speaker recognition system

where the research community mainly strives for improvement.

Since the late XX century, Gaussian Mixture Models (GMMs) have been the dominant

method for speaker recognition for over two decades [116], first proposed in [153]. Shortly,

the method models the speaker features with GMMs, i.e. mixture of Gaussian probability

density functions distributions defined by a set ofµg mean vectors,Σg covariance matrices,

and πg weights: Ω= {πg ,µg ,Σg |g = 1, ..,G} for G Gaussians, also called components. Then,

the probability of a single feature time frame φt can be obtained as:

f (φt |Ω) =
G∑

g=1
πg N (φt |µg ,Σg ), (2.1)

and the final probability for the sequenceΦ= {φ1, ...,φT } can be formulated as:

p(Φ|Ω) =
T∏

t=1
f (φt |Ω). (2.2)

In order to apply the method for speaker verification, two models are required: target

speaker model and an alternate speaker model (representing non-target speakers). This

allows the test data to be evaluated against both models, with the more likely one de-

termining the accept/reject decision. The alternate speaker model led to the concept

of the Universal Background Model (UBM) [154], which represents all speakers other

than the target. In practice, the UBM is a large GMM trained to capture the speaker-

independent distribution of speech features across a broad population, derived from

multiple utterances of speakers, representing an "average" speaker [171]. Usually, GMMs
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are trained with an Expectation-Maximization (EM) algorithm [37]. In [155] the UBM was

employed as initialization for adapting to the speaker-specific model with the enrollment

recordings, which is also called as GMM-UBM method. The adaptation of the UBM to the

recordings of a particular speaker was done via Maximum A Posteriori (MAP) adaptation

[56]. The adapted speaker models were more effective and reliable than those trained

independently.

The speaker verification system score can be computed as the difference of the log-

likelihood ratios of the test recording with UBM (ΩUBM) and speaker-specific model (Ωs):

Λ(Φ) = log p(Φ|Ωs)− log p(Φ|ΩUBM) (2.3)

One of the problems with the presented method is the dependence of the final result

on the recording length. That guided the research direction into fixed-dimensional repre-

sentations of the recordings, which proved especially effective since they enable the use of

machine learning classifiers. This led to the approach of the so-called supervectors from

the GMMs, introduced for the first time in speaker recognition in [90]. Usually, the GMM

supervector is represented with stacked vectors of GMM means of the recording (speaker)

adapted UBM. This development enabled the application of different techniques, such

as Support Vector Machines (SVMs) [31, 21, 20] and Factor Analysis (FA) [90], especially

the Joint Factor Analysis (JFA) [89]. Since these methods are not employed in this thesis,

detailed descriptions are omitted.

In general, the underlying assumption of the GMM-based approaches is that the

GMMs representing an utterance are influenced by both speaker and channel variability.

The general model representation can be formed as follows:

M = m+s+c (2.4)

where m is a speaker/channel independent global mean (usually represented by UBM),

s is a speaker part, and c represents channel variability. Throughout the years of using

the approach, researchers have focused on modifications in the investigation of speaker

and channel components [155, 17, 90, 89]. In JFA method, the supervector is typically

represented with a linear combination of terms: (i) speaker/channel independent m, (ii)

speaker-dependent with residual component s = Vys +Dzs and (iii) channel-dependent

c = Ux, which yields

M = m+Vys +Dzs +Ux. (2.5)
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The term (i) is usually represented by UBM and remains unchanged. The vectors ys , zs , x

are standard normal vectors. The matrices V, D U are low rank and capture the variability

in the appropriate spaces. More detailed method description can be found in [91].

The next strong baseline, especially popular in the second decade of the XXI century,

was the i-vector method [36, 35], superseding the GMMs. Recognizing that channel

factors include speaker-dependent information, both speaker and channel factors were

integrated into a single entity known as the total variability space. I-vectors simplified

previous approaches to a model, which assumes to generate:

M = m+Tv (2.6)

where m is a global mean which is speaker and session independent, T is a model pa-

rameter, known as total variability matrix, v is the mentioned i-vector representation,

also called as identity vector and known as intermediate representation as given its in-

termediate size between a supervector and an acoustic feature vector. The goal of Tv

modeling is to capture both speaker and channel effects within a unified representation

space, allowing channel variability to be mitigated directly. This contrasts with the earlier

approaches, where speaker and channel characteristics were modeled as separate factors.

Moreover, the lower dimensionality of the i-vectors, comparing to supervectors, allows

for an application of different methods that can compensate the channel effects, which

had been difficult to implement with the high-dimensional supervectors. In contrast

to supervectors, which can have thousands of dimensions depending on the number

of Gaussians and features (for example, for 2048 Gaussians and 19 features one obtains

2048×19 = 38912 supervector dimensions), i-vectors provide a compact representation of

typically 100–600 dimensions.

With the growth of the dataset sizes and methods, research gradually shifted towards

deep neural network (DNN) modeling. The development of DNN-based speaker model-

ing has undergone a transitional phase, during which hybrid DNN/i-vector approaches

were explored. In these methods, DNNs were employed, for example, to estimate the UBM

[102, 101], or to extract bottleneck features (BNFs) [65, 58], which either replaced or com-

plemented traditional MFCC features. Approximately since the DNN-based era, speaker

(vector) representations have also been called speaker embeddings, which was inspired

from the speech recognition field, where words were transformed into word embedding

representations. Since part of thesis contributions concern DNN-based speaker represen-

tation extraction, more detailed description of the approach is presented Chapter 2.1.2.
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Backend

The extraction of the speaker representations is followed by a step that allows to compare

the similarity between enrollment and test models and output a final decision. This

stage may also incorporate techniques to compensate for channel-related differences in

representations and facilitate domain adaptation.

Firstly, the model normalization can be applied as one of the possible channel com-

pensation techniques that helps mitigate the impact of external speaker variability em-

bedded in the model. The most common techniques are Within Class Covariance Nor-

malization (WCCN) [68], Nuisance Attribute Projection (NAP) [22], Linear Discriminant

Analysis (LDA) [10, 36]. Each of the approaches learns a projection that suppresses non-

speaker variability. In [53] authors proposed to use whitening and length-normalization,

in order to mitigate the non-Gaussian i-vector behaviour. The most commonly used,

including experiments presented in the thesis Publications, is the LDA method with

length-normalization. LDA is a popular approach to reduce the vector dimensionality. It

allows for decreasing the size of the vector while preserving key information. Its goal is

to estimate such vectors that are as close to each other as possible for the same speaker

(minimize within-class variability) and as far apart as possible for different speakers (max-

imize between-class variability). In other words, the task of LDA is to project the vector

into a space where classes are well separated.

Scoring is the main step in the speaker verification system backend. The most com-

mon scoring methods are Probabilistic Linear Discriminant Analysis (PLDA) [81, 146, 88]

and cosine distance (also known as Cosine Distance Scoring - CDS). PLDA was widely

used for i-vectors, helping to compensate for any adverse channel effects [171]. The

method was proposed independently in [81] and [146]. In general, during times when

the i-vector-based approach was dominating the field, the development of the speaker

verification systems was accompanied by development and research into PLDA methods,

proposing many variants of this technique. The most common PLDA approach models

the distribution of the speaker representations, e.g. i-vector, as:

v =µv +Szs +ϵu,s , (2.7)

where µv is a global mean, Szs is a speaker-dependent component and ϵu,s is a latent

channel variable. The score with the PLDA method for the i-vectors v1 and v2 is computed

as a logarithm of the likelihood ratio in which v1 and v2 are from the same speakers versus

v1 and v2 are from different speakers. The second popular scoring technique is the Cosine
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Distance Scoring (CDS), which simply calculates the inner product between v1 and v2 and

normalizes by their vector lengths:

C DS(v1,v2) = vT
1 v2

||v1|| · ||v2||
. (2.8)

Score normalization is the next step that operates on the obtained scores and allows

to standardize the score distribution [3, 115]. A speaker verification system produces two

types of score distributions: target and non-target. The target distribution corresponds

to cases where the enrollment and test utterances come from the same speaker, while

the non-target distribution reflects comparisons between different speakers. Without

normalization, the target and non-target score distributions may vary significantly across

different enrolled speaker models. As a result, it becomes infeasible to define a single

detection threshold that works consistently across all models. In the case of the same

speaker model, score distributions can vary depending on the test utterance conditions,

such as recording channel, acoustic environment, or language of the recorded speech. The

normalization step adjusts the score distributions by shifting and scaling for individual

models and/or conditions, enabling the use of a single detection threshold. These adjust-

ments are typically estimated using a set of reference utterances, commonly referred to as

the normalization cohort. Many techniques were developed that differ mainly in the way

data is selected for the cohort [8, 155, 115, 210, 4, 154]. In general, the normalized score

can be represented as:

scorenorm = score −µnorm

σnorm
, (2.9)

where µnorm is a shift and σnorm is a scaling factor. The µnorm and σnorm are usually

calculated respectively as the mean and standard deviation of the scores of obtained the

test or/and enrollment with the cohort files.

The last element of the system’s backend is calibration. The performance of speaker

verification systems is highly dependent on the training data domain, meaning that score

distributions and optimal decision thresholds can vary across datasets. To address this,

score calibration is applied to transform raw scores into interpretable likelihood ratios

using a linear function [14, 15, 45].

2.1.2 Deep Neural Network-based speaker modeling

One of the first works on DNN-based embeddings is publication [184], which concerns

text-dependent speaker recognition. In the training phase, the feed-forward model is
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trained for the speaker classification task, which means that the model learns to identify,

i.e. classify speakers from the training dataset. During the test phase, the output after

the activation function of the last hidden layer is averaged on the temporal axis and

the speaker representation, called d-vector, is obtained. The d-vector method assumes

that the embedding space trained on a training set can reliably generalize to unseen

speakers during evaluation. A key characteristic of the d-vector architecture is that the

feed-forward structure processes the input utterance only at the frame level. The next

work [70] proposed a variant based on recurrent layers and proposed an end-to-end

system that simultaneously learns speaker embeddings and a similarity metric to compare

embedding pairs.

The mentioned approaches were an inspiration for the next important structure pre-

sented in [176, 173], which introduced segment-level processing for the text-independent

speaker verification system. The structure gained a property of processing recordings

with variable length by introducing a temporal statistics pooling layer inside of the struc-

ture. The pooling layer aims to aggregate information from frame-level processing by

computing the mean and standard deviation over the temporal axis, concatenating these

statistics, and passing the resulting representation to subsequent layers.

The next development is the core structure for DNN-based speaker verification models,

where speaker embeddings called x-vectors [175] are extracted. The model architecture

is based on previous work [173]. However, in this study, the authors demonstrated that

data augmentation significantly improves x-vector performance, achieving results that

exceeded state-of-the-art systems of that time. The general structure of the x-vector

model is presented in Figure 2.4. It can be separated into part that is processing the

recording on the frame-level and the part which processes the recording on the segment

level. The first is composed of five Time Delay Neural Network (TDNN) layers [141] which

as input take features extracted from the recording. TDNN layers are equivalent to 1-D

convolutional layers applied along the time dimension, often with a dilation larger than

one [116]. Information from the frame-level part is fed to the segment-level part, which

first aggregates and compresses it into fixed-size input with statistics pooling. The pooling

layer computes the mean and standard deviation along the time axis, concatenates both

vectors and forwards to two feed-forward layers. On the top of the structure, a linear

layer with a number of outputs equal to the number of speakers in the training dataset is

applied, followed by a softmax function. The x-vectors are extracted from the first feed-

forward layer after statistics pooling. The model is trained for the speaker classification
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Figure 2.4: The general diagram of x-vector structure.

task, whose goal is to indicate which speaker from the training set is present in the input

recording.

The proposal of the x-vector model highlighted specific components within the DNN

speaker recognition structure as key areas of interest, which have since been extensively

investigated by the research community. All three of these components are marked in

Figure 2.4. The first concerns the proposals for the structure of the frame-level (encoder)

part. The second area concerns the temporal pooling and methods to effectively transform

information from frame- to segment-level. The last part is the objective function and its

possible optimizations and enhancement of discrimination capabilities.
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Encoder modifications

The x-vector structure has been developed to other popular alternatives. The first worth

mentioning is Extended TDNN (ETDNN) [174] which enlarges the frame-level part by

adding a linear layer between every TDNN layer and increasing the temporal context of

the frame-level part. The other development is the Factorized TDNN (FTDNN) [144]. In

this model, the weights of each frame-level layer are factorized into two low-rank matrices

and one of them is forced to be semiorthogonal in order to avoid loss of information.

(a) Basic residual block. (b) Bottleneck residual block.

Figure 2.5: Diagram of (a) basic and (b) bottleneck residual blocks of the ResNet structure
[69]. Cl indicates base number of channels.

Soon after the x-vector proposal, the ResNet [69] structure has become another more

and more popular encoder option for the DNN model for speaker verification. The

ResNet architecture is built of 2D convolutional layers with residual connections. These

connections are characteristic of the ResNet structure and were proposed to prevent

vanishing gradients. Since one of the contributions of the thesis includes proposed

DNN structures that improve over ResNet-based encoders, the structure is explained in

more detail next. The core building blocks of ResNet are residual blocks of two types:

basic and bottleneck, illustrated in Figure 2.5. Both types of blocks contain the so-called

shortcut/residual connection, which means that the input is added to the block output.

If the dimensions of the block input and output are identical, the shortcut connection

is simply an identity mapping, allowing the input to be directly added in an element-

wise manner to the block output. If the dimensions of the block input and output are

different (e.g. due to a change in the channel dimension or downsampling), the linear

projection (usually implemented as 1×1 convolutional layer) is additionally applied to

the input to match the output dimensions and enable element-wise addition. The basic
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(a) ResNet-18 (b) ResNet-34 (c) ResNet-50

Figure 2.6: Diagrams of (a) ResNet-18, (b) ResNet-34, (b) ResNet-50 structures. Numbers
inside blocks denote its level, the blocks with solid lines represent the bottleneck type,
while dotted represent basic residual.

block is composed of two 3×3 convolutional layers with Cl base number of channels.

The bottleneck block is composed of three convolutional layers with kernels: 1×1, 3×3,

1 × 1 and Cl base number of channels. Note that the last convolutional layer of the

bottleneck block has increased the number of channels by a factor of four. Cl number

depends on the block level, and each level 2, 3, 4, 5 has receptively 64, 128, 256 and 512

number of base channels. Figure 2.6 presents three selected types of ResNet: ResNet-18,

ResNet-34, ResNet-50. The suffix number of the ResNet name indicates the number of

layers in the structure, excluding the pooling layers from this counting. Blocks with solid

lines represent the bottleneck type, while dotted represent basic residual. The numbers
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inside blocks denote their level, which indicates the number of base channels and how

downsampled is the feature map with respect to the input. It should be noted that, in

contrast to the architecture described later in Section 3.1, the relationship between the

block level l and the downsampling factor in these structures follows 2l , while in Section

3.1 it follows 2l−2. This difference arises from the fact that the original ResNet architecture

includes two downsampling operations (each by a factor of 2) in the initial max pooling

and convolutional (conv) layers, which are omitted in the version proposed for the speaker

verification task in Section 3.1. To ensure consistency in the block-level notation with

Publication II, this discrepancy is intentionally preserved in the present section.

The speaker recognition community has widely adapted the residual network for the

task, introducing different modifications, either using the structure almost intact [30, 27]

or adjusting it for speaker verification, e.g., using the typical for this task temporal pooling

methods [18, 19, 186, 177, 77, 185]. In [205] the authors referred to the embedding ex-

tracted from the ResNet structure as the r-vector. In [136] authors inspired by the ResNet

architecture introduced residual connections between TDNN layers, in order to gain a

wider context with a deeper architecture. In the context of ResNet-based speaker verifi-

cation systems, the ECAPA-TDNN model (Emphasized Channel Attention, Propagation,

and Aggregation) [39] is worth highlighting, which has emerged as a strong state-of-the-

art approach by effectively integrating concepts from both x-vector and ResNet-based

architectures.

Proposals for temporal pooling

One of the integral parts of the x-vector-based structure is a pooling layer which estimates

mean and standard deviation statistics. Several works tried to improve on that. The use

of statistics pooling brings the assumption that each time frame contributes equally to

speaker information [9], which may not be true, e.g. when particular frames contain

less speech and more noise or silence than the others. One of the modifications was

the introduction of self-attention-based layers that help assign higher weights to frames

that contribute more to the final result [137, 209, 192]. In the paper [19], the authors

proposed a Learnable Dictionary Encoding (LDE) pooling layer. The method employs

two sets of learnable parameters: dictionary component centers and their associated

weights. For each frame-level embedding, i.e. embeddings before the pooling operation,

the distances to all component centers are computed. These distances are then converted

into weights using a softmax function with an additional learnable scaling parameter

called the smoothing factor. Using the resulting weights and distances, a weighted av-
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erage is calculated for each component center, producing pooled representations that

summarize the frame-level features. Other pooling methods explored in the literature

are, e.g., NetVLAD [199], GhostVLAD [199], Spatial Pyramid Pooling [207] and others. The

contributions of the thesis do not concern the development over temporal pooling, thus,

for a more detailed review, the reader is referred to [9].

Angular-based objective functions

The final element of interest in speaker verification architectures is the objective func-

tion. In the literature, the combination of the cross-entropy loss and the output layer

with the softmax function is often called a softmax loss, which will also be used in this

thesis. In the following section, we discuss the modification of softmax loss within the

context of speaker recognition treated as a multi-class classification task. Among the

various alternative objective functions proposed, the angular softmax losses have gained

significant popularity and demonstrated strong effectiveness, which is further explained

in this subsection.

The standard softmax loss is effective in maximizing the separation between classes,

but lacks the ability to directly minimize within-class variability. To address this, a margin

parameter is introduced, which enforces tighter clustering of features within the same class

by reducing the within-class distance between the input representations and their corre-

sponding class weights [9]. First, let me briefly introduce the basics of the angular-based

losses. The general cross-entropy loss function for the speaker classification problem can

be defined as follows [9]:

L =− 1

N

N∑
i=1

logPyi (2.10)

with i = 1,2, ..., N , and N being the minibatch size and yi being the ground-truth label of a

training example. The output of the last layer with the softmax function can be presented

as:

Pyi =
ewT

yi
xi

ewT
yi

xi +
K∑

k=1,k ̸=yi

ewT
k xi

(2.11)

wT
k xi is a dot product between the last layer weights wk for the kth class, where k = 1,2, ...,K

and K is the number of speakers to classify that is equal to the number of speakers in the

training set, and input vector for the i th minibatch example xi with i = 1,2, ..., N , N being

the minibatch size. The dot product operation can be equivalently rewritten as a product
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of vector norms and the cosine angle between them:

wT
k xi = ∥wk∥∥xi∥ cos(θi ,k ). (2.12)

Next, the class weights are normalized ∥wk∥ = 1. For the sake of further explanations the

∥xi∥ is replaced with a scale variable s(θyi ) and ψ(θyi ) replaces the cosine of the angle for

the ground-truth label. After the aforementioned modifications, equation (2.11) can be

rewritten as:

Pyi =
e s(θyi )ψ(θyi )

e s(θyi )ψ(θyi ) +
K∑

k=1,k ̸=yi

e s(θyi ) cos(θi ,k )
(2.13)

The angular softmax losses introduce modifications mainly inψ(θyi ). The Angular Softmax

(AS) proposed in [107] was incorporated for the speaker task in works like [78, 136, 19]. Its

proposal is to modify ψ(θyi ) by introducing margin mAS, where mAS ≥ 2, i.e.

ψ(θyi ) = cos(mASθyi ). (2.14)

In [107], the authors explain the introduction of a margin by considering an example of a

two-class classification problem. Assuming the input belongs to class 1, it will be classified

as such if its softmax posterior probability is higher than that of class 2, i.e. P1 > P2, which

yields the requirement that:

cos(θ1) > cos(θ2) → θ1 < θ2. (2.15)

In order to make the requirement more strict, the margin parameter is introduced as in

(2.14), which yields

cos(mASθ1) > cos(θ2) → θ1 < θ2

mAS
. (2.16)

Presented requirements put a constrain on θyi ∈ [0, π
mAS

]. In order to generalize it and

facilitate its optimization into a monotonically decreasing function, it is redefined as:

ψ(θyi ) = (−1)γ cos(mASθyi )−2γ, (2.17)

where θyi ∈ [ γπ
mAS

, (γ+1)π
mAS

], γ ∈ [0,mAS −1], mAS ≥ 1. In the AS method, the scale function is

kept unchanged s(θyi ) = ∥xi∥.
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The Additive Margin Softmax (AMS) [190] modifies the angular function to

ψ(θyi ) = cos(θyi )−mAMS, (2.18)

which normalizes ∥xi∥ = 1 and sets s(θyi ) = sAMS with some fixed value. AMS method was

used for the speaker recognition task, e.g. in [54, 199, 203].

The Additive Angular Margin Softmax (AAS) [38] is currently the most popular angular

softmax for the speaker verification task. The method introduces

ψ(θyi ) = cos(θyi +mAAS), (2.19)

normalizes ∥xi∥ = 1 and sets s(θyi ) = sAAS which is an arbitrarily selected value. AAS was

used in several speaker verification research publications, e.g. [39, 187, 197]. In general,

angular-based softmax losses optimize the angular distribution of feature representations,

enabling the network to generate embeddings that can be effectively evaluated using a

simple cosine similarity-based backend.

Lastly, another interesting approach was presented in [208], where Adaptively Scaling

Cosine Logits (AdaCos) was proposed for the face recognition task. The method introduces

adaptation of the scale function s(θyi ) during the network training. Although this approach

has not been applied to speaker recognition, its description is important as it serves as

the foundation for one of the contributions discussed later in this work. The authors

observed that both scale and margin can modulate the supervision strength by controlling

the prediction probability Pyi , where stronger supervision improves class separability.

The proposed approach adapts only the scale value, while the angular function ψ(θyi ) is

kept intact. The goal of the derived adaptation function was to select s(θyi ) that makes the

predicted probability Pyi highly sensitive to changes in the angle θyi , by finding the point

where the gradient of Pyi with respect to θyi is maximized (i.e., where its second derivative

equals zero).

2.2 Speaker diarization

Speaker diarization is a task that answers the question "who spoke when". This means that

diarization identifies segments where the same speaker is present, while also detecting

overlapping speech between speakers as well as regions of silence. Figure 2.7 presents an

auxiliary diagram of this task. Diarization may be perceived as a task similar to speaker

recognition. However, speaker information for both systems has different character -
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speaker recognition directly points/verifies the absolute speaker identity, while for the

diarization task it is enough to discriminate between speakers within the recording and

recognize relative differences between speakers, without specifying the speaker’s identity.

Figure 2.7: The general scheme of the diarization task.

2.2.1 Cluster-based diarization

For a long time, speaker recognition models were a core part of diarization systems, as

part of the so-called cluster-based approach [169, 55, 41]. The steps of its processing

flow are presented in Figure 2.8. The cluster-based diarization can also be classified as

a modular based approach as it combines a few independent processing modules. The

input recording is initially processed by Voice Activity Detection (VAD), which may be

optionally preceded by a preprocessing step. VAD ensures that only speech segments are

retained for further processing, while the optional preprocessing addresses signal-level

challenges such as noise and reverberation. The next step is speech segmentation, which

in the simplest version is dividing speech into overlapping chunks. From each chunk, a

speaker embedding is extracted using a speaker model extractor. These embeddings are

then compared and scored against each other to determine the similarity between chunks.

Finally, based on the scoring result, speaker embeddings from all chunks are clustered, to

obtain the answer which embeddings belong to the same speaker, that is in which chunks

the same speaker is speaking. Some systems may also include additional postprocessing

steps, such as resegmentation or overlap detection mechanisms.

Figure 2.8: The general scheme of the processing flow of the cluster-based diarization
system.
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Voice Activity Detection

Voice Activity Detection (VAD), also called Speech Activity Detection (SAD), is a module

that detects speech in order to filter out the non-speech regions. In general, VAD is a

module which is incorporated in several speech tasks, including ASR, speaker recognition,

and others, so its development is independent to the speaker diarization task. The chal-

lenge for the VAD system is domain adaptation, when system trained for one scenario, can

perform worse in another one. The domain difference include not only various acoustic

conditions, but also characteristic of the conversations (proportions of speech, silence,

and overlap), which is different for telephone conversations, dinner-party scenarios or for

household (smart home applications) recordings. Thus, VAD is usually adjusted, trained

or either fine-tuned for a particular use case. VAD and its potential errors (assigning

silence to speakers or discarding speech segments) heavily impact the performance of

the entire diarization system. For this reason, the diarization systems are often reported

in the literature with oracle VAD decision, where the ground-truth information is used

instead of the real VAD system. Despite these challenges, currently VAD modules can

perform reasonably well [99]. Various solutions have been developed starting from energy

or spectrum-based [33, 2, 82], statistical-based [29, 183], machine learning [43, 51] to

DNN-based methods [106, 79, 57].

Segmentation

The next step, segmentation, may take the form of either uniform segmentation or Speaker

Change Detection (SCD) module. The goal of SCD is to segment audio into partitions,

where the segment boundaries are dictated by detected speaker change points. Typically,

the module divides audio into short chunks, compares similarity between them, and

determines whether they belong to the same speaker based on these similarity scores [9].

SCD modules have been explored in the literature [24, 170, 13, 5]. However, since it may

produce segments of varying lengths, this poses a challenge for newer speaker embedding

extractors such as i-vectors [36] or DNN-based approaches [184, 175], in which inconsis-

tent input duration may yield inconsistent representations. Thus, for these extractors,

the most commonly used is the uniform segmentation [140, 55, 191, 104]. It divides the

recording into fixed-size segments, usually 1.5 seconds long with a 0.75 second overlap. In

uniform segmentation, the time window must be short enough to maintain the assump-

tion of only one speaker within each segment, yet long enough to allow the extraction of
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high-quality speaker representations. Uniform segmentation is currently the dominant

approach in cluster-based speaker diarization systems.

Speaker representation extraction and scoring

Segmented chunks are then fed into the pre-trained speaker representation extractor, e.g.

i-vector [165] or x-vector [167], where one representation is generated for each chunk. The

chunk-level representations are compared with each other to obtain similarity scores using

techniques such as PLDA [165] or CDS [191]. The techniques for speaker representation

extraction, as well as scoring, overlap with advances for the speaker recognition task,

which has already been described in Chapter 2.1.

Clustering

The last step is to cluster and decide which chunks can be assigned to the same speaker. It

means that the goal of the clustering is to group representations, where each speaker is

represented by one cluster group. Although there is a wide interest in research of possible

improvements in this area [119, 206, 200], the best performing and robust are classical

clustering algorithms: spectral clustering [168, 125, 191, 105] and especially Agglomerative

Hierarchical Clustering (AHC) [167, 55, 6, 135].

In this step it is important to mention Variational Bayesian Hidden Markov Model,

especially a variant designed for x-vectors [41, 98] called VBx. The approach is based on

Hidden Markov Model, where each state represents a speaker with possible transitions

between speakers, including a probability of not changing the state. The model’s parame-

ters are initialized with pretrained PLDA. An important property of this approach is that it

yields posterior probabilities of presence in a particular chunk for each of the speakers,

which can be effectively leveraged for overlap assignment.

Postprocessing

The postprocessing stage encompasses several optional refinements to improve the output

of speaker diarization systems. One common technique is resegmentation, which aims

to fine-tune segment boundaries for increased accuracy [166, 40]. Postprocessing may

also involve fusion of diarization outputs from multiple systems [80, 12], with notable

approaches such as DOVER (Diarization Output Voting Error Reduction) leveraging voting-

based strategies to combine hypotheses [179, 151, 198].
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Traditional clustering-based diarization systems typically assume single-speaker seg-

ments, making them inherently incapable of handling overlapping speech. To address

this limitation, specialized overlap handling methods have been developed, generally

involving a two-stage process of (1) overlap detection, followed by (2) speaker assignment

to the detected overlap regions [16, 150].

Cluster-based diarization constitutes a dominant approach to diarization. However,

recent advances in this field include end-to-end approaches. The main contributions

of this thesis concern a purely end-to-end approach, which are described in Chapter to

follow. Thus, for further details on the stage-wise approach, please refer to [140].

2.2.2 End-to-end speaker diarization

The problems of the aforementioned cluster-based diarization method are a few. The

modularity of this approach means that each of the components is optimized separately

and not directly for the diarization result. Moreover, by design, cluster-based approaches

do not inherently handle overlapping speech segments; therefore, additional mechanisms

must be incorporated to address overlaps effectively. The end-to-end neural network-

based speaker diarization (EEND) framework [47] was a solution to these problems. Fig-

ure 2.9 presents the general diagram of the framework. The input into the structure is the

sequence of features x = {x1,x2, . . . ,xT } of length T and dimension F . Features are then pro-

cessed by encoder, which produces the frame-level embedding sequence e = {e1,e2, ...,eT },

where embeddings are D-dimensional. Next, the embeddings are forwarded to the model’s

backend. In the first proposal [47] it was composed of a simple linear layer with a sigmoid

function, with K number of outputs, which is equal to the assumed maximum number

of speakers. The output is producing the posterior probabilities of the speaker k present

in the time frame t , that is, ỹk = {yk,1, yk,2, . . . , yk,T , }, where k = 1, ...,K . Each output layer

corresponds to a separate speaker track. By applying a threshold, these probabilities can

be converted into binary decisions indicating speaker presence or absence. This simple

mechanism allows the model to identify overlapping speech when multiple outputs are

set to 1 for the same time frame, or silence when all outputs are equal to 0. The training

objective is a well-known binary cross-entropy loss. The order of speaker activities re-

turned by the diarization model may differ from the order in the ground-truth answers.

However, this does not indicate an error in the diarization results, as speaker identities

are inherently permutation-invariant. To resolve the ambiguity in assigning output tracks

to the correct ground-truth labels, permutation invariant training (PIT) [201] scheme is
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employed, which is inspired by the speech separation field. In PIT, the loss between the

diarization result and each possible order permutation of the reference labels is computed,

and the one that results in the lowest value is selected as the loss result.

Figure 2.9: The general diagram of the EEND framework.

As mentioned in the beginning of this subsection, a key advantage of EEND is its

inherent ability to handle overlapping speech, whereas cluster-based approaches require

additional mechanisms to manage overlap effectively. The end-to-end approach allows

to set a diarization result as an objective, thus optimizing the network directly for the

diarization result. An additional advantage is that the model can be easily fine-tuned for

different domains [140].

The initial EEND architecture employed an encoder built with bidirectional Long Short-

Term Memory (BLSTM) layers [47]. However, it was soon replaced by a self-attention-

based architecture utilizing Transformer encoder layers [48], offering improved perfor-

mance and modeling capabilities. Some other works also proposed improvements in the

encoder part, i.e. in [108, 103] Conformer [66] was adopted in place of self-attention layers.

With the presence of residual connections between self-attention layers in EEND, some

studies have investigated the use of auxiliary losses computed after each layer [202, 49].

One of the limitations of the presented versions of the EEND was the limited number of

speakers that the system can handle, which is constrained by the architecture and number

of classification outputs of the last layer. Speaker-wise conditional EEND (SC-EEND) [50]
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Figure 2.10: The general diagram of the EEND-EDA framework.

was one of the works designed to tackle variable number of speakers in the recording. The

diarization output probabilities are decoded through a chain rule, where the diarization

output is estimated sequentially speaker-by-speaker, conditioned on the activity from the

previous estimations. This process continues as long as the diarization output indicates

no speech.

Another important proposal that allows processing a flexible number of speakers is

EEND with encoder-decoder based attractors (EDA) [73]. Given EEND-EDA effectiveness,

the SC-EEND has not gained a lot of attention in the research community. The general

EEND-EDA diagram is presented in Figure 2.10. In EEND-EDA the encoder embeddings

are fed into the model’s backend which is EDA composed of the two LSTM layers con-

nected in the encoder-decoder manner and a linear layer with a single output. The EDA

task is to produce the so-called attractors - vector representations of the speakers present

in the processed recording. The LSTM encoder-decoder can in theory produce an infinite

number of attractors. In order to limit and detect the actual number of attractors needed,

i.e. number of speakers in the recording, the linear layer is applied one-by-one on each

produced attractor. When the probability returned by this layer drops below a threshold,

the attractor generation is stopped. Note that the mechanism performed by the linear

layer represents a speaker counting function in the model. Next, the obtained attractors

are used to compute the dot product with the frame-level embeddings. The result is

processed by a sigmoid function, which gives a diarization posterior probability and can
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be presented in the following manner:

ỹs,t =σ(eT
t as) , (2.20)

where et is a frame-level embedding at time t and as denotes the attractor for the s-th

speaker.

In general, the EEND approach has received a lot of attention, also with the main

development focus on its backend evolution. It is worth mentioning that EEND with

global and local attractors, also known as EEND-GLA [74, 75], developed from EEND-

EDA to deal with a larger number of speakers than those present during training. The

embedding sequence obtained from EEND is split into smaller chunks. The chunks are

then processed by the EDA backend to produce (local) attractors and diarization results,

with the assumption that in a short chunk the number of speakers is relatively small.

To compute inter-chunk dependence among the local attractors, a transformer decoder

is employed, treating the local attractors as queries and the frame embeddings as keys

and values that convert to representations that can be clustered. Clustering is applied to

produce the final diarization output by grouping attractors corresponding to the same

speaker, thereby merging diarized segments that belong to that speaker. The attractors

produced with an original EEND-EDA approach, i.e. when attractors extracted directly

based on the whole recording, are referred to as global attractors. During inference of the

EEND-GLA, the model at first uses global attractors to produce the diarization result. If

at this step the number of detected speakers is equal to or is higher than the maximum

number of speakers seen during training (set to four in the original papers), then the local

attractors are used to estimate the final result. Otherwise, the result obtained from the

global attractors is used directly.

It is also worth noting studies that explore the integration of EEND with a cluster-

based approach [95, 94], the so-called EEND-vector clustering (EEND-VC). The EEND-VC

framework combines the advantages of EEND and cluster-based diarization systems,

where EEND provides a precise and overlap-aware diarization output for short chunks,

and clustering combines these results to enable processing of long recordings. The model

adopts the traditional EEND approach with a linear layer on top [48], but modifies the

architecture to output not only the diarization decisions, but also speaker representations

per each diarization track. The system follows the assumption that the chunk processed

by EEND is short enough to contain no more than 2 or 3 speakers. After processing

all chunks from the recording, a global decision is made by clustering speaker repre-
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sentations and their associated diarization activities across chunks. This clustering is

performed with the constraint that speaker representations originating from the same

chunk are not merged, ensuring consistent and accurate speaker attribution across the

entire recording. Additional speaker loss is applied to encourage generation of speaker

discriminative representations. In the next work [93] authors proposed to incorporate

trainable unfolded infinite Gaussian mixture model as a clustering step, enabling the joint

training of both EEND and clustering. In this approach, the parameters are estimated

using variational Bayes inference, which yields improved performance on the recordings

with a larger number of speakers. In a further work on EEND-VC [96] authors directed

attention to properly splitting of the recordings into chunks. The authors highlight that

the EEND-VC system imposes a rigid constraint on the number of speakers per chunk.

While longer chunks can improve diarization accuracy, they may violate the assumption

of a maximum of 2 or 3 speakers per chunk. Additionally, fixed-length segmentation com-

plicates integration with the downstream tasks such as ASR, where segment boundaries

may not align with utterance semantics. It can also degrade the quality of diarization

by introducing unnaturally short or poorly aligned segments. To address this issue, [96]

proposes the Graph-PIT-EEND-VC framework, which eliminates fixed segmentation in

favor of an utterance-by-utterance processing approach inspired by source separation.

The framework leverages Graph-PIT [189] training and instead of the typical diarization

objective function, the encoder is trained as a two-channel VAD, which detects speech ac-

tivity while assigning overlapping speakers to the separate channels. Instead of enforcing

fixed chunks, the model uses a more flexible representation of utterance activity, assuming

a maximum of two overlapping speakers at any time but allowing an unlimited number of

speakers overall.

2.2.3 Speaker diarization and separation

In this section a review of important research on a combination of speaker diarization and

separation is presented. Speech separation is a specific form of source separation that

aims to produce isolated audio tracks for each speaker present in a mixed recording. A

closely related task is target-speaker extraction, in which a single speaker is isolated from

the mixture using an auxiliary cue such as a reference audio sample, spatial information,

or descriptive metadata. Another related concept is speech enhancement, which seeks to

improve the quality and intelligibility of a speech signal by reducing noise, interference,

and reverberation. By default, enhancement is applied on recordings with only one
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speaker, while in case of separation or extraction the recordings typically contain more

than one speaker. In the literature terms speech separation and speaker separation have

been used interchangeably, therefore, the same convention is adopted in this thesis. Its

general scheme is presented in Figure 2.11.

Figure 2.11: The general scheme of the speaker separation task.

The diarization and speech separation are, in fact, closely related tasks which differ in

the granularity of the answer: diarization returns a binary decision about speaker activity,

while separation usually uses the time-frequency speech activity masks to extract speaker’s

speech. In the literature, they were also investigated as tasks that can complement each

other’s challenges and provide mutual support.

An in-depth analysis was presented in [149] where the authors assemble the modular

model with separately trained separation, diarization, and speech recognition (in this

order) components for multi-talker speech recognition, with the aim to design a system

which answers the "who said what and when?" question and study the impact of each

step on the final system performance. In the speech separation guided diarization (SSGD)

approach [44] authors combine separation for speaker embedding-based diarization to

deal with overlapping segments that contaminate speaker representations. As described

in Section 2.2.1, one of the disadvantages of the cluster-based diarization system is the

general assumption that only one speaker is present in the chunk, which introduces the

problem of dealing with the speech overlap. The authors propose to incorporate diariza-

tion results from two systems: (1) cluster-based diarization and (2) speech separation

combined with VAD. The results from both paths are compared to obtain the relative

diarization error rate between these two systems. The formula is similar to standard

diarization metric Diarization Error Rate (DER) (metric explained in the next subsection),

but as ground truth the cluster-based diarization result is used. If the relative DER is lower

than the selected threshold, the answer from the separation part is used. If it is higher,

the result from the diarization part is used. The alternative strategy to the described

process is to fine-tune the speech separation model with speaker representations from the
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clustering system. In the latter scenario, the results from the fine-tuned separation model

alone are sufficient. The effectiveness of the solution was demonstrated by its first-place

finish in the DIHARD-III challenge, which is a renowned challenge focused on the speaker

diarization task, including the recordings ‘in the wild’, of various conditions and multiple

speakers in the challenging scenarios. In a more recent work [182], the authors propose

speaker separation via neural diarization (SSND). Here, the diarization is used directly to

guide speaker separation. EEND-EDA [73] is used to obtain the speaker boundaries along

with their embedding representations. This information guides the speaker separation

system by helping to assign speaker waveforms into a two-channel output — ensuring that

overlapping speakers are placed in separate channels. This approach enables the effective

use of speaker separation models even for long recordings. In addition, it eliminates the

need for a stitching process, which improves the efficiency of separation computations.

At the same time, it enables the stitching of utterances which belong to the same speaker,

enhancing the overall coherence of the separation output. In the context of the research

proposed in this thesis, the usage of EDA from EEND-EDA diarization for the separation-

only model – SepEDA [178] is important to mention. The EDA attractor mechanism has

been injected into SepFormer [180] model, which enabled the separation model to deal

with recordings that contain a flexible and unknown number of speakers.

Recently, more and more interest has been brought to joint modeling of diarization

and separation to solve both tasks simultaneously. In [111] the authors propose Joint End-

to-End Neural Speaker Diarization and Separation (EEND-SS). The model incorporates

ConvTasNet separation [110] and EEND-EDA diarization [73] trained jointly. The bottle-

neck features of the separation model are concatenated with the input diarization features,

and the diarization speaker counting is used for the separation structure to choose the

number of masks for separation. Target-Speaker based Separation (TS-SEP) [11] is the

model for joint diarization and separation developed by extending the diarization system

which is Target-Speaker Voice Activity Detection (TS-VAD) [118]. TS-VAD is an important

diarization approach that presented great performance as a part of the winning system in

the CHIME-6 challenge [193]. It can be considered as a DNN-based system combining the

joint VAD, segmentation, and speaker identification model, applied on top of the cluster-

based diarization system. TS-VAD model inputs are the i-vectors of the speakers present

and the sequence of acoustic features of the recording. In order to obtain i-vectors, the

model first applies the cluster-based diarization to obtain rough speaker representations.

Then, TS-VAD iteratively estimates the diarization result with i-vectors from the previous

iteration and refines the i-vector estimation using the obtained diarization result. The
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weakness of the solution is its limited maximum number of speakers that it can handle,

which is predefined by the model’s architecture. In the TS-SEP separation-diarization sys-

tem, the TS-VAD model is trained first. As soon as TS-VAD obtains reasonable diarization

performance, the last binary diarization layer is modified to a two-dimensional linear layer

with the ability to produce time-frequency masks. In the next step, the model is trained

for the separation task. The diarization result is then retrieved directly from the masks by

computing the mean value of the frequency bins and applying additional smoothing on

top of the results. Another recently proposed approach is PixIT [85] which is based on the

Dual-Path Recurrent Neural Network (DPRNN) separation model [109]. It concatenates

the pre-trained WavLM features [25] with separation features from the separation encoder.

The structure is also modified by adding in parallel to the separation decoder a small

diarization decoder composed of linear layers that outputs the diarization result.

2.3 Evaluation metrics

This part of the chapter presents and explains the main metrics used to evaluate the

particular systems addressed in this thesis.

2.3.1 Speaker verification

As described in the beginning of this chapter, the output of a speaker verification system

is a score that assesses how likely/similar test model is to the enrollment model. The score

compared to the threshold returns a binary decision. If the score is higher than or equal

to the set threshold value, then the system decides that the enrollment and test are from

the same speaker. If the score value is lower, they are treated as coming from different

speakers. Speaker verification model and its decisions are evaluated with the trial list

which defines the enrollment and test pairs, along with target or non-target (alternatively

referred to as impostor) labels, which indicates whether the pair is from the same speaker

or, in the latter case, from different speakers.

The scores obtained from the speaker verification system for the target and impostor

trials can be plotted in the form of distributions, presented in the conceptual illustration in

Figure 2.12. The decisions obtained by applying a score threshold are compared with the

labels in the trial list. The wrong assignment can emerge into two types of errors: (1) False

Rejection (FR), also known as a False Negative, when target is classified as non-target and

(2) False Positive (FP), also known as a False Acceptance, when non-target is classified as
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Figure 2.12: Illustrative distributions of the impostor and target scores.

target. Notice that the decision of accepting/rejecting a trial pair depends on the threshold

value τ, thus the number of False Positive/False Rejection decisions depends on τ (also

depicted in Figure 2.12). This leads to formulating the False Positive Ratio (FPR) and the

False Rejection Ratio (FRR) as:

FPR(τ) = NFP(τ)

Nnon−target
·100%, (2.21)

FRR(τ) = NFR(τ)

Ntarget
·100%, (2.22)

where NFP(τ) and NFR(τ) is the number of False Positive and False Negative decisions for

the particular τ, and Nnon−target and Ntarget is the number of non-target and target trial

pairs.

Figure 2.13: Illustrative diagram of DET plot.
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By changing the threshold values τ, the relation of FPR(τ) and FRR(τ) can be obtained.

Plotting the FRR with respect to FPR presents the so-called Detection Error Tradeoff (DET)

plot [113], presented in Figure 2.13. The diagram presents the most commonly used

metric to evaluate speaker verification system known as the Equal Error Rate (EER). It is

the error value, where, for an estimated threshold τEER, the False Positive Ratio and False

Rejection Ratio values are equal, i.e. FPR(τEER) = FRR(τEER) = EER. It is worth noting that

increasing τ value can increase FRR error and decrease FPR, which improves the general

safety of the speaker verification system application. The other way around, decreasing τ

value can decrease FRR error and increase FPR, which can make system more convenient

for the genuine user at the cost of the system’s safety. In practical applications, operating

a speaker verification system at the threshold corresponding to the EER may not be the

optimal choice, thus the τ value is selected based on the particular use case.

In order to assess system performance at the chosen operating point, adjusted to the

specific application of the system, the second metric is often used, which is the Detection

Cost Function (DCF) [126], introduced and commonly used in NIST evaluations. The

metric applies the weights, i.e. costs/penalties for particular errors: CFR - cost of FR, CFP -

cost of FP:

DCF(τ) = PtarCFRFRR(τ)+ (1−Ptar)CFPFPR(τ), (2.23)

where Ptar is the predefined probability of the target trial, which can be interpreted as an

indication of how often the target speaker attempt can be present at the system input.

In the NIST SRE 2008 evaluation, the weight values were selected as CFR = 10, CFP = 1

and Ptar = 0.01, which means that the speaker verification system is punished tenfold

for rejecting the target speaker than for accepting the impostor. For example, in a real-

world scenario, when identifying a known criminal’s voice from evidence recordings,

it may be preferable to accept some false positives—such as investigating an innocent

speaker—rather than risk missing the target speaker entirely and failing to detect the

criminal [67]. In the research community, these parameters are most commonly set as

CFR =CFP = 1 and Ptar = 0.01. In the literature and in this thesis, the reported value often

is the minimum value of the DCF(τ) function, called minDCF:

minDCF = argmin
τ

DCF(τ). (2.24)

In case of both EER and minDCF, the lower the value, the better the system is.
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2.3.2 Speaker diarization

To measure speaker diarization performance, the Diarization Error Rate (DER) is the most

widely used metric [46, 140]. The DER is a sum of three different errors:

• FA - amount of False Alarm speech, i.e. silence labeled as speech or amount of time

of overlapping speech attributed to more speakers than actually present;

• Miss - missed detection of speech or amount of time of overlapping speech at-

tributed to fewer speakers than actually present;

• SC - confusion between speakers, i.e. amount of time where speech is assigned to

the wrong speaker.

The sum is divided by the overall duration of the speech in the reference, counting the

overlaps as well (Duration):

DER = FA+Miss+SC

Duration
. (2.25)

In order to compute the DER, the speaker tracks of the diarization system need to be

assigned to the ground-truth labels. The one-to-one mapping is done with the Hungarian

algorithm [97], which relies on finding the optimal assignment by solving the correspond-

ing bipartite graph matching problem. In [46], the so-called collar was introduced, which

is a region around the boundaries of the reference segments that is not used for metric

computation. Typically, its value is set to 0.25 seconds. It was proposed in order to account

for inconsistencies in human annotations and errors. This tolerance helps to reduce

penalization for minor timing mismatches. In general, a lower value of the DER metric

indicates a better-performing diarization system.

Another diarization evaluation metric is the Jaccard Error Rate (JER), proposed in the

DIHARD II challenge [159]. Although JER highly correlates with DER, it gives equal weight

to all speakers in the recording regardless of whether they contribute largely to the total

amount of speech or not. This is relevant in situations where dominant speakers occur,

but the presence of all speakers is equally important. In order to obtain the JER value, for

each speaker, the False Alarm (FA) and Miss errors (Miss) are computed and then divided

by the union of the speaking time of the speaker’s ground truth and hypothesis (Total ):

JER = 1

N

N∑
i=1

FAi +Missi

Totali
, (2.26)

where N is the number of speakers in the ground-truth answer. Since JER uses the union

of the reference and hypothesis, its value never exceeds 100%, while DER can surpass
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100%. JER tends to be higher than DER when a subset of the speakers dominates the audio

recording. Similarly to DER, the lower the value of JER, the better the system.

2.3.3 Speaker separation

The quality of speaker separation systems can be assessed with many different metrics, e.g.

Perceptual Evaluation of Speech Quality (PESQ) [156], Short-Time Objective Intelligibility

(STOI) [181], Signal-to-Distortion Ratio (SDR) [188] or even by applying the ASR system

on the separated output and measuring the Word Error Rate (WER) value [28].

In Publication V presented in this thesis, the Scale-Invariant Signal-to-Distortion Ratio

(SI-SDR), or more specifically SI-SDR improvement (SI-SDRi) [157] is selected as a metric

to evaluate the speech separation system. Scale-invariant indicates that the metric is

insensitive to the amplitude scale of the signal and compares only the shapes of the target

and estimated waveforms. The metric estimates the ratio between the clean, target signal

and the interference or distortion introduced during the separation process, which can be

defined as

SI-SDR = 10log
|αs|2

|αs − ŝ|2 for α= argmin
α

|αs − ŝ|2 (2.27)

where for the optimal target case

α= ŝT s

||s||2 , (2.28)

where s represents the ground-truth signal and ŝ is the estimated one. The improvement

of the SI-SDR (SI-SDRi) refers to the difference between the SI-SDR of the estimated signal

to the target signal and the SI-SDR of the mixture to the target signal. In general, the higher

the value of the metric, the better the separation achieved.

2.4 Datasets

This section presents the most relevant datasets for each task, as well as those used in the

experimental evaluation of the proposed research.

2.4.1 Speaker recognition

NIST SRE datasets

In the context of the text-independent speaker recognition task, it is crucial to mention

the datasets published during NIST SRE evaluations. Since 1996 the National Institute
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for Standards in Technology (NIST) has hosted many Speaker Recognition Evaluation

(SRE) competitions every one or two years, the goal of which is to benchmark and drive

speaker technology development. The Linguistic Data Consortium (LDC) collaborates

with NIST to collect and provide data. Each SRE evaluation the NIST provides with a new

and challenging dataset which, after the evaluation is finished, is released. The evaluations

and provided data are designed with the aim to challenge the systems while ensuring

constructive outcomes and conclusions and allowing to focus on a specific evaluation

problem without introducing unnecessary complications. The amount of data is also

selected to provide significant results and allow the participation of groups with limited

resources [64]. Earlier SRE datasets are frequently included in training data, which is then

used to build models for subsequent evaluations. In general, NIST evaluations contain

a variety of data, primarily presented conversational telephony speech (CTS) recorded

over public switched telephone networks (PSTN), supplemented over time with varied

conditions such as languages, microphones, environments, demographics, and later

expanded to include Voice over Internet Protocol (VoIP) and audio from video (AfV).

In the Publications presented as this thesis contribution, the NIST SRE has not been in-

corporated for speaker recognition experiments, however, some of the evaluation datasets

were used for speaker diarization system training, namely the NIST Speaker Recognition

Evaluation 2004, 2005, 2006, 2008 [127, 129, 128, 131, 134, 130, 132, 133], representing

telephone speech at a sampling frequency of 8 kHz.

SITW

Speakers in the Wild (SITW) [117] is a hand-annotated database that features recordings

of public figures collected from open-source media, allowing to test performance of the

speaker recognition systems. It includes a total of 299 speakers, with on average eight

recordings per speaker, and comprises both single- and multi-speaker audio segments.

The novelty of the proposed database was the large number of speakers and recordings

captured ‘in the wild’, featuring real reverberation, noise, compression artifacts, and

within-speaker variability across sessions.

VoxCeleb

VoxCeleb datasets [122], namely VoxCeleb1 [123] and VoxCeleb2 [30] are the most com-

monly used and publicly available audio-visual datasets for benchmarking speaker recog-

nition systems. The datasets collect the recordings of celebrities ‘in the wild’ of different
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nationalities, ages, languages, and professions, extracted from YouTube platform videos.

The recordings were obtained with a fully-automated pipeline resulting in 352 hours

of 1251 speakers for VoxCeleb1 and 2242 hours from 6112 speakers for VoxCeleb2. The

dataset was an answer for the need for a dataset large enough to train and develop DNN

based methods. Until then, the NIST SRE datasets have been sufficiently large for speaker

recognition research. However, since they were not made publicly available, accessibility

to the broader research community was and still is limited. The most common procedure

is to use VoxCeleb2 for training, while VoxCeleb1 is used evaluation. Both VoxCeleb1 and

VoxCeleb2 introduced train and test splits, along with trial lists. VoxCeleb2 [30], introduced

after VoxCeleb1, proposed also three trial lists, that are commonly used to benchmark

speaker recognition systems: VoxCeleb1-O (Original), which is the original trial list of the

test part VoxCeleb1 dataset consisting of 40 speakers and 37611 enroll-test pairs (trials);

VoxCeleb1-E (Entire), which covers the entire VoxCeleb1 dataset, and extends the Original

in order to validate the speaker recognition systems with a dataset with a large speaker

number in order to limit the possibility of overfitting to a small set; it consists of 1251

speakers and 579818 trials; VoxCeleb1-H (Hard) which also covers the entire VoxCeleb1

dataset but makes the list more challenging by limiting trial pairs to be from the same

nationality and gender; it results in 550894 trial pairs from 1251 speakers.

2.4.2 Speaker diarization

CALLHOME (LDC2001S97)

CALLHOME [147] is one of the most popular benchmarks for the speaker diarization

task that includes real telephone conversations of multilingual speech. It is a speaker

segmentation dataset from 2000 NIST SRE, which contains approximately 17 hours of

recordings from 500 sessions, with 2-7 speakers, usually with two leading the discussion.

DIHARD

DIHARD datasets are the collections of the recordings used to evaluate during DIHARD

challenges, namely DIHARD I [158], DIHARD II [160] and DIHARD III [161]. Depending

on the dataset, in general they cover mainly speech recordings at the sampling frequency

of 16 kHz, single and multichannel, in the wild, mostly English and Mandarin. The goal of

DIHARD evaluations is the development of diarization systems in the challenging, real-life

conditions. DIHARD I introduced recordings from diverse domains such as YouTube

videos, clinical or radio interviews, restaurant conversations, and audiobooks; DIHARD II
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added multichannel recordings; and DIHARD III expanded the dataset with additional

telephone conversations.

AMI

AMI (Augmented Multiparty Interactions) dataset [23] contains multi-modal meeting

recordings of 170 meeting sessions with 100 hours in total, with 3 to 5 speakers. It contains

the recordings and data from the meetings in the office environments obtained with

different types of devices: close-talking microphones (headset and lapel), far-field mi-

crophones (2 linear microphone arrays, 8 microphones each), individual and room-view

video cameras, visual content from the slide projector and electronic whiteboard, and

output from individual pens used by participants to take notes.

NIST SRE and Switchboard simulated mixtures and conversations

This paragraph does not focus on a specific dataset, but rather on an approach to generate

large-scale simulated training data for EEND-based diarization systems. This is an impor-

tant aspect to highlight, as such simulation techniques are crucial for effective training

large neural models in the absence of extensive annotated real-world data. EEND-based

models require large amounts of training data, typically thousands of hours, which cannot

be feasibly obtained using traditional hand-annotated datasets, as they are generally too

limited in size. Thus, the proper simulation procedure was introduced in [47] and was fol-

lowed by many other researchers as a procedure to generate a large-scale simulated dataset

for training of EEND models, where the recordings used were from Switchboard-2 (Phase

I, II, III) [59, 61, 60], Switchboard Cellular (Part 1, Part 2) [62, 63], and NIST Speaker Recog-

nition Evaluation datasets (2004, 2005, 2006, 2008) [127, 129, 128, 131, 134, 130, 132, 133].

The combined dataset results in recordings from 6381 speakers, all being telephone speech

at a sampling frequency of 8 kHz. The simulation algorithm produces a multi-speaker

audio mixture with background noise. It begins by sampling a set of speakers and, for

each, selects a random number of utterances. These utterances are spaced using random

time intervals, convolved with room impulse responses, and then concatenated. Each

speaker’s track is padded to match the longest one. All tracks are summed to form the

mixture. Finally, background noise is added and scaled based on a randomly chosen

signal-to-noise ratio (SNR) to produce the final mixed audio signal. As this procedure is

widely adopted in the research literature, [100] pointed out that the simulated mixtures

do not resemble real-life conversations, which can hinder the possible performance of the
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diarization model. To address this issue, the authors proposed a method for generating

simulated conversations (as opposed to simple simulated mixtures). By extracting statis-

tics from datasets that contain real conversations and applying them to simulate more

natural conversational patterns, the approach leads to improved model performance. This

method reduces the gap between models trained on simulated data and those applied to

real-life scenarios, thereby minimizing the need for additional fine-tuning on real-world

data.

2.4.3 Speaker diarization and separation

LibriMix and SparseLibriMix

LibriMix [32] is a well-known simulated dataset for speaker separation task, available

in two versions: with two speaker recordings (Libri2Mix) and three speaker recordings

(Libri3Mix). It was proposed as an alternative to existing separation benchmarks in

order to address the problem of the limited number of available evaluation datasets.

LibriMix contains mixtures simulated from LibriSpeech recordings [138], either clean or

with added ambient noise from the WHAM! dataset [194]. LibriSpeech is a very popular

dataset, used mainly for speech recognition systems, containing read audiobook speech.

WHAM! includes noise samples which were collected in realistic environments with

natural background noise, like bars, coffee shops, restaurants. Libri2Mix contains subsets:

train-360 with 212 hours, train-100 with 50 hours, dev with 11 hours and test with 11 hours.

Libri3Mix contains train-360 with 146 hours, train-100 with 40 hours, dev with 11 hours

and test with 11 hours. The training sets train-360 and train-100 correspond to the two

LibriSpeech training set sizes, containing approximately 360 hours and 100 hours of audio,

respectively.

LibriMix represents a corpus with high overlap mixtures. In order to complement the

LibriMix dataset with conversational-like data, the authors also proposed an alternative

of SparseLibriMix (2 and 3-speaker variant), with recordings of a varying amount of

speech overlap, i.e. 0%, 20%, 40%, 60%, 80%, and 100%. For SparseLibriMix the authors

provided scripts to generate clean and noisy version only for the test set, as the length

of noise samples from the WHAM! set is insufficient to generate the proper training set.

Respectively, both test sets of SparseLibri2Mix (2-speaker version) and SparseLibri3Mix

(3-speaker version) sum up to 6 hours. It is important to note that in the 3-speaker variant,

the reported amount of overlap refers specifically to segments where all three speakers

are talking simultaneously. This means that the actual amount of speech overlap, defined
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as at least two speakers speaking at the same time, is higher than the reported 3-speaker

overlap alone.

LibriheavyMix

LibriheavyMix [84] is a recently proposed dataset that contains large amount (around

20 000 hours) of simulated recordings, tailored for speech separation, recognition, and di-

arization tasks (i.e. task of "who spoke what and when"). The introduced dataset includes

a large volume of data and enhances the simulated recordings with added reverberation,

multiple speaker turns to better reflect real-life conversational dynamics, and transcrip-

tions enriched with proper punctuation, casing, and contextual information. Recordings

contain from 1-4 speakers for the training set and 2-4 speakers for the development and

test sets.

LibriCSS

LibriCSS [28] is a dataset proposed for continuous speech separation (CSS). CSS stands for

separation of speech signals from the audio stream that may contain multiple speakers,

different levels of overlap, and have durations of several hours. The authors of LibriCSS

proposed to create conversations by combining utterances from the LibriSpeech dataset

[138] and playing and recording them in real rooms. The recordings form 10 one-hour

sessions, where each contains 10-minute "mini sessions", with different overlap: 0%,

10%, 20%, 30%, and 40%. The 0% subset is presented in two versions: with short (0.1-0.5

seconds) and long (2.9-3.0 seconds) silence segments applied between utterances in the

simulated mixture. The dataset contains multi-channel recordings, and each session

contains 8 speakers. LibriCSS provides the conversational-like mixtures that include both

overlap and non-overlap regions, in contrast to other datasets for speech separation that

contain only fully-overlapped recordings.
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Chapter 3

Overview of conducted research and

main contributions

This chapter presents the major contributions and research findings of this thesis in

speaker recognition, speaker diarization, and the joint diarization and separation tasks.

Detailed descriptions and results are presented in the articles, the full text of which is

presented in the Appendix of this thesis.

3.1 Discriminative speaker representations

Publications I and II present contributions to the domain of DNN-based speaker recog-

nition. As described in Chapter 2, at the time of this research work was performed, the

speaker recognition community devoted attention to the development and understanding

of the different parts of the DNN structure of the speaker recognition system, i.a. the

objective functions and how to train models to generate discriminative representations.

At the time of DNN-based speaker system developments, angular-based losses were be-

coming popular, with currently the Additive Angular Softmax being the well-established

and widely adopted objective function.

The problem of the Additive Angular Softmax and similar loss functions is that their

hyperparameters such as scale and margin are fixed. They have been derived empirically

and adopted which is confirmed by numerous repetitions of their citation in various

publications. Introduction of fixed parameters, not adjusted to the training dataset,

may cause not optimal model training, and search for a proper set of parameters would

require repeated model training, which is extremely time-consuming and ineffective. In

Publication I this problem is solved by a proposal of two methods of a proper margin-
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only adaptation and the simultaneous adaptation of the margin and scale parameters

that adjust to the size of the training dataset and adapt during DNN training in order to

enhance the discriminative capabilities of the trained model.

Firstly, the adaptation procedure for the margin parameter was formulated. The

following angular function was considered:

ψMAda(θyi ) = cos(θyi +mAda), (3.1)

where mAda is a margin parameter whose value is adjusted during training, and θyi being

the angle between the input vector of the last classification layer and the vector weights of

the yi class, where yi is a ground-truth label of the particular sample. The expression for

softmax function Pyi was given in equation (2.13) and is restated below for clarity:

Pyi =
e fyi

e fyi +
K∑

k=1,k ̸=yi

e fi ,k

, (3.2)

where fyi and fi ,k are defined as fyi = s(θyi )ψ(θyi ) and fi ,k = s(θyi )cos(θi ,k ), respectively.

The goal is to set mAda such that it maximally affects the Pyi curve with respect to θyi .

The optimal value of mAda can be determined by finding the maximum value of the

absolute gradient of Pyi , which can be obtained by finding the point where its second-

order derivative is equal to zero. It results in the following update of the margin:

mAda = arccos
( 1

sm
log(BMAda)

)
−Θ , (3.3)

BMAda =
1

N

N∑
i=1

K∑
k=1,k ̸=yi

e sm cos(θi ,k ), (3.4)

whereΘ= median(θy1 ,θy2 , ...,θyN ) is the median over the angles for ground-truth exam-

ples in the processed minibatch, and sm is a fixed scale parameter. BMAda is a sum over

exponential logit functions for non-ground-truth classes, for a batch of size N and total

number of classes K in the training dataset. This adaptive margin method is referred to

as MAda.

The presented margin adaptation scheme leads to formulation of the full parameter

adaptation (called as ParAda) of the softmax-based cross-entropy loss function, which

is a proper combination of adaptive scale and margin. The philosophy of ParAda is to

gradually increase the training supervision and make the training more strict with the
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Figure 3.1: Probability curves Pyi (θyi ) at different epochs for presented ParAda function.
Plot borrowed from Publication I.

network convergence, by giving more weight to margin adaptation, and with later epochs

balance it with scale adaptation. It is achieved by modifying the shape of Pyi plot and

its inflection point during the different training stages by adapting the scale and margin

parameters. This behaviour can be presented with the diagram in Figure 3.1. In the first

epochs, the margin adaptation shifts the curve’s inflection point toward high angle values,

allowing the probabilities to vary more in this region. This is consistent with the fact

that the ground truth angles θyi are also high at this stage, when the model is still in its

early training phase and its predictions are less reliable. As training progresses, the angles

decrease in value, so that the curve is shifted towards the middle point of π
4 and the weight

of the impact is moved from the adaptive margin to the adaptive scale, which continuously

aims to make training more and more strict. This process is formulated in the following

equations:

fyi =λ · smψMAda(θyi )+ (1−λ) · sAda(θyi )cos(θyi ), (3.5)

fi ,k =λ · sm cos(θi ,k )+ (1−λ) · sAda(θyi )cos(θi ,k ), (3.6)

where sAda is the adaptive scale computed with AdaCos method [208], mentioned in

Chapter 2. The weighing parameter λ(mAda) is also adaptive and adjusts according to the

current margin values:

λ(mAda) = [1+ea·(mAda−b)]−1. (3.7)

The hyperparameters a and b are selected empirically. The presented method not only

solves the problem of nonoptimal adaptive angular loss parameters, but also provides

faster network convergence and prime performance.
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(a) x-vector (b) ResNet-18 (c) mR18

Figure 3.2: The diagram of the structures of (a) TDNN (x-vector) [175], (b) ResNet-18 [69]
and (c) mR18 models. The red dashed line points the modifications introduced for mR18
structure.

Another contribution introduced in Publication I is a modification of the ResNet

structure. At that time ResNet structures just started to gain attention of the research

community as a good modeling structure for the speaker recognition task. In this work,

ResNet-18 architecture is adapted with the proper modifications for the speaker recog-

nition task. The modified version will be referred to as modified ResNet-18 (mR18). The

comparison between TDNN x-vector model [175], ResNet-18 [69] and mR18 is presented

in Figure 3.2. The modifications follow the hypothesis that speaker embedding extractors

benefit from features of higher time-resolution. Thus, compared to the original ResNet-18

the maximum pooling at the model beginning has been removed, and the stride in the

convolutional blocks has been modified to avoid downsampling along the time dimension,

i.e. lowering the time resolution. The last layers of the model have been inspired from the

x-vector structure, where statistics pooling and additional segment-level processing with

feed-forward layers were employed.
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Table 3.1: EER, minDCF results, and approximate network convergence time (in Epoch)
for TDNN (x-vector) [175] and mR18 speaker recognition models. Results taken from
Publication I.

Network Softmax EER [%] minDCF Epoch

TDNN

Standard 3,06 0,338 3,10
AAS [38] 2,57 0,289 7,83
AdaCos [208] 2,44 0,276 7,53
ParAda 2,32 0,257 5,76

mR18

Standard 2,07 0,286 2,82
AAS [38] 2,12 0,274 6,77
AdaCos [208] 1,94 0,335 5,11
ParAda 1,72 0,280 3,51

Table 3.1 presents the summary of the obtained results for the proposed ParAda

and mR18 model in reference with to state-of-the-art TDNN model and softmax loss

functions, proving the gain offered by the described contributions. The models were

trained with combined VoxCeleb1 train part and VoxCeleb2 datasets [123] which were

augmented with reverberation and noises. Since the VoxCeleb1 training set was used for

training, the VoxCeleb1-E and VoxCeleb1-H trial lists were excluded from tests, which

was an accepted practice within the speaker recognition community at the time. ParAda

outperformed other existing methods based on softmax losses or their modifications:

original, without any modifications (referred in the table as ‘Standard’), angular-based

AAS and with adaptive scale (AdaCos). The table also highlights another advantage which

is an increased training convergence speed compared to other non-standard softmax-

based losses (i.e. AAS and AdaCos). Moreover, a clear improvement can be observed

when comparing the results of TDNN (x-vector) [175] and mR18. The mR18 model has

also demonstrated its effectiveness in author’s other publications, i.e. for distant speaker

verification problem [196] or as a part of the submission in the SdSV Challenge of DSP

AGH team [162].

Publication II presents further investigation of the modeling capabilities of the neural

network structure for the speaker recognition task. Regarding the mR18 structure, this

research seeks methods to extract and preserve speaker information. The hypothesis

concerns that the scale-decreased design of the ResNet structure may discard or remove

some of the speaker information during processing. The scale-decreased design means

that the feature map is downsampled as it is processed by the network. Thus, it was

proposed to incorporate SpineNet modeling [42], which represents a scale-permuted

design and, moreover, uses multi-scale feature representations before network pooling.
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(b) SpineNet-49

Figure 3.3: Diagram of (a) ResNet-50 and (b) SpineNet-49 residual parts of the structure.
Numbers inside blocks denote its level, bold line denote the output blocks, the blocks
with solid lines represent the bottleneck type, while dotted represent basic residual.

Scale-permuted means that the processed feature map can decrease or increase during

the network processing flow. The terms of scale-decreased and scale-permuted design is

presented in Figure 3.3 showing the encoder residual part of ResNet-50 and SpineNet-49.

Note that the complete encoder structure, for both models, includes a convolutional layer

at the start of the processing pipeline. The numbers inside the blocks represent the level of

the block l , which corresponds to the factor with which the feature map is downsampled,

which more precisely is 2l−2. Figure 3.3a presents the scale-decreased design, where

the processed feature map is steadily downsampled. In case of the ResNet-50 structure,

the output from the last block is directly forwarded to the pooling part (not included in

Figure 3.3). At the same time, Figure 3.3b presents the SpineNet-49 scale permuted design,

where the blocks level have fluctuating order. The blocks with the bold line represent the

output blocks, the result of which is forwarded to the pooling part. Here, SpineNet-49 has

five output blocks, whose results are properly merged, as they produce feature maps of
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3.1 Discriminative speaker representations

different sizes. Merging multi-scale feature representations is another key property of this

approach, enabling the combination of high-resolution features with low-resolution ones

to capture both low-level and high-level information about the utterance.

(a) (b) (c) (d)

Figure 3.4: Diagrams of (a) ResNet bottleneck block and (b) Res2Net bottleneck block,
(c) ResNet basic block and (d) Res2Net basic block. The example presents Res2Net blocks
with sRes2Net = 4.

The research presented in Publication II also introduced additional modifications to

further increase the receptive field of the model and the level of granularity of processed

information through the use of Res2Net blocks [52]. The Res2Net structure was originally

introduced for the image processing tasks. It is also a method of processing the multi-scale

features within bottleneck residual block. The multi-scale processing, i.e. processing the

information in its small details as well as the broad general picture allows to obtain much

more accurate information. To illustrate this concept more clearly, let us consider exam-

ples from image processing. Firstly, multi-scale processing allows to take into account the

variable sizes of the information provided at the input, e.g. in image processing the goal is

to detect the big wardrobe as well as a small cup. Secondly, the context of the information

may be much bigger than the information itself, e.g. having the knowledge and context

of the picture of a kitchen helps to decide whether a small red object is an apple or ball.

Lastly, the multi-scale understanding of the picture allows to capture both details as well

as the meaning of the entire image, e.g. when identifying a small gray patch in an image, it

is hard to distinguish whether it is a cat fur or fragment of a concrete wall, but looking at

the bigger picture and detecting eyes, nose, and whiskers allows to take a correct decision.

57



Overview of conducted research and main contributions

The same principle can be applied to speech. Short speech segments may provide only

limited cues, but multi-scale analysis allows combining fine-grained acoustic details (e.g.

pitch, timbre) with broader patterns (e.g. rhythm, prosody, speaking style).

To achieve the mentioned goals, Res2Net introduced proper architecture modifica-

tions to the bottleneck residual block. The diagrams of the bottleneck residual block and

the corresponding Res2Net bottleneck block are presented, respectively, in Figures 3.4a

and 3.4b. The output of the first 1×1 convolutional layer is divided into s Res2Net chunks,

denoted as x, where each of them has the same feature map size, but 1
s Res2Net

channels.

The middle layer (3×3 convolution with n channels) is replaced by a collection of 3 × 3

convolutional layers with w channels, where n = w × s Res2Net. Each input chunk is pro-

cessed by its own 3×3 convolutional layer (except x1). The new layers are connected in

the hierarchical manner, where each consecutive block presents an increased scale of the

features. With each pass through the 3×3 convolution, the receptive field expands, which

leads to multiple feature scales as a result of the combination effect. This way Res2Net

introduces s Res2Net - a scale dimension. Original work [52] introduced Res2Net blocks for

bottleneck type. As SpineNet structure is built of both bottleneck and basic residual blocks,

in the Publication II the Res2Net version for the basic block has been introduced. The

comparative diagram in Figure 3.4 presents the ResNet bottleneck and basic blocks, as well

as the corresponding Res2Net bottleneck and basic blocks. In contrast to the bottleneck

block, the basic Res2Net may include optional 1×1 convolution for x1 chunk and 1×1

convolution projections between inner residual connections. Additional projections are

required when the w channels are increased with respect to Ci n
s Res2Net

(Ci n - input number

of channels), which may be applied when there is a need to preserve or extend network

complexity or to improve performance.

New model structure included Squeeze-and-Excitation (SE) blocks [76] modified for for

the speaker recognition task, namely the Time-Squeeze-and-Excitation (T-SE) module [87,

163]. The goal of SE module is to recalibrate the dependencies between channels by

capturing and modeling their interdependencies. Its processing flow is based on two

steps: Squeeze and Excitation. The first step aggregates information with a pooling

applied on the entire feature maps. Next, the Excitation step follows with a self-gating

mechanism, which is based on two feed-forward layers, with a reduction factor r to force

learning of the compact and general representations. The difference between the modules

is that originally the SE block was proposed to recalibrate the dependencies between

channels only, while the T-SE block extends the recalibration to the channel and frequency
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3.1 Discriminative speaker representations

(a) (b)

Figure 3.5: The schemes of the (a) Squeeze-Excitation and (b) Time-Squeeze-Excitation
blocks. C stands for channel dimension, F - feature dimension, T - time dimension, r -
reduction factor.

domain. The comparative scheme of the processing flow of the SE and T-SE blocks is

presented in Figure 3.5.

For this research, the evaluation was performed on the VoxCeleb dataset. VoxCeleb2

was used for training, while VoxCeleb1 was used as a test set with trials: Extended

(VoxCeleb1-E), Hard (VoxCeleb1-H) and Original (VoxCeleb1-O). Table 3.2 presents an

excerpt of the results showed in Publication II. The minDCF is presented with Pt ar = 0.05

(DCF5) and Pt ar = 0.01 (DCF1). The table also includes the number of trainable param-

eters for each network, as well as the FLOP (Floating Point Operations) value, which

represents the number of multiply-add operations, counted as a single operation, cal-

culated for a 3-second audio fragment. The T-SE-Res2Net-50 and T-SE-Spine2Net-49

represent ResNet-50 and SpineNet-49 with introduced final modifications of the Res2Net

and T-SE modules. As can be observed, the presented model, along with added modifica-

tions, provides prime performance. Moreover, despite an increase in parameter number,

it is characterized by a much lower FLOP number, which shows increased efficiency given

the model size.
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Table 3.2: Excerpt of the results from Publication II for ResNet and SpineNet based struc-
tures for VoxCeleb1 test dataset.

VoxCeleb1-E VoxCeleb1-H VoxCeleb1-O
Network # Params # FLOPs EER DCF5 DCF1 EER DCF5 DCF1 EER DCF5 DCF1
ResNet-34 25.5M 27.3G 1.19 0.078 0.140 2.27 0.137 0.219 1.35 0.088 0.146
ResNet-50 35.6M 30.7G 1.30 0.082 0.150 2.33 0.142 0.235 1.44 0.100 0.173
SpineNet-49 28.6M 26.0G 1.17 0.074 0.129 2.14 0.129 0.213 1.11 0.088 0.125
T-SE-Res2Net-50 88.1M 32.1G 1.05 0.067 0.117 1.95 0.113 0.196 1.12 0.071 0.103
T-SE-Spine2Net-49 58.0M 26.2G 0.99 0.065 0.112 1.95 0.117 0.192 0.92 0.068 0.105

3.2 Non-Autoregressive Attractor estimation

The following section describes the contributions in the areas of speaker diarization and

joint speaker diarization and separation tasks. The main proposal is the method called

Non-Autoregressive Attractor (NAA) estimation. NAA was introduced and developed by

the author of this thesis within the speaker diarization task, and later applied for the joint

speaker diarization and separation task.

3.2.1 Speaker diarization

The next part of the research work was the problem of proper extraction of speaker in-

formation for the speaker diarization task. As described in detail in Chapter 2, the most

popular method of speaker diarization consists in clustering of speaker embeddings ex-

tracted from segmented audio. Thus, speaker diarization is a natural extension of the

speaker recognition task. End-to-end neural speaker diarization (EEND) models are

the next generation of state-of-the-art approaches for speaker diarization. Frame-level

embeddings have been shown to form speaker and silence clusters, with intermediate

overlap embeddings [73, 72], which also can be observed in examples presented in Figure

3.6, adopted from Publication IV. EEND-EDA introduces an attractor mechanism into

the EEND model to deal with unknown number of speakers. However, the LSTM-based

autoregressive attractor generator makes the process obscure due to LSTM nature, i.e. se-

quential dependence and nonlinear processing. In order to ensure that attractor decision

making is explainable, the Non-Autoregressive Attractor (NAA) estimator was proposed in

Publication III.

The NAA idea operates on the property of the clusters formed by frame-level embed-

dings. The diagram of the EEND with NAA, shortly - EEND-NAA, is depicted in Figure 3.7.

Frame-level embeddings from the EEND encoder are used as input for the k-means clus-

tering. The number of clusters is set to be equal to the number of speakers. The clustering
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(a) 2-speaker recording

(b) 4-speaker recording

Figure 3.6: T-SNE visualization of the encoder embeddings obtained by EEND-NAA (with
I = 4). Left plots: all frame-level embeddings. Right plots: embeddings containing only a
single speaker. Plots adopted from Publication IV.

result is refined with Transformer decoder layers, where the attention mechanism helps

further in producing discriminative final attractors. The k-means cluster centers are used

as an initialization for the final attractor representations. However, the clustering is used

directly on top of all frame-level embeddings, which means that the cluster centers are

computed not only with single-speaker embeddings but also silence and overlap ones.

Thus, the initialization may be contaminated with ambiguous information. In order to

overcome this challenge, an iterative refinement step was proposed in Publication III.

After obtaining the diarization result using k-means initialization, the result is reused to

re-estimate the initial attractors, which constitutes the new cluster assignment. Using this

approach, cluster centers can be refined and computed only from embeddings that belong

to a particular speaker. For some of the recordings, iterative refinement had a notable

impact which is presented in Figure 3.8, which depicts the diarization system decisions

for each iteration step. In the beginning the model classifies most of the embeddings as

silence or overlap. With the next iterations we can observe that system refines its decisions,

leading to correct assignment of the diarization decision.

By definition, the attractors are supposed to encode the within-recording relative

speaker information. In order to further enhance the attractor discriminability, the pro-

61



Overview of conducted research and main contributions

Figure 3.7: The scheme of the EEND with Non-Autoregressive Attractor estimation pro-
posed in Publication III.

(a) I = 1 (b) I = 2

(c) I = 3 (d) I = 4

Figure 3.8: EEND-NAA encoder embedding visualization at each I -th refinement step.
Decisions obtained from the system output serve as labels. Plots adopted from Publica-
tion III.

posed model incorporates an additional speaker classification loss applied to the final

attractor representations. The excerpt of the publication results is presented in Table 3.3

on the CALLHOME (CH) dataset [147]. The presented table demonstrates the improve-

ment of the proposed method over the baseline, showing a consistent decrease in DER
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values as the number of iterations increases. The final performance corresponds to the

model incorporating the speaker classification loss in addition to the diarization loss.

Table 3.3: Diarization Error Rate (DER) performance for the EEND-EDA and EEND-NAA
with different number of iterative refinement steps. ‘+ Lspk’ indicates model with included
speaker classification loss.

Model CH
EEND-EDA 9.24
EEND-NAA, I = 1 8.94
EEND-NAA, I = 2 8.19
EEND-NAA, I = 3 8.10
EEND-NAA, I = 4 7.94
EEND-NAA, I = 4 + Lspk 7.83

Following this proposal (Publications III and IV), several non-autoregressive solutions

began to appear in the literature [49, 26]. Nevertheless, the described research was the first

to propose the Non-Autoregressive Attractor estimation for the speaker diarization task.

The initial proposal (Publication III) had certain limitations, as the model required prior

knowledge of the number of speakers. Moreover, the presented evaluation was conducted

only for recordings containing two speakers. For these reasons Publication IV introduced

three possible extensions of the originally proposed solution to the variable and unknown

speaker conditions.

Figure 3.9: The processing flow of the EEND-NAA-Overest system.
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All the extensions share three similar modifications: introduction of the Single Speaker

Activity Detection (SSAD) module, modification of the goal of the clustering step, and

adding an additional Transformer decoder module. The first extension, the so-called

EEND-NAA-Overest, is presented in Figure 3.9. Its processing flow is as follows: first, the

frame-level embeddings from the encoder are processed by the SSAD module. The task of

the SSAD module is to filter out embeddings containing more than one speaker (overlap)

or none (silence). This way, the k-means clustering operates only on the embeddings that

come from one speaker at a time. Filtered representations serve as input for the k-means

clustering algorithm. However, contrary to the initial proposal in Publication III, in this

method, the clustering algorithm does not cluster with a number equal to the number of

speakers. Instead, it uses an arbitrarily chosen value that overestimates the speaker count,

exceeding the maximum expected in the recording. By doing so, the diarization can be

performed for the unknown speaker number. Next, the obtained representations are fed

to the first decoder, whose task is to refine the centers to single-speaker representations,

by pulling true speaker centers closer while pushing irrelevant ones farther away, enabling

the subsequent linear layer to distinguish one center per speaker. In order to facilitate

that, the proper loss is applied on top of the representations after the first decoder, which

is based on the softmax cross-entropy loss. The centers selected as speaker ones are

compared to ideal speaker representations. In this work, ideal speaker representations

are obtained by computing the mean embedding across all single-speaker frame-level

embeddings in which the respective speaker is present. The assignment of cluster centers

to speakers is done with a permutation approach. Given K cluster centers and S ideal

speaker centers, all possible S-sized subsets of the K are considered. For each subset and

its permutations, the distances to the ideal centers are computed, and the permutation

with the lowest total distance determines which centers are selected as speaker ones.

The refined centers are then processed by a simple linear layer whose task is to decide

which attractors belong to a speaker or not, which also represents a step where speaker

number is counted. After selecting the speaker representations, the chosen pre-attractor

representations are forwarded to the second decoder, which produces the final attractors.

Figure 3.10 presents the second system, which is referred to as EEND-NAA-2step. It

has similar processing steps as EEND-NAA-Overest, but the NAA-2step module performs

a slightly different task. Similarly, first, the encoder embeddings are processed by the SSAD

module. Also, on the top of the filtered embeddings, the k-means with an overestimated

number of clusters is applied. However, the goal of the first decoder is different. The

EEND-NAA-2step follows the assumption that all cluster centers represent speakers, which
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Figure 3.10: The processing flow of the EEND-NAA-2step system.

means that one speaker can be represented by more than one cluster center. Thus, the

task of the first decoder is to refine the centers in such a way that the centers that come

from the same speaker are brought closer, and the ones that are from different speakers

are pushed away from each other. The property is achieved by applying a contrastive loss.

This allows the centers to be merged with the second clustering that is present after the

first decoder. During inference, the second clustering is replaced by spectral clustering.

The eigenvalue analysis is applied to count the speaker number. During training, in order

to save computation time, k-means clustering is used. Finally, the merged representations

are processed by the second decoder that outputs the final attractor representations.

Figure 3.11 presents the third and last extension of the proposed systems. It is referred

to as EEND-NAA-1step and represents a simplified EEND-NAA-2step model. Similarly

as in the previous systems, encoder embeddings are processed by the SSAD module and

fed to the clustering algorithm. Contrary to previous approaches, the clustering step sets

the number of centers equal to the number of speakers. Thus, the speaker counting step

is performed at this stage of the backend processing, immediately after SSAD filtering.

During inference, spectral clustering is incorporated to estimate the number of speakers.

It is replaced with k-means for the training time, in order to save on computations. Then,

the obtained centers are processed by the first decoder, and, similarly to EEND-NAA-

Overest, the loss based on the softmax cross-entropy is applied to refine the centers to

65



Overview of conducted research and main contributions

Figure 3.11: The processing flow of the EEND-NAA-1step system.

ideal speaker representations. Next, the second decoder processes the embeddings, and

the final attractors are retrieved.

Table 3.4: DER results for simulated test recordings for estimated number of speakers.
Test sets results includes sets of recordings with 1, 2, 3 and 4 speakers, and average (Avg)
among all test recordings.

#Speakers
System 1 2 3 4 Avg
EEND-EDA 0.46 6.07 12.30 15.75 8.65
EEND-NAA-Overest 0.15 4.25 9.12 12.84 8.28
EEND-NAA-2step 0.08 4.31 6.83 12.26 5.87
EEND-NAA-1step 1.01 5.08 8.76 14.78 7.40

Table 3.4 shows fragment of the DER results from Publication IV. It presents the

performance of the proposed systems, compared to EEND-EDA baseline (in Publication

IV this model is referred as ‘EEND-EDA, PyTorch’), for models trained and evaluated on

simulated recordings. In these results, the models estimated the speaker number (i.e. the

speaker number is unknown for the systems). The test results include sets of recordings

with 1, 2, 3 and 4 speakers, as well as average among all test recordings, which clearly

demonstrate the advantage of the proposed methods over the baseline.
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3.2.2 Joint speaker diarization and separation

Speaker separation and speaker diarization are closely related tasks. Both aim to track

speakers, but at different granularity levels. Diarization returns speaker activity, a binary

decision whether a particular speaker is present in the particular time frame. Speaker

separation outputs a more detailed information in the form of speech waveform, which is

typically obtained through masks that represent speaker activity but in the time and fre-

quency domain. For this reason, recently, attention has been directed towards combining

these two tasks into one system in order to cope with their challenges and problems. Pub-

lication V presents research in which the effective method of non-autoregressive attractor

estimation has been combined into a separation network to perform a joint separation

and diarization task and bridge the gap between speaker separation and diarization by

merging these related tasks into unified framework.

Figure 3.12: Scheme of the SepDiar architecture. Diagram adopted from Publication V.

The proposal of the joint speaker diarization and separation architecture builds on the

SepFormer-based separation structure - SepEDA. The separation model is composed of

three main building blocks: encoder, masking network, and decoder. The model’s input

is a raw audio mixture, and output is the separated audio tracks for each speaker. The

encoder task is to transform the time representation of the recording into the time-feature

domain. Next, the masking network produces speaker masks that multiplied with encoder

features serve as decoder input. Finally, the decoder reconstructs masked representations

into time representations. The architecture employs attractor generation in the middle of

the masking network, which allows for extraction of the speaker representations and pro-

cessing recordings with flexible number of speakers. Proposed model extends separation

with a diarization part and loss objective function in order to perform the joint task. It is

referred to as SepDiar, and its general diagram is presented in Figure 3.12. The proposal

also includes two attractor generation variants for different conditions: conversational

with low speech overlap, and for very high speech overlap, characteristic for speaker

separation benchmarking.

The first one, Cluster-based Attractor (CA) mechanism is directly inspired from the

diarization work described in Publications III and IV. The diagram of the attractor genera-
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tion mechanism is shown in Figure 3.13. It borrows the basic idea of filtering embeddings

with the SSAD module and applies the k-means clustering on top of it, leveraging the

speaker information from the single-speaker regions.

Figure 3.13: Cluster-based Attractor (CA) scheme. Adopted from Publication V.

However, the CA mechanism, which is dedicated to scenarios with time periods with

activity of a single speaker, should not be expected to demonstrate its effectiveness in

typical for separation high-overlap conditions with recordings that contain very little or

no single-speaker regions. The Diarization-based Attractors (DA) generation was designed

to address that problem. Its scheme is depicted in Figure 3.14. It follows the processing

flow that is similar to the EEND-VC processing [95]. The aggregated embeddings at the

previous processing step are processed by DA encoder, whose output is processed in

parallel by two blocks: speaker and diarization. The task of the diarization block is to

estimate the diarization result. The second block - speaker - processes the input into

separate embedding sequences, where the number of sequences is equal to the assumed

maximum number of speakers. The final attractors are obtained as a weighted average of

the speaker embeddings with diarization speaker activity results as weights.

Figure 3.14: Diarization-based Attractor (DA) scheme. Adopted from Publication V.

In the proposed SepDiar framework, the final diarization is obtained by applying

a single linear layer with a Sigmoid activation at each time bin of speaker separation

masks (also presented in Figure 3.12). The results presented in Publication V reveal

the top performance of the proposed methods, including typical simulated separation

datasets, as well as real-life recordings used to benchmark diarization-only models, and

presents the versatility of the NAA method for diarization and separation tasks. The

fragment of these results is presented in Table 3.5, where selected results are presented

for SparseLibri2Mix with 40% speech overlap and diarization-only CALLHOME dataset.

EEND-SS [111] and EEND-EDA [111] are results from [111] paper, while EEND-EDA (Ours)
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is an EEND-EDA model trained independently in the course of this research, SepFormer

and SepEDA are separation baselines, and SepDiarCA (SepDiar with CA) and SepDiarDA

(SepDiar with DA) are the proposed models. The results for SparseLibri2Mix present

performance for both separation and diarization tasks. The proposed systems consistently

outperform all baseline systems, both for joint and individual tasks. The further evaluation

on CALLHOME (CH) dataset demonstrate the effectiveness on real-life recordings for

diarization task. As can be observed, the obtained results confirm the effectiveness of the

proposed approaches.

Table 3.5: SparseLibri2Mix (test set with 40% speech overlap) and CALLHOME (CH) results.
* indicates the results derived from the plot diagram in [111].

SparseLibri2Mix CH
System SI-SDRi DER DER
EEND-SS [111]* 7.5 5.4 –
EEND-EDA [111]* – 10.3 –
EEND-EDA (Ours) – 9.99 21.47
SepFormer 18.72 – –
SepEDA 17.45 – –
SepDiarCA 19.14 2.14 6.80
SepDiarDA 19.67 2.00 7.40
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Chapter 4

Finale

4.1 Summary

Since first successful application of deep neural networks, the performance and applica-

tion of many advances in speech technology have improved drastically. Many systems are

able to show performance sometimes on par or better than human accuracy. The devel-

oped approaches often strive for better accuracy and generalization by seeking optimal

solutions and leveraging knowledge and advances from other speech processing tasks.

This thesis confirms the hypotheses stated in Chapter 1.2 and presents substantial

contributions to the fields of speaker recognition and diarization aiming at optimization

of DNN-based approaches. More specifically, the research concerns various aspects of

speaker representations for these tasks.

Publications I and II introduce several optimizations of the neural structure towards

more discriminative speaker representations for the speaker recognition task. They in-

troduce an angular-based objective function, which adapts its parameters based on the

current convergence step and accuracy in order to provide optimal training, and as a

result provides an improved performance and convergence speed of the training. In both

Publications, the presented modifications to the structure are aimed to increase the focus

on temporal and frequency dependencies by combining multi-scale features, which leads

to better discrimination and information about speakers.

Publications III and IV propose a generic non-autoregressive attractor generation for

estimation of speaker representations for the diarization task, which presents an improved

performance over baseline methods and directly exploits information provided by the
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encoder of the diarization network. Namely, the method incorporates speaker informa-

tion encoded in the frame-level embeddings, which allows to extract and refine speaker

representations from the recording in an explainable manner. The method has been

investigated and developed into different variants to address generic conditions of an

unknown and flexible number of speakers. The evaluation was conducted on simulated

recordings as well as real-life test sets such as CALLHOME and DIHARD.

Publication V continues to exploit non-autoregressive approach for joint speaker diariza-

tion and separation tasks, proving the versatility of the proposed method. Moreover, the

research proposes a framework that merges the tasks of separation and diarization. The

results show improved accuracy of the two proposed methods for high-overlap conditions,

typical for the separation task, and sparse-overlap conditions, typical for conversations

and the diarization task.

4.2 Future work

There are multiple directions that the presented research can take. First, further research

on speaker information encoded in attractors would be beneficial. This study could

examine whether diarization attractors can also be exploited in the context of the speaker

recognition task. The investigation would be valuable in order to increase the versatility of

the framework towards the joint speaker recognition and diarization task. Moreover, if

the generated speaker attractors represent the absolute speaker characteristics, the idea

could set a research direction into extraction of the overlap-robust speaker embeddings

from multi-speaker recordings. The next goal is to extend the properties of the diarization

and joint diarization and separation models to deal with long recordings. Currently, the

joint model presents good performance on relatively short recordings (up to 60 seconds),

which is a scenario not fully applicable for some speaker diarization use cases (aiming to

process recordings from minutes to even hours long) or continuous speech separation.

This problem can be addressed by performing separation and diarization on short chunks,

extracting the attractors, and then combining them into a single stream per speaker based

on attractor similarity across chunks. Moreover, that research direction could evolve into

exploration of an online/streaming diarization and separation task. Further development

could aim to integrate the proposed solutions with the ASR, both as a downstream task

evaluation, as well as integrating the ASR model into a joint task in order to fully answer

the question "who spoke when and what". Finally, one of the problems in evaluation
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4.2 Future work

of the joint of diarization and separation framework is the lack of real-life ground-truth

examples for the separation task, which is required in order to train the network in a

supervised manner. In order to overcome the problem, the combination of unsupervised

techniques for separation and supervised for diarization could allow processing and

leveraging recordings from different datasets, increasing the available amount of training

data.
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Abstract
In various classification tasks the major challenge is in generat-
ing discriminative representation of classes. By proper selection
of deep neural network (DNN) loss function we can encour-
age it to produce embeddings with increased inter-class sepa-
ration and smaller intra-class distances. In this paper, we de-
velop softmax-based cross-entropy loss function which adapts
its parameters to the current training phase. The proposed solu-
tion improves accuracy up to 24% in terms of Equal Error Rate
(EER) and minimum Detection Cost Function (minDCF). In ad-
dition, our proposal also accelerates network convergence com-
pared with other state-of-the-art softmax-based losses. As an
additional contribution of this paper, we adopt and subsequently
modify the ResNet DNN structure for the speaker recognition
task. The proposed ResNet network achieves relative gains of
up to 32% and 15% in terms of EER and minDCF respectively,
compared with the well-established Time Delay Neural Net-
work (TDNN) architecture for x-vector extraction.
Index Terms: speaker recognition, deep neural networks, soft-
max activation functions, speaker embedding, ResNet

1. Introduction
Recently we have seen a rapid increase in popularity of speaker
modeling using deep neural networks (DNNs) [1, 2, 3]. State-
of-the-art solution consist in extracting a speaker embedding
from the Time Delay Neural Network (TDNN), which is com-
monly referred to as the x-vector [2]. Extensions of the basic
TDNN structure have been presented e.g. in [4, 5], while differ-
ent network structures for the extraction of speaker embeddings
have very recently been proposed e.g. in [1, 3, 6, 7, 8, 9]. Find-
ing an appropriate network structure which facilitates notable
improvement in speaker recognition performance is thus still an
on-going research topic.

In speaker recognition, it is common to use a cross-entropy
loss function with softmax activations in the last DNN layer
[1, 4]. This loss function is also widely used in other tasks such
as image recognition [10] or speech emotion recognition [11].
Recent modifications to such loss functions include increas-
ing inter-class separation by an introduction of various types of
margins in the angular functions [12, 13, 14]. They have been
successfully applied in speaker recognition e.g. in [15, 16]. The
convergence of the training process and the resulting model per-
formance strongly depend on the selection of hyperparameters
of the modified loss function, which often need to be tuned by

This research received financial support from the Founda-
tion for Polish Science under grant number First TEAM/2017-3/23
(POIR.04.04.00-00-3FC4/17-00) which is co-financed by the European
Union and was supported in part by PLGrid Infrastructure.

repeating the training with different hyperparameter values. To
address this issue, in [17] a cosine-based activation function
called AdaCos has been proposed for the face recognition ap-
plication, which adapts the scale parameter in angular softmax
representation to improve the training effectiveness.

In this paper, we aim to develop a softmax-based cross-
entropy loss function which adapts its hyperparameters so that
they strengthen supervision at different neural network train-
ing phases. The proposed approach allows to adapt the scale
and additive angular margin parameters in joint softmax-based
cross-entropy loss function, resulting in a notable improvement
in convergence speed of the network training and in speaker
recognition accuracy. In addition, we propose a modification of
the Residual Network (ResNet) [18] architecture which shows
significant improvements in accuracy over the standard TDNN
architecture. In evaluations, we compare the proposed parame-
ter adaptation (ParAda) in softmax-based loss function in terms
of convergence speed and accuracy for two speaker recognition
systems based on TDNN and the proposed modified ResNet.

2. Softmax-based cross-entropy loss
functions

In this section, we present an overview of several recently pro-
posed modifications of a standard cross-entropy loss with soft-
max activation functions for DNN training, and next we pro-
pose a softmax-based loss function with adaptive parameters
(ParAda) which improves discriminative capabilities of the net-
work and accelerates its convergence. Let us first observe that
the dot product between the softmax layer input vector and the
weight vector can be written as wT

k xi = ‖wk‖ ‖xi‖ cos(θi,k),
where ‖wk‖ denotes the norm of the weight vector for the kth
class, k = 1, 2, ...,K with K being the number of speakers
in the entire training set, ‖xi‖ denotes the norm of the input
vector for the ith minibatch example, i = 1, 2, ..., N with N
denoting the minibatch size, and cos(θi,k) denotes the cosine
angular distance between vectors wk and xi. Next, we can ex-
press the general equation for the softmax-based cross-entropy
loss function as

L = − 1

N

N∑

i=1

logPyi = − 1

N

N∑

i=1

log
efyi

efyi +
K∑

k=1,k 6=yi
efyi,k

, (1)

where yi is the ground truth label of a training example, Pyi
denotes the predicted classification probability of all samples in
the minibatch, while fyi and fyi,k denote the target and non-
target logits given respectively by

fyi = s(θyi)ψ(θyi) , (2)

fyi,k = s(θyi) cos(θyi,k) . (3)
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In standard softmax-based cross-entropy loss, ψ(θyi) is defined
as the cosine of the angle between the ith minibatch input vector
and the weight vector corresponding to its ground truth label.
Note that for the convenience of comparing various softmax
modifications, in (2) and (3) we normalized the weight vectors
for all classes such that ‖wk‖ = 1 and replaced the norm of
an input vector for the true class ‖xi‖ with a new scale variable
s(θyi).

2.1. State-of-the-art fixed angular and scale functions

There are three types of modifications of the standard angular
function ψ(θyi) in (2), namely the so-called Angular Softmax
(AS) [12], Additive Angular Softmax (AAS) [13], and Addi-
tive Margin Softmax (AMS) [14], which can all be presented in
a general form

ψ(θyi) = cos(mAS θyi +mAAS)−mAMS, (4)
where mAS, mAAS and mAMS are the real numbers for each
modification. Although proper setting of these parameters has
been shown to improve the accuracy of DNN-based speaker
recognition [15, 16], the disadvantage of these approaches is
that parameter tuning requires time-consuming repetitions of
the network training. Another approach is taken in [17] in which
a fixed scale function s(θyi) = sFix is given by a constant

sFix =
√

2 log (K − 1), (5)
which depends on the number of speakers K in the training,
which allows to avoid scale parameter tuning.

2.2. Adaptation of the scaling parameter

In this section, we discuss a method to adapt the scale parame-
ter s(θyi) depending on network convergence at current training
iteration. This method is based on the recently proposed Adap-
tively Scaling Cosine Logits (AdaCos) introduced in [17] in the
context of face recognition, which relies on adapting the scale
function s(θyi) during the network training. As derived in [17],
the scale adaptation (SAda) is given by

sAda(θyi) =

{√
2 log(K − 1) iter = 0
log(BSAda)

cos(min(π
4
,Θ))

iter ≥ 1
(6)

where Θ = median(θy1 , θy2 , ..., θyN ) denotes the median of
angles θyi over the entire minibatch of length N , and iter de-
notes the iteration index. BSAda denotes the summation of ex-
ponential functions of logits for all non-corresponding classes,
averaged over the entire minibatch of size N , which is given by

BSAda =
1

N

N∑

i=1

K∑

k=1,k 6=yi

es̃Ada cos(θi,k), (7)

where s̃Ada = sAda(iter− 1) denotes the scale parameter
value calculated according to (6) in the previous iteration.

2.3. Adaptation of the margin-based angular function

In this section, we propose a method to adapt the margin pa-
rameter (MAda) in an angular function depending on network
convergence state in the current iteration of the network train-
ing. The considered angular function is given by ψ(θyi) =
cos(θyi + mAda), where mAda denotes the adaptive margin
parameter. Since we aim to find a margin parameter which sig-
nificantly changes the predicted classification probability Pyi of
all samples in the minibatch, similarly to [17], we calculate the
point θ0 where absolute gradient value of the predicted proba-
bility reaches the maximum value. It is found as point at which

the second-order derivative of Pyi is equal to zero, which yields
the approximated relation for the angular function

cos(θ0 +mAda) =
1

sm
log
( K∑

k=1,k 6=yi

esm cos(θi,k)
)
, (8)

where sm denotes the fixed scale parameter in margin adap-
tation and θ0 ∈ [0, π

2
]. In order to reflect the convergence

state of the network in the current minibatch, we replace θ0

with the median of angles θyi over the entire minibatch, i.e.,
θ0 = Θ = median(θy1 , θy2 , ..., θyN ), which yields the fol-
lowing update for margin adaptation (MAda)

mAda = arccos
( 1

sm
log(BMAda)

)
−Θ , (9)

BMAda =
1

N

N∑

i=1

K∑

k=1,k 6=yi

esm cos(θi,k). (10)

2.3.1. Annealing strategy in margin-based angular function

Similarly to the procedure presented in [15] for the stabiliza-
tion of the network training for fixed margin-based softmax, the
annealing strategy can also be incorporated into the proposed
softmax function with adaptive margin. The angular function
with margin adaptation (MAda) then takes the form

ψMAda(θyi)=
1

1 + γ
cos(θyi+mAda)+

γ

1 + γ
cos(θyi) (11)

where γ = max{γmin, γb(1 +β · iter)−α} where iter is train-
ing iteration, γmin is the minimum value, while γb, β and α are
hyperparamters that control the annealing speed.

2.3.2. Lower bound on the scale parameter value

By noting that arccos(·) function in (9) is only defined for ar-
guments from the range [−1, 1] and that θi,k ∈ [0, π

2
], we can

find the lower bound on the value of the scale parameter in the
proposed MAda approach by solving inequality

−1 ≤ 1

sm
log
( K∑

k=1,k 6=yi

esm cos(θi,k)
)
≤ 1 . (12)

Assuming that all θi,k are approximately equal, we can set
∀ k, i θi,k = θ̄, and by replacing the values and solving (12)
we obtain the lower bound on the scale parameter sm value

sm ≥ [1− cos(θ̄)]−1 log(K − 1) . (13)
In an ideal case, after network training, θ̄ → π

2
which would

yield sm → log(K − 1); while in the worst case, θ̄ → 0
which would impose sm → ∞. A reasonable assumption for
the practical parameter setting is to assume that θ̄ = π

4
and take

a slightly higher value of sm than the one obtained from (13).

2.4. Proposed softmax loss with parameter adaptation

This section presents the proposed method for parameter adap-
tation (ParAda) in softmax-based cross-entropy loss function.
We focus on adapting the scale and margin parameters which
affect the shape of the predicted classification probability Pyi
function, namely its range and the position of an inflection
point. To facilitate the training process, we take the approach
of gradual increasing the network training supervision. In the
initial training phase, we aim to ease learning by shifting the
inflection point in π

2
direction so that the probabilities would be

high even for the relatively high values of θyi angles. Along
with further learning, the curve adaptively shifts towards the
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Figure 1: The λ function with respect to themAda margin value
for b = 0 (left plot) and a = 20 (right plot).

lower angles, thereby increasing the discriminative capability
of the classification probability. We can realize it by emphasiz-
ing margin adaptation (which in an adaptive version starts from
negative values), and as training progresses, more emphasis is
put on the scale adaptation. To achieve this goal, we propose
the following modifications of logits of the softmax-based loss
function which facilitate the parameter adaptation (ParAda):

fyi = λ ·smψMAda(θyi)+(1−λ) ·sAda(θyi) cos(θyi), (14)
fyi,k = λ·sm cos(θyi,k)+(1−λ)·sAda(θyi) cos(θyi,k). (15)

A strongly desirable, integral property of ParAda is that the
value of an adaptive parameter λ(mAda) can be adjusted de-
pending on the level of convergence of the trained network.
The desired smooth transition between the margin adaptation
(MAda) and the scale adaptation (SAda) is obtained when

λ(mAda) = [1 + ea·(mAda−b)]−1, (16)
where a and b are hyperparameters of λ(mAda), whose shape
for example parameter values is presented in Fig. 1. Parameter
a controls the speed of switching between the two loss types,
while parameter b shifts the inflection point of the function.

3. Deep neural network architectures
In this section, we outline the baseline TDNN architecture for x-
vector extraction [2] and propose a set of modifications to adapt
the original ResNet structure for speaker embedding extraction.

3.1. Time Delay Neural Network for x-vector extraction

The Time Delay Neural Network [2] consists of 5 delay-type
layers which operate on 1D speech frames, extracting the tem-
poral context of 15 frames. Next, the statistics pooling layer
computes the mean and standard deviation of the aggregated
outputs of the 5th layer for the entire utterance. The final part
of the network consists of two fully connected layers followed
by a softmax layer. During testing, the output of the first fully
connected layer is used as the x-vector embedding.

3.2. Modified ResNet for speaker embedding extraction

In this work, we propose modifications of the Residual Network
18 (ResNet18) architecture for speaker embedding extraction
with improved performance. The proposed architecture is com-
posed of the following elements. A 2D feature vector is fed
into a single 2D convolution layer with 7x7 filter size and stride
of 2x2. Next, the network is composed of 4 large segments,
each containing a different number of blocks which consists of
2 consecutive convolutional layers with the so-called identity
shortcut connection that skips the entire block. The number of
such 2-layer blocks is equal to {2, 2, 2, 2} for all segments. The
first convolutional layer of a segment downsamples the input
along the feature dimension by 2, while the sizes of convolu-
tional layer outputs for each segment are respectively given as

{64, 128, 256, 512}. Then the statistics pooling layer computes
the mean and standard deviation in time domain of the outputs
from the convolutional segments. The pooling is followed by 2
fully connected layers with output size of 512 each, which are
added before the softmax classification layer. Hereafter, we will
refer to this structure as modified ResNet18 (mR18).

With regard to the existing ResNet-based speaker recog-
nition systems, the original ResNet34 and ResNet50 network
structures [18] with a fully connected layer added right before
the global mean pooling layer are used in [1]. An analogous so-
lution has been presented in [19] for ResNet18 and ResNet34.
In [7] all TDNN layers have been replaced with the ResNet34
residual blocks with learnable dictionary encoding (LDE) layer
[20] instead of the pooling layer. In [8] a fully connected layer
has been inserted after pooling operation in ResNet50 structure.

4. Experimental results and evaluation
4.1. Experiments, datasets and evaluation measures

In this section, we present the system and datasets for 2 per-
formed experiments. The first experiment is carried out on the
VoxCeleb1 corpus [21] with training part used for the DNN,
LDA and PLDA training, and test part of VoxCeleb1 used for
system evaluation. In Experiment 2, the entire VoxCeleb2 cor-
pus [1] is added to the training part of VoxCeleb1 for NN train-
ing. Each training dataset is extended by data augmentations of
four types: convolution with reverberation (simulated RIRs [22]
from small and medium sized rooms), augmented by adding
music, ambient noises, and overlapping speech of randomly se-
lected 3-7 speakers from the MUSAN corpus [23]. The final
training dataset consists of the original training data and ran-
domly selected subset of the augmented data, which results
in 348 642 utterances (1 211 speakers) for Experiment 1 and
2 276 888 utterances (7 323 speakers) for Experiment 2.

Feature extraction, LDA, and PLDA training are performed
in Kaldi toolkit [24], while DNN training and embedding ex-
traction is performed using TensorFlow implementation [15,
25]. Input features are 64-band Mel filter bank coefficients com-
puted using frames of 25 ms length with 10 ms overlap and
mean-normalized over a 3 s window. The threshold in VAD of
Kaldi is set to 3.5. System backend consists of length normal-
ization, centering with mean of training data, LDA dimension-
ality reduction from 512 to 200, and PLDA scoring.

In two performed experiments, we compare the perfor-
mance of the existing and the proposed softmax-based loss
functions using two speaker recognition systems based on the
existing TDNN and the proposed mR18 architectures. In par-
ticular, in Experiment 1 we evaluate the existing standard, Ad-
ditive Angular Softmax (AAS) [13] with scale equal to 30 and
margin set to 0.3, Fixed Scale parameter as given by (5) [17],
and adaptive scale (SAda) that is equivalent to AdaCos [17],
and compare their results with the proposed adaptive margin
(MAda) in the angular function as described in Sec. 2.3 and the
proposed parameter adaptation (ParAda) described in Sec. 2.4
for 4 different transitions in the loss function. In Experiment 2
we evaluate only the selected 4 methods namely the standard,
AAS [13], AdaCos [17], and the proposed ParAda with a = 20
and b = 0.0 on the larger training dataset. The maximum num-
ber of epochs for network training in Experiment 1 is set to 4,
while in Experiment 2 it is set to 8. In order to satisfy (13), sm
is set to 30 and 35 in Experiments 1 and 2, respectively, while
in both experiments the annealing function parameters are set
as γmin = 0, γb = 1000, β = 0.00001 and α = 5.
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Table 1: Accuracy in terms of EER and minDCF, and approxi-
mate network convergence time (in Epoch) for TDNN and mR18
based speaker recognition systems in Experiment 1.

Softmax EER [%] minDCF Epoch

T
D

N
N

Standard 5,23 0,479 1,94
AAS [13] 4,61 0,432 3,52
Fixed Scale [17] 4,75 0,512 3,11
SAda (AdaCos [17]) 4,75 0,453 2,72
MAda 4,70 0,439 3,11
ParAda (a=20,b=0) 4,29 0,422 1,09
ParAda (a=25,b=0) 4,30 0,455 1,56
ParAda (a=20,b=0.1) 4,32 0,418 2,14
ParAda (a=25,b=0.1) 4,47 0,439 1,29

m
R

18

Standard 4,17 0,445 2,87
AAS [13] 3,73 0,407 2,77
Fixed Scale [17] 4,23 0,463 2,01
SAda (AdaCos [17]) 3,93 0,446 1,68
MAda 3,83 0,389 3,16
ParAda a=20,b=0 3,62 0,418 1,34
ParAda a=25,b=0 3,69 0,408 1,85
ParAda a=20,b=0.1 3,54 0,377 1,67
ParAda a=25,b=0.1 3,49 0,395 1,14
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Figure 2: Predicted probability curves Pyi(θyi) at different
training stages (in epochs) for TDNN system in Experiment 1.

As evaluation metrics, we select the Equal Error Rate (EER)
and minimum Detection Cost Function (minDCF) with param-
eters set as Cmiss = Cfa = 1 and Ptar = 0.01. The phase of
the neural network training is presented in epoch defined as one
pass of all training data through the network.

4.2. Results and discussion

Table 1 presents the results of Experiment 1 for the TDNN
and the proposed mR18 based speaker recognition systems. As
can be clearly observed, existing modifications to the softmax-
based loss function improve the EER and minDCF results, how-
ever, an increase in accuracy comes at a cost of a lower conver-
gence speed. On the other hand, the proposed ParAda approach
clearly outperforms the existing methods in terms of both the
accuracy and convergence speed. In particular, the convergence
speed can be increased by 2 times while the gain in EER and
minDCF can also increase significantly when compared with
the gains of the existing methods over the standard softmax
function. Concerning the existing methods, the adaptive method
known as AdaCos offers an increase in network convergence,
however, its accuracy performance is lower than for the AAS

Table 2: Accuracy in terms of EER and minDCF, and approxi-
mate network convergence time (in Epoch) for TDNN and mR18
based speaker recognition systems in Experiment 2.

Network Softmax EER [%] minDCF Epoch

TDNN

Standard 3,06 0,338 3,10
AAS [13] 2,57 0,289 7,83
AdaCos [17] 2,44 0,276 7,53
ParAda 2,32 0,257 5,76

mR18

Standard 2,07 0,286 2,82
AAS [13] 2,12 0,274 6,77
AdaCos [17] 1,94 0,335 5,11
ParAda 1,72 0,280 3,51
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Figure 3: EER and minDCF results at different stages of train-
ing (in epochs) for TDNN-based system in Experiment 2.

method with a fixed margin value. Additional insight into the
network convergence can be obtained from Fig. 2, which shows
that AAS and AdaCos change the predicted probability curves
only slightly during network training. In contrast, the proposed
ParAda (for both considered cases) eases the network training
at early training stages by shifting the probability curves to the
right, and next it makes the logits more discriminative at the lat-
ter stages of NN training to enhance classification ability. Less
strict supervision results from the negative margin value that
controls λ parameter at the initial stage. Exceeding zero value
by the margin brings about stricter classification requirements.

Table 2 presents the results of Experiment 2 for four se-
lected methods. In general, a similar trend can be observed
for both network types, with ParAda clearly outperforming the
other approaches in terms of accuracy and network convergence
speed for the TDNN, and clearly outperforming the existing ap-
proaches in terms of the EER and convergence speed for the
mR18 method (note that in case of this network, AAS achieved
comparable minDCF result). For the methods studied in Exper-
iment 2, in Fig. 3 we show speaker recognition accuracy at dif-
ferent stages of the network training. As can be observed, the
proposed ParAda facilitates much faster network convergence
at the very early part of the network training, which allows to
reach high accuracy very quickly. In contrast, the compared ex-
isting approaches converge much more slowly, often not reach-
ing the accuracy of the proposed ParAda approach.

In both experiments, the mR18 significantly outperforms
the TDNN. Therefore, we can assess the proposed structure as
an interesting alternative for DNN-based speaker recognition.

5. Conclusions
In this paper, we have proposed a softmax-based cross-entropy
loss function with adaptive parameters (ParAda) which signif-
icantly improves speaker recognition accuracy and neural net-
work training convergence speed compared with state-of-the-art
alternatives. In addition, we have shown that the proposed mod-
ified ResNet-based architecture brings about large improvement
in speaker recognition over the TDNN-based x-vector system.
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Abstract
Modeling speaker embeddings using deep neural networks is
currently state-of-the-art in speaker recognition. Recently,
ResNet-based structures have gained a broader interest, slowly
becoming the baseline along with the deep-rooted Time Delay
Neural Network based models. However, the scale-decreased
design of the ResNet models may not preserve all of the speaker
information. In this paper, we investigate the SpineNet struc-
ture with scale-permuted design to tackle this problem, in which
feature size either increases or decreases depending on the pro-
cessing stage in the network. Apart from the presented ad-
justments of the SpineNet model for the speaker recognition
task, we also incorporate popular modules dedicated to the
residual-like structures, namely the Res2Net and Squeeze-and-
Excitation blocks, and modify them to work effectively in the
presented neural network architectures. The final proposed
model, i.e., the SpineNet architecture with Res2Net and Time-
Squeeze-and-Excitation blocks, achieves remarkable Equal Er-
ror Rates of 0.99 and 0.92 for the Extended and Original trial
lists of the well-known VoxCeleb1 dataset.
Index Terms: deep neural networks, SpineNet model, scale-
permuted network, ResNet model, speaker recognition

1. Introduction
Current state-of-the-art in speaker recognition is to model
speaker characteristics using deep neural networks (DNN),
from which embeddings – commonly referred to as x-
vectors [1] – are extracted. This approach has been shown in
numerous studies [1, 2, 3] to outperform the well-established
i-vector model [4]. Baseline DNN architectures include the so-
called Time Delay Neural Networks (TDNN) [1], as well as
their two modifications known as the Extended TDNN [5] and
Factorized TDNN [6]. Recently, we have observed a rapid in-
crease of popularity of the ResNet-based structures, with model
adjustments presented e.g. in [2, 7, 8], which often offer an im-
proved performance over the aforementioned baseline models.
In [9] the authors point out that the scale-decreased design of the
ResNet model may cause a removal of useful information. In
order to overcome this problem, they propose a scale-permuted
network design [9], where feature resolution and dimension can
change arbitrarily as it is processed through the network. It out-
performed i.a. ResNet with Feature Pyramid Network [10].

In this paper, we adjust the scale-permuted SpineNet struc-
ture [9] and incorporate it in the DNN-based speaker recog-
nition model. We show that the multi-scale feature repre-
sentation of SpineNet, in which input to the pooling layer is

merged from several prior layers with various feature resolu-
tion, overcomes some of the limitations encountered by the
scale-decreased models such as ResNet. In the context of
speaker recognition, multi-scale feature resolution has been
studied in [11, 12, 13, 14] for utterances of variable length,
achieving notable improvement. In addition, we modify two
existing residual-like structures such as Res2Net block [15]
and Squeeze-and-Excitation (SE) block [16], and show that
the presented modules further improve system performance.
The final proposed SpineNet model with Res2Net and Time-
Squeeze-and-Excitation blocks achieves highly competitive re-
sults for the trial lists of the VoxCeleb1 dataset, outperforming
the known models such as [2].

2. Deep Neural Network Structures
2.1. ResNet architectures

In this work, we consider three models based on the well-
known ResNet architecture [17] for speaker embedding extrac-
tion. ResNet-34 and ResNet-50 [18] follow the so-called scale-
decreased design, in which the size of the feature map is re-
duced as it is processed by the network. In both models, the
sequence of the main building blocks is similar. The input fea-
ture map is passed through a 64-channel 3× 3 convolutional
layer with stride=1. Next, the output features are processed by
the so-called residual part of the structure, which is presented
in Figure 1a for ResNet-50. The residual part of the ResNet-34
exhibits the same block sequence, with the difference that the
bottleneck residual blocks are replaced with the basic residual
blocks [18]. As shown in Figure 1a, residual blocks are dis-
tributed across several levels (2-5). At the beginning of each
level–starting at level 3– the feature maps are downsampled by
2. Thus, a block at level l has feature maps downsampled by a
factor 2l−2. Table 1 presents the resulting feature map size and
the number of base channels for the blocks at each level. Note
that for the basic residual block, the number of output channels
is equal to the number of the base channels, while the bottleneck
block increases the output channels by 4. In both networks, the
output of the residual part is passed to the statistics pooling,
followed by the fully connected layer along with the softmax
layer. In our experiments, we also considered a light version
of the ResNet-34 model, in which the number of channels of
all blocks were decreased by 4. Hereafter, we will refer to this
structure as Thin-ResNet-34.

2.2. SpineNet architectures

SpineNet structure belongs to the family of scale-permuted
meta-architectures [9]. The inner connections, block order and
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(a) ResNet-50 (b) SpineNet-49

Figure 1: The structure of the residual part of (a) ResNet-50
and (b) SpineNet-49 networks. In diagrams, bottleneck blocks
are marked with solid lines, basic residual blocks are marked
with dotted lines. Blocks with bold line contours (located in the
top of the architectures) represent the output blocks, while the
number inside each block indicates its level.

Table 1: Sizes of features for blocks corresponding to the levels
l = 2, 3, 4, 5, 6, and 7 for the ResNet and SpineNet models. The
feature map size is given in terms of F (feature) and T (time)
lengths, while the feature dimension is given by the number of
base channels.

Block level Feature map size No. base channels
ResNet SpineNet

2 F × T 64 64
3 F/2 × T/2 128 128
4 F/4 × T/4 256 256
5 F/8 × T/8 512 256
6 F/16 × T/16 — 256
7 F/32 × T/32 — 256

their type is derived by Neural Architecture Search in [9], with
ResNet-50 incorporated as a baseline.

Similar to the ResNet model, the network input is first pro-
cessed by the 3×3 convolutional layer with stride of 1×1. The
next part of the structure is presented in Figure 1b. It consists
of stem scale-decreased and learned scale-permuted segments.

The stem network part is represented by the first two bot-
tleneck blocks at the second level, whose outputs are used as
candidate input features for the scale-permuted segment. In the
scale-decreased network, block sequence follows a fixed order,
where block level is kept unchanged or it is increased with the
network processing flow.

The scale-permuted part is build of blocks that arbitrarily
increase or decrease its level with the network processing flow.
In this segment, blocks accept 2 input connections, where out-
put blocks, indicated by bold contour lines in Figure 1b, accept
up to 3 inputs. Input features are fused by an element-wise addi-
tion. Since the connections between the blocks are cross-scale,
each connection consists of 3 components: (i) 1×1 convolution,
which reduces the number of channels by a factor α=0.5 com-
pared with the number of base channels of the block from which
the connection is made, (ii) feature map resampling operation;

3x3

3x3

(a) Basic residual block

x1 x2 x3 x4

3x3

3x3

y1 y2 y3 y4

3x3

3x3

1x1
1x1

1x1

y1 y2

(b) Basic Res2Net block

Figure 2: Basic residual block and its proposed Res2Net adap-
tation. Example presented for the scale s = 4.

and (iii) another 1×1 convolution which transforms the channel
number to the target size. The target number of channels for the
basic residual blocks is equal to the number of base channels,
while the target number of channels for the bottleneck blocks
is 4 times larger. In contrast to the ResNet structures, SpineNet
incorporates both types of residual blocks. Table 1 presents the
feature map sizes and the number of base channels associated
with each level of the structure. In the resampling part, the up-
sampling operation is performed by the nearest-neighbor inter-
polation. The downsampling is achieved by the convolution of
size 3×3, with stride 2. If necessary the convolution is followed
by maximum pooling with a 3×3 kernel and a stride of 2 or
alternatively with a 5×5 kernel and a stride of 4.

Output block features (marked with bold contour lines in
the Figure 1b) are processed by 1×1 endpoint convolutions to
obtain the common number of channels, which we set to 256.
Next, the feature maps are upsampled with nearest-neighbour
interpolation to match the feature map size at the lowest level.
Representations from the different levels are merged with a
point-wise average operation and are forwarded to the statistics
pooling followed by the fully connected and softmax layers.

In this work, we also present the results for the two mod-
ifications of the SpineNet-49 structure, namely the so-called
Thin-SpineNet-49 and SpineNet-49S. The former follows sim-
ilar modification as in ResNet, i.e. the number of channels of
all layers is reduced 4 times (scaling factor of 0.25), including
the number of the endpoint filters. The latter model, SpineNet-
49S, represents the intermediate structure between the Thin-
SpineNet-49 and SpineNet-49, where filter dimensions are de-
creased using a scaling factor of 0.66 (except for the input con-
volution) and the number of endpoint channels is set to 128.
In the original paper [9], the SpineNet-49S has an associated
factor of 0.65, which we modify in order to obtain the desired
number of channels such that the modifications described in the
next two subsections were feasible.

2.3. Res2Net module

In this work, we incorporate the so-called Res2Net mod-
ules [15] into ResNet and SpineNet. Res2Net introduces a new
dimension - scale s, which increases the receptive field and
granular level of the bottleneck residual block.

Res2Net blocks were proposed as substitute for the residual
bottleneck blocks in structures like ResNet-50 and larger. Since
SpineNet also includes basic residual blocks, we adapted the
original Res2Net structure to the basic block. Our modification
is presented in Figure 2. Input of the basic Res2Net block is
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Figure 3: Diagram of the Time-Squeeze-and-Excitation (T-SE)
module, where C, F , and T denote the number of input chan-
nels, the frequency dimension, and the time dimension, while r
is the reduction ratio.

split evenly into s parts along the channel dimension. Then,
each xi group, where i = 1, ..., s, is processed by a separate
convolutional layer with w output channels. The corresponding
output yi can be expressed as follows:

yi=





K1×1(xi) if i = 1

K3×3(xi) if i = 2

K3×3(xi + yi−1) if s ≥ i > 2, w = Cin/s

K3×3(xi +K1×1(yi−1)) if s ≥ i > 2, w 6= Cin/s

(1)

where K1×1 and K3×3 are convolutional layers with a 1×1 and
3×3 kernels respectively; and Cin are the block input chan-
nels. The inner convolution channels w can be set equal to the
number of input channels, or alternatively it can be increased
to preserve/extend network complexity. For the latter case, we
need projection convolutions K1×1 in the inner residual con-
nections to match the channel dimensions and thereby enable
the addition operation. Concatenated yi features are passed to
another convolutional layer (kernel of 3×3). In this work, we
incorporate the scale s = 4 and we set w = 26 for the inner
convolutions for residual blocks with 64 base channels (level
2). This increased the total number of inner channels from 64
to 104 w.r.t. the standard residual blocks. We observed that such
an increase in the Res2Net was required to maintain the perfor-
mance. The value of w for the blocks with a higher number of
base channels is increased proportionally to the block size. We
will refer to the SpineNet with Res2Net blocks as Spine2Net.

2.4. (Time-)Squeeze-and-Excitation blocks

Squeeze-and-Excitation (SE) blocks [16] constitute a common
approach to re-calibrate channel dependencies. In case of
speaker recognition, the frequency dependencies are also of
high importance. Therefore, we enhance the modelling ca-
pabilities of SE blocks by introducing the Time-Squeeze-and-
Excitation (T-SE) module [19]. The T-SE model is similar to the
SE model, however, the average pooling is applied only along
the time dimension, instead of the global pooling of the entire
feature map. The algorithm pipeline is presented in Figure 3.
The squeeze operation produces the channel- and frequency-
wise descriptor by applying mean pooling along the time axis.
This process is followed by an excitation step, in which calibra-
tion weights are estimated. These weights are computed by a
dimensionality reduction layer with reduction factor r, ReLU
non-linearity, and fully-connected layer with sigmoid activa-
tion. Obtained scale values are then used to re-calibrate the
feature maps. Note that, original SE pools over time and fre-
quency axis producing only a single scale value per channel.

Thus, all frequency bins are scaled by the same value, while
T-SE produces a different scaling per bin.

3. Experimental Evaluation and Results
3.1. Datasets, system framework and evaluation measures

This section presents the datasets and general framework of the
evaluated speaker recognition systems. Neural networks were
trained on VoxCeleb2 [20] with 6112 speakers. Utterances de-
rived from the same video were concatenated and extended with
3 types of noise augmentations: music, environmental noise,
babble speech from the MUSAN corpus [21], and reverberation
with three sets of room impulse responses (RIRs) [22]. The test
set is based on the VoxCeleb1 corpus [23] and clean versions
of trials: Extended (VoxCeleb1-E), Hard (VoxCeleb1-H), and
Original (VoxCeleb1-O) [24]. One epoch of the training con-
sisted of randomly selected, augmented 4 s chunks in the num-
ber equal to the number of all augmented training utterances.
Each network was trained for 70 epochs.

Input features were 80-dimensional log-Mel filter-banks ex-
tracted from 25 ms sliding window with 10 ms shift, and mean-
normalization over a 3 s window. Speech frames were selected
with Kaldi energy-based Voice Activity Detector [25]. The neu-
ral network was trained with Additive Angular Softmax [26]
loss with scale sAAS = 30 and margin mAAS = 0.3. The
margin was linearly increased from 0 to 0.3 during the first 20
epochs. Speaker embeddings were extracted from the penul-
timate fully connected layer, which yields a feature vector of
length 256. In the system backend, we used cosine scoring as it
provided better results than PLDA. The network structure was
implemented in PyTorch [27] and it was trained with Adam op-
timizer [28] along with an exponential learning rate scheduler
with an initial value of 0.05 [29, 30]. For experiments incorpo-
rating the SE blocks, the reduction factor was set to rSE = 16.
T-SE blocks had a larger value of rT-SE = 256, as the T-SE
blocks significantly enlarge the network size.

As evaluation measures, we used the Equal Error Rate
(EER), reported in %, and minimum Detection Cost Function
[31] with Ptar = 0.05 (DCF5) and Ptar = 0.01 (DCF1). The
FLOP values were calculated for a 3 s utterance, with multiply-
add counted as a single operation.

3.2. Results and discussion

Table 2 presents the results of a preliminary comparison of Thin
versions of ResNet-34 and SpineNet-49. First, we compare two
structures based only on single-scale features (lines 1-2). The
output from the last layer in Thin-ResNet-34 and the output
from the last block at the 5th level from the Thin-SpineNet-49
(denoted as Thin-SpineNet-49-5) were taken as single feature
representations for pooling input. For fair comparison, Thin-
SpineNet-49-5 representations were directly forwarded to the
next layers without endpoint post-processing. Both structures
provided similar performance, with a slight predominance of
the ResNet model. The second experiment (lines 3-4) presents
the gain offered by using multi-scale features. Thin-ResNet-
34 modified to produce multi-scale features is denoted as Thin-
ResNet-34-345. To this end, we incorporated the features from
the last layer of blocks at the 3, 4, and 5th levels. As for the
SpineNet models, the features were processed with a 1×1 con-
volutional layer transforming the channel number to 64 and up-
sampling the feature maps to the size of the 3rd level, followed
by an average across levels. We observe that, for ResNet, multi-
scale feature fusion did not significantly improve, except for
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Table 2: Results of experimental evaluation of Thin SpineNet and ResNet structures on the VoxCeleb1 test datasets.
VoxCeleb1-E VoxCeleb1-H VoxCeleb1-O

Network # Params # FLOPs EER DCF5 DCF1 EER DCF5 DCF1 EER DCF5 DCF1
Thin-ResNet-34 3.6M 1.7G 1.90 0.119 0.200 3.25 0.189 0.298 2.05 0.149 0.240
Thin-SpineNet-49-5 3.9M 1.4G 1.95 0.123 0.209 3.28 0.189 0.298 2.07 0.135 0.211
Thin-ResNet-34-345 4.2M 1.7G 1.89 0.120 0.208 3.27 0.191 0.299 1.99 0.135 0.217
Thin-SpineNet-49 4.3M 1.7G 1.83 0.117 0.196 3.20 0.184 0.293 1.84 0.127 0.209

Table 3: Results of experimental evaluation of SpineNet and ResNet structures, along with introduced modifications including Res2Net
modules, Squeeze-and-Excitation (SE) blocks, and the Time-Squeeze-and-Excitation (T-SE) blocks on the VoxCeleb1 test datasets.

VoxCeleb1-E VoxCeleb1-H VoxCeleb1-O
Network # Params # FLOPs EER DCF5 DCF1 EER DCF5 DCF1 EER DCF5 DCF1
ResNet-34 25.5M 27.3G 1.19 0.078 0.140 2.27 0.137 0.219 1.35 0.088 0.146
ResNet-50 35.6M 30.7G 1.30 0.082 0.150 2.33 0.142 0.235 1.44 0.100 0.173
SpineNet-49S 13.5M 11.2G 1.25 0.079 0.138 2.29 0.137 0.226 1.11 0.069 0.120
SpineNet-49 28.6M 26.0G 1.17 0.074 0.129 2.14 0.129 0.213 1.11 0.088 0.125
Res2Net-34 26.1M 27.6G 1.16 0.074 0.130 2.17 0.128 0.218 1.18 0.078 0.115
Res2Net-50 35.7M 32.0G 1.09 0.068 0.122 2.00 0.119 0.195 1.14 0.081 0.116
Spine2Net-49S 13.5M 11.3G 1.13 0.073 0.131 2.18 0.130 0.210 1.02 0.077 0.137
Spine2Net-49 28.8M 26.2G 1.10 0.071 0.127 2.18 0.132 0.216 1.09 0.070 0.116
SE-Res2Net-50 38.2M 32.0G 1.24 0.080 0.140 2.45 0.141 0.225 1.31 0.084 0.132
SE-Spine2Net-49S 14.0M 11.3G 1.09 0.069 0.122 2.11 0.124 0.205 1.05 0.066 0.104
SE-Spine2Net-49 29.8M 26.2G 1.04 0.067 0.119 2.07 0.121 0.206 1.14 0.066 0.098
T-SE-Res2Net-50 88.1M 32.1G 1.05 0.067 0.117 1.95 0.113 0.196 1.12 0.071 0.103
T-SE-Spine2Net-49S 26.0M 11.3G 1.08 0.070 0.124 2.09 0.124 0.204 1.08 0.074 0.127
T-SE-Spine2Net-49 58.0M 26.2G 0.99 0.065 0.112 1.95 0.117 0.192 0.92 0.068 0.105

VoxCeleb1-O. On the other hand, the Thin-SpineNet-49 ben-
efited from the multi-scale representations, outperforming the
other structures in all three test datasets.

Table 3 presents the results of a set of experiments of ar-
chitectures with large, more complex structures and channel
numbers as in their original form. We report on the results of
four experiments: the baseline results (original structures), ad-
ditional incorporation of the Res2Net modules, incorporation of
the Squeeze-and-Excitation (SE) blocks on top of the previous
alterations, and incorporation of the presented Time-Squeeze-
and-Excitation (T-SE) blocks instead of SE blocks.

The first block of the table compares four basic structures,
namely ResNet-34, ResNet-50, SpineNet-49S, and SpineNet-
49. Comparing ResNets, ResNet-50 did not provide any gain
over ResNet-34, despite having more learnable parameters.
SpineNet-49S improved over ResNet-50 and presented compet-
itive results to the ResNet-34 model. Note that SpineNet-49S
has half of parameters and FLOPs than ResNet-34. SpineNet-
49 clearly outperformed both ResNet structures for all the test
datasets. Furthermore, the SpineNet-49 structure provided bet-
ter performance with a lower number of FLOPs than ResNet-34,
although it has more parameters. It is important to note that the
reported number of parameters and FLOPs does not imply di-
rectly an improved training speed of the network but rather the
structure effectiveness with respect to the model size.

The second block of the table introduces the Res2Net
blocks to the described structures. In all four models, this
modification provided a notable gain for speaker recognition
measures–except the Hard condition for the Spine2Net-49,
which achieved a comparable result than its original model. The
Res2Net-34 model presents the effectiveness of the proposed
Res2Net module adaptation for the basic residual block, report-
ing a clear gain over ResNet-34. Res2Net-50 achieved signifi-
cantly better results than the ResNet-50 with 21% and 33% of
relative improvement for EER and DCF1 for the VoxCeleb1-O
dataset. Similar as in the previous evaluation, SpineNet-49S ap-
pears to be a competitive structure, outperforming the Res2Net-

34 in nearly all test scenarios, while having less than half of the
computational cost. Since Res2Net-50 presents clearly better
results than Res2Net-34, in the following experiments we focus
on the Res2Net-50 model only. In the third block of the table,
we incorporate SE modules to the previous structures. The re-
ported results show evidently accuracy degradation for the SE-
Res2Net-50, whereas both Spine2Net structures clearly benefit
from introduction of the re-calibration module. In final evalua-
tion, the SE modules are replaced with the T-SE modules. The
gain achieved by this replacement is evident. The least relative
improvement can be observed for the T-SE-Spine2Net-49S ar-
chitecture, nevertheless, the model still performs competitive,
offering high recognition accuracy and low complexity. Note
that the T-SE block strongly increases the number of network
parameters, whereas the number of FLOPs is kept almost in-
tact. Among all compared models, the last proposed structure,
namely the T-SE-Spine2Net-49 model, provides an outstanding
performance, outperforming all other systems.

4. Conclusions
This paper investigated the application of the scale-permuted
architecture known as SpineNet for the speaker recognition
task. Having adjusting the model, we incorporated Res2Net and
Squeeze-and-Exciation modules, and proposed their modifica-
tions to achieve superb performance in the studied task. The
results of experiments demonstrate that speaker recognition ac-
curacy benefits from adopting the SpineNet structure and its
multi-scale feature representation. Furthermore, the proposed
Res2Net and T-SE modules further boost its performance.
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Abstract
End-to-end neural speaker diarization (EEND) systems are cur-
rently of high interest as the approach can easily handle over-
lapped speech and can be trained to optimize directly the di-
arization decision. Recently, there have been several investi-
gations that achieve further enhancement of the EEND system,
such as proposing various network structures for the encoder
module or integration of the EEND with, the well-established
in speaker embedding-based diarization, clustering methods.
In this paper, we propose an alternative for the EEND back-
end and replace the LSTM-based attractor estimator with a
non-autoregressive approach based on a Transformer decoder.
Moreover, we introduce an iterative method that refines the sys-
tem decision and the attractors in turns. Finally, we present re-
sults derived from an additional regularization of the proposed
system with the use of Additive Angular Softmax speaker clas-
sification loss. We achieve up to 15% relative improvement
over baseline on 2-speaker real recordings from CALLHOME
dataset and up to 18% on simulated 2-speaker mixtures.
Index Terms: speaker diarization, end-to-end, clustering, self-
attention, attractor mechanism, iterative refinement

1. Introduction
The well-established approach of handling the diarization prob-
lem are cluster-based methods [1, 2]. In general, the processing
flow is based on extracting a sequence of speaker embeddings
from overlapping audio segments, scoring one with each other
and applying a clustering algorithm on top of those scores. The
process can be preceded with Voice Activity Detection (VAD)
in order to remove non-speech frames. In this approach, each of
the modules is independent and is optimized separately, instead
of being optimized to solve the diarization problem. Another
major drawback is that speech overlap is not addressed prop-
erly, as clustering methods assume that each segment belongs
to a single speaker only.

The aforementioned problems were addressed by the re-
cently proposed end-to-end diarization (EEND) systems. The
EEND has been firstly proposed as a simple multi-label classifi-
cation task [3] in order to replace the clustering-based methods.
The method has been improved with self-attention structured
encoder [4, 5] and encoder-decoder attractor (EDA) mechanism
[6, 7] that can handle a flexible number of speakers.

There has been several extensions to further improve the
proposed framework. In [8, 9], the authors replace the Trans-
former encoder with a Conformer model. In [10, 11, 12], an
intermediate approach has been proposed, in which the EEND
system is combined with clustering in order to leverage the ad-
vantages offered by both methods. Also in [11], the authors

show the advantage of adding an additional speaker classifica-
tion loss to the training objective.

In this paper, based on the EEND-EDA system, we propose
to replace the EDA module with the non-autoregressive attrac-
tor generation in which all outputs are computed independently,
in parallel. The idea is inspired from Automatic Speech Recog-
nition (ASR), in which the introduction of a non-autoregressive
system has led not only to a great speed-up in computations,
but also improvement in the accuracy of ASR [13, 14, 15, 16].
Moreover, in order to deal with the limitations of the proposed
system, we apply an iterative refinement of the diarization out-
puts. A similar approach has also been used in the sequence
modeling and ASR task [17, 18].

The main contributions of this paper are as follows. We pro-
pose the non-autoregressive back-end for the estimation of the
attractors for speaker diarization as a new approach for attractor
estimation. Next, we show that introducing iterative refinement
for diarization can boost system accuracy. Finally, we present
the results when incorporating the speaker classification loss as
an additional regularizer for the diarization system.

2. End-to-end neural speaker diarization
In this section, we present an overview of the self-attentive end-
to-end diarization model with encoder-decoder based attractors
(EEND-EDA) [6]. We distinguish two main modules in the
framework, namely the EEND encoder and the EDA mecha-
nism which is considered as the diarization system back-end.

As input, the EEND receives the T -length feature sequence,
denoted as x = {x1,x2, . . . ,xT }. At the output, the en-
coder produces the T-length sequence of embeddings e =
{e1, e2, ..., eT }, where each embedding corresponds to a sin-
gle input feature. The encoder structure is composed of 4
stacked Transformer encoder layers with self-attention mech-
anism. Similarly to [4], the positional encoding is omitted in
the encoder structure.

The obtained embedding representations are forwarded to
the back-end, namely to the EDA module. The EDA produces
attractors with the number equal to the total number of speakers
occurring in a particular utterance. The EDA module is built
of two LSTM layers connected in the encoder-decoder manner.
In theory, the EDA module can produce an infinite number of
attractors. In order to constrain and distinguish whether the pro-
duced attractor represents a subsequent speaker track, a linear
layer followed by a sigmoid activation is located at the top of
the EDA module. The output is used to assess whether a partic-
ular embedding is useful or the attractor generation should be
terminated.

In the last step, the estimated attractors are used to compute
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Figure 1: Flow diagram of the EEND with the proposed non-
autoregressive back-end. In the first iteration, the k-means ini-
tialization is used. In the next iterations, the output from the
previous iterative refinement step is used instead.

a dot product with each embedding separately. The obtained
score is processed by a sigmoid function and constitutes the fi-
nal diarization result.

The training objective is a sum of two losses, namely the at-
tractor and the diarization loss, whereby both of them are based
on the binary cross-entropy. The attractor loss is derived from
the decisions of the binary classification layer located at the top
of the EDA module. As ground truth, S + 1 binary labels are
used, where S indicates the number of speakers in the record-
ing. In order to indicate the stoppage of attractor generation, S
first labels need to be set to 1 and the S+1-th label needs to be
set to 0. The labels are compared with the values obtained from
the binary classifier at the top of the EDA module. In turn, the
diarization loss is computed by comparing the diarization de-
cisions with binary ground truth labels y ∈ {0, 1}T×S , where
yt,s = 1 if speaker s is present at time t. The final diarization
prediction is selected based on the permutation invariant train-
ing (PIT) [19] scheme. For more details on computation of both
loss functions, the reader is referred to [6].

3. Proposed approach
3.1. Non-autoregressive attractor estimation

In this section, let us describe the framework of the proposed
non-autoregressive back-end for the attractor estimation. In
Figure 1, we present the flow diagram of the proposed system.
Similar to the baseline, the input features are first processed by
the EEND encoder, which is built of four-layer Transformer en-
coder, producing frame-level embedding representations. Such
embeddings are used in the back-end in order to estimate attrac-
tor representations. The initial values of attractor representa-
tions are produced using the k-means algorithm, which clusters
the embeddings of a recording. The number of clusters is equal
to the number of speakers in the recording. The calculated clus-
ter centers are taken as initial attractor values, denoted hereafter
as cs = {c1, .., cS}, which in turn are forwarded to the decoder
blocks that refine these representations.

A single decoder block is represented by a Transformer de-
coder layer [20]. The diagram of the back-end along with the
detailed structure of the N-th decoder block are presented in

Figure 2: Backend architecture of the proposed system with iter-
ative refinement scheme, showing the detailed structure of one
of N subsequently repeated decoder blocks.

Figure 2. A single Transformer decoder block is composed
of 3 core layers: multi-head self-attention layer, multi-head
source-target attention layer, and position-wise feed-forward
layer (FF). Note that in Figure 2, both attention layers are de-
noted as MHA blocks. All of the layers are followed by the
residual connection, which adds up layer input and output, and
a normalization layer. The core elements in the attention mech-
anism are the key, value, and query linear transformations. The
difference between the mentioned self-attention and source-
target is in the input to these elements. Self-attention operates
only on the estimated cluster centers or input from the previous
decoder block. In contrast, the source-target attention incor-
porates the embedding representations to compute the key and
value, whereby intermediate attractor estimations are used as
query. Similar as in the encoder part, we do not incorporate the
positional encoding. The length normalization of the vectors is
applied on the embeddings before the decoder.

Similarly to the baseline approach, the attractors are used
to compute the dot product with the embeddings, which is fol-
lowed by a sigmoid function, resulting in the final diarization
result. The training objective of the system is composed only of
the diarization loss with the PIT scheme. In sections to follow,
we will refer to the proposed system as EEND-NAA (EEND
with Non-Autoregressive Attractor).

5091



3.2. Iterative refinement

The aim of using k-means clustering at the backend is to give the
first, rough estimates of the attractors, which are subsequently
refined by the next layers. Such an initialization has a few draw-
backs. Firstly, it operates on all embeddings extracted from the
recording, and hence it can cluster not only the speaker em-
beddings but also the silence embeddings. Secondly, it does
not take into consideration whether the particular embedding
belongs to more than one cluster, such as is the case for embed-
dings produced for overlapped speech.

As a remedy to these issues, we incorporate the procedure
of an iterative refinement of the attractors. After the first esti-
mation of the attractors, which is computed with initialization
from k-means algorithm, the diarization result is obtained ỹt,s.
It is produced through the computation of the dot product of
the attractors and encoder embeddings, followed by the sigmoid
function, i.e. as

ỹ i
t,s = σ(et ⊗ ai

s) , (1)
where i denotes the iteration number, t is the time step, s is
the speaker track, and a is the attractor representation. In or-
der to obtain the estimated binary diarization decision, for each
diarization decision track, we compare the obtained result with
the neutral threshold value ξ = 0.5, which can be written as

p i
t,s =

{
1 ỹ i

t,s > ξ
0 ỹ i

t,s ≤ ξ
. (2)

Based on this result, we apply the refinement step where we
compute new initial cluster centers, which are forward-passed
through the decoder stack to estimate refined attractors. Thus
from the second iteration on-wards, the initial representations
are recomputed in the following manner:

cis =
1∑t=T

t=1 p i−1
t,s

t=T∑

t=1

p i−1
t,s · et . (3)

By recalculating the cluster centers, the embeddings et that rep-
resents overlap speech are incorporated into the computation of
the centers for all speakers that occur at time t. Note that the
aforementioned procedure applies to all iterations with i > 1,
while for the first iteration i = 1, the initial representations c
are calculated by k-means clustering.

3.3. Additional speaker classification loss

Since the representations on the encoder output can provide
relative speaker information, we examine whether adding the
speaker classification loss as an additional regularization at its
output can further improve the embedding discrimination.

Firstly, the speaker embeddings with respect to the whole
sequence are estimated based on the encoder embeddings, with
the same weighted pooling method as in equation (3) and i = I ,
where I denotes the index of the final iteration. Then, the rep-
resentations are fed to the speaker classification layer, with the
number of outputs equal to the total number of speakers that
occur in the training dataset. As a speaker loss Lspk we incor-
porate the Additive Angular Softmax loss function [21]. The
assignment of the estimated speaker embedding to the specific
speaker is based on the PIT result from diarization.

The final loss function L is calculated as a weighted sum
of the diarization loss Ldiar and the speaker classification loss
Lspk in the following manner:

L = (1− λ)Ldiar + λLspk, (4)
which is controlled by empirically selected λ parameter.

Table 1: The statistics of datasets used in evaluations, including
Sim2Spk sets for parameter β = 1, 2, 3, 5. All values are in %.

Dataset Sim2Spk CH1 2 3 5
overlap / speech 47.32 35.32 28.00 19.64 13.04
overlap / total 42.50 27.98 19.70 11.14 11.76
speech / total 89.82 79.23 70.37 56.72 90.15

(a) i = 1 (b) i = 2

(c) i = 3 (d) i = 4

Figure 3: Visualization of the encoder embeddings obtained by
EEND-NAA (with I = 4) at each i-th refinement iteration for
an example utterance. As labels, system decisions were used.

4. Experimental evaluation
4.1. Datasets

The experimental scenario is analogous to the one presented in
[6]. Following the procedure presented in [4], we created the
simulated 2-speaker mixtures (Sim2Spk) based on the follow-
ing datasets: Switchboard-2 (Phase I, II, III), Switchboard Cel-
lular (Part 1 and 2), and the NIST Speaker Recognition Evalua-
tion (2004, 2005, 2006, 2008). MUSAN [22] dataset was used
for noise augmentation, while [23] was used for reverberation.
The training set was composed of 100 000 mixtures, with 35.3%
speech overlap, which was accomplished by setting parameter
β from [4], which controls the amount of silence in a simu-
lated utterance, to 2. We also created four test sets consisting of
500 mixtures of 2 speakers each, for different speech overlap of
47.3%, 35.3%, 28.0%, 19.6% (by setting β = 1, 2, 3, 5).

In addition, the evaluation protocol incorporated also real,
2-speaker recordings from the CALLHOME (CH) corpus [24].
The subset was splitted into the training part used for network
fine-tuning, and the test part utilized for evaluation. The split
has been done as described in [4], which resulted in 155 record-
ings for the adaptation set and 148 recordings for the test set.
The statistics of the duration of speech, overlap with respect to
the total recording duration for all test datasets is presented in
Table 1.

4.2. System framework and evaluation measures

The system framework, along with baseline system, was imple-
mented in PyTorch, based on the available system implemen-
tations 1,2. The input features were 23-dimensional log Mel-

1https://github.com/hitachi-speech/EEND
2https://github.com/Xflick/EEND PyTorch

5092



Table 2: Diarization Error Rate (DER) results for the evaluated systems. The value of I indicates the number of refinement iterations
applied consistently during system training and test phases. The test set for simulated Sim2Spk data includes four different levels of
speech overlap in %. Values in the parentheses indicate the Miss (MI), False Alarm (FA) and Confusion (CF) errors.

Model Sim2Spk CH47.3% 35.3% 28.0% 19.6%
EEND-EDA 3.89 (2.1/1.7/0.2) 3.62 (2.2/1.1/0.3) 3.21 (1.7/1.1/0.4) 3.07 (1.8/1.0/0.3) 9.24 (5.5/2.7/1.0)
EEND-NAA, I = 1 4.42 (2.4/1.7/0.3) 4.09 (2.6/1.1/0.3) 3.52 (2.1/1.0/0.4) 3.31 (2.2/0.8/0.3) 8.94 (5.9/2.1/0.9)
EEND-NAA, I = 2 3.95 (2.1/1.6/0.2) 3.53 (2.4/1.0/0.2) 3.25 (2.0/1.1/0.2) 3.42 (1.9/1.2/0.3) 8.19 (4.8/2.5/0.8)
EEND-NAA, I = 3 3.59 (2.0/1.5/0.2) 3.18 (2.1/0.8/0.2) 2.97 (1.8/0.9/0.2) 2.92 (1.4/1.2/0.3) 8.10 (4.5/2.8/0.7)
EEND-NAA, I = 4 3.37 (1.9/1.3/0.2) 3.15 (2.1/0.9/0.2) 2.90 (1.7/0.9/0.3) 3.46 (1.8/1.4/0.3) 7.94 (4.4/2.7/0.8)
EEND-NAA, I = 4 + Lspk 3.23 (1.8/1.3/0.2) 2.97 (1.9/0.9/0.2) 2.77 (1.5/1.0/0.3) 3.39 (2.0/1.2/0.3) 7.83 (4.3/2.7/0.8)

filterbank coefficients, computed with context of 7. Further-
more, sub-sampling by 10 and feature time-shuffling were ap-
plied.

The Transformer encoder was built of 4 layers, with 4-head
attention mechanism, 2048 dimension in feed-forward layers,
producing 256-dimensional embeddings. The decoder was built
of 2 layers, with the same parameters as in the encoder.

During training, Adam optimizer was used with learning
rate scheduler as in [20] with 100 000 warm-up steps. The
networks where trained for 100 epochs. For each studied sys-
tem, the final model was obtained by averaging models from 10
consecutive epochs, with the epoch number selected based on
the validation loss values for that system. This procedure was
adopted to avoid network over-fitting to the training data, which
otherwise would be the case for the proposed model. Dur-
ing fine-tuning for the evaluation of the CALLHOME dataset,
Adam optimizer was also used during training for 25 epochs,
with the learning rate equal to 10−5. The final model was aver-
aged from models from 5 last epochs. Minibatch size of 64 was
used. In experiments with speaker loss, we used margin equal
to 0.3, scale 30 and set λ = 0.001.

Experiments were conducted in oracle scenario. As evalua-
tion metric we used the standard Diarization Error Rate (DER)
metric, with 0.25 s collar tolerance.

5. Results and discussion
Table 2 presents the DER results of performed experiments,
along with the Missed Detection, False Alarm and Confusion
errors. The first row represents the baseline EEND-EDA sys-
tem, while the second row represents the EEND-NAA system
without iterative refinement (i.e. with a single iteration I = 1).
Comparing these two systems, we can observe that for the sim-
ulated scenario, the EEND-NAA does not provide an improve-
ment over baseline, except for the CALLHOME set.

The block of the next three rows presents the results for
the EEND-NAA system with an increasing number of refine-
ment steps (I = 2, 3 and 4) applied during both training and
test phases. As can be observed, the application of iterative
refinement of system decisions leads to a clear gain in DER re-
sults. In particular, DER improves steadily with an increasing
iteration number for the CALLHOME and three test sets with
high speech overlap. In Figure 3, we also present T-SNE visual-
ization of encoder embeddings labeled by system EEND-NAA
with I = 4 at each iteration. As can be seen, during the first
estimation, the system recognizes mainly overlap and silence.
With each consecutive iteration, the system corrects its deci-
sions, visible especially in iterations 1-3.

The last row presents the gain achieved when, in addition,
the speaker classification loss is applied. As can be observed,

for all test sets, the incorporation of additional speaker loss im-
proves the DER results over the analogous system without such
a regularization. Moreover, from the results presented in [11]
for different number of speakers, we can expect further im-
provement in DER results for scenarios in which more speakers
occur in the recording.

For the proposed system, a consistent improvement in DER
was observed in almost all cases, except for the dataset with
β = 5 and the lowest overlap (19.6%), for which the best
performing system is EEND-NAA with I = 3. We hypothe-
sise that degradation in DER is caused by relatively high Miss
and False Alarm errors. Interestingly, for the CALLHOME set,
which also exhibits low speech overlap, this discrepancy is not
observed. Speech statistics for all datasets used during tests is
presented in Table 1. As can be observed, the set with the low-
est overlap is also characterized by the lowest number of speech
frames (56%) in general, while CALLHOME has 90%. We sus-
pect that a large proportion of silence frames impact negatively
in our system and plan to work on a solution to handle this issue.

Finally, we observed that iterative refinement results in
faster network convergence. For systems with refinement, the
training procedure from the baseline system was redundant, as
at that time the network already over-fitted to the training data.

6. Conclusions and outlook
In this paper, we presented a novel approach for system
back-end in end-to-end speaker diarization, in which we re-
place the LSTM-based encoder-decoder attractor with a novel
Transformer-based non-autoregressive approach. Furthermore,
we incorporate an iterative refinement of system decisions and
attractors; besides of adding speaker classification loss in the
training objective. This method consistently improved over the
baseline for various synthetic and CALLHOME datasets.

An interesting direction of future research will be to extend
the method to scenarios with a higher yet unknown number of
speakers and incorporate an additional mechanism to more ro-
bustly deal with non-speech segments.
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Abstract—Despite many recent developments in speaker di-
arization, it remains a challenge and an active area of research
to make diarization robust and effective in real-life scenarios.
Well-established clustering-based methods are showing good per-
formance and qualities. However, such systems are built of sev-
eral independent, separately optimized modules, which may cause
non-optimum performance. End-to-end neural speaker diarization
(EEND) systems are considered the next stepping stone in pursuing
high-performance diarization. Nevertheless, this approach also suf-
fers limitations, such as dealing with long recordings and scenarios
with a large (more than four) or unknown number of speakers
in the recording. The appearance of EEND with encoder-decoder-
based attractors (EEND-EDA) enabled us to deal with recordings
that contain a flexible number of speakers thanks to an LSTM-
based EDA module. A competitive alternative over the referenced
EEND-EDA baseline is the EEND with non-autoregressive attrac-
tor (EEND-NAA) estimation, proposed recently by the authors of
this article. NAA back-end incorporates k-means clustering as part
of the attractor estimation and an attractor refinement module
based on a Transformer decoder. However, in our previous work
on EEND-NAA, we assumed a known number of speakers, and
the experimental evaluation was limited to 2-speaker recordings
only. In this article, we describe in detail our recent EEND-NAA
approach and propose further improvements to the EEND-NAA
architecture, introducing three novel variants of the NAA back-end,
which can handle recordings containing speech of a variable and
unknown number of speakers. Conducted experiments include
simulated mixtures generated using the Switchboard and NIST
SRE datasets and real-life recordings from the CALLHOME and
DIHARD II datasets. In experimental evaluation, the proposed
systems achieve up to 51% relative improvement for the simulated

Manuscript received 7 October 2023; revised 19 April 2024 and 28 June
2024; accepted 28 July 2024. Date of publication 7 August 2024; date of current
version 9 September 2024. This work was supported in part by Fulbright Junior
Research Award granted by Polish-U.S. Fulbright Commission, in part by the
Foundation for Polish Science under Grant TEAM/2017-3/23, in part by the
European Union through European Regional Development Fund, in part by
National Science Centre, Poland under Grant 2021/42/E/ST7/00452, and in part
by program “Excellence initiative – research university” for the AGH University
of Krakow. The associate editor coordinating the review of this article and
approving it for publication was Dr. Keisuke Kinoshita. (Corresponding author:
Magdalena Rybicka.)

Magdalena Rybicka was with the Center for Language and Speech Pro-
cessing, Johns Hopkins University, Baltimore, MD 21218 USA. She is now
with the AGH University of Krakow, 30-059 Krakow, Poland (e-mail: mry-
bicka@agh.edu.pl).

Jesús Villalba, Thomas Thebaud, and Najim Dehak are with the Center
for Language and Speech Processing, Johns Hopkins University, Baltimore,
MD 21218 USA, and also with the Human Language Technology Center of
Excellence, Johns Hopkins University, Baltimore, MD 21218 USA (e-mail:
jvillal7@jhu.edu; tthebau1@jhu.edu; ndehak3@jhu.edu).

Konrad Kowalczyk is with the AGH University of Krakow, 30-059 Krakow,
Poland (e-mail: konrad.kowalczyk@agh.edu.pl).

Digital Object Identifier 10.1109/TASLP.2024.3439993

scenario and up to 15% for real recordings over the baseline
EEND-EDA.

Index Terms—Attractor mechanism, clustering, end-to-end,
iterative refinement, non-autoregressive model, self-attention,
speaker diarization.

I. INTRODUCTION

S PEAKER diarization aims to answer the question “who
spoke when” in a given utterance. It recognizes the segments

where the same speaker occurs, identifying the silence and
overlapping regions. Current diarization aims to solve various
problems connected with real-life applications, from 2-speaker
only conversations to cocktail party scenarios. However, that
also comes with challenges that the systems have to deal with,
e.g., long recordings, overlapping speech, or estimation of the
number of speakers in the recording–which becomes more dif-
ficult as this number grows.

The most straightforward and well-established approach to
deal with the diarization problems are cluster-based methods [1],
[2], [3], which consist of a pipeline of several independent steps.
Firstly, the recording is processed by a Voice Activity Detection
(VAD) module in order to detect and remove from further analy-
sis the silence regions. Next, the processed recording is divided
into short overlapping segments, and from each such segment,
a speaker embedding representation is extracted. Obtained em-
bedding vectors are clustered, producing the final diarization de-
cision. However, as each module is independent, the system may
not be optimized properly for the overall diarization problem.
Furthermore, such an approach is not feasible to handle properly
the segments that contain overlapped speech and requires the
application of additional mechanisms and post-processing. Sev-
eral works attempt to deal with overlapped speech in the cluster-
based methods [4], [5], [6]. In [4] the authors correct the system’s
diarization decision by processing the recording in two steps.
First, a standard cluster-based diarization is performed, which
returns the decision which speaker is most likely to be active in
a particular frame. In the next step, the recording is processed
to detect regions with speech overlap, so that in these regions
the second most likely speaker is included in the diarization
result too. In [6] the authors propose end-to-end overlap-aware
re-segmentation, which further improves the results of the con-
ventional diarization systems. A slightly different but effective
approach to deal with overlap in the cluster-based diarization
system is speech separation guided diarization (SSGD) [7],

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/
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where the authors use diarization and speech separation in a
single system. Speech separation combined with VAD module is
used to enhance system capabilities in the overlap regions. This
system achieved the first place in the DIHARD III challenge.

The End-to-End Neural Speaker Diarization (EEND) frame-
work, first proposed in [8], addresses many of the aforemen-
tioned problems. As an end-to-end system, it is trained to directly
optimize the diarization result. Furthermore, reformulating the
training objective into the form of multiple binary classification
tasks, i.e., the presence or absence of each speaker, allows us
to easily identify the overlapping regions and produce separate
speech/non-speech tracks for each speaker. An important devel-
opment is the EEND with encoder-decoder attractor (EEND-
EDA) [9] that enables diarizing a flexible number of speakers
through additional estimation of the so-called attractors, i.e.,
utterance-level speaker representations.

EEND has become a strong baseline for diarization and a
starting point for the proposal of other EEND-based diarization
systems [10], [11], [12], [13]. Many recent advancements in
diarization research focus on the combination of the advantages
of EEND and clustering-based systems by incorporating unsu-
pervised clustering methods in the end-to-end pipeline, such
as in the EEND with vector clustering (EEND-VC) system
proposed in [10], [14], [15], with the aim of complementing
the limitations of each of these approaches. EEND-VC operates
on recording chunks, instead of the whole recording, and outputs
not only the diarization results but also speaker-level representa-
tion corresponding to each track. In order to combine the tracks
of the same speaker but from different chunks, the clustering
algorithm is employed.

In addition to the EEND approach, another important study in
the diarization area is the Target-Speaker Voice Activity Detec-
tion (TS-VAD) [16]. The idea behind the TS-VAD-based system
is straightforward - using pre-computed (enrollment) speaker i-
vector representations [17], TS-VAD extracts the voice activities
for each speaker. In recent developments [11], [12], the ideas
from the TS-VAD system are combined with EEND. In [11] the
authors present the so-called EDA-TS-VAD, which attempt to
combine the TS-VAD system with EEND-EDA. They argue that
the EEND-EDA dot-product operation may not be suitable for
time frames with overlapped speech. This system follows the
EEND-EDA frame-level and attractor generation, replacing the
EEND-EDA dot product operation with the TS-VAD-inspired
Joint-Speaker-Detection block (JSD). The JSD block concate-
nates frame-level and utterance-level representations and pro-
cesses cross-time and cross-speaker relations to obtain the di-
arization decisions. Another work that combines EEND-EDA
with TS-VAD is Attention-based Encoder-Decoder network for
End-to-End Neural Speaker Diarization (AED-EEND) [12]. The
authors incorporate the EEND-EDA framework and replace the
LSTM-based module with the attention-based decoder. Sim-
ilarly to TS-VAD, they use enrollment information to obtain
speaker representations. Contrary to the TS-VAD, this informa-
tion is obtained by the model itself, not by the external system.

In this article, we propose End-to-End Neural Speaker Di-
arization with Non-Autoregressive Attractors (EEND-NAA).
Our work can be related to developments presented in the

literature, but also proposes a different perspective and derives
its inspiration from Automatic Speech Recognition (ASR) [18],
[19], [20], [21], where non-autoregressive methods are a com-
petitive alternative to the autoregressive ones. Our proposed
system uses a clustering approach but follows the EEND-EDA
framework and end-to-end pipeline, where the autoregressive
LSTM-based backend is replaced with non-autoregressive at-
tractor estimation. More importantly, our proposal allows to
make the process of attractor generation explainable, while the
LSTM-based is more obscure. The idea of EEND-NAA has
initially been proposed by the current authors in [13], where the
EDA module is replaced with a simple initial attractor estimation
using a k-means clustering algorithm applied on top of the
frame-level embeddings, refined with attention-based decoder
layers and an iterative refinement from the diarization system
output itself. Our work [13] was the first to propose the use of
non-autoregressive attractor estimation for the diarization task.
However, the evaluation of the EEND-NAA in [13] is restricted
to only a known and limited number of speakers, specifically
to recordings with only 2 speakers. In this article, we aim to
extend EEND-NAA system capabilities to generic conditions
where the speaker number can vary between the recordings and
may even be unknown. We extend the NAA module to include
two consecutive decoder blocks and introduce an additional
Single Speaker Activity Detection (SSAD) module that allows
to identify frames which include only one active speaker and
replaces the iterative refinement mechanism introduced in [13].
The proposed modifications lead to the design of three novel
EEND-NAA variants capable of performing diarization of an
unknown number of speakers in an end-to-end fashion.

In Section II, we first present a short overview of the related
works in the diarization research. Next, in Section III the baseline
EEND with EDA back-end is described. Sections IV and V
introduce the original EEND-NAA system along with three
possible extensions proposed in this article. Sections VI, VII,
and VIII present the experimental evaluation setup, obtained
results, and conclusions.

II. RELATED WORK

A. End-to-End Neural Speaker Diarization

End-to-End Neural Diarization (EEND) [8] has originally
been proposed as a BLSTM-based encoder that transforms the
input sequence of features to the frame-level embedding repre-
sentations, followed by a simple binary classification layer with
the number of outputs equivalent to the maximum possible num-
ber of speakers in the recording. Each output is responsible for
generating a separate potential speaker track. The training objec-
tive is defined as a multi-label classification problem, indicating
whether a speaker occurs in a particular frame and track. Since
the order of speaker tracks returned by the network is not prede-
termined, it raises the question of how to assign the ground truth
labels. The problem is solved using the permutation-invariant
training (PIT) loss [22]. The diarization output is compared with
each label order permutation, and the assignment that results
in the lowest loss value is selected as the correct one. In its
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development, the BLSTM encoder is replaced with the self-
attention-based encoder [23], [24]. The next important genera-
tion of EEND systems is EEND with encoder-decoder attractor
(EEND-EDA), which allows to deal with various and unknown
number of speakers. The proposed EDA module estimates the
number of speakers that occur in the recording and produces
an utterance-level embedding representation for each speaker.
In [25], the authors develop the EEND-EDA system to tackle the
problem of large speaker numbers unseen during training with
global and local attractors (the so-called EEND-GLA model),
and adding clustering to the framework. Firstly, the embedding
sequence is segmented into shorter chunks. Each subsequence
is processed by the EDA back-end, producing corresponding
attractor and diarization results. In order to obtain the result
for the entire recording, the clustering is applied on top of the
attractors. In [26] the authors present an extended evaluation
and further improvement of the original EEND-EDA system by
a modification of the training procedure and a proposal of a
mechanism to deal with the number of speakers that is unseen
during the training.

B. End-to-End Neural Diarization With Vector Clustering

An important EEND alteration is the EEND vector clustering
(EEND-VC) system proposed in [10], [14], [15], which repre-
sents a hybrid approach that aims to combine the advantages of
classical EEND [23] and cluster-based diarization. The original
EEND system requires a large amount of memory to process
long recordings. EEND-VC leverages the problem by segment-
ing the recording into smaller chunks and applying EEND-based
diarization on each one of them. Within each chunk, each output
track has an associated speaker representation. The system has
an important assumption that the processed segment, typically
of up to 50 s duration, has up to 2-3 speakers so that the simple
EEND with classification output can be applied. All speaker
representations are clustered together, which indicates which
tracks from different chunks originate from the same speaker. A
similar approach is proposed in [27], which, however, is based
on the EEND-EDA [9] instead of the classical EEND [23].
The processed recording is segmented into smaller chunks,
resulting in a diarization decision and attractor estimation from
the EEND-EDA system per each chunk. The final diarization
decision for the entire recording is obtained by combining the
speaker tracks from different chunks. The decision of which
track belongs to the same speaker is conducted by clustering the
attractor representations using neural clustering based on the
Gated Recurrent Units (GRU).

An important continuation of the work on the EEND-VC
system is the Graph-PIT-EEND-VC [28], which performs
the so-called utterance-by-utterance diarization. The originally
proposed EEND-VC system shows promising results. However,
it struggles with the strict assumption that the analyzed segment
can contain a fixed, small amount of speakers, and at the same
time, it is constrained from increasing the possible time context.
Moreover, the authors argue that splitting audio into fixed-size
chunks is impractical for the downstream tasks and can also
result in very short speech segments. As a solution, the authors

of [28] propose to retrieve speech segments with a 2-channel
output VAD, where overlapping speakers are separated into
different channels. The embeddings are computed using
information from the continuous (non-chunked) speech
segments of a particular speaker. Then, similarly to the original
EEND-VC, speaker representations are clustered to decide
which segments belong to the same speaker. The idea allows to
increase the analyzed time context to the whole utterance and
avoid its segmentation into short chunks, which was needed to
meet the assumption of a small speaker number in the processed
fragment.

The approach may seem to be similar to ours as it also incor-
porates the clustering approach on top of the EEND encoder. The
main goal of using clustering in the EEND-VC-based systems
is to find which segments or chunks belong to the same speaker
based on the speaker representations of those chunks/segments.
Note that it is different from our approach, where clustering
is used to estimate the initial attractor representations from the
entire utterance based on the frame-level embeddings.

C. Other Non-Autoregressive Approaches

After our proposal of EEND-NAA in [13], other works have
appeared that also incorporate non-autoregressive processing
in a diarization system. In [29] the authors propose adding
an intermediate attractor representations in between EEND
transformer encoder layers in order to condition subsequent
layers. Similarly to our work, they replace LSTM-based EDA
module with Transformer Decoder layer. However, as the initial
attractor queries, learnable vectors are incorporated in [29]. The
system limitation is that it does not handle speaker counting
and results are presented only for 2-speaker recordings. In
AED-EEND [12], already mentioned in Section I, similar to our
work, the authors incorporate Transformer Decoder based EDA
module. During inference, the system decodes the speakers iter-
atively: firstly, using trainable vector queries, the system detects
the non-speech, overlap, and single-speech regions. Next, using
the single speaker regions, it extracts speaker representations one
by one, discovering the speaker existence of the new speakers.
This is the main difference from our approach where we use
clustering directly to estimate attractors, which we do in a single
iteration pass.

III. BASELINE END-TO-END NEURAL DIARIZATION WITH

ENCODER-DECODER ATTRACTOR

In this section, we present the general framework of the EEND
system and describe the EEND-EDA processing [9], which
constitutes the baseline for our approach and the presented eval-
uations. The main building blocks of the EEND system are the
encoder, which produces the frame-level embedding representa-
tions, and the backend, which processes the embedding sequence
and estimates the utterance-level speaker representations, i.e.,
attractors. The general scheme of the EEND-EDA is presented
in Fig. 1.

The EEND input is represented by a sequence of features
x = {x1,x2, . . . ,xT } of lengthT and feature dimensionF . The
encoder generates a sequence of D-dimensional embeddings
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Fig. 1. General pipeline scheme of the EEND-EDA system. F indicates
feature dimension, D is an embedding dimension, S stands for speaker number
in the recording, and T is the number of time frames.

e = {e1, e2, . . ., eT } of the same length, where each embedding
corresponds to a single input feature. The encoder is built of
four stacked Transformer encoder layers with a self-attention
mechanism and does not include positional encoding.

The embedding representations are passed to the EDA mod-
ule, which serves as the system back-end. The EDA generates
attractors, the number of which is assumed to be equivalent to the
total number of speakers in a given utterance. This block consists
of two LSTM layers that are connected in an encoder-decoder
manner. Theoretically, the EDA module can generate an infinite
number of representations. In order to distinguish and constrain
whether a produced attractor represents a subsequent speaker
track, a linear layer with a sigmoid activation is situated at the top
of the EDA module. The result returned by the layer is used for a
decision to determine whether a particular embedding attractor
represents a new speaker or the attractor generation process is
finished. Based on the output of the binary classification layer,
the attractor loss Lext is computed. It is represented by binary
cross-entropy loss. The layer output is compared to the labels,
which are S + 1 binary values, where S represents the speaker
number in a given utterance. The first S labels are set to 1, while
(S + 1)-th label is set to 0. Such a label arrangement specifies
the stopping condition of the attractor generation.

In the final step, the obtained attractors and each of the
frame-level embeddings are used to compute a dot product.
The resulting score, passed through the sigmoid function σ,
represents the final diarization result, which can be equivalently
presented as

ỹs,t = σ(et · as) , (1)

where ỹs,t represents the posterior probability for speaker s to
be present in time frame t, et is the frame-level embedding for
frame t, and as is the attractor for the s-th speaker track. The
score is also used to compute system’s diarization lossLd, which
is based on the binary cross-entropy loss. The final output of the
system is compared with binary labels y ∈ {0, 1}S×T , where
ys,t = 1 indicates that speaker s is present at time frame t and

Fig. 2. General pipeline scheme of the EEND-NAA-Fixed. The k-means
initialization is used during the first iteration. In the next iterations, the diarization
result from the previous iterative refinement step is used. F indicates feature
dimension, D is an embedding dimension.

ys,t = 0 indicates that it is not present in the t-th time frame.
The permutation invariant training (PIT) scheme [22] is used
to determine the optimal mapping between the predicted and
ground truth labels and compute the final diarization loss. The
reader is referred to [9] for a more detailed description of the
loss computation. The final training objective is composed as a
sum of the attractor and diarization losses:

L = Ld + αLext, (2)

where α is a weight applied to the attractor loss.

IV. EEND-NAA FOR A KNOWN NUMBER OF SPEAKERS

This section presents a detailed description of the EEND
system with non-autoregressive attractor estimation, introduced
for the first time in our conference paper [13]. Note that the
results presented in [13] include only the oracle condition for
2-speaker recordings. As the presented system can handle only
a known number of speakers, we will refer to this model version
as EEND-NAA-Fixed. Later, in Section V, we will develop
and introduce further EEND-NAA system modifications that
enable the application of the system for non-oracle and a variable
speaker number in the recording.

A. Non-Autoregressive Attractor Estimation

Block diagram of the EEND-NAA-Fixed system is presented
in Fig. 2. The processing flow is similar to the EEND-EDA sys-
tem, where the encoder, composed of the Transformer encoder
layers, transforms input features into frame-level embedding
representations. The obtained embedding sequence is processed
by the back-end to extract utterance-level attractor embeddings.
The initial attractor embeddings are estimated using the k-means
algorithm applied on top of the frame-level embeddings. The
initial vectors are the cluster centers, denoted hereafter as cs ∈
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Fig. 3. Detailed layer architecture of one ofN of the EEND-NAA transformer-
based backend blocks.

{c1, .., cS}. The number of clusters corresponds to the number
of speakers in the recording.

Obtained initial vectors are next refined by a decoder block
composed of 2 layers of Transformer decoder [30]. Fig. 3 il-
lustrates the diagram structure of the N -layer decoder back-end
block. A Transformer decoder layer consists of three essential
layers: a multi-head self-attention layer, a multi-head source-
target attention layer, and a position-wise feedforward layer
(FF). Both attention layers are referred to as MHA blocks. Each
layer is followed by a residual connection, which combines
the input and output of the layer, and a normalization layer.
The core components of the attention mechanism are the key,
value, and query linear transformations. The processing flow
of both self-attention and source-target attention is identical
with the difference in the source of the input to these elements.
Self-attention processes only the estimated cluster centers or
input from the previous decoder block, whereas source-target
attention involves embedding representations to compute the key
and value, and intermediate attractor estimations act as queries.
The positional encoding is not used.

Following the EEND-EDA, the final attractors and embed-
dings are used to compute the dot product, and after processing

with the sigmoid function, the final diarization result is pro-
duced. The loss used in the EEND-NAA-Fixed system training
incorporates only the diarization loss with the PIT method.

B. Iterative Refinement

As explained in [13], the goal of using k-means at the top
of the embedding sequence is to estimate general initial rep-
resentations of the attractors which should be refined by the
decoder. However, such an approach suffers from two draw-
backs. The clustering is applied on top of all embeddings,
not only speaker representations but also silence embeddings.
Moreover, it is applied to embeddings containing overlapped
speech, where such embeddings should belong to more than
one cluster (corresponding to more than one speaker). To deal
with the aforementioned issues, we apply the iterative refinement
of the estimated attractors. It means that the representations are
recalculated using the diarization system output and reprocessed
by the decoder, which allows us to discard silence embeddings
and include overlap in the computation of the new means.

Once the attractors are initially estimated using the k-means
algorithm, diarization results ỹs,t are iteratively obtained by
computing the dot product between the attractors and the encoder
embeddings, with the application of the sigmoid function σ, as
given by

ỹ i
s,t = σ(et · ais) , (3)

where i denotes the iteration number, and a is the attractor
representation. To obtain the binary diarization decision, we
compare the resulting value for each diarization track with the
neutral threshold value of ξ = 0.5 using

p i
s,t =

{
1 ỹ i

s,t > ξ
0 ỹ i

s,t ≤ ξ
. (4)

Based on the obtained diarization result, new initial cluster
centers are computed according to

cis =
1

∑t=T
t=1 p i−1

s,t

t=T∑

t=1

p i−1
s,t · et . (5)

The centers are again passed through the decoder stack to esti-
mate the refined attractors ais. Note that this center recalculation
uses the diarization decision, allowing us to incorporate, in the
center computation, the overlap embeddings et for all speakers
present at time frame t and discard the silence embeddings. It
should also be noted that this process applies to all iterations
with i > 1, whereas for the first iteration (for i = 1), the initial
representations c are calculated using k-means clustering.

V. EEND-NAA FOR AN UNKNOWN NUMBER OF SPEAKERS

While the EEND-NAA-Fixed system described in Section IV
can achieve promising results [13], it is not feasible to use it in
scenarios where the number of speakers is generally unknown.
This limitation is a consequence of using k-means clustering,
which requires the number of clusters (i.e., speakers) to be
known in advance. To address this problem, in this section, we
introduce three novel versions of the EEND-NAA system, which
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Fig. 4. T-SNE visualization of the encoder embeddings obtained by EEND-
NAA (with I = 4). Plots on the left include all frame-level embeddings, plots
on the right contain only embeddings that contain a single speaker.

can handle the non-oracle number of speakers scenario in various
ways.

The general model pipeline is kept intact compared to EEND-
NAA-Fixed system, where the proposed adjustments are ap-
plied only in the system’s back-end. All systems include a
new Single Speaker Activity Detection (SSAD) module. The
goal of this block is to filter the encoder embeddings that
represent overlapped speech or silence regions and thereby keep
for further processing only embeddings that contain speech
from a single speaker. Note that, in a typical conversational
scenario, we expect that the speakers of interest will have regions
of uninterrupted, non-overlapped speech, while speakers that
only speak while others are speaking (i.e., speakers that only
appear in overlapped regions) will be rare and will not have an
important contribution to the overall conversation. This assump-
tion allows us to use the SSAD module to improve the cluster
centers of those speakers of interest. The module comprises one
Transformer encoder layer and a two-output linear classification
layer. The problem is formulated as a multi-label classification.
The applied SSAD module has two outputs, which correspond
to silence/non-silence and overlap/non-overlap decisions. The
other multi-class alternative could be a three-output SSAD in
which each output corresponds to the single-speaker, silence and
overlap classes. We have run preliminary experiments with two
and three outputs and did not observe any notable difference
in performance between such two models. Thus, as a design
choice, the two-output model was chosen as a simpler variant.
The SSAD block is crucial for the proposed system to facilitate
detecting the number of speakers present in the recording. Note
that the embeddings generated by the encoder generally tend
to create clusters that represent the speakers and silence, while
overlap embeddings are located in between those clusters. In
Fig. 4 we present T-SNE visualization of the embeddings from
the two different recordings from the test set used in experiments
to follow. One recording has 2 speakers, the second contains
4 speakers. In both cases, we present T-SNE plots with all

Fig. 5. General pipeline scheme of the EEND-NAA-Overest system. In the
diagram, K stands for the chosen number of clusters, while S is the number
of speakers in the recording, F indicates feature dimension, and D denotes
embedding dimension.

embeddings and with embeddings that contain only a single
speaker in the particular frame. For both examples, we can
observe similar embedding composition: the embeddings that
belong to the same class, i.e. to any particular speaker, overlap,
or silence, tend to be close to each other. Let us note that
the overlap class is in fact a composition of multiple “single
speaker classes”, thus we can observe that it tends to be lo-
cated in between of clusters for the respective single speakers.
To obtain clear cluster representations, we must filter out the
overlap embeddings that “contaminate” the clusters’ centers.
The methods presented in the following subsections strongly
rely on the proper clustering of the frame-level embeddings
and we assume that the cluster centers represent the preliminary
speaker embeddings. Moreover, in the case of two out of three
systems proposed in this section, the clustering algorithm is
used to estimate the number of speakers. For this reason, any
contamination by overlap embeddings or presence of additional
(non-speaker) silence cluster affects the result of the clustering
algorithm, and thus the overall system diarization decision. The
additional consequence of introducing the SSAD module is
that there is no need for incorporating the iterative refinement
mechanism, as we do not have to deal with embeddings for
silence and overlap.

A. EEND-NAA-Overest

The first presented system, hereafter referred to as EEND-
NAA-Overest, is an initial attempt to extend the EEND-NAA
system for the condition of an unknown number of speakers.
The general system pipeline is shown in Fig. 5.

The primary modification to the EEND-NAA-Fixed system is
the choice of the number of clusters for the k-means algorithm.
As the number of speakers in the recording may be unknown,
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we intentionally overestimate the number of clusters. It means
that the number of clusters used in the k-means algorithm is
higher than the expected maximum number of speakers in the
recording. The next system modification, compared with the
EEND-NAA-Fixed, is the back-end extension from one to two
decoders, where each decoder performs its own designated task.
Both decoder blocks share the same structure, and they are
composed of two transformer decoder layers.

The task of the first decoder is to process all estimated cluster
centers and retrieve refined centers, correcting errors made by
the k-means. In this block, only filtered embeddings, i.e., em-
beddings with speech from one speaker, are used as key and
value inputs in the Transformer decoder layers.

To enforce the first decoder to produce speaker/non-speaker
discriminative centers, we use the softmax cross-entropy loss,
which we will refer to as a pre-attractor distance loss,

La = − 1

S

s=S∑

s=1

log
exp(cos(hs, c̃s))∑j=K

j=1 exp (cos(hs, c̃j))
(6)

where the argument of the softmax function is the cosine score
between the refined centers c̃s and the “ideal” centers hs, K
denotes the total number of clusters, whileS denotes the number
of speakers in the recording. The ideal centers are computed
based on the ground truth labels as

hs =

∑t=T
t=1 zs,t · et∑t=T

t=1 zs,t
, (7)

where s is speaker index, zs,t is the ground truth label at time
frame t for speaker s. Note that overlap embeddings are not
included in the computations of the aforementioned mean. It
means that zs,t value is equal to 1 if speaker s is present in a
particular time frame t, and equal to 0 if it is not, or if there is
more than one speaker in the time frame.

The assignment of cluster centers to particular speakers is
realized through a permutation scheme. For each possible per-
mutation of K cluster centers with size of S (note that S is
smaller than K), we compute the sum of the distances between
ideal centers and cluster centers before decoder processing.
The option (i.e. permutation of a subset of K clusters with
size of S) that results in the lowest value, is the cluster center
assignment. Note, that the loss value targets to refine the relative,
discriminative speaker representations within the recording, not
the absolute speaker identity, as some other approaches do [10].
A similar goal of refinement is presented in [25], however, the
loss used in [25] is based on the contrastive loss and distances
between the local attractors.

The refined centers from this step serve as preliminary at-
tractors (pre-attractors). A linear binary classification layer pro-
cesses each pre-attractor to detect which ones correspond to true
speakers, and which ones correspond to the overestimated clus-
ters, which we should discard. The ground truth label defining
whether pre-attractors are speakers or not, is derived from the
best permutation obtained by the loss in (6). The selected pre-
attractors are forwarded to the second decoder, which produces
the final attractors, using all embeddings from the sequence as
key and value inputs.

The final training objective for the EEND-NAA-Overest sys-
tem can be presented as

L = Ld + LSSAD + Lchoice + λLa , (8)

where Ld is the diarization loss, calculated as binary cross-
entropy loss with PIT scheme, in an identical way as described
in Section III for the EEND-EDA system; LSSAD is the SSAD
classification cross-entropy loss, deciding whether the particular
frame contains overlapped speech or silence;Lchoice is the binary
classification loss for the linear layer that decides whether the
particular pre-attractor is the speaker or non-speaker represen-
tation; La denotes the pre-attractor distance loss, defined in (6);
whilst λ is an empirically selected parameter.

B. EEND-NAA-2step

In the proposed EEND-NAA-2step approach, similarly
to the previous EEND-NAA-Overest approach described in
Section V-A, on top of the SSAD filtered encoder embeddings,
we apply k-means clustering with a higher number of cluster
centers than the maximum possible number of speakers in the
recording. Let us note that it also means that embeddings that
belong to one speaker can be included in a few cluster centers.
Thus, one speaker can be represented by multiple cluster centers.
Next, the centers are processed by the first decoder, whose task
is slightly different than in the previous EEND-NAA-Overest
system. The goal is to bring the cluster centers from the same
speaker as close to each other as possible and, simultaneously, to
push apart the centers from different speakers as far as possible.
After that, we aim to merge the refined centers in order to
obtain a single representation for each speaker. The centers are
combined with a second clustering applied to the refined centers.
We use k-means for the second clustering during training, while
spectral clustering is used for inference. Spectral clustering
produces better results but is computationally too expensive to
be used in training. The number of speakers is estimated by
the analysis of the eigenvalues [31]. Fig. 6 presents the general
EEND-NAA-2step system scheme pipeline.

In order to teach the first decoder the designated task, the
softmax contrastive loss is applied on top of the processed
centers. For the EEND-NAA-2step system, the assignment of
K centers to the specific speakers is based on the first clustering
result, i.e., clustering before the first decoder. Based on the
assignments of the frame-level embeddings to the particular
cluster, we decide to which speaker the center belongs to. If the
center is composed of the embeddings that belong to different
speakers, the center is assigned to the speaker whose embeddings
are mostly used to compute it.

Similarly, as in the previous system, the softmax loss is used.
However, it is applied to each center separately in the following
manner:

La = − 1

K

k=K∑

k=1

log
exp(cos(hk, c̃k))∑j=K

j=1,sj �=sk
exp (cos(hk, c̃j))

. (9)

Note that this is a contrastive loss rather than a cross-entropy
loss since the sum of the denominator of (9) only has negative
pairs–i.e., the centers that belong to the same speaker class as
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Fig. 6. General pipeline scheme of the EEND-NAA-2step system. In the
diagram K stands for the chosen number of clusters, while S is the number
of speakers in the recording. F indicates feature dimension, D embedding
dimension.

c̃k are not used. Furthermore, this loss can only be applied
if S > 1, because for S = 1, there are no negative pairs. In
case S = 1, the softmax loss is replaced with the simple sum
of cosine distances between each unmerged pre-attractor to the
“ideal” centers. Then, the second k-means with K = S, merges
the pre-attractors belonging to the same speaker. The merged
representations are forwarded to the second decoder, which
produces the final attractors. As the system applies clustering
twice, we refer to it as the EEND-NAA-2step.

The final training objective, similar to the EEND-NAA-
Overest system, can be formulated as

L = Ld + LSSAD + λLa , (10)

where Ld is the diarization loss, LSSAD denotes the SSAD
classification loss, La is a pre-attractor distance loss, while λ

is an empirically selected parameter. Note that the loss of this
system does not include the Lchoice term.

C. EEND-NAA-1step

The last proposed system simplifies EEND-NAA-2step and,
at the same time, is the most similar to the original EEND-NAA-
Fixed system. Fig. 7 presents its pipeline. As in EEND-NAA-
Fixed, only one clustering is used, so we refer to this system as
EEND-NAA-1step.

Firstly, during the training phase, the k-means algorithm is
applied at the top of the SSAD-filtered frame-level embeddings
with K = S. During the inference, the k-means is replaced
with spectral clustering, with eigenvalue analysis to estimate
the number of speakers. The cluster centers are forwarded to
the first decoder block. The goal of that block is to refine
the centers to ideal representations by applying the softmax
cross-entropy loss for recordings with S > 1 as in (6), and the
cosine distance between the mean of the refined centers and

Fig. 7. General pipeline scheme of the EEND-NAA-1step system. In the
diagram, K stands for the chosen number of clusters, while S is the number
of speakers in the recording, F indicates feature dimension, and D denotes
embedding dimension.

TABLE I
NUMBER OF PARAMETERS OF THE EEND-EDA AND EEND-NAA STRUCTURES

the ideal representation for S = 1 . Next, the refined centers are
forwarded to the second decoder block, producing final attractor
representations. The final objective function of the system is
identical to that in (10).

In Table I we present the number of parameters for presented
systems which shows the impact of the additional Transformer
layers on the model size. The EEND-NAA-Fixed has 2.1M more
parameters, where the newly proposed systems have nearly 2
times more parameters than EEND-EDA reference. Neverthe-
less, we still consider this model size as a reasonable.

VI. EXPERIMENTAL EVALUATION

A. Datasets

The training set is composed of simulated mixtures, generated
in the same manner as proposed in [24], with the use of utterances
from the datasets: Switchboard-2 (Phase I, II, III), Switchboard
Cellular (Part 1 and 2), and the NIST Speaker Recognition
Evaluation (2004, 2005, 2006, 2008). The produced mixtures
contain from 1 to 4 speakers within each recording, with 100 000
utterances per each speaker number. The overlap for the 2 / 3 /
4 speaker recordings is, respectively, equal to 34.4% / 34.8% /
32.0%. The experiment presented in Section VII-A uses only
2 speaker recordings in the training phase (which results in
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TABLE II
STATISTICS OF THE SIMULATED DATASETS

TABLE III
STATISTICS OF THE DATASETS CONTAINING REAL RECORDINGS

100 000 utterances), while the results presented in Section VI-
I-B incorporate all mixtures for each speaker number (which
results in 400 000 utterances). Table II presents the details of the
generated simulated dataset.

System evaluation includes both simulated mixtures and
real-life recordings. For the experiment with a fixed number
of 2 speakers, 3 sets of 500 utterances with different speech
overlaps (35.3%, 28.0%, and 19.6%) are used. The test set for
the multi-speaker experiment (described in Section VII-B) is
composed of 4 sets of 500 utterances each, with the number of
speakers varying from 1 to 4. The speech overlap for 2 / 3 / 4
speakers, respectively, amounts to 35.3% / 35.3% / 32.7%. All
train and test simulated mixtures are augmented with noise from
the MUSAN dataset [32] and reverberated with [33].

Real recordings are represented by CALLHOME (CH) [34]
and DIHARD II [35] datasets. Table III presents the details of
the datasets used in the performed experiments. CALLHOME
is a dataset based the telephone conversations. In the evaluation,
we use the train and test split, the same as in [9]. The train
part is used to fine-tune the systems trained using the simulated
mixtures, and then it is evaluated on the test subset. For the
experiment with a fixed number of speakers, only the subset
of recordings that contains 2 speakers is used. DIHARD II is
dataset used in the DIHARD challenge. It includes recordings
from various domains. The development set is used for model
fine-tuning, whereby the eval part is used for the evaluation. As
the DIHARD II recordings are 16kHz, we downsample them to
8kHz in order to match our training sampling rate.

B. System Framework and Evaluation Measures

The system framework is implemented using the PyTorch
library, with the use of available online implementation.1 In
our experiments we also present the results for the EEND-EDA

1[Online]. Available: https://github.com/Xflick/EEND_PyTorch

official, Chainer implementation.2 Our models are all trained
with the Adam optimizer and a minibatch size of 64. For the
initial training, we use the Noam learning rate scheduler as
in [30], with 100 000 warm-up steps. For experiments with a
constant number of speakers, we train them for 100 epochs, and
for the ones with a variable number of speakers, we train them
for 25 epochs. The fine-tuning is performed for 100 epochs, at
a constant learning rate of 10−5.

The final model is the average of models from the last
10 epochs. Only in the 2-speaker experiment in the simulated
scenario, for the proposed systems, the 10 consecutive epochs
are selected based on the validation loss value, which was
required in order to avoid system overfitting. Models from
2 speaker experiments are used in experiments as weight initial-
ization for adequate multi-speaker networks. The only exception
is the EEND-NAA-Overest system, which is initialized by the
EEND-NAA-2step 2-speaker trained model.

ParameterK is set individually for each experiment condition.
In theory, K can be any arbitrary value smaller than the number
of samples and larger than the maximum number of speakers.
However, the higher K, the higher the training cost. Thus, we
found that for the EEND-NAA-2step, it is reasonable to set it
at least two times higher than the assumed maximum number
of speakers, as K also indicates the number of samples for
the second clustering. For EEND-NAA-Overest the number of
speakers is dependent on the decision of the linear layer, thus
we set K slightly higher than the assumed maximum number
of speakers. An advantage of EEND-NAA, compared to other
end-to-end diarization methods, is that K can be increased at
inference time to accommodate a number of speakers larger than
those seen in training.

All neural networks and each condition are trained with the
λ = 0.1 parameter used in the loss equation (given by (8) and
(10), respectively). Following the recipe in the official EEND-
EDA repository, we used α = 1.0, except for fine-tuning in the
multi-speaker scenario where α = 0.1 was used.

For all systems, the encoder is built of four transformer
encoder layers, with 4-head attention mechanisms, 2048 di-
mensions in feed-forward layers, returning 256-dimensional
embeddings. Single decoder blocks are always composed of two
transformer decoder layers, following the same parameter setup
as in the encoder part.

As input features, 23-dimensional log-Mel-filterbank coeffi-
cients are used, stacked with the context of 7 and a subsampling
value of 10 [9], both for training and inference. In case of
DIHARD II, at inference, subsampling of 5 is used. Moreover,
following the original setup of the baseline EEND-EDA system,
we also apply feature shuffling.

Following [9] we use chunk size of 500 frames, which corre-
sponds to the segment size of 50s. For fine-tuning of DIHARD
II, we use chunks of size 2000. During inference time, the entire
recording is fed to the model. Due to such a processing, similar
as in [9], the system has a limited audio length that it can process
effectively. However, this limitation is a common challenge

2[Online]. Available: https://github.com/hitachi-speech/EEND
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TABLE IV
DER RESULTS FOR MODELS TRAINED WITH 2 SPEAKER RECORDINGS

for the family of EEND systems and solving this issue is not
addressed in this article.

In evaluations, for the simulated and CH datasets, system
performance is measured using the Diarization Error Rate (DER)
metric, with a 0.25 s collar. In case of the DIHARD II evaluation,
we also include Jaccard Error Rate (JER) and set the collar
tolerance as 0.00 s.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

In Section VII-A, we present the results and analysis of
models trained with the recordings constrained to only two
speakers. The 2-speaker models are then used as initialization
for multi-speaker systems, which are evaluated in Section VII-B.
In Section VII-C we further evaluate multi-speaker systems for
the real recordings scenario.

A. Evaluation on 2-Speaker Recordings

Table IV presents the results for three different systems in the
2-speaker scenario experiment. The first three rows represent
the EEND-EDA baseline, where the first row shows the results
presented in the original paper [9], the second row shows our run
of the EEND-EDA baseline as the official Chainer implementa-
tion, while the third presents our run as the PyTorch implemen-
tation. The results obtained with ours (PyTorch) and Chainer
implementations are slightly worse than the ones presented in
the original paper. It is difficult to indicate the reason for the
discrepancy between the referenced and our results, which could
arise from the mismatched running setups (e.g., one GPU versus
multiple GPUs) or some differences in the generated mixtures.
However, our runs allow us to fairly compare the different
systems proposed in this article, regardless of the differences
between the experimental setups of [9] and our experiments.

The next two rows present the EEND-NAA-Fixed sys-
tem [13], with (i.e., I = 3) and without (i.e., I = 1) applying
the iterative refinement. As described in [13], the EEND-NAA-
Fixed results without iterative refinement for the simulated
condition are slightly worse than those obtained with the EEND-
EDA models. As can be observed, the application of the iterative
refinement allows us to decrease DER metric values for all
simulated and real conditions, achieving better results than the
baseline EEND-EDA system.

The last three rows present the results of the EEND-NAA-
Overest, EEND-NAA-2step, and EEND-NAA-1step systems

TABLE V
DER RESULTS FOR SIUMULATED TEST RECORDINGS FOR ORACLE AND

ESTIMATED NUMBER OF SPEAKERS

proposed in this work. Note that the EEND-NAA-Overest is
trained with parameter K = 3, while the EEND-NAA-2step
is trained with K = 4 for the first clustering. Note that if the
EEND-NAA-Overest and EEND-NAA-2step were both trained
with the true (”perfect”) parameters K = S = 2, they would
be the same as the EEND-NAA-1step model. Nevertheless, the
higher value of K is selected to teach the expected behavior of
the first decoder, which is to refine the cluster centers to discrim-
inative mergeable representations for the EEND-NAA-2step or
to pre-train the classification layer that estimates the number of
speakers for the EEND-NAA-Overest. In the training phase for
the EEND-NAA-1step system, parameter K is always equal
to the number of speakers S in the recording. Thus, K = 2
for this experiment. For simulated recordings, both the EEND-
NAA-2step and EEND-NAA-1step systems improve the set with
35.3% speech overlap, get comparable results for 28.0% overlap,
and slightly degrade for 19.6% overlap. For the CALLHOME
dataset, we can observe improvement for the EEND-NAA-2step
system and slight degradation for EEND-NAA-1step over the
baseline model. The DER values for EEND-NAA-Overest are
at a satisfactory level. However, at the same time, the model
represents the worst performance among all systems.

B. Evaluation on Simulated Multi-Speaker Recordings

Table V presents the results for simulated multi-speaker
recordings, both with a known (oracle) and an unknown (es-
timated) number of speakers. Firstly, let us analyze the outcome
of the experiments presented in the first part of Table V for the
simulated mixtures and an oracle number of speakers scenario.
For EEND-NAA-Overest, K = 6 is used, while for EEND-
NAA-2step, K = 10 is set. The choice of K is a compromise
between the function of the first decoder and the computational
load. Unlike the EEND-NAA-Overest system, the EEND-NAA-
2step merges representations after the first decoder refinement,
thereby aiming to have at least two potential centers per speaker.
The EEND-NAA-1step system does not overestimate the num-
ber of clusters. Thus, the number of clusters is always set toK =



3970 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

TABLE VI
DER RESULTS FOR THE SIMULATED TEST SET FOR THE 1, 2, 3, AND 4

SPEAKERS IN THE RECORDING

S during training. The very first system, the basic EEND-NAA-
Fixed, presents an improvement over PyTorch EEND-EDA for
the 1- and 2-speaker recordings and degradation over the 3-
and 4-speaker sets, while the version with iterative refinement
provides a clear gain, with 39% average relative improvement
for all test sets compared to the EEND-EDA [9] baseline. The
results of the EEND-NAA-1step are slightly worse than the basic
EEND-NAA-Fixed with I = 3 . However, its average perfor-
mance over all test sets has a 35% relative improvement over the
baseline. In turn, the EEND-NAA-2step performs comparably
to the basic EEND-NAA-Fixed with only slight degradation for
recordings with four speakers. The EEND-NAA-Overest system
presents less impressive results. Nevertheless, it still improves
over the baseline with 24% for the average value over all test
sets.

The second part of Table V introduces the performances of
the described systems when the number of speakers is unknown.
Note that in this part, basic EEND-NAA-Fixed models are not
included, as they lack the feature of estimating the number of
speakers. For that scenario, in almost all cases the proposed
systems achieve better results than EEND-EDA. The results
of EEND-NAA-1step and EEND-NAA-2step vary to a greater
degree compared to the known number of speakers case, which
can be caused by the difference when the estimation of speaker
number is applied in the models. In the EEND-NAA-1step sys-
tem, the estimation is based on the frame-level embeddings fil-
tered by the SSAD block, while the EEND-NAA-2step estimates
with the refined cluster centers. Therefore, any contamination
introduced by the EEND encoder or SSAD block directly affects
the clustering decision for the EEND-NAA-1step.

Table VI presents the impact of the silence and overlap
errors on the DER performance on the example of the EEND-
NAA-2step system. The presented results are for both types of
scenarios, with the known and unknown number of speakers. We
distinguish four different SSAD conditions: (i) fully estimated,
where SSAD decision is derived from the model, (ii) oracle
overlap, where the SSAD overlap detection is replaced by the
ground truth information, (iii) oracle silence, where the SSAD
silence detection is replaced by the ground truth information, and
(iv) fully oracle, where detection of both overlap and silence are
derived from the ground truth labels. Firstly, let us note that the
full oracle SSAD decision improves the results for all test sets.

TABLE VII
ACCURACY OF THE OVERLAP, SILENCE AND SINGLE-SPEAKER REGION

DETECTION FOR THE SIMULATED TEST SET FOR THE 1, 2, 3, AND 4 SPEAKERS

IN THE RECORDING

TABLE VIII
DER RESULTS ON CALLHOME FOR ORACLE AND ESTIMATED

NUMBER OF SPEAKERS

TABLE IX
NUMBER OF UTTERANCES FOR EACH SPEAKER NUMBER FOR THE

CALLHOME TEST SET

The most improvement we can observe for 2- and 4-speaker
test sets. Comparing the results when we provide either only
silence or only overlap oracle information, we can observe that
proper overlap detection brings more improvement than silence
one. However, it is correlated with the accuracy of the overlap
and silence detection, which is presented in Table VII. As we
can observe, the detection of the overlap is lower than silence
detection for all multi-speaker recordings. Even though, we can
consider the obtained accuracy as satisfactory, since all of them
are way above 90%, we can notice that they may impact DER
performance even up to 24% of the relative difference.

C. Evaluation on Real Multi-Speaker Recordings

This section presents the results of the systems for real multi-
speaker recordings including CALLHOME telephone conver-
sations, which is often used as benchmark in the literature, and
DIHARD II which is a mixture of real recordings from various
domains.

Table VIII presents the results for real multi-speaker record-
ings, both with a known (oracle) and an unknown (estimated)
number of speakers. Before the analysis of the results, let
us take into consideration the statistics of the CALLHOME
test set. Table IX presents the number of utterances for each
speaker condition. The higher the number of speakers, the fewer
representative recordings are present in the test set, with only
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TABLE X
RESULTS OF THE SELECTED STATE-OF-THE-ART SYSTEMS ON THE

CALLHOME DATASET

three utterances resulting in the 6-speaker condition. As a con-
sequence, the results for the low-numbered subsets may be less
reliable and present ambiguous conclusions. In addition, note
that as mentioned in Section VI, all systems have been fine-tuned
on the CALLHOME train subset, which includes up to 7 speak-
ers. Thus, in the fine-tuning conditions, the system parameter
has been modified to K = 8 for EEND-NAA-Overest.

In the oracle part of Table VIII, the best results are obtained
by the EEND-NAA-Fixed system with iterative refinement.
From the newly proposed systems, the best performance can be
observed for the EEND-NAA-1step model, with only slightly
worse results than the basic EEND-NAA-Fixed system version.
The EEND-NAA-2step system shows improvement over the
baseline for subset with 2 speakers, with the most recordings
from all subsets. Contrary to the previous experiment EEND-
NAA-Overest improves compared to the baseline.

For the estimated speaker number condition, in Table VIII,
the EEND-NAA-2step system shows the lowest result for the
whole CALLHOME set. For the higher speaker number, the
system tends to underestimate the speaker number, resulting in
a lower DER value. The diarization results of EEND-NAA-1step
are slightly worse than those of the EEND-NAA-2step system.
Nonetheless, EEND-NAA-1step still provides an 8% relative
improvement for the whole set. The EEND-NAA-Overest ex-
hibits performance that is similar to the oracle number of speak-
ers condition. In all cases, except in the 6-speaker set, it provides
comparable results to those of the baseline.

In this section, we also present Table X with the results
of the most relevant for our work reference systems on the
CALLHOME dataset. X-vector model [9] represents the stan-
dard cluster-based method which uses x-vectors as speaker
embeddings, EEND-EDA is our reference model from [9], while
AED-EEND [12], EEND-VC [14], and EEND-GLA [25] denote
other three state-of-the-art systems introduced in Section II. We
would like to point out that in case of the systems presented in
the fourth and fifth row of Table X, the training procedure (i.e.
parameters used to create simulated mixtures and the number of
epochs applied) is different than in our evaluation protocol which
has a large impact on the final results. Thus, we do not compare
directly these results with the results from our experiments but
present them only as a frame of reference.

For further comprehensive evaluation with real data, we also
evaluated the selected systems on the DIHARD II dataset. The
results of this experiment are presented in Table XI. For the

TABLE XI
DER AND JER RESULTS ON DIHARD II DATASET

DIHARD II dataset, we compare the baseline EEND-EDA and
EEND-NAA-Fixed systems with the proposed EEND-NAA-
2step system. In particular, we present EEND-NAA-2step sys-
tem for three configurations of parameter K: (i) trained with
Ktrain = 10 and evaluated with Kinfer = 10, (ii) trained with
Ktrain = 10 and evaluated with Kinfer = 20, and (iii) trained
with Ktrain = 10 and evaluated with Kinfer = 20. In the first row
of Table XI, as a reference, we also provide the EEND-EDA
result from [9]. As can be observed, both NAA-based systems
achieve slightly better results than EEND-EDA. In case of the
EEND-NAA-Fixed the presented performance is lower than the
literature version of the EEND-EDA, especially in terms of
JER metric. In addition, for the EEND-NAA-2step system, we
can observe that the results are nearly the same between each
other, regardless of the K value used in training and inference.
This supports the statement that parameter K does not limit the
models capacity and can be changed at inference with respect
its initial value set in training.

VIII. CONCLUSION

This article has proposed a new development of the EEND
diarization system with non-autoregressive attractors (EEND-
NAA) that is capable of working under the condition of a
variable and unknown number of speakers. In particular, we
presented three new systems, which in this article are referred to
as EEND-NAA-Overest, EEND-NAA-1step, and EEND-NAA-
2step, respectively, that follow the EEND-NAA framework in-
troduced by the authors in a former conference paper, in which
non-autoregressive attractor estimation is integrated into the
end-to-end pipeline. The back-end structure has been extended
to two decoders that each refine the initial attractors to the desired
representations. As indicated by the results of the performed
experiments, in general, the proposed systems outperform the
baseline and even have the potential to further decrease the
diarization error rate (DER) value.

For conditions with a fixed number of speakers, the best results
were obtained with the EEND-NAA-Fixed and EEND-NAA-
2step systems. While in the condition with a fixed number of
speakers (Section VII-A), the results presented by the proposed
systems are competitive to the baseline models presented in the
literature (i.e., the baseline EEND-EDA and our EEND-NAA),
we can observe a clear gain for the condition of a variable
number of speakers. Both EEND-NAA-2step and EEN-NAA-
1step achieve up to 42% relative improvement over the baseline
EEND-EDA for all simulated recordings for the known number
of speakers and 32% for the estimated number of speakers.
Although one of the models presented in this article, which
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is referred to as EEND-NAA-Overest, did not achieve as low
DER values as the other two proposed systems for the 2-speaker
experiment, it also achieved good improvement over the baseline
EEND-EDA in scenarios with more than two speakers.

The performance of the proposed systems has been confirmed
by experiments performed on the CALLHOME dataset that
contains the recordings from real-life telephone conversations.
During the analysis of the results, the main conclusions were
primarily drawn based on the performance on the sets that
contain 2 and 3 speakers, as well as for the entire test set. The
motivation for using these subsets in the analysis is that their
results are the most reliable since the subsets containing from
4 to 6 speakers have at most only 20 utterances. The evaluation
also included the DIHARD II dataset, where we selected the
most important structures from the previous experiments. We
presented the improvement over EEND-EDA system and proved
that parameter K does not limit the EEND-NAA performance.
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based X-vector clustering for speaker diarization,” in Proc. Annu. Conf.
Int. Speech Commun. Assoc., 2019, pp. 346–350.

[4] L. Bullock, H. Bredin, and L. P. García-Perera, “Overlap-aware diarization:
Resegmentation using neural end-to-end overlapped speech detection,” in
Proc. ICASSP 2020-2020 IEEE Int. Conf. Acoust., Speech, Signal Process.,
2019, pp. 7114–7118.

[5] D. Raj, Z. Huang, and S. Khudanpur, “Multi-class spectral clustering
with overlaps for speaker diarization,” in Proc. 2021 IEEE Spoken Lang.
Technol. Workshop, 2020, pp. 582–589.

[6] H. Bredin and A. Laurent, “End-to-end speaker segmentation for overlap-
aware resegmentation,” in Proc. Annu. Conf. Int. Speech Commun. Assoc.,
2021, pp. 3111–3115.

[7] X. Fang et al., “A deep analysis of speech separation guided diarization
under realistic conditions,” in Proc. IEEE 2021 Asia-Pacific Signal Inf.
Process. Assoc. Annu. Summit Conf., 2021, pp. 667–671.

[8] Y. Fujita, N. Kanda, S. Horiguchi, K. Nagamatsu, and S. Watanabe,
“End-to-end neural speaker diarization with permutation-free objectives,”
in Proc. Annu. Conf. Int. Speech Commun. Assoc., 2019, pp. 4300–4304.

[9] S. Horiguchi, Y. Fujita, S. Watanabe, Y. Xue, and K. Nagamatsu, “End-to-
end speaker diarization for an unknown number of speakers with encoder-
decoder based attractors,” in Proc. Annu. Conf. Int. Speech Commun.
Assoc., 2020, pp. 269–273.

[10] K. Kinoshita, M. Delcroix, and N. Tawara, “Integrating end-to-end neural
and clustering-based diarization: Getting the best of both worlds,” in Proc.
ICASSP 2021 IEEE Int. Conf. Acoust., Speech, Signal Process., 2021,
pp. 7198–7202.

[11] D. Wang, X. Xiao, N. Kanda, T. Yoshioka, and J. Wu, “Target speaker voice
activity detection with transformers and its integration with end-to-end
neural diarization,” in Proc. ICASSP 2023 IEEE Int. Conf. Acoust., Speech,
Signal Process., 2023, pp. 1–5.

[12] Z. Chen, B. Han, S. Wang, and Y. Qian, “Attention-based encoder-decoder
network for end-to-end neural speaker diarization with target speaker
attractor,” in Proc. Annu. Conf. Int. Speech Commun. Assoc., 2023,
pp. 3552–3556.

[13] M. Rybicka, J. Villalba, N. Dehak, and K. Kowalczyk, “End-to-end neural
speaker diarization with an iterative refinement of non-autoregressive
attention-based attractors,” in Proc. Annu. Conf. Int. Speech Commun.
Assoc., 2022, pp. 5090–5094.

[14] K. Kinoshita, M. Delcroix, and N. Tawara, “Advances in integration
of end-to-end neural and clustering-based diarization for real conversa-
tional speech,” in Proc. Annu. Conf. Int. Speech Commun. Assoc., 2021,
pp. 3565–3569.

[15] K. Kinoshita, M. Delcroix, and T. Iwata, “Tight integration of neural- and
clustering-based diarization through deep unfolding of infinite Gaussian
mixture model,” in Proc. ICASSP 2022-2022 IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2022, pp. 8382–8386.

[16] I. Medennikov et al., “Target-speaker voice activity detection: A novel
approach for multi-speaker diarization in a dinner party scenario,” in Proc.
Annu. Conf. Int. Speech Commun. Assoc., 2020, pp. 274–278, 2020.

[17] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end
factor analysis for speaker verification,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 19, no. 4, pp. 788–798, May 2011.

[18] N. Chen, S. Watanabe, J. Villalba, P. Żelasko, and N. Dehak, “Non-
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Abstract—Speaker diarization and speech separation both aim
to track speaker activity in multi-speaker recordings, but they
differ in their granularity. Diarization provides a binary indication
of whether a speaker is active within a given time frame, whereas
speech separation produces individual audio signals, each contain-
ing the isolated speech of a specific speaker. Recently, there has been
growing interest in approaches that unify diarization and speech
separation, particularly those leveraging neural models trained
jointly to enhance performance in both tasks. In this letter, we pro-
pose a single neural model for joint speaker diarization and speech
separation. Our model estimates speaker representations using
a non-autoregressive attractor generation mechanism integrated
into a modified SepFormer model. We present two variants of the
model, designed for scenarios with sparse or highly overlapping
speech, which achieve relative improvements of 51% for both sep-
aration and diarization over state-of-the-art methods, as evaluated
on the LibriMix, LibriheavyMix and CALLHOME datasets.

Index Terms—Attractor mechanism, clustering, end-to-end,
non-autoregressive model, speaker diarization, speech separation.

I. INTRODUCTION

D IARIZATION answers the question “who spoke when”
by predicting the time stamps during which each speaker

is active in the recording. In turn, separation estimates the
individual waveforms of each speaker, typically by applying
time-frequency speech activity masks. In fact, separation and
diarization are closely related and can be seen as mutually
complementary tasks. Hence, a unified model has the potential
to boost performance and help address the challenges inherent
in each task. Speech separation simplifies the diarization task to
voice activity detection (VAD) applied on each separated audio
track, while the time stamps of segments that contain speech of
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a particular speaker could guide the separation process. A com-
bination of independent modules for diarization and separation
is presented in [1], [2]. A method for speaker separation via
neural diarization is introduced in [3], where End-to-End Neural
Diarization with Encoder-Decoder based Attractors (EEND-
EDA) [4] is used to produce speaker representations and count
the speaker number. The representations are composed into a
two-channel embedding sequence, which is fed as an additional
input to the separator to help track specific speakers. A similar
approach is taken in [5], where speech separation is performed
for a flexible number of speakers using the SepEDA structure
built on a SepFormer [6] with autoregressive attractors and the
speaker count provided by the EDA block. Recently, there has
been growing interest in the joint modeling of diarization and
separation. In [7], the Joint End-to-End Neural Speaker Diariza-
tion and Separation (EEND-SS) is introduced, combining Con-
vTasNet [8] for separation with EEND-EDA [4] for diarization
in a single, jointly trained structure. In Target-Speaker based
Separation (TS-SEP) [9], Target-Speaker VAD (TS-VAD) based
diarization [10] is used to retrain the binary time-activity result to
output the time-frequency masks. At the same time, the diariza-
tion result is derived based on the values of the separation masks.
Another approach PixIT [11] is based on the Dual-Path RNN
(DPRNN) [12], with an additional diarization output added in
parallel to the separation decoder and a combination of features
from WavLM and the separation encoder.

In this article, we propose a neural model for the joint
task of speech separation and speaker diarization. Similarly to
SepEDA [5], our approach is based on a modified SepFormer
model. However, unlike SepEDA, we enable true joint modeling
by extending the separation network with a diarization com-
ponent and employing an objective function that incorporates
both diarization and separation losses. In our approach, the bot-
tleneck features from the SepFormer-based separator are used
to estimate speaker representations (the so-called attractors),
which serve both for diarization and element-wise modulation
of dual-path embeddings in the separation branch. We intro-
duce two variants of the model, tailored for the recordings
with either sparse or highly overlapping speech. For sparsely
overlapping scenarios, which are typical in diarization tasks,
we adopt a Cluster-based Attractor (CA) mechanism, originally
introduced for the diarization task in [13], [14]. This method
aggregates, detects, and clusters embeddings corresponding to
single-speaker frames to compute attractors used to enhance
separation, while diarization decisions are derived from the final

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Diagrams of the general structure of the joint separation and diarization model and attractor generation modules.

separation masks. For highly overlapping speech conditions–
typical in separation tasks–we introduce Diarization-based At-
tractor (DA) estimation. Here, the aggregated embeddings are
passed through an EEND diarization encoder [4] followed by
speaker and diarization modules, to produce both diarization
predictions and speaker embeddings. These embeddings are
then used to compute the final attractors. Both variants were
evaluated on the LibriMix, LibriheavyMix and CALLHOME
datasets, showing improved performance over existing joint
models, while at minimum maintaining the performance of state-
of-the-art systems designed for the individual tasks. The baseline
and the proposed model structures are described in Sections II
and III. The experimental setup and results are presented in
Sections IV and V; Section VI provides the summary.

II. BASELINE SYSTEM OVERVIEW

The baseline structure, adopted in this work, builds upon the
SepFormer [6] and SepEDA [5] frameworks, both of which
directly estimate separated speech waveforms. The SepFormer
comprises three components: an encoder, masking network,
and decoder. The raw waveform input x ∈ R1×T , of length T
samples, enters the encoder consisting of a 1-D convolutional
layer with 256 filters, kernel-size of 16, stride of 8, followed by
a ReLU activation. As shown in Fig. 1(a), the resulting time-
feature matrix h ∈ RL×D–where L denotes the subsampled
time dimension andD the feature dimension–, is passed through
the normalization and linear layers within the masking network.
The output is then divided into overlapping chunks, producing
h′ ∈ RC×K×D, where C is the number of chunks and K is the
chunk size, set to 250. These segments are processed by the dual-
path block, a standard component of the SepFormer architecture.
In SepFormer [6] multiple dual-path blocks are used. Following
the SepEDA modifications [5], our architecture employs one
dual-path block and one triple-path block. The dual-path block
consists of intra-chunk and inter-chunk transformer layers: the
intra-chunk captures short-term dependencies within chunks,
while the inter-chunk models long-term dependencies across
chunks.

In SepEDA [5], the output of the dual-path block is passed
to the aggregation module, whose task is to aggregate the rep-
resentations at the chunk level g ∈ RC×D. The aggregation is
done through self-attentive weighted subspace projection [5].
This representation is fed into the attractor module, described in
Section III for the two proposed variants. The resulting attrac-
tors are then applied to the dual-path output via element-wise
multiplication, yielding the representation g′ ∈ RC×K×D×S , S
– number of speakers. In SepEDA [5], separation-only model,

autoregressive attractors from Encoder-Decoder-based Attrac-
tors (EDA) [4] are used. Next, the embeddings are processed by
the triple-path block, which extends dual-path with an additional
inter-channel transformer block that models inter-speaker de-
pendencies. The output is processed with pReLU, accompanied
by an overlap-add that merges the chunks into h′′′ ∈ RL×D×S .
This output is fed into two parallel linear layers—one with
a Tanh and the other with a Sigmoid — whose outputs are
combined via element-wise multiplication. Final speaker masks,
m ∈ RL×D×S , are obtained through another linear layer with
ReLU activation.

Finally, the decoder–a transposed convolutional layer with
the same parameters as the encoder–processes the masked en-
coder time-freq features h to reconstruct the separated speech
waveforms.

III. PROPOSED JOINT SEPARATION AND DIARIZATION

This letter presents a novel approach for joint speech sep-
aration and diarization (SepDiar) that builds upon a separa-
tion architecture and incorporates non-autoregressive attractor
generation mechanisms into the modified SepFormer model
(Fig. 1(a)). We focus on two ways of producing the attractors–
representations of the speakers present in the utterance. For
sparsely overlapping speech recordings, typical for diarization
tasks, we propose the SepDiarCA model, which employs non-
autoregressive cluster-based attractor generation. For highly
overlapping speech, more common for separation tasks, we pro-
pose the SepDiarDA model, which relies on diarization-based
attractor generation. Unlike SepEDA [5], which employs autore-
gressive attractors from EDA [4] solely for the separation task,
both SepDiar variants are trained jointly with combined diariza-
tion and separation objectives, and generate non-autoregressive
attractors tailored for the joint task.

A. Cluster-Based Attractor Estimation (SepDiarCA)

The SepDiarCA model employs Cluster-based Attractor (CA)
estimation, that is primarily based on time-frame embeddings
associated with single speakers. This non-autoregressive cluster-
based attractor generation mechanism, originally proposed for
diarization in [13], [14], is particularly effective for sparsely
overlapping speech such as in conversational scenarios. The
diagram of CA is in Fig. 1(b). Firstly, the aggregated embeddings
g ∈ RC×D are processed by a Single Speaker Activity Detection
(SSAD) module, which detects embeddings containing single-
speaker speech and filters out those representing overlap or
silence. SSAD consists of a single transformer encoder layer
followed by one-output linear classification layer that decides
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whether each embedding corresponds to a single speaker or not.
The resulting sequence c ∈ RC ′×D, where C ′ is the number
of single-speaker embeddings, is clustered by the k-means al-
gorithm, with the number of clusters equal to the number of
speakers present in the recording. The estimated cluster centers
c′ ∈ RS×D are selected as attractors. These attractors are then
applied to the dual-path embeddings via element-wise multipli-
cation to enhance speech separation. The diarization predictions
are retrieved from the separation masks predicted by the masking
network. A linear layer with Sigmoid activation applied on top
of all feature masks m for a particular speaker at a particular
time frame, returns the d ∈ RL×S diarization predictions.

For SepDiarCA model training, we minimize a sum of sepa-
ration, diarization, and SSAD classification losses,

LSepDiarCA = Lsep + Ldiar + LSSAD , (1)

where Lsep is the Scale-Independent SNR (SI-SNR) [7], Ldiar

is the diarization binary cross-entropy loss, computed as in [4],
while LSSAD is a binary classification cross-entropy loss which
decides whether a particular time frame corresponds to a
single-speaker embedding or not.

B. Diarization-Based Attractor Estimation (SepDiarDA)

To effectively handle recordings with high speech overlap,
we propose to incorporate Diarization-based Attractor (DA)
estimation, which replaces the clustering used in CA. We refer
to this model as SepDiarDA. The DA diagram is in Fig. 1(c).
The processing flow is inspired [15] which is based on a
classical EEND. In the proposed SepDiarDA, the aggregated
embeddings g ∈ RC×D are processed by the encoder module,
which is built with two transformer encoder layers. Next, the
resulting embedding sequence e ∈ RC×D is processed in par-
allel by two branches, namely the diarization and the speaker
modules. The diarization estimates speaker presence using a
linear layer, with Smax (max. speaker number) outputs, where
output ed ∈ RC×Smax indicates the probability that a particular
speaker is present in a given embedding. Simultaneously, the
speaker module–which consists of Smax linear layers–projects
the encoder embeddings into Smax distinct speaker representa-
tion sequences, forming es ∈ RC×Smax×D. The attractors are
computed as a weighted average of speaker representations,
using the diarization probabilities ed as soft weights. Although
SepDiarDA diarization results can be derived from the DA, we
extract diarization decisions from the masks via linear layer,
similarly to SepDiarCA, to achieve higher resolution, while
DA acts as a precise attractor estimator. Nevertheless, when
SepDiarDA is used solely for diarization, the structure up to
the DA operation is sufficient, enabling a much smaller model.

The SepDiarDA can count the number of speakers by detect-
ing the silent speakers in DA diarization decision, similar to [16].
We compute the mean diarization probability for each speaker
and compare it to a threshold τ = 0.05. If the mean is below
τ , the corresponding speaker is discarded. The loss function for
the SepDiarDA training is a sum of separationLsep,LDA speaker
activity, and mask diarization Ldiar loss:

LSepDiarDA = Lsep + LDA + Ldiar . (2)

Lsep and Ldiar are calculated in the same manner as for
SepDiarCA. LDA is the speaker-activity binary cross-entropy

loss obtained in the DA attractor generation module and calcu-
lated in an analogous way as the diarization loss.

IV. EVALUATION SETUP

Experimental evaluation is using SparseLibri2Mix [17],
CALLHOME (CH) [18], Libri2Mix, Libri3Mix [17] and Libri-
heavyMix [19]. Libri2Mix and Libri3Mix are created by mixing
LibriSpeech [20] utterances and WHAM! [21] noise samples,
representing highly overlapping speech scenarios. The train-
clean-100, dev-clean, and test-clean sets are used for training,
validation, and test. Mixtures are generated at 8 kHz sampling
rate in min mode, where the mixture duration matches the
shortest source utterance. SparseLibri2Mix simulates 2-speaker
conversational speech with limited overlap. It is generated using
the SparseLibriMix scripts1. The test set comprises six overlap
conditions, each with 500 mixtures. Following [7], we generated
5000 mixtures per condition for training and validation with a
90/10 split. In our experiments, we use clean version of test
sets since noise samples were of insufficient length to generate
noisy sets for training and validation [17]. LibriheavyMix [19] is
a recent large-scale dataset with simulated reverberant mixtures.
The training portion includes 1- to 4-speaker recordings. To
focus on multi-speaker separation, we select a subset from the
train-small set that contains mixtures with 2 to 4 speakers. For
validation, the dev subset is used. CH contains real-life telephone
conversations and is a common benchmark for diarization. CH
does not have the ground truth for separation; thus, we used
single-speaker regions from the train part of CH and simulated
2-speaker mixtures to adapt models for the joint task. For the
test, we used the 2-speaker subset of the test part [4].

For evaluation, we used SI-SDR improvement (SI-SDRi) [22]
and Diarization Error Rate (DER) with 0.00 collar, except CH
results, which used 0.25 s collar. In the experiment with a flexible
number of speakers, the Speaker Counting Accuracy (SCA),
expressed in %, is reported. We used Adam optimizer with
a learning rate 1.5e−4, patience of 2 and batch size 1. To fit
recordings into GPU memory, we limited lengths to under 25 s
for 2–3 speakers and 20 s for 4 speakers in LibriheavyMix.
Training was stopped if the validation loss does not improve
for five consecutive epochs.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. SparseLibri2Mix and CH for Conversational Recordings

Table I presents the results for the sparsely overlapped
SparseLibri2Mix mixtures and real-life recordings from CH.
Our proposed models, SepDiarCA and SepDiarDA, are com-
pared with baselines: EEND-SS [7] joint diarization and sepa-
ration, a diarization-only EEND-EDA [4], separation models
SepFormer [6] and SepEDA [5]. We observe notable differ-
ences between the results reported in [7] and the ones obtained
using our experimental setup. To ensure fair comparison, we
include EEND-EDA (Ours), trained using setup described in
Section IV. Since proposed models and SepEDA (∼13 M
params) are twice smaller than SepFormer (∼26 M params),
we present SepFormerS - SepFormer with half the number of
the inter- and intra-chunk blocks. SepFormerS has comparable

1https://github.com/popcornell/SparseLibriMix
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TABLE I
SPARSELIBRI2MIX AND CALLHOME (CH) RESULTS

TABLE II
RESULTS ON LIBRIHEAVYMIX

TABLE III
RESULTS ON COMBINED LIBRI2MIX AND LIBRI3MIX

results to SepFormer, with a slight degradation observed only
in the no-overlap condition. We further examine the impact
of integrating mask-based diarization estimation, an approach
applicable to most separation models. In the seventh and eighth
rows, we present SepFormerS and SepEDA extended with di-
arization estimation (denoted “+ Diar”). This extension does
not affect separation performance, while significantly improves
diarization accuracy compared to other baseline architectures.
Compared to EEND-SS, the proposed models achieve better
performance for all test sets and achieve top performance in
both separation and diarization. The last column presents the
diarization results for the CH set. The models were initialized
with SparseLibri2Mix, adapted with the simulated mixtures
from CH and fine-tuned only for diarization with the 2-speaker
train part of CH. The proposed systems not only perform best, but
also similar to the state-of-the-art diarization models (e.g. DER
= 8.35% for EEND-EDA in [4]). EEND-EDA (Ours) performs
worse than that due to a much smaller size of the training
set: while the standard diarization dataset has ∼2500 h [14],
SparseLibri2Mix has ∼60 h. Moreover, unlike standard EEND
diarization systems, the training scheme is designed for the
joint task. Note that, similar to other separation systems, the
proposed methods are limited to processing only relatively short
recordings compared to standard diarization systems.

B. LibriheavyMix for Fixed-Speaker Condition

Table II shows the performance on the LibriheavyMix and its
test sets: dev, test-clean, and test-other which contain 2–4 speak-
ers. For each speaker condition, the models were trained with the
corresponding speaker number. The reported results present the
average over the results for the varying speaker number. To keep

the comparison between models fair, we selected SepFormerS
and SepEDA with diarization (“+ Diar”). The first row presents
the results from the dataset paper [19] for a pretrained pyannote
system. As pyannote was not fine-tuned on LibriheavyMix,
its performance was significantly worse than that of the other
models. Among the models we trained, SepDiarDA achieves
the best results in both metrics. Interestingly, unlike in previous
experiments, SepEDA performs similarly to or slightly worse
than SepFormerS. Although SepDiarCA supports a flexible
number of speakers, we exclude its results from Tables II and III.
In recordings with high or full speech overlap, the absence of
single-speaker segments hinders the model’s ability to form
reliable speaker clusters from filtered embeddings, limiting its
effectiveness.

C. Libri2Mix and Libri3Mix for Flexible-Speaker Condition

Table III shows the results for a flexible, both estimated (Est)
and Oracle (i.e. known), speaker number. For all methods, the
corresponding model trained on Libri2Mix was used for initial-
ization. As training data, we combine Libri2Mix and Libri3Mix
train sets. In this final experiment, we present models with their
original size and task. Since SepFormer does not support speaker
counting, its results are only for the Oracle. Both SepEDA and
SepDiarDA provided strong and mutually comparable results.
SepDiarDA achieves a significantly better DER value compared
to the EEND-SS. The last three rows show the results for the
Oracle number of speakers, where SepDiarDA performs better
than SepEDA and SepFormer.

VI. CONCLUSION

This letter proposes two models, SepDiarCA and SepDi-
arDA, which incorporate non-autoregressive attractor genera-
tion mechanisms for joint speaker diarization and separation.
SepDiarCA leverages speaker information from single-speaker
regions, while SepDiarDA enables attractor estimation in highly
overlapping speech. Experimental results demonstrate their ef-
fectiveness in both conversational and high-overlap scenarios,
outperforming existing end-to-end neural models for the joint
task and matching or exceeding the performance of models
designed for the individual tasks.
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