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Abstract

In recent years, there has been an increase in the number of individuals affected by metabolic
disorders, such as abdominal obesity, insulin resistance, hypertension, and dyslipidaemia,
which significantly elevate the risk of cardiovascular diseases and type II diabetes.
Early monitoring of metabolic parameters enables the rapid detection of abnormalities
and the implementation of preventive measures, including lifestyle changes, which can reduce
the risk of complications.

Analysis of exhaled breath represents a promising diagnostic tool that has garnered
considerable attention in scientific research over the past few years. Apart from the major
compounds of exhaled air, such as nitrogen, carbon dioxide and oxygen, exhaled breath
contains thousands of volatile organic compounds that can serve as indicators of physiological
processes occurring in the body. Breath can be analysed using precise laboratory instruments,
such as gas chromatographs coupled with mass spectrometry, or with electronic noses
composed of a matrix of gas sensors. Due to the multidimensional nature of the data
and the complexity of breath composition, machine learning algorithms are usually employed
to analyse signals from breath-analysis devices, with the aim of disease detection
and prediction of health parameters.

The literature review on diseases studied for detection through exhaled breath analysis
has also been included in the dissertation to provide an overview of current challenges
from both medical and engineering perspectives. In this thesis, the Author also discusses
the current applications of data pre-processing methods and various machine learning
and Artificial Intelligence algorithms for analysing signals obtained from systems
based on electronic noses.

The research activities conducted during the doctoral process include laboratory studies
in which an electronic nose system and machine learning algorithms were developed
to detect diabetes in simulated exhaled breath, as well as the clinical evaluation during
the medical experiment. The developed e-nose system achieved accuracy of 99% for a diabetes
detection in simulated exhaled breath. The prediction of acetone concentration
(a diabetes biomarker) in gas mixtures achieved a mean absolute error of 0.248 ppm.
However, in the presence of high ethanol concentrations, which serve as an interfering factor,
the mean error increased to 0.568 ppm. Combined with classification algorithms, the electronic

nose was able to distinguish three metabolic states based on synthetic gas mixtures



with accuracies of 95%, 79%, and 88% for samples simulating healthy individuals, prediabetic
individuals, and diabetic patients, respectively.

In a medical experiment conducted with the approval of the Jagiellonian University
Bioethical Committee (KBET: 1072.6120.40.2023) on a group of 151 participants,
it was demonstrated that the developed electronic nose system, supported by machine learning
algorithms, can predict total cholesterol, glucose, and uric acid levels. The mean absolute errors
were 31.33 mg/dL for total cholesterol, 19.32 mg/dL for glucose, and 1.43 mg/dL for uric acid,
respectively.

The results presented in this doctoral dissertation confirm the potential for developing
a portable, non-invasive device for the early detection of metabolic disorders, thereby enabling
faster treatment and the prevention of complications, such as cardiovascular diseases

and diabetes.



Streszczenie

W  ostatnich latach obserwuje si¢ wzrost liczby o0s6b dotknigtych zaburzeniami
metabolicznymi, takimi jak otylo$¢ brzuszna, insulinooporno$¢, nadci$nienie tetnicze
czy dyslipidemia, co znaczaco zwigksza ryzyko wystapienia chordb sercowo-naczyniowych
oraz cukrzycy typu II. Wczesne monitorowanie parametréw metabolicznych pozwala
na szybka detekcje nieprawidlowosci 1 wdrozenie dzialan profilaktycznych, w tym zmiany
stylu zycia, co moze ograniczy¢ ryzyko wystapienia powiktan.

Analiza wydychanego powietrza stanowi obecnie obiecujace narzedzie diagnostyczne,
ktére w ostatnich latach zyskato duza popularno$¢ w badaniach naukowych. Wydychane
powietrze zawiera tysiace lotnych zwigzkoéw organicznych, ktére moga stuzy¢ jako wskazniki
zachodzacych w organizmie proceséw. Oddech moze by¢ analizowany za pomoca
laboratoryjnych, precyzyjnych urzadzen jak chromatografy gazowe sprzezone ze
spektrometrig masowa lub z wykorzystaniem elektronicznego nosa, sktadajacego si¢ z matrycy
sensoréw gazowych. Ze wzgledu na wielowymiarowo$¢ danych oraz zlozono$¢ sktadu
wydychanego powietrza do analizy sygnatow =z wurzadzen analizujagcych oddech
stosowane s3 algorytmy uczenia maszynowego, ktorych zadaniem jest detekcja
chordb i predykcja parametrow zdrowotnych.

W niniejszej rozprawie zamieszczono réwniez przeglad literatury dotyczacy chordb,
ktérych wykrywanie mozliwe jest poprzez analiz¢ wydychanego powietrza, aby przedstawi¢
przeglad obecnych wyzwan z perspektywy medycznej i inZynieryjnej. Omowiono rowniez
dotychczasowe zastosowania metod wstepnej obrobki danych oraz réznych algorytmow
uczenia maszynowego i sztucznej inteligencji do analizy sygnaléw uzyskiwanych z systemow
bazujacych na elektronicznych nosach.

Prace badawcze prowadzone w ramach pracy doktorskiej obejmuja badania
laboratoryjne, w ramach ktérych opracowano system elektronicznego nosa i algorytmy uczenia
maszynowego umozliwiajace wykrywanie cukrzycy w symulowanym wydechu, a takze oceng
kliniczng w trakcie eksperymentu medycznego. System osiggnat doktadnos$¢ detekcji
cukrzycy, w symulowanym oddechu, na poziomie 99%. Predykcja st¢zenia acetonu
(biomarkera cukrzycy), w mieszankach gazowych osiggnela Sredni btad bezwzgledny
0,248 ppm, natomiast w obecno$ci w mieszankach wysokich st¢zen etanolu - jako czynnika
interferencyjnego - $redni btad wyniost 0,568 ppm. W potaczeniu z algorytmami klasyfikacji

elektroniczny nos umozliwit rozroznienie trzech stand6w metabolicznych na podstawie



syntetycznych mieszanek gazowych z precyzja odpowiednio 95%, 79% 1 88% dla probek
symulujacych osoby zdrowe, w stanie przedcukrzycowym oraz chore na cukrzyce.

W  ramach eksperymentu  medycznego, przeprowadzonego za  zgoda
Komisji Bioetycznej UJ (KBET: 1072.6120.40.2023) na grupie 151 0sob, wykazano, ze system
elektronicznego wspierany algorytmami uczenia maszynowego umozliwia przewidywanie
pozioméw cholesterolu catkowitego, glukozy oraz kwasu moczowego. Sredni blad
bezwzgledny wynidst odpowiednio 31,33 mg/dl dla catkowitego cholesterolu,
19,32 mg/dl dla glukozy oraz 1,43 mg/dl dla kwasu moczowego.

Wyniki badan zaprezentowane w tej rozprawie doktorskiej potwierdzajag mozliwosé
opracowania przenosnego, nieinwazyjnego urzadzenia do wczesnego wykrywania zaburzen
metabolicznych, co pozwala na szybsze leczenie 1 zapobieganie powiklaniom,

takim jak cukrzyca czy choroby uktadu krazenia.
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1. Introduction

Exhaled breath analysis (EBA) is currently one of the most promising areas of development
in non-invasive medical diagnostic tools. Human breath contains hundreds and even thousands
of volatile organic compounds (VOCs), which can be products of metabolic processes
occurring within the body (endogenous biomarkers) or result from environmental influences
(exogenous biomarkers) [1]. Their chemical profile can provide valuable information
about a patient's health and indicate the presence of specific disorders. The advantages of this
method include its complete non-invasiveness, safety, and potential use in screening
and disease monitoring.

In recent years, there has been a growing interest in the use of electronic nose (e-nose)
systems for breath analysis [2], [3], [4]. These systems comprise a set of selected gas sensors
and data processing modules, often supported by machine learning (ML) methods, that enable
the identification of complex patterns that occur in sensor signals. This enables
not only the detection of individual biomarkers but also the classification of entire respiratory
profiles characteristic of specific diseases. Different diseases produce different patterns
in breath; sometimes it is a change in the level of one or more biomarkers [5], [6], [7], [8], [9],
and sometimes it is a change in the entire VOC profile [10], [11]. Exhaled breath analysis
is an approved diagnostic method for detecting conditions such as asthma [12], [13] or lactose
intolerance [14]. Research into metabolic diseases, such as diabetes and hypercholesterolemia,
is critical, as early detection and monitoring are crucial for maintaining population health [15],
[16],[17], [18].

Despite the great potential of this method, several research challenges remain.
The VOCs profile is complex and can be influenced by numerous environmental
and physiological factors. Classical analysis methods are insufficient for interpreting complex
and nonlinear signals generated by sensors in the e-nose system. Therefore, machine learning
algorithms play a crucial role in pattern recognition in multidimensional data, predicting
biochemical parameter values, and classifying samples corresponding to various health states.

This doctoral dissertation was written as a series of research papers and focuses on
the application of machine learning algorithms to the analysis of e-nose data in the context
of detecting metabolic diseases. This work aimed to develop and validate an approach
combining laboratory studies on model gas mixtures with the analysis of exhaled air samples

from patients.

14



The research hypothesis: the e-nose system, supported by dedicated machine
learning algorithms, can effectively predict selected metabolic parameters and classify
samples according to patient health status.

The dissertation is structured in four main parts.

Chapter 2 presents a literature review on exhaled breath analysis in disease diagnosis,
with particular emphasis on the role of e-nose systems and machine learning algorithms.
This part contains two research papers: a book chapter discussing the application of e-nose
and ML in medicine [AP1], and a review paper on machine learning algorithms used
in diabetes detection [AP2].

Chapter 3 presents the results of laboratory studies conducted on artificially prepared
gas mixtures, including an analysis of the feasibility of detecting acetone and classifying
samples. This chapter contains three research papers concerning [AP3, AP4, APS]:
the detection of acetone as a biomarker of diabetes, the prediction of its concentration
in the presence of ethanol, and the classification of samples corresponding to various diabetes
states.

Chapter 4  presents the results of clinical studies conducted
on a group of 151 individuals, including the prediction of cholesterol, glucose, and uric acid
concentrations based on exhaled air analysis. This chapter contains two research papers:
a full paper on cholesterol prediction [AP6] and a conference paper [AP7]
on the prediction of glucose and uric acid levels.

The final chapter, Chapter 5, summarises the results and indicates directions for further
research and potential applications of the developed system in clinical practice.

In summary, this work presents a consistent series of studies on the use of the electronic
nose and machine learning algorithms in the diagnosis of metabolic diseases, focusing on both
the laboratory and clinical phases. The obtained results confirm the potential of this approach
as a non-invasive, safe, and user-friendly method that could find applications in future medical

practices.
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2. Machine learning algorithms
for disease detection in exhaled breath
using e-nose systems

Exhaled breath analysis is a promising diagnostic tool that has attracted significant attention
in clinical research over the past few years. Breath contains up to thousands of volatile organic
compounds, which act as biomarkers for processes occurring within the human body.
These biomarkers can be classified into endogenous, resulting from metabolic and biochemical
activities, and exogenous, originating from external sources such as the environment, diet,
or smoking [1]. Variations in the concentrations or ratios of these compounds can indicate
the presence of specific diseases, sometimes before known clinical symptoms appear.
This technique is entirely non-invasive, safe, quick, and well-accepted by patients, contributing
to its increasing popularity and application in screening and health monitoring.
An electronic nose for EBA is a device equipped with a set of chemical sensors that respond
to the presence of various volatile compounds in exhaled air. Scheme of breath analysis

measurement techniques is shown in Figure 2.1.
Typical sensors used in the e-nose include [19], [20]:

e Metal-Oxide Semiconductor (MOS/MOX) sensors - respond to oxidising or reducing
gases by a change in conductivity. MOS sensors are highly sensitive,
but affected by temperature and humidity and have limited selectivity [21].

e Electrochemical sensors - generate an electrical signal as a result of chemical reactions
between gases at electrodes. Electrochemical sensors are highly selective
and used to detect individual gases at low concentrations [22].

e Optical sensors - use absorption, fluorescence, or changes in light intensity in response
to the presence of specific gases. Optical sensors offer high selectivity and sensitivity;
however, they are more expensive, consume more power, and are larger than MOS
or electrochemical sensors. They are also sensitive to dirt and moisture, detecting only
selected radiation-absorbing gases (e.g., CO2, CHa, CO), rather than the entire spectrum
of compounds present in breath [23], [24], [25].
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Exhaled air can also be analysed using precise laboratory techniques, such as:

e Gas chromatography coupled with mass spectrometry (GC-MS) - enables
the identification and quantification of individual volatile compounds [4], [26].

e Infrared spectroscopy (IR, FTIR) - allows the detection of characteristic absorption
bands of gases [27], [28].

e Electron ion spectroscopy (PTR-MS, SIFT-MS) - enables the rapid and direct detection
of many VOC:s in real time [29], [30].

Unlike these precise laboratory methods, the e-nose commonly focuses on recognising
characteristic sensor response patterns, known as breathprints [31]. These patterns reflect the
unique composition of VOCs in the sample, including both endogenous and exogenous
biomarkers. Sometimes e-nose systems are designed to detect the concentration of selected
biomarkers. The e-nose offers several advantages, including fast analysis, eliminating the need
for complicated sample preparation, and the possibility of making the device small
enough to be portable [32]. This makes it suitable for point-of-care diagnostic and screening

systems.

Exhaled breath

v v v

Nitrogen, Oxygen,
Carbon Dioxide

Endogenous biomarkers Exogenous biomarkers

Analytics methods

v v

Laboratory techniques: e-nose systems:

- GC/MS - MOS/MOX sensors

- 1R, FTIR - Electrochemical sensors
- PTR-MS, SIFT-MS - Optical sensors

Fig. 2.1. Breath analysis scheme.
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In general, exhaled breath analysis can be done in two ways: online, where the patient
blows directly into the device [25], [33], [34], and offline [35], [36], where the breath
is collected in special bags [37], [38], [39] or specially designed breath samplers like ReCIVA®
[40] and analysed later.

Despite the increasing use of electronic noses in medical diagnostics, these systems face
significant limitations arising from both sensor properties and the nature of exhaled air.

First, the signals produced by e-nose sensors are characterised by high noise levels,
caused by random fluctuations and environmental interference. Many gas sensor types can also
exhibit time drift, which is a gradual change in response unrelated to variations in gas
concentration. This drift may result from material ageing, adsorption of compounds, or changes
in operating conditions [41], [42], [43].

Second, measurement results are influenced by environmental factors such as
temperature, humidity, and the presence of other VOCs in the breath sample. In exhaled breath
analysis, high breath humidity is the main factor affecting sensor response.
Additionally, signals can vary depending on individual patient factors, such as diet, lifestyle
and metabolic rhythm, introducing notable inter-individual variability [44], [45].

Another limitation involves the high complexity and nonlinearity of the signals,
stemming from interactions among multiple compounds within a sample and the sensor array's
characteristics. Furthermore, some sensors are cross-sensitive, responding to multiple
compounds, which complicates interpretation and highlights the need to use an e-nose system
supported by signal analysis and machine learning algorithms [18], [46], [47].

The challenges above show why we need advanced approaches to process and analyse
data. Signal processing can involve removing noise, adjusting signals to a common scale,
correcting sensor drift, and reducing the amount of data while keeping the important
information. These methods help make signals more stable and easier to compare, even when
there are short-term changes in the environment or small differences between sensors.

Machine learning algorithms facilitate the identification of subtle patterns within
the multidimensional, nonlinear data generated by the sensor array. Most popular techniques
include, for example, Support Vector Machines (SVM) [48], [49], Decision Trees [50],
eXtremeGradientBoosting (XGBoost) [49], [51], and even more sophisticated approaches
such as Deep Learning [52], [53], ensemble methods and gradient boosted algorithms.

The combination of an appropriately designed e-nose system (including hardware
and measurement technology, data pre-processing techniques, and machine learning

algorithms) can classify breath samples to identify specific diseases or metabolic disorders.
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It can also estimate health parameters that are typically measured from blood samples.
The use of machine learning algorithms can also reduce the effects of environmental
and inter-individual variability. A key step in the analysis is ensuring the interpretability
of the algorithms' results and decisions, which helps identify the most crucial signal features,
supports interpretation and system optimisation, and builds trust among physicians
and patients.

In practice, combining the e-nose with machine learning creates screening tools that are
highly accurate and sensitive, enabling the early detection of diseases with minimal patient
discomfort. This approach supports both clinical research and the creation of real-time health
monitoring and screening systems that can be used directly at the point of care.

The e-nose development roadmap is shown in Figure 2.2.

. Compliance
Hardware Machine . ..
Measurement Data Data . with Clinical .
and . . learning . CE Medical
method collection pre-processing . ISO standards Trials
firmware algorithms

e.g. 15013485

Fig. 2.2. E-nose development-to-market roadmap.

This chapter first provides an overview of diseases detectable via exhaled breath
analysis (Section 2.1). Subsequently, it discusses the role of Artificial Intelligence (Al)
in e-nose data processing (Section 2.2) and reviews algorithms and gas sensors specifically

applied to diabetes detection (Section 2.3).

2.1. Overview of Diseases Detectable Through
Exhaled Breath Analysis

Medical literature increasingly emphasises the fact that exhaled air can reflect the health
of many organs and body systems. Characteristic exhaled breath profiles can signal
the presence of, for example, metabolic [54], [55], cancer [56], [57], [58], [59], [60], respiratory
[2],[61], [62] diseases. In clinical practice, breath analysis enables the early detection of certain
conditions, often before visible symptoms appear.

The complexity and variability of these signals require the use of appropriate data
analysis methods. Several machine learning and signal processing algorithms have been

described in the literature to support the classification of breath samples, the identification of
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subtle differences between patient groups, and the potential correlations with health status.
These techniques include supervised, unsupervised, and hybrid methods, which allow for the

extraction of meaningful information from large, multidimensional, and nonlinear datasets.

2.1.1. Cancers

Cancer is a group of diseases in which abnormal cells begin to grow uncontrollably
and can spread to other parts of the body. According to the World Health Organization (WHO),
it is the second leading cause of death worldwide — in 2018, an estimated 9.6 million people
died from cancer, accounting for 1 in 6 deaths. The most common cancers in men include lung,
prostate, colon, stomach, and liver cancers, while in women, the most common are breast,
colon, lung, cervical, and thyroid cancers [63].

The global cancer problem is growing, having a huge impact on the health, lives,
and finances of people and healthcare systems. The WHO estimates that 30% to 50% of cancer
deaths could be avoided. This can be achieved by making healthier lifestyle choices,
such as not smoking, eating a balanced diet, staying active, and limiting alcohol consumption,
and by utilising proven prevention strategies, including vaccinations and regular health
check-ups. By taking these steps, many cancers could be prevented before they even start.
Early detection and effective treatment significantly increase the chances of survival and
reduce side effects and treatment costs [63].

There is growing hope for breath analysis, which may pave the way for rapid,
non-invasive, and early diagnosis, providing the opportunity for more effective treatment even
before symptoms appear. Scientists are currently analysing human breath to detect
non-invasively: breast [57], [64], [65], [66], lung [4], [20], [67], colorectal [64], [68], [69],
[70], prostate [64], [71], [72], [73] and thyroid [3], [74] cancers.

In the case of colorectal cancer (CRC), an increase in the level of alcohols, ketones,
aldehydes [60] and commonly a difference in the exhaled level of dinitrogen oxide, nitrous
acid, acetic acid, xylene, 1,3-butadiene [56], ammonia, ethanol, propanol [75], ethylbenzene,
methylbenzene, and tetradecane has been found. For example, Haick et al. patented
1,3,5-cycloheptatriene as a CRC biomarker, which is not observed in breath samples from
patients with other cancers [59], [76]. Zonta et al. used a fabricated 5-sensor array, principal
component analysis (PCA) and SVM to detect cancer in collected breath samples.
They achieved sensitivity and specificity at 95% [69]. Malagu et al. proposed a sensor array
composed of twelve metal-oxide semiconducting films. They tested its responses for gas

mixtures containing benzene, methane, and nitrogen oxide as a potential biomarker
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of CRC [68]. The Aeonose (The eNose Company), which includes three metal-oxide sensors,
was used to analyse 511 exhaled breath samples. Sensor data were compressed
using a Tucker3-like solution, and an artificial neural network was trained, resulting in an area
under curve (AUC) of 0.84. The cited studies demonstrate that a specific set of VOCs
is characteristic of CRC, and the use of an array of sensors combined with machine learning
algorithms enables the detection of CRC in exhaled air with high accuracy.

Binson et al. conducted a study using an electronic nose system to detect lung cancer
by analysing VOCs in exhaled air. The study included 22 patients with lung cancer and
40 healthy controls. Five gas sensors were used in the e-nose system (TGS2600, TGS2620,
TGS822, TGS826, TGS2610), which are low-cost, fast-response, and low-power.
Data from the sensors were analysed using three classification algorithms: linear discriminant
analysis (LDA), k-Nearest Neighbours (kNN), and SVM. The LDA algorithm achieved the
best results, with a classification accuracy of 93.14%, a sensitivity of 88.63%,
a specificity of 95.62%, and an area under the receiver operating characteristic curve (ROC)
curve of 0.98. The authors indicated that the e-nose system shows excellent potential for rapid
and non-invasive detection of lung cancer. However, further research is needed on sensor

stability and increasing sample representativeness [67].

2.1.2. Respiratory diseases

Respiratory diseases encompass a wide range of conditions affecting the airways
and lungs. These include asthma, chronic obstructive pulmonary disease (COPD), respiratory
infections, cystic fibrosis, and lung cancer. COPD and asthma are common respiratory diseases
with a significant impact on public health. According to the WHO, COPD causes about
3.23 million deaths worldwide each year. Asthma affects more than 262 million people
and leads to around 461,000 deaths annually. COPD makes it difficult to breathe
and often causes cough and shortness of breath [77]. Asthma is characterised by reversible
narrowing of the airways, attacks of shortness of breath, and wheezing, frequently triggered by
allergens, infections, or physical exertion. Respiratory infections, both viral and bacterial, can
cause bronchitis and pneumonia, and in some cases, lead to chronic changes in lung tissue [78].
Early diagnosis of COPD and asthma allows for the implementation of appropriate treatment
and prevention, significantly reducing the frequency of exacerbations and limiting permanent
lung damage. Furthermore, it allows for individualised therapy and patient education,

improving quality of life and respiratory function.
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Chronic respiratory diseases such as COPD and asthma are associated with chronic lung
inflammation, which increases susceptibility to tissue damage and the development of lung
cancer. People with COPD are particularly susceptible to lung cancer, while asthma, although
less likely to lead directly to cancer, can promote changes in lung tissue due to long-term
inflammation. Methods for detecting and distinguishing these diseases based on exhaled breath
analysis are gaining popularity and hold promise for non-invasive diagnostics [2], [61], [62].

The study by Fens et al. involved 100 patients: 21 with fixed airways obstruction
(fixed asthma), 39 with reversible airways obstruction (classic asthma), and 40 patients with
COPD (GOLD stages II-III). A Cyranose 320 electronic nose, equipped with an array
of 32 carbon-black polymer sensors responding with a change in resistance to volatile organic
compounds, was used to record respiratory profiles. The acquired signals created characteristic
"breath fingerprints," which were then analysed using principal component analysis
for dimensionality reduction and canonical discriminant analysis for patient classification.
The results showed that the method effectively distinguished between fixed asthma and COPD,
as well as classic asthma, achieving accuracies of 88% and 83%, respectively,
and high AUC values above 0.93, indicating the eNose's significant potential as a non-invasive
tool supporting the differential diagnosis of obstructive lung diseases [62].

A study by de Vries et al. evaluated whether exhaled breath analysis using the e-nose
scan detect early lung cancer in patients with COPD. A total of 682 patients with COPD
and 211 patients with lung cancer participated. Within 2 years of study entry, 37 (5.4%) COPD
patients developed lung cancer. The eNose SpiroNose (metal-oxide semiconductor)
was integrated with a pneumotachograph (SpiroNose; Breathomix) for measurements,
allowing for the collection of breath samples in a clinical setting. The collected data - subjected
to advanced processing, correction for ambient air effects, and principal component analysis -
were then classified using LDA and evaluated using ROC curves. Distinguishing patients with
COPD from those with lung cancer achieved an AUC of 0.89 and predicting which COPD
patients would develop cancer within 2 years of enrolment, the model achieved an AUC of
0.90 with an accuracy (cross-validation) of 87%. The results suggest that the eNose may be a
non-invasive tool for not only distinguishing COPD from lung cancer but also for early

detection of lung cancer in patients with COPD [61].

22



2.1.3. Chronic kidney disease

Chronic kidney disease (CKD) is a condition that affects the kidneys’ ability to function
correctly. In the early stages, it often shows no symptoms, but over time it can cause fatigue,
blood in the urine, and swelling, especially in people with diabetes, high blood pressure,
or those taking certain long-term medications. Because CKD allows toxins to accumulate in
the body, it alters the composition of blood, urine, saliva, and even breath - changes that can
be monitored to help detect and track the disease and the effectiveness of the haemodialysis.
New technologies, such as Al-powered electronic noses, are making it possible
to do this in a simple, non-invasive, and affordable manner [79].

Guo et al. developed an electronic nose system enhanced with machine learning
algorithms to detect breath samples from healthy individuals as well as from those
with diabetes, kidney disease, or respiratory inflammation. The system can also be used to
evaluate the effectiveness of haemodialysis. In their study, they used an array
of 12 metal-oxide semiconductor gas sensors housed in a steel measurement chamber.
To test the system's accuracy in classifying different breath samples, training and test sets were
randomly selected for each disease group, and features were extracted using PCA.
Classification was then performed using a kNN with k = 5. The system achieved an average
classification accuracy of 80.15% for samples taken before haemodialysis and 82.0% for
samples after haemodialysis, demonstrating its potential for non-invasive monitoring of
treatment effectiveness. When distinguishing between healthy breath samples and those from
individuals with diabetes, kidney disease, or respiratory inflammation, the e-nose demonstrated
high sensitivity, at 87.67% for diabetes, 86.57% for kidney disease, and 70.20% for airway
inflammation. Similarly, it showed high specificity at 86.87%, 83.47%, and 75.07%,
respectively. These results indicate strong performance in detecting diabetes and kidney
disease, with slightly lower accuracy in detecting respiratory inflammation [80].

Another study on the effectiveness of dialysis was conducted by Jayasree et al.
The authors proposed a system for detecting ammonia in the exhaled breath of patients
with renal failure using MOS sensors and an SVM classifier. Analysis of samples from
40 patients, both before and after dialysis, enabled the extraction of geometric features such as
rise time, peak time, and maximum voltage. The best results were obtained with the
TGS2444 sensor, achieving a classification accuracy of 88% using all three features.
The MQ137 and MQ135 sensors correctly classified most of the predialysis samples, but the
algorithm performed less well in classifying the postdialysis group [81].
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2.1.4. Use of Breath Tests in Clinical Diagnostics

2.1.4.1. Helicobacter pylori — Urea Breath Test (UBT)

Helicobacter pylori is a bacterium that colonises the gastric mucosa and can lead to chronic
inflammation, gastric and duodenal ulcers, and increase the risk of developing stomach cancer.
The urea breath test (UBT) involves the ingestion of urea labelled with a carbon isotope
(*C or '*C). The bacterium breaks down urea into ammonia and carbon dioxide, which are
released into the exhaled air and measured using a detector. The test is non-invasive, rapid,
and highly sensitive, and is used both to detect infections and to monitor the effectiveness of

eradication therapy [82].

2.14.2. Carbohydrate Intolerances and SIBO — Hydrogen Tests

Lactose, fructose, or sorbitol intolerances, as well as small intestinal bacterial overgrowth
(SIBO), cause gastrointestinal symptoms such as bloating, diarrhoea, and abdominal pain.
Breath tests involve consuming a specific sugar and then measuring the concentration of
hydrogen and/or methane in exhaled air over the following hours. Gut bacteria ferment
unabsorbed sugars, producing gases that are exhaled. An increase in hydrogen or methane
above normal levels indicates digestive disorders or the presence of SIBO. The test is safe,

non-invasive, and commonly used to diagnose intestinal disorders [83], [84].

2.1.4.3. Asthma — Fractional Nitric Oxide Measurement

Measuring fractional nitric oxide (FeNO) in exhaled air enables the assessment of the degree
of eosinophilic bronchitis, a characteristic of allergic asthma and can be used
as a complementary diagnostic tool according to the Official Clinical Practice Guideline
developed by the American Thoracic Society (ATS) [85]. Higher FeNO values indicate active
inflammation and aid in selecting the appropriate inhaled corticosteroid therapy.
The test is non-invasive, quick, and repeatable, and its results support both diagnosis and

monitoring of therapy effectiveness [13], [86].

2.1.5. Other diseases that can be detected by breath testing

Diagnosing diseases based on exhaled air is a rapidly evolving field, and researchers

are seeking correlations between various diseases and the volatile organic compounds present
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in breath. In addition to the diseases presented in this chapter, researchers are particularly
interested in detecting diabetes, metabolic syndrome, and ketosis through
the analysis of specific biomarkers in breath. The most important marker of ketosis is acetone
[87], [88], whose concentration increases in uncontrolled diabetes and during ketosis.
Other volatile organic compounds, such as isoprene [18], [89] and aldehydes, may indicate
oxidative stress, lipid disorders, and early symptoms of metabolic syndrome [90].
Diabetes detection using breath analysis by the e-nose system supported by machine learning
algorithms is discussed in detail in Section 2.3.

Additionally, work is underway on the detection of diseases from breath,
such as neurodegenerative diseases (Alzheimer's disease, Parkinson's disease), cardiovascular
diseases, SARS-CoV-2, and halitosis. Details are discussed in Chapter 4 of the book Exhaled
Breath Analysis [91].

Breath analysis has broad and diverse applications in scientific research, and its current
use in clinical practice highlights both the potential and the need for further development
of this field. Advances in e-nose systems and artificial intelligence algorithms create a real
possibility of introducing additional clinically validated, non-invasive disease detection

methods that can significantly improve patient diagnosis and monitoring.
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2.2. Recent Achievements of Exhaled Breath Analysis
at the Research Stage - Artificial Intelligence
and Machine Learning Algorithms

CHAPTER

Recent achievements of
exhaled breath analysis at
the research stage—
Artificial intelligence and
machine learning
algorithms

Anna Paleczek
AGH University of Krakow, Biomarkers Analysis LAB, Institute of Electronics, Krakow, Poland

7.1 Introduction

Breath sample analysis is a complex task. Samples can be measured both by
advanced methods such as gas chromatography and mass spectrometry as well as
by using e-noses (commercial and specially manufactured for specific studies). In
each of these cases, a large amount of multidimensional data is created, which makes
it impossible to analyze with the naked eye and diagnose the disease or draw con-
clusions from it. In many cases, data are even impossible to visualize in 2D and
3D space. For this reason, data preprocessing methods and machine learning algo-
rithms are used, which enable reducing the dimensionality of data, data analysis
and visualizations, disease classification, and, increasingly often, the interpretation
of algorithm decisions (Fig. 7.1).
The individual steps of the breath sample processing pipeline are as follows:

1 Data collection—Training machine learning algorithms in medical cases is
challenging due to ethical and regulatory constraints, patient recruitment, and
logistical issues with collecting exhaled air samples, which can be performed
online or offline. Accurate breath analysis with AI/ML algorithms requires
comprehensive patient data to focus on correlation VOC profiles or specific
compounds with diseases and blood parameters.

2 Data preprocessing—Data from gas sensors are most often the results of mea-
surements of electrical values affected by noise and drift; therefore, the use of
preprocessing techniques significantly improves the effectiveness of regression
or signal classification methods. One of the stages of data preprocessing is
normalization (standardization).

3 Feature engineering—This is one part of the breath analysis data processing
pipeline. During this stage, based on the course of the sensor response to the

Exhaled Breath Analysis. https://doi.org/10.1016/B978-0-443-33796-3.00005-2 325
Copyright © 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and similar technologies.
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Data collection —>  Data pre-processing  —»  Feature engineering —» Feature selection

Al models (Machine
Deploying systems ~— «— Explainable Al «—  Learning and Deep
Learning models)

FIGURE 7.1

General Block Diagram of Al/ML Breath Analysis Systems.

Presents a general block diagram showing the procedure of analyzing breath samples
from taking a sample from people to obtaining a visualization and final diagnosis, and in
some cases, to deploying the solution to web, loT, or embedded platforms.

breath sample, features are determined using signal processing methods and
domain knowledge. The use of feature engineering increases the efficiency of the
algorithms and allows the conversion of multidimensional time series data into a
one-dimensional feature vector, which can be further used to train machine
learning algorithms. In addition, researchers use clinical data from patients that
can affect the composition of the breath, such as age, gender, and smoking status,
which increase the efficiency of the algorithms.

4 Feature selection—The aim of this step is to emphasize the importance of feature
selection in data processing, especially when handling a large number of features
from multiple sensors. Using too many features can lead to overfitting and poor
generalization, so dimensionality reduction techniques like PCA and LDA, as
well as other methods such as ICA and KPCA, are employed to reduce the
feature space. These techniques aim to retain essential information or maximize
class separation. In addition, recursive feature elimination, greedy search, and
regularization methods like Lasso and its variations (e.g., SGL) are used in
breath analysis tasks, showing their effectiveness in improving model perfor-
mance and identifying important features.

5 AI models (Machine Learning and Deep Learning models)—This part is the
most complex stage of the pipeline. It consists of the appropriate selection of the
algorithm for the task, depending on the type of data and the availability of
labels. Most often, several algorithms from the same type of learning are tested
and the best one is selected based on the appropriate metrics. During training, it
is important to properly interpret its course as well as metrics to obtain the best
model and avoid underfitting or overfitting the model.

6 Explainable AI—AI algorithms often operate as black boxes, providing results
like disease diagnoses without insight into their decision-making process. This
lack of transparency is risky, especially in medicine, highlighting the need for
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explainable Al to identify errors and discover new disease factors. Under-
standing feature impact improves trust among doctors and patients and enables
sensor optimization in breath-based disease detection. This can minimize device
size, reduce costs and energy consumption, and enhance accessibility.

7 Deploying systems—Many e-nose systems are developed primarily on data
collected online and then analyzed using machine learning algorithms. To create
a portable, widely available e-nose device for diagnosing diseases based on the
analysis of exhaled air, it is necessary to deploy the entire pipeline, including
preprocessing and model interference to enable real-time diagnosis. For this
purpose, various platforms are used, often based on the Internet of Things
technology.

7.2 Data collection

To train machine learning algorithms, it is necessary to have a large data set. In cases
involving data from humans, that is, in medical cases, including the analysis of
exhaled air, this is often a difficult task, requiring the consent of the bioethics com-
mittee, preparation of an appropriate protocol, conducting research in accordance
with the Declaration of Helsinki, local statutory requirements, as well as compliance
with personal data protection regulations (e.g., GDPR) [1]. It is also often difficult to
find the right group of patients with specific health parameters or rare diseases.
Exhaled air can be collected online (directly to the device) [2] and offline (into
specialist bags, e.g., Tedlar® [3—6]), which is also a limitation and results in diffi-
culty in analyzing breaths. For online measurement, it is necessary for patients to
come to a scientific laboratory or transport the device to a medical facility, which
is often difficult to organize. By contrast, in the case of offline measurements, the
breath sample can be collected in a special bag, but there are also limitations in
its storage and transport, which is why the analysis device should be located close
to the breath collection point, for example, a hospital.

In addition to the breath sample, it is necessary to collect data about the patient
and their medical history to train machine learning algorithms. Patient data often
include venous or capillary blood test results and also imaging test results [7—10].
In addition, data on medications taken are collected as is demographic data of the
patients (age, gender, body weight, medical history). In the case of breath sample
analysis, it is also important to have information on whether the patient is a smoker
or former smoker and obtain data relating to recent intake of food and fluids [7—9].
Such external factors can have a key impact on the results of breath tests.

There are several ways to assess the physiological state of the body through
breath tests and their analysis using machine learning algorithms:

* Analysis of the correlation of the entire respiratory profile (VOCs profile) with a
given disease entity [11—16],
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* Detection of a specific compound from the breath and association of its presence
with the disease [17—20],

* Detection of a specific compound (several defined compounds) in the breath and
correlation of its/their concentrations with a blood parameter, for example,
blood glucose level [21,22] or cholesterol level [10].

Paying great attention to collecting breath samples and patient information is a
crucial stage in creating machine learning algorithms.

7.3 Data preprocessing

Data preprocessing is the first step in preparing the collected sensor data for further
processing using machine learning and Al algorithms. Data from gas sensors are
most often measured electrical values that are burdened with measurement errors
and noise or drift related to the nature of the sensor layers. Data quality significantly
affects the training process and the efficiency of models. Researchers use various
signal processing techniques such as filtering or normalization to deal with the
abovementioned problems to prepare data for the next step of the data processing
pipeline. The most popular techniques are discussed in this subsection.

7.3.1 Filtering

One of the most popular filtering methods is the window-mean filter (given by Eq.
(7.1)). A window-mean filter is a smoothing technique that replaces each data point
in a time series or signal with the mean of neighboring values within a defined win-
dow. This helps reduce noise and fluctuations, preserving trends while averaging out
short-term variations [23]. Assume that x; (where k € [0,M]) is the raw signal and N
is the window length; the filtered signal value y; is calculated using Eq. (7.1)., where
Xmax and Xxpyip are the maximum and minimum values in the filter window,
respectively.

1 .
y,~:< 3 W),i:Nfl,N,m,M .1
k=i—N+1

A similar method was used by Polaka et al.—the median filter differs from the
mean filter in that, instead of replacing each point with the mean of the values in
the window, it replaces it with the median [24]. The median filter is better at
removing impulse noise (so-called “salt-and-pepper noise”) because the median is
not as susceptible to extreme values as the mean.

7.3.2 Baseline subtraction (sensor drift reduction)

Sensor drift refers to a gradual change in sensor sensitivity over time caused by fac-
tors like sensing material or substrate aging, slow material morphological evolution
observed in long-term tests (as shown in Fig. 7.2) [25]. This slow process impacts
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FIGURE 7.2

Long-term stability test of MICS5524 gas sensor.
Creative Commons Attribution (CC BY) license [27].

signal accuracy, requiring correction and continuous recalibration to maintain sensor
performance and cannot be omitted during analysis, especially during the creation of
medical devices for diagnosis based on exhaled breath testing.

The possibility of using DWT to filter signals from gas sensors and eliminate
drift was demonstrated by Zuppa et al. [25]. They demonstrated the effectiveness
of discrete wavelet transform (DWT) in recovering sensor signals affected by
low-frequency drift. By decomposing signals into low- and high-frequency compo-
nents at multiple scales, DWT isolates the drifts while preserving the signal trend.
The authors showed that removing drift using DWT helps increase cluster separation
in principal component analysis (PCA). Moreover, Ye et al. used DWT to remove
noise in the resistance signals [22].

One of the techniques for sensor response drift minimization is baseline normal-
ization. Ye et al. proposed defining normalized resistance (R;) as a ratio between
resistance change (Eq. 7.2.) where Ryoma 1S measured sensor resistance [22].

(Rqroma — Rpaseline)

Ri= -
Rpaseline

(7.2)

Another technique proposed by Binson et al. [26] was the manipulation of the
baseline expressed by the mathematical formula 7.3.

baseline 1 X
SR———=SR-———+ — — SR(S,D, T 73
o) Ko By & K2 7
where
baseline . . .
SRW the sensor response after baseline manipulation to sameple S(= 1,2, ., Bn)

from sensor D(D = 1,2,000, Dn) at time 7(7' =1,2,.)
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A different approach was used by Paleczek et al. The authors used curve fitting to
the minimum values of the response of the sensor during the purge stage (response in
pure air) [27] shown in Fig. 7.3. Another interesting method that enables real-time
baseline tracking was proposed by Wang et al. Its advantage is that real-time base-
line compensation and use in portable analyzers are possible [28]. Martin et al. pro-
posed creating a calibration curve constructed by measuring the sensor response to
the same concentrations in synthetic gas mixtures at the start of sensor use and after
1 year [1].

7.3.3 Data normalization and standardization

Since data collected from different sensors are usually of different scales, one of the
stages of data preprocessing is normalization and standardization. These techniques
enable comparison of data collected at different scales and facilitate statistical ana-
lyses, as well as training machine learning algorithms that are sensitive to different
feature scales. Models can perform poorly if features have different scales, as large
values could dominate the learning process [29].

The first of the most popular methods, which is not only used in the analysis of
breaths and gas sensor data, is normalization. By using formula 7.4., the values are
transformed to the range [0, 1] [30].

, X — Xmi
x=——>"" (7.4)
(xmax - xmin)
where
* x is the original value,
Xmin 18 the minimum value in the dataset,
Xmax 18 the maximum value in the dataset,
0.38 0.10
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FIGURE 7.3

(a) Sensor response before baseline subtraction and (b) sensor response after baseline
subtraction using a curve-fitting method.
Creative Commons Attribution (CC BY) license [27].
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» X' is the normalized value

The standard scaler method transforms data to have a mean of 0 and a standard
deviation of one by applying feature-wise standardization (given by formula 7.5).
This method also helps to effectively train the model particularly in algorithms sen-
sitive to feature scaling (e.g., support vector machines, k-nearest neighbors, and
gradient descent) and helps ensure that features contribute equally to model training
by adopting a similar scale [29].

7= M (7.5)

ag

where

e x is the original value,

e uis the mean of the dataset,

e ¢ is the standard deviation of the dataset,
e 7 is the standardized value.

Another method, used by Binson et al., is called auto-scaling and involves two
steps: centering and scaling. In the centering step, the data from each sensor (or col-
umn) are normalized by subtracting its mean, resulting in variables with a mean of
zero. The scaling step then adjusts the data to ensure all variables have the same
scale, providing equal weight to each parameter [31].

7.3.4 Detection and handling of outliers

The presence of outliers also has a negative impact on the training and effectiveness
of machine learning algorithms. Identifying and removing them improve the gener-
alization of the model and statistical analysis. Statistical tests, visualization tech-
niques (like box plots or scatter plots), and machine learning algorithms (like
isolation forests or clustering methods) are used to detect outliers, which can then
be deleted or replaced with other values (imputed). Polaka et al. [24] used principal
components analysis and calculated orthogonal and score distances and then evalu-
ated them by the method presented by Rodionova and Pomerantsev [32] to identify
outliers.

7.3.5 Handling imbalanced data

In the case of medical data, imbalanced data are often observed. It is most often
observed in the case of data classification when the class sizes are not close to
each other. This can cause problems in training machine learning algorithms because
they can favor the majority class. Therefore, it is important to analyze the class sizes
and the distributions of the variables [33]. There are several different techniques to
deal with class imbalance:

- Undersampling—reducing data samples from majority class.
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- Oversampling—creating more examples for minority class.

The disadvantage of undersampling is the limitation of the number of samples in
the data set, which can affect the efficiency of the algorithms and their ability to
generalize the sample, while the disadvantage of oversampling is the difficulty of
generating samples that effectively represent the minority class and do not introduce
unnecessary noise. One such technique, often used in the analysis of breath sample
data, is the synthetic minority oversampling technique (SMOTE). In this method, a
given number of neighbors of the original sample, for example, k = 5, are identified,
and based on this sample and random neighbors, SMOTE interpolates new points
and adds them to the data. This method was used by Chen et al. [34], while a modi-
fication of the method, ADASYN-SMOTE, was used by Kapur et al. [7]. It differs
from the basic version in that ADASYN (Adaptive Synthetic Sampling) adaptively
adjusts the number of generated synthetic points to the local data density, which can
improve the efficiency of the model in classification. EI-Magd et al. [33] used sup-
port vector machine (SVM) to compute the class weighting which is later used to
balance classes during training.

In addition to these techniques, it is important to use appropriate metrics which
take into account class imbalance to evaluate classification efficiency.

7.3.6 Temperature and humidity compensation

In e-nose systems, additional sensors are often used to measure the temperature and
humidity of the sample because the gas sensors used (most often MOX) are prone to
change their responses depending on gas conditions and not only on compounds pre-
sent in gas mixtures [22,27,35]. In the case of breath sample measurements, the in-
fluence of relative humidity is the most important factor that cannot be omitted as
relative humidity in breath samples is higher than 89% [36].

7.4 Feature engineering

Data from e-noses often takes the form of waveforms such as those shown in
Figs. 7.2 and 7.3. In the study of breath samples using gas sensors, we most often
distinguish two stages: purging of sensors (using room air, clean synthetic air,
etc.) and a sample dosing stage. The result of measuring signals from several sensors
(sensor array) is multivariate time series data. Such data can be processed using, for
example, recurrent neural networks, while to use classic machine learning or deep
learning algorithms, applying feature engineering is necessary. The most used
feature engineering techniques in breath measurements using sensor technology
use the Ry (sensor response in purge stage) and R (sensor response in sample dosing
stage) values read from the graphs, as shown in Fig. 7.4. The response of the sensor
Ry and Rg can be a different electrical parameter, for example, conductance [1],
resistance [37], voltage [22], or digital, depending on the measurement method used.
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Sensor response curve.

Reproduced from Ref. [10] CCBY 4.0.

The most used basic feature engineering methods with equations based on R and

R¢ values are listed in Table 7.1.

In addition to basic feature engineering techniques, researchers propose more
advanced signal processing techniques to extract as much information as possible

from the results of breath measurements using gas

Sensors.

Kapur et al. designed a GlucoBreath system, in which they used a wide range of
generated features. In addition to the basic features similar to those listed in
Table 7.1, they also used calculated statistical values from parameters such as curve

Table 7.1 Basic feature engineering techniques.

Technique

Minimum value of curve

Average value of curve

Maximum value of curve

Mean value of the last N time points to characterize
the sensor response after saturation

Area under the curve

Time of maximum sensor response
Sensor response

Sensor response
Sensor relative response
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magnitude, first and second derivatives, as well as coefficients calculated using Fast
Fourier Transform (FFT), Auto-regressive (AR) analysis and DWT. In addition, they
used the phase, and five equal distance intervals were created from the sensor’s
response voltages for a breath sample and the slope and integral over these intervals
were calculated. The authors also analyzed the shape of the signals by calculating
the skewness, kurtosis, and entropy of the signal curve [7].

Hao et al. extracted features in the time domain, frequency domain, and statistics
parameters. The authors obtained 14 time-domain features (e.g., maximum, mini-
mum, mean, peak-to-peak value), 14 frequency-domain features (e.g., center of
gravity frequency, frequency variance, power spectrum), and 10 statistical features
(e.g., skewness, kurtosis, autocorrelation, information entropy) [30].

Sarno et al. used Principal component analysis (PCA) for feature extraction. Six
features were derived from the sensors: CO gas, CO, gas, ketone gas, humidity, tem-
perature, and VOC. PCA reduces data dimensions by creating new variables from
linear combinations of the original features, preserving key data characteristics.
This helps to identify and remove the less influential features, enhancing class sep-
aration [13].

A novel method for feature extraction was proposed by El-Magd et al. [33]. They
used pretrained CNNs such as ResNet 18, ResNet 34, Resnet 50, AlexNet, and Goo-
gleNet. The use of pretrained networks enables parameter extraction and the classi-
fication of even small datasets.

A gated recurrent unit-based autoencoder (GRU-AE) was used as a feature
extraction method by Lu et al. in a proposed GRU-AE-MSEP framework. A
GRU-AE was used to create detailed feature representations for effective classifica-
tion. The autoencoder consists of two main parts: an encoder and a decoder. The
encoder compresses high-dimensional multichannel data into a compact representa-
tion. The decoder then reconstructs the original high-dimensional data from this
compressed form, aiming to minimize the reconstruction error [39].

In addition to features extracted from sensor measurements, researchers also use
patients’ medical data to train algorithms. Kort et al. [9] trained models using clin-
ical features, breath features, and a combination of these two sources of information
in their study. Their results showed that the model trained only on clinical data
showed the lowest efficiency (sensitivity 53.9%). The model trained only on breath
data showed a significantly higher sensitivity value of 88.2%. However, combining
the two sets increased the sensitivity to 94.7%. The most commonly used clinical
parameters are listed in Table 7.2.

7.5 Feature selection

The next step in data processing is feature selection. It is an important step in the
pipeline because if we extract n features from k sensors it gives us k*n features.
More features do not necessarily mean a better algorithm, because this algorithm
is likely to become prone to overfitting and may learn irrelevant information present
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Table 7.2 Clinical parameters used as additional parameters for training
models for breath data analysis.

Parameter References
Age [7—9]
Gender [7,9]

Blood pressure [7]

SPO, (oxygen level in blood) 7

Heart rate 7

BMI [9,10]
Smoking status (current smoker, ex-smoker, nonsmoker) and smoking [8,9]

history

in the data and may also have difficulty generalizing relationships between data [23].
To prevent these problems, techniques such as dimensionality reduction (e.g., PCA),
feature selection, regularization (e.g., L1 and L2), or removing irrelevant features
are used.

One of the most commonly used feature selection methods is dimensionality
reduction [40,41] of the dataset with methods such as PCA and Linear Discriminant
Analysis (LDA). PCA (Principal Component Analysis) and LDA (Linear Discrim-
inant Analysis) are dimensionality reduction techniques used in data analysis, but
they have different goals.

* PCA looks for directions in which the data have the highest variance, regardless
of class labels. Its goal is to reduce the dimension of the data while preserving as
much information as possible [40,41].

* LDA focuses on maximizing separation between classes. In addition to dimen-
sionality reduction, LDA takes into account labels and tries to find directions
that best separate the data into different classes [40,42].

In addition, ICA (independent component analysis) and KPCA (Kernel Principal
Component Analysis) are used in sensor data analysis.

¢ ICA looks for independent components in the data, assuming that the data are a
combination of sources that are statistically independent. It is often used in
signals, for example, to separate sound or image sources [40,43].

* KPCA is a nonlinear version of PCA that uses the so-called kernel trick to find
principal components in higher-dimensional spaces. This allows it to better
handle nonlinear dependencies in the data [40,44,45].

In one study, Binson et al. used PCA to reduce data from five sensors into two
components in the problem of detecting lung cancer from exhaled air [31]. In
another study [26], in which samples from 218 people were analyzed to detect pul-
monary diseases (lung cancer, chronic obstructive pulmonary disease (COPD), and
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asthma), Binson et al. compared the effectiveness of the abovementioned dimension-
ality reduction methods combined with machine learning algorithms. Their results
showed that KPCA was the most effective feature selection technique in the task
of classifying pulmonary disease.

Kapur et al. performed feature selection using the Recursive Feature Elimination
(RFE) method which involves iteratively removing the least important features to
find the optimal feature subset for the model. The process was performed iteratively
until a satisfactory accuracy value was achieved [7].

Polaka et al. used a Greedy Search algorithm that performs a stepwise search to
find the best feature subset. In their study, forward selection was used, starting with
an empty set and adding features until further additions reduced performance [2].

Feature selection methods such as Lasso, Group Lasso, and their modification as
Sparse Group Lasso (SGL) were compared by Liu et al. [23]. Their research showed
that without using feature selection methods, the accuracy levels of classical ma-
chine learning models such as SVM, KNN, LogitBoost, and NB were several
percent lower than with SGL. Models trained with SGL also showed higher effi-
ciency than models trained on features selected with Lasso and Group Lasso
methods. The authors noted that this method, due to feature identification, also en-
ables identification of the most important sensors [23].

7.6 Al models for exhaled breath analysis for medical
purposes

Artificial intelligence (Al) is a very broad concept; it is a field of computer science
dealing with the creation and development of systems and algorithms capable of per-
forming tasks that normally require human intelligence, such as the recognition of
images, natural language processing, or making decisions based on data.

7.6.1 Types of the Al algorithms

Artificial intelligence algorithms can be divided on the basis of their complexity into
machine learning algorithms (ML) and deep learning algorithms (DL). Al types and
the characteristics of each field are shown in Fig. 7.5.

In addition to dividing Al algorithms by complexity, we can also divide algo-
rithms by the task they are assigned and the data they provide [46]. There are
four main types (Fig. 7.6):

* Supervised learning—the algorithm receives not only a set of input data, but
also output data, and on this basis, it learns features and rules that are charac-
teristic of a given class. This is the most common case of machine learning. This
approach is widely used for tasks like classification (e.g., recognizing if a pa-
tient has a given disease) and regression (e.g., predicting health parameters such
as blood glucose level).
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Artificial Intelligence (AI)

Al refers to the simulation of human intelligence in machines, enabling them to perform
tasks that typically require human cognition, such as reasoning, learning, and problem-
solving. It encompasses a wide range of technologies, from rule-based systems to
advanced neural networks,

Machine Learning (ML)

Machine learning is a branch of artificial intelligence that focuses on
developing algorithms that allow computers to learn from and make
predictions based on data, It includes various techniques, such as supervised,
unsupervised, and reinforcement learning, enabling models to improve over
time as they encounter new data.

Deep Learning (DL)
Deep learning is a subset of machine learning that uses multi-
layered neural networks to analyze vast amounts of data and
recognize patterns. It excels in tasks such as image and speech
recognition, allowing systems to learn [rom raw data without
extensive manual feature extraction.

FIGURE 7.5
Different levels of complexity in Al algorithms.

* Unsupervised learning—involves processing input data and learning rules
defining them without the help of target output data. These are most often
clustering algorithms.

* Semisupervised learning—uses a dataset that contains a small amount of
labeled data and a larger amount of unlabeled data. The model uses both types
of data to learn, which can improve accuracy and generalization compared with
unsupervised learning alone, especially when labeling is expensive or time-
consuming.

* Reinforcement learning—the system does not receive input or output data but
only certain information about the environment (a “reinforcement signal” that
may be positive (reward) or negative (punishment)) in which it is located and
learns to take actions and make decisions by striving to maximize the reward.

In the case of breath analysis, the best known are classic supervised machine
learning algorithms (Fig. 7.7), supervised deep learning algorithms (Fig. 7.8), and
unsupervised learning (Fig. 7.9).

The operating principle of the algorithms from each of the above groups, their
effectiveness, and application in the analysis of exhaled air for medical purposes
are discussed below.
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Types of Learning
Supervised Unsupervised Semi-supervised Reinforcement
Learning Learning Learning Learning

FIGURE 7.6
Different levels of complexity in Al algorithms.

Supervised Learning
(Machine Learning Models)

Classification Regression
Logistic Regression Linear Regression
Decision Trees Polynomial Regression
Random Forest Ridge Regression
Support Vector Machines (SVM) Lasso Regression
K-Nearest Neighbors (KNN) Elastic Net

Neural Networks
Gradient Boosting Machines (GBM)
(e.g.. XGBoost. Light GBM)

FIGURE 7.7

Supervised machine learning models.

7.6.2 Performance evaluation of Al algorithms

To evaluate the effectiveness of algorithms, we will use different metrics depending
on whether the problem is classification or regression. The most used metrics are
listed in Table 7.3.

Abbreviations are as follows:

e TP—True Positives
¢ TN—True Negatives
* FP—False Positives
» FN—False Negatives

39



7.6 Al models for exhaled breath analysis for medical purposes 339

Deep Learning Models
Supervised Unsupervised
Deep Neural Networks (DNN)
Convolutional Neural Networks (CNN) Autoencoders

Recurrent Neural Networks (RNN)
Long Short-Term Memory Networks (LSTM)

Generative Adversarial Networks (GANs)

FIGURE 7.8
Deep learning models.

Unsupervised Learning
Clustering Algorithms Dimensionality Reduction Anomaly Detection
Algorithms Algorithms
K-means

Hierarchical Clustering
DBSCAN (Density-Based
Spatial Clustering of
Applications with Noise)
Mean Shift

FIGURE 7.9

Principal Component Analysis
(PCA)

t-SNE (t-distributed Stochastic

Neighbor Embedding)
UMAP (Uniform Manifold
Approximation and Projection)
Linear Discriminant Analysis

(LDA)

Isolation Forest
One-Class SVM
Local Outlier Factor (LOF)

Examples of unsupervised algorithms.

e Actual value of the target variable
e Predicted value of the target variable

¢ n—Number of data points

In addition to classical metrics calculated using formulas, graphical representa-
tions of the performance of algorithms are also used, such as the confusion matrix
(Fig. 7.10a) or the ROC curve (Fig. 7.10b).
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Table 7.3 Metrics for classification and regression tasks
[1,33,46,51,57,84,85].

Metric Equation

Accuracy Accuracy = (quﬁﬁ%
Precision (positive predictive value) Precision = (TPTFP>

Recall (sensitivity or true positive rate) | Recall = ﬁ

F1 score F1 =2 feddonfecel,
Specificity (true negative rate) Specificity = (TNZVFP)

False positive rate (FPR) FPR = o

False negative rate (FNR) FNR = %

Balanced accuracy (Sensitivity ; Specificity)

Balanced Accuracy =
Area under the ROC curve (AUC-ROC) llustrated in Fig. 7.10b
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Root mean squared error (RMSE) RMSE = [t
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-

Mean absolute error (MAE)

Mean squared error (MSE)

Mean absolute percentage error (MAPE) MAPE = 7 x 100
. =)
”Z“:U Vi
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R-squared (coefficient of determination) R _ZU:‘)U’/ _ (y/)“\z
iy (i=ye)
Adjusted R-squared Adjusted B2 = 1 — (1 ;/i)(f;ﬂ

7.6.3 Dealing with problems in algorithms training

The goal of training a machine learning algorithm is to teach it to recognize patterns
in training data and then generalize this ability to unseen examples. Model capacity
refers to its ability to fit complex functions and relationships in data. A model is
considered optimal when its capacity matches the complexity of the problem [47].
Two main issues during training are [46]:

* Underfitting occurs when the model fails to minimize the error sufficiently
during training, often due to having too small a network size or capacity.

* Overfitting happens when there is a large discrepancy between the training and
test error (the model memorizes the training data and cannot generalize to new
data). This is typically due to too few training examples or too complex a model.

Several solutions can help prevent these issues:

* Adjusting the hyperparameters—Increasing the model size can enhance capacity
and prevent underfitting but can also lead to overfitting if too large [7,34].
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FIGURE 7.10
Graphical representations of the performance of Al algorithms. (a) Confusion matrix, (b)
ROC curve.

Reproduced from Ref. [83] with permissions.

* Increasing the number of training examples—More data helps prevent overfitting
by providing varied examples for the model to learn from. If more data is not
available, data augmentation techniques can be used [48,49].

*  Weight regularization—This technique reduces model complexity by restricting
the weights to small values, promoting a more regular weight distribution. It
only applies during training, improving model performance on test data [47].
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* Cross-validation—This technique involves splitting the data into multiple folds
and training the model on different combinations of these folds, testing it on the
remaining fold each time. Cross-validation helps ensure that the model gener-
alizes well by evaluating its performance across different subsets of data and
reducing the risk of overfitting [50].

7.6.4 The most commonly used algorithms in the analysis of human
breath samples for disease diagnosis

7.6.4.1 Support Vector Machines

Support Vector Machines is one of the most popular algorithms used for the classi-
fication of exhaled air for disease detection. The operation of this algorithm is that it
constructs a hyperplane or set of hyperplanes that maximize the separation of fea-
tures between classes. In addition to classification, this algorithm can be used for
Support Vector Regression (SVR) tasks, in which it tries to find a function that
best reflects the fit (within a tolerance margin) to the data [26,51,52].

Liu et al. compared the performance of different machine learning algorithms
(LogitBoost, KNN, Naive Bayes) to classify breath samples taken from 46 patients
with lung cancer, 36 healthy volunteers, and five patients with benign pulmonary
diseases. Data were collected from 19 sensors included in the designed e-nose.
The results showed that SVM with the adopted Gaussian radial basis kernel had
the highest accuracy, especially when data were preprocessed with the SGL method
[23].

High efficiency of SVM algorithm for the classification of respiratory diseases
was also presented by Mahdavi et al. To develop the algorithm for COPD detection,
they used breath samples collected from 34 healthy individuals and 33 chronic
obstructive pulmonary disease (COPD) patients. The algorithm combined with a
modern feature selection method achieved 80.60% accuracy, 78.79% sensitivity,
and 82.35% specificity [50].

A similar study was conducted by Binson et al. They examined breath samples
from 32 lung cancer patients, 38 COPD patients, and 72 healthy controls including
smokers and nonsmokers, which were used to create separate algorithms for COPD
and lung cancer detection. Interestingly, for lung cancer detection, KNN was the bet-
ter algorithm, achieving 91.3% accuracy, 84.4% sensitivity, and 94.4% specificity,
while for COPD detection, SVM performed best, achieving 90.9% accuracy,
81.6% sensitivity, and 95.8% specificity [53].

Tirzite et al. used the commercial e-nose Cyranose 320 [54] to analyze the breath
of patients with histologically or cytologically verified lung cancer, healthy volun-
teers, and patients with other lung diseases (e.g., chronic obstructive pulmonary dis-
ease (COPD), asthma, pneumonia, pulmonary embolism, benign lung tumors). In
this case, SVM also achieved very high efficiency in detecting lung cancer
(98.8%) and in classifying healthy versus other lung disease (87.3%) [8].
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7.6.4.2 K-Nearest Neighbors

K-Nearest Neighbors is a machine-learning algorithm based on the nearest neigh-
bor’s method. It is an unsupervised or supervised algorithm (depending on the appli-
cation) that classifies data or predicts a value based on the distance to other data in
the set. Data are represented as points in a multidimensional space, and the distances
between points are calculated using various distance metrics such as Euclidean [55],
Manbhattan, and Cosine. Then, k neighbors closest to the new point are selected, and
depending on whether it is classification or regression, the point is assigned to the
class that is most frequently represented among k neighbors (majority voting) or
the result is the mean value or median value of k neighbors. This algorithm is simple
to implement and does not require training, but it is sensitive to noise and outliers.

Martin et al. used the k-NN algorithm to classify synthetic mixtures (lung cancer
biomarkers) added to breaths collected from healthy individuals. Their study showed
that with increasing concentrations of added biomarkers, the algorithm achieved
higher efficiency. The authors chose k-NN due to its simplicity and effectiveness
as a nonparametric method, suitable for non-normal and/or heteroscedastic datasets.
They pointed out that k-NN is a good choice for small datasets, which are most often
found in medical data, especially breath analysis [1].

Guo et al. designed an e-nose system to detect several diseases such as diabetes,
airway inflammation, and renal disease. For renal disease, they also collected pa-
tients’ breaths before and after hemodialysis. The authors used PCA algorithm to
create features and then classified data using k-NN. They achieved high accuracy
in each case—over 80% accuracy in the classification of renal failure samples before
and after treatment, the sensitivity of diabetes detection was 87.67% and the spec-
ificity was 86.87%, for renal failure detection, metrics were 86.57% and 83.47%,
respectively, and for airway inflammation, the algorithm achieved sensitivity of
70.20% and specificity of 75.07%. These results show that the k-NN algorithm com-
bined with PCA can be used to detect various diseases in exhaled air as well as to
evaluate the effectiveness of dialysis [12].

k-Nearest Neighbors algorithm was also used by Smieja et al. to detect diabetes
in exhaled air. They developed a custom, portable e-nose system with 6 VOC sen-
sors. The system achieved an accuracy of 0.936, a precision of 1, and a recall of
0.875 in classifying diabetes and healthy samples taken from 28 individuals [55].

7.6.4.3 Tree models

Decision trees are one of the most popular machine learning algorithms that divide
data into smaller subsets based on features, creating a tree-like structure. Each node
corresponds to a division based on a given feature, and the leaves represent decisions
or predictions. The algorithm strives to minimize entropy or Gini Impurity. Decision
trees are easy to interpret because it is possible to prepare a graphical representation
of them and see how the algorithm determines the boundaries of the division into
classes. In the case of analysis of sensor data from breath measurements, it is
possible to analyze what value measured by a given sensor (which may correspond
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to the concentration of a biomarker) is the decision boundary between the patient’s
health state. However, decision trees are susceptible to overfitting and noise.

An extension of classic decision trees is random forest models. This is a compo-
sition of many decision trees. The decisions/predictions of individual trees in a
random forest are components of the final decision of the model—average (for
regression) or majority voting (for classification). Compared with classical decision
trees, RF is less susceptible to overfitting but is more difficult to visualize and inter-
pret as well as being slower and more computationally complex [56].

Yang et al. compared different machine learning models in breath cancer predic-
tion based on breath data collected using Cyranose 320. They used algorithms such
as SVM with different kernels, kNN, Naive Bayes, Decision Tree, and Random For-
est. In their results, the tree algorithms significantly outperformed the other algo-
rithms. Both DT and RF showed similar results of accuracy at 91% and Random
Forest showed 1% better AUC [57].

7.6.4.4 Gradient boosting models

An extension of classic machine learning methods is gradient boosting models, in
which base models such as decision trees are built iteratively, and each subsequent
model learns from the errors of the previous models. During training, the loss func-
tion is minimized using the gradient of errors between the prediction and the true
values [26,27,58,59]. There are several varieties of models based on gradient boost-
ing. Gradient-boosted algorithms are becoming increasingly popular in breath anal-
ysis [26,27,30,59]. The choice of the appropriate algorithm depends on the problem
and should be made taking into account the advantages and disadvantages of each of
them as well as their suitability for the problem.

* GBoost (Gradient Boosting) is a classic version of gradient boosting [60,61].

¢ XGBoost (eXtreme Gradient Boosting) is an improved version of classic
GBoost, which could use L1 and L2 regularization, which allows for the
reduction in overfitting and also optimizes calculations by parallelizing them. It
is faster than the classic version [58].

* AdaBoost (Adaptive Boosting) uses stumps as base models, which have weights
depending on their accuracy. It is more accurate in difficult cases because it
increases their weights in subsequent iterations, but it is more susceptible to
noise and overfitting [62].

» CatBoost is a model specially optimized for working with categorical data and
does not require their initial preprocessing, it also copes well with missing data
[63—66].

¢ LightGBM (Light Gradient Boosting Machine) is a modification created for the
efficient (in time and memory) processing of very large data sets. It uses a leaf-
wise growth strategy, which builds deeper trees in places of greater heteroge-
neity, which increases accuracy but also the risk of overfitting [67].

Glucobreath, a device designed by Kapur et al. [7] was used to collect the breath of
both diabetes sufferers and healthy controls. The authors decided to compare different
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machine learning algorithms to detect diabetes in exhaled air. The XGBoost and
GBoost algorithms achieved the highest accuracy with levels of 0.845 and 0.846,
respectively, while the combination of these two algorithms achieved 0.969 accuracy
in diabetes prediction. The authors reported that these algorithms performed better
because they ensemble learning that combines multiple weaker learners to create a
stronger model. The additional advantage is their ability to identify the most important
features, prevent overfitting, and improve generalization.

Binson et al. compared the performance of Random Forest, AdaBoost, and
XGBoost in the classification of breath samples taken from 199 participants
(healthy, COPD, and lung cancer). The samples were measured using a custom e-
nose system designed by the authors. XGBoost outperformed other algorithms
achieving accuracy levels of 79.31% and 76.67% in predicting lung cancer and
COPD, respectively [68].

Paleczek et al. used the LightGBM model to predict total cholesterol level based
on patient breath. The performance of the model was compared with other most
common machine learning regression models and achieved across the entire mea-
surement range and for the norm range <200 mg/dL achieving MAPE 13.7% and
8%, respectively [10].

Ye et al. trained Gradient Boosted Trees (GBT), SVM, and RF to classify three
ranges of blood glucose levels based on exhaled air. The best accuracy was achieved
by GBT at 90.4%. The authors also trained a regressor version of each model to es-
timate the exact BLG. In this case, the GBT Regressor also outperformed other al-
gorithms and achieved R? 0.873 and mean average error 0.77 mmol/L [22].

7.6.4.5 Artificial Neural Networks (ANN)

Artificial Neural Networks are a machine learning model that was created drawing
on inspiration from biological neural networks. It consists of an input layer, hidden
layers, and an output layer that generates results. Neurons in these layers are con-
nected by weights that determine the signal strength between them. During training,
the network iteratively modifies its weights using the backpropagation algorithm to
minimize the loss function.

Waltman et al. trained ANN to detect prostate cancer in exhaled air profiles
measured by the commercially available electronic nose device, Aeonose (The eNose
Company). The model achieved accuracy of 75% in detecting prostate cancer [69].

An ANN model was also used by Ooko et al. in their custom-designed device for
respiratory disease detection. The trained model had four layers—an input layer, two
dense layers (20 and 10 neurons) and an output layer. The model predicts respiratory
diseases with an accuracy of 95.4%.

Accuracy of ANN and gradient-boosted decision trees (GBDT) in lung cancer
prediction was compared by Temerdashev et al. They analyzed breath samples
collected from 112 lung cancer patients and 120 healthy individuals using gas
chromatography-mass spectrometry (GC-MS). ANN model achieved higher perfor-
mance than GBDT (82%—88% sensitivity and 80%—86% specificity on test data)
[70].
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7.6.4.6 Convolutional Neural Networks (CNN)

The convolutional neural network algorithm contains convolutional layers between
the input and output layers that perform signal convolution with the chosen kernel.
Weights are values in the filter matrix that determine how the filter interacts with a
piece of input data. They are updated during network training using a backpropaga-
tion algorithm to minimize network error [47].

Lee et al. analyzed 181 clinical breath samples (from 74 healthy controls and 107
lung cancer patients) using an e-nose system that contained 10 semiconductor metal
oxide (SMO), one photoionization detector (PID), and nine electrochemical (EC)
gas sensors. Input data for the 1D-CNN model included the normalized response
as a 19 x 2400 matrix. The authors compared the 1D-CNN model with Multilayer
Perceptron (MLP) and recurrent neural network (RNN) models. The best accuracy
of 92% was achieved by CNN model, while MLP and RNN achieved 85% and 83%
accuracy, respectively [71].

Aulia et al. used an e-nose with 20 semiconductor gas sensors to analyze breath
samples collected from 30 healthy people and 40 COPD subjects. The obtained data
were processed using five Al algorithms: RF, ANN, CNN, gated recurrent unit
(GRU), and graph convolutional network GCN. The adjacency matrix was
computed using the Pearson correlation coefficient (PCC) to construct the GCN
feature map. To enhance distinguishing accuracy, frequency components of the
sensor response and PCA are utilized during data preprocessing. The GCN processes
the input graph of sensor features to produce classification results. In this graph, each
sensor’s time and frequency components serve as nodes and the edges connect each
node only to its neighboring nodes. Consequently, the dataset forms an undirected
graph. The GCN model using the frequency dataset achieves a maximum accuracy
of 94.8%. When combined with PCA for data preprocessing, the GCN model de-
livers improved performance, achieving an accuracy of 97.5%, a precision of
97.2%, a recall of 97.4%, and an F1-score of 97.5% [72].

CNN models were also used by El-Magd et al. [33] to predict COPD using data
collected from an e-nose system. They used pretrained CNN: ResNet 18, ResNet 34,
ResNet 50, AlexNet, and GoogleNet. Using a pretrained model and transfer learning
improves classification results on small data sets. The classification models had a
flattening layer or a global average layer (GAP) as the first layer, and the second
is a linear layer. All five CNNs based on pretrained models achieved more than
93% accuracy in the test set, and furthermore, Resnet 50 and GoogleNet achieved
100% classification accuracy.

Another modification of CNN models, correlational neural network (CORNN),
was used by Bhaskar et al. to predict diabetes based on the analysis of exhaled breath
samples [73]. In CORNN architecture, correlation layers are used instead of convolu-
tional layers. The authors compared different models and classifiers. The best results
were achieved by CORNN with an MLP classifier (accuracy 97.37%) and CORNN
with an SVM classifier (accuracy 98.02%). The CORNN model with both classifiers
performed better than the classic CNN model with the same classifiers.
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7.7 Interpretability

Al algorithms are most often used as black boxes, where we provide input data and
expect a result at the output [74], which in the case of medical data is a diagnosis of a
disease or a prediction of some health parameter. Making a diagnosis and making
therapeutic decisions blindly is risky and not reliable. Therefore, not only in medi-
cine but also in other fields where Al algorithms are used, is it necessary to use
explainable artificial intelligence. Analysis of the impact of features on the decision
of the model allows not only the identification of model errors but also the potential
to find/discover new factors that affect the development of the disease [75]. The abil-
ity to explain the model’s decision increases the trust of doctors and patients in
technology.

In the case of disease detection based on breath, it is possible to identify the
sensor that is most important for the model to make a decision and thus select
new biomarkers for a given disease state [75] or limit the number of sensors in
the e-nose, which leads to its minimization, reduction in energy consumption, reduc-
tion in production costs and, therefore, enables an increase in the availability of the
diagnostic device [76].

There are many different methods of explaining machine learning models. It is
possible to explain models globally, in other words to analyze the model’s operation
as a whole, as well as locally, where the model’s decision is explained for individual
observations [77,78].

One of the simplest methods used for model explanations is model decomposi-
tion. Such methods are used in decision trees in which we can trace the exact path of
the model’s decision, in linear models, regression coefficients determine the impact
of features on the model’s decision, and in models using attention maps, it is possible
to analyze these coefficients [74].

The second group is model agnostic methods. They can be used even in complex
models. The most popular of these methods are as follows:

e LIME (Local Interpretable Model-Agnostic Explanations)—in this technique,
local linear models are created that explain the decision of complex models at
specific points [74,77,78].

* SHAP (Shapley Additive Explanations) comes from Shapley’s game theory, in
which it is calculated how to fairly divide the profit between several players. In
XAl, players are individual features. This method allows the analysis of the
significance of features on the entire set as well as on a single example [79].

* Partial Dependence Plots (PDP) consist of calculating the influence of one (or
more) features on the model decision, assuming that the others are constant [79].

Another group of model interpretability methods collects methods that rely on
data perturbations, that is, their change to determine their influence on the model de-
cision. Such methods include feature importance analysis or counterfactual explana-
tions [79].
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Kapur et al. used the SHAP method to analyze the influence of features on the
models’ decisions. Plot highlighted that key physiological features, such as age,
blood pressure (BP), heartbeat, SPO2, and most FFT features, play a significant
role in the classification process for diabetes detection. In addition, for sensor
voltage, the primary contributors to diabetes prediction were TGS826, TGS2603,
TGS2610, and TGS2620. These sensors are particularly sensitive to VOCs such
as ammonia, LP gas, propane, butane, alcohol, organic solvent vapors, amine series,
and sulfurous gases [7].

Paleczek et al. used feature importance analysis to identify key sensors for total
cholesterol level prediction using the LightGBM regressor. The analysis of key fea-
tures showed that the most significant predictors were the responses of the TGS1820,
AL-03P, TGS2620, and MQ3 sensors, which primarily detect acetone, ethanol, and
other volatile organic compounds (VOCs) [10].

7.8 AI/ML deployment in e-nose systems

Most of the research on breath analysis and disease detection using e-nose and Al
algorithms is conducted offline, that is, breath samples are measured, data are
recorded and then analyzed and used to train machine learning algorithms and dis-
ease diagnosis. However, a few of these systems are feasible for field use and online
diagnosis.

Kapur et al. designed the Glucobreath [7] device, which combined the VOC-
Analyzer microcontroller’s WiFi-enabled wireless communication with external en-
tities, such as the InfluxDB cloud database, via the MQTT protocol. This protocol
allowed time-series data to be streamed to the cloud-based InfluxDB server, and
the data were displayed using Grafana. The authors also prepared a WebUI for pa-
tient data entry and model prediction display.

Ooko et al. designed an e-nose device based on TinyML technology. TinyML is
about preparing machine learning models on devices with limited computational po-
wer, memory, and energy resources, such as microcontrollers and IoT devices.
TinyML allows data to be processed locally on the device, which reduces the
need to send data to the cloud and improves the performance and the energy effi-
ciency of the system, enables real-time diagnosis and increases the portability of
the device. The authors deployed the model on Arduino Nano 33 BLE sense [80].

The e-nose system developed for the Raspberry Pi using RPi IDE and Python
was proposed by Evangelista et al. An Android app, created on the Basic4Android
platform, displayed glucose predictions and supports data storage, deletion, and
analysis for diabetes classification. Data were collected through breath samples pro-
cessed by Raspberry Pi and analyzed using machine learning techniques like CNN
and SVM. Results are validated against standard diabetes tests and repeated across
participant groups to ensure model reliability [81].

Another system was proposed by Tiele et al. They designed a simple mobile app
and developed using Blynk that communicates with the device via Wi-Fi and sup-
ports control through USB or Wi-Fi. The app, compatible with IoT hardware like
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Arduino and ESP32, enables features sampling and analysis for real-time data
monitoring and graphing. The ESP32 microcontroller was chosen for its low-cost,
low-power capabilities and integrated Wi-Fi and Bluetooth. Real-time readings
from sensors like SCD30 and CCS811 are displayed and plotted [82].

7.9 Conclusions

In the process of creating solutions using artificial intelligence algorithms, extremely
important steps are preprocessing the data, creating new features, training various
algorithms, and then evaluating performance and deployment. Training most Al
models requires having a large data set, which is often difficult or impossible in
the case of medical data, which means that creating such diagnostic devices with
Al is limited. Working with data from measuring breath samples, researchers
must deal with baseline drift, noise, environmental pollution, and the impact of
the temperature and high humidity of human breath. Proper data preparation re-
quires knowledge of signal processing methods. Many different Al algorithms are
used in the analysis of breath; often, these are supervised algorithms for disease clas-
sification. This chapter shows that classic machine learning algorithms are most
often used, which achieve high levels of accuracy. An important element of data pro-
cessing is also the analysis of the impact of features on the decisions of the model.
Currently, many advanced methods are known that enable the interpretation of de-
cisions of practically every Al model, but they are not popular in the analysis of
breath samples. In addition to training an effective algorithm, the challenge is its
deployment on portable devices. The algorithm’s computational efficiency and
complexity, energy consumption, and implementation of appropriate communica-
tion as well as processing time are important. In the case of breath analysis, a stan-
dard for measurement or analysis of samples has not yet been developed, which
makes experiments difficult to reproduce. In addition, despite the large number of
recorded sensor responses, it is impossible to compare or use them between two
different devices or systems because their responses strongly depend on the mechan-
ical conditions of the measurement chamber, such as flow or volume, as well as the
measurement electronics. These problems significantly limit access to data that is an
essential element of Al algorithms and the sharing of it between research groups.
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Abstract

Currently, intensive work is underway on the development of truly noninvasive medical diagnostic
systems, including respiratory analysers based on the detection of biomarkers of several diseases
including diabetes. In terms of diabetes, acetone is considered as a one of the potential biomarker,
although is not the single one. Therefore, the selective detection is crucial. Most often, the analysers
of exhaled breath are based on the utilization of several commercially available gas sensors or on
specially designed and manufactured gas sensors to obtain the highest selectivity and sensitivity to
diabetes biomarkers present in the exhaled air. An important part of each system are the algorithms
that are trained to detect diabetes based on data obtained from sensor matrices. The prepared
review of the literature showed that there are many limitations in the development of the versatile
breath analyser, such as high metabolic variability between patients, but the results obtained by
researchers using the algorithms described in this paper are very promising and most of them
achieve over 90% accuracy in the detection of diabetes in exhaled air. This paper summarizes the
results using various measurement systems, feature extraction and feature selection methods as
well as algorithms such as support vector machines, k-nearest neighbours and various variations of
neural networks for the detection of diabetes in patient samples and simulated artificial breath

samples.

1. Introduction

Noninvasive methods of disease detection are increas-
ingly the subject of research; in particular, research-
ers focus on the analysis of exhaled air. The first
reports on the use of the diagnostic potential of
breath come from the times of Hippocrates, who dia-
gnosed uncontrolled diabetes and liver disease based
on the smell of acetone emitted from the patient’s
mouth [1].

The main components of the exhaled air are
nitrogen (78%-79%), oxygen (13%-16%) and car-
bon dioxide (4%) [2]. The remaining part of the
breath profile consists of volatile organic compounds
(VOCs). The composition of inhaled and exhaled air
is shown in figure 1.

Currently, more than 3000 VOCs are identified in
breath samples [3, 4], but due to the low concentra-
tion of VOCs in the breath and the use of various

© 2022 The Author(s). Published by IOP Publishing Ltd

measurement methods, the exact number of VOCs
in a single breath is not well defined. For example,
Phillips et al have reported 204 VOCs [4], Smolin-
ska et al have reported 300-500 VOCs [3] and Barash
et al have identified more than 500 VOCs in each
breath sample [5]. Moreover, Barash et al have shown
that only some of the VOCs are common in different
breath samples [5]. Each person has a different com-
position of breathing, somehow it could be said that
the exhaled breath profile is an identifier similarly to
fingerprints. Although there is a lack of confirmation
of such statement so far. The exhaled breath profile
depends also on the diet and on diseases [6, 7], which
makes the exhaled breath analysis even more chal-
lenging. In addition, the composition of the exhaled
VOCs is demanding to be investigated because these
compounds in the breath are present in very low con-
centrations of a few parts per million (ppm), parts per
billion and parts per trillion [7, 8].
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~21% Oxygen
~78% Nitrogen
~0.04% Carbon dioxide
~1% other gases

~13-16% Oxygen
~78% Nitrogen
~4-6% Carbon dioxide
~2% other gases
including VOCs

Figure 1. Composition of inhaled and exhaled air.

Table 1. Potential biomarkers of disease in breath. Reproduced
from [40]. CC BY 4.0.

Disease Biomarkers References
Diabetes Acetone [6, 8,29-33,
35-37, 41]
Diabetes Isoprene [42]
Asthma Nitric oxide [8, 15, 43]
Cystic fibrosis Hydrogen cyanide  [44, 45]
Lung cancer VOC pattern [19, 20, 41]
Chronic kidney Trimethylamine [46]
disease
Colorectal cancer Methane [47, 48]
Myocardial Pentane [49, 50]
infarction
Obstructive sleep Pentane and Nitric ~ [51]
apnea oxide

Renal failure Ammonia [52, 53]

VOCs are divided into two categories: exogen-
ous and endogenous, depending on their origin. The
groups of chemical compounds are not separable; the
presence of one chemical in the exhaled air can be
of both exogenous and endogenous origin. Exogen-
ous VOC:s are emitted as a result of the influence of
the external environment on the body, not only of
those inhaled with air, such as air pollution and cigar-
ette smoke, but also of medications and diet [9-11].
Endogenous VOCs, called biomarkers, are produced
by cells in the body, e.g. in metabolic diseases, asthma
and cancer [10-12]. The course of the disease and
its advancement, treatment methods and medica-
tions also affect the composition of the exhaled air
[13]. Biomarkers are used to diagnose diseases, pre-
dict the risk of developing a disease or monitor the
course of treatment and assess the effectiveness of
therapies used in diseases such as asthma [14-18],
cancer [13, 19-26], chronic obstructive pulmonary
disease [13, 24, 27, 28] and diabetes [6,29-37]. Selec-
ted biomarkers of diseases in breath were shown in
table 1. Due to the very low concentrations of VOC in
exhaled air, researches have proposed the use of pre-
concentrators and micropreconentrators in systems

A Paleczek and A Rydosz

designed for breath analysis [35, 38, 39] as an option
that lead to increased limit of detection. However, the
analysis becomes more complex, additional precau-
tions and factors need to be taken into account.

The World Health Organization reports more
than 500 million people with diabetes worldwide and
more than 1.6 million diabetic deaths annually [54].
The number of patients is constantly increasing, and
according to estimates in 1995 it was 7.4%, while the
predicted value for 2025 is 9% [55].

The International Diabetes Federation (IDF)
estimated 463 million adults diabetes in 2009, but in
the latest report from 2021, this number increased by
16% and the current estimate is 537 million adults
with diabetes. These numbers continue to rise and by
2045 it is projected to increase to 783 million adults
living with diabetes. Almost half (44.7%) of diabetics
is undiagnosed. Additionally, the IDF report shows
that 10.6% of adults worldwide have high risk of
developing type 2 diabetes due to impaired glucose
tolerance. Early diagnosis plays an important role in
the treatment of diabetes and in reducing additional
health complications [56].

In 2021 we have celebrated the 100th anniversary
of the insulin discovery, that is considered as a mile-
stone in the diabetes treatment changing this fatal
disease into chronic one. Nowadays, it is expected
that the development of truly noninvasive method for
diabetes treatment and management will be another
milestone, and exhaled breath analysis is considered
as an ideal option. Therefore, the main aim of this
paper is to review the algorithms used to detect dia-
betes in exhaled air and evaluate the effectiveness
of these algorithms. Researchers have presented dif-
ferent approaches to diabetes diagnosis. The dia-
betes and healthy classification [57-60] was mainly
carried out, but due to the practical application,
some researches proposed the type 1 (T1DM), type 2
(T2DM), and healthy classification [61-63], as well as
healthy, prediabetes and diabetes classification [64].
In addition to using direct classification, a diagnosis
based on predicted blood sugar concentration has
also been proposed [65]. The researches were carried
out the analysis on the breath samples taken from
patients [57, 58, 60, 62, 64, 66—68], and simulated
acetone concentrations [40, 68-70]. The algorithms
presented in the papers have been developed mainly
in MATLAB® programming and numeric computing
environment [62, 63, 71] and in Python program-
ming language with Keras interface for designing arti-
ficial neural networks (ANNs) [64]. The general dia-
gram used in the design of breath analysis devices is
shown in figure 2.

2. Diabetes mellitus
Diabetes mellitus (DM) is a chronic metabolic disease

associated with impaired insulin secretion and/or
function. Several types of diabetes are known, but

2
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Figure 2. General diagram used in the design of breath
analysis devices.

the most common are type 1, type 2 and gestational
DM [72]. Type 2 diabetes is detected in 90% of cases.
People who are not physically active, are obese, are
elderly, or have a family history of diabetes are at high
risk of developing this type of diabetes [73, 74]. In this
case, tissues become resistant to insulin and the pan-
creas cannot produce enough insulin for the body to
function properly. A different mechanism causes type
1 diabetes, in which the patient’s body stops produ-
cing insulin due to the autoimmunology aggression
on beta-cells [75, 76]. The major difference from the
patient perspective is that type 2 diabetes can be pre-
vented, for example by appropriate prophylaxis, quit-
ting smoking, changing diet, and incorporating phys-
ical activity [77], but at present there are no known
methods of preventing type 1 diabetes [78]. Diabetes
is manifested by hyperglycaemia, polyuria, polydip-
sia, weight loss (sometimes with polyphagia), and
blurred vision. Untreated, it leads to many complica-
tions of the circulatory, nervous, and visual systems,
as well as the development of a diabetic foot. For this
reason, it is essential to carry out screening tests to
detect the disease as early as possible and start treat-
ment [74, 79].

Due to the high potential of using exhaled
air for noninvasive detection of diabetes, research-
ers compared breath samples from diabetics and
healthy individuals to identify differences and select
potential diabetes biomarkers. Yan et al showed
that isopropanol and 2,3,4-trimethylhexane, 2,6,8-
trimethyldecane, tridecane and undecane in combin-
ation can be T2DM biomarkers [80]. In a study con-
ducted by Nelson et al differences in exhaled acet-
one in diabetics and healthy infants were observed,
and the content of exhaled isoprene was comparable
in both groups [32], while Neupane et al suggested
that isoprene could be used to detect hypoglycaemia
in patients with type 1 diabetes [42]. Trefz et al also
observed increased levels of isopropanol and isoprene
in diabetics compared to the healthy control group

acetone.
NADP 4 H O,
» L1,2propanediolP %> L1,2propanediol > formic acid

acetol
NOP LK, 0, ATP
methylglyoxal

s S-Diactoylglutathione - NADPH wap Ldactic acid

v B MO g
Diactic acid — > pyruvc acla »acetyl-con
o R

® citric acid

“oxaloacetic aciq TcAcyclo
glucose « phosphoenol-pyruvic acid < s

Figure 3. Acetone biosynthesis. Reproduced from [88].
© 2017 IOP Publishing Ltd CC BY 3.0.

[81]. Since the origin of isoprene in the breath is most
often associated with cholesterol and fat levels [82]
and the small amount of research confirming its rela-
tionship with diabetes, it has not been clearly recog-
nized as a diabetes biomarker. For a long time, most
research has focused on the correlation of acetone
in the exhaled air and diabetes. Numerous research
including comparisons of the composition of exhaled
air show an increased concentration of acetone in dia-
betics [6,29-36, 83]. The biochemical sources of acet-
one in the exhaled air and its metabolic relationship
with diabetes are also now known [31, 84, 85].

Acetone is present in exhaled air when the body
produces excess acetyl-CoA, as it was illustrated in
figure 3. This molecule is formed in hepatocytes
to which free fatty acids resulting from lipolysis
have been pretransported. The second source of this
molecule is the glycolysis process, i.e. the conversion
of glucose into pyruvic acid in the cytoplasm of the
cell, and then in the mitochondrion of the cell, the
pyruvic acid is converted into acetyl-CoA, which is
transferred to the Krebs cycle [84, 86]. Uncontrolled
diabetes leads to an increase in free fatty acids and
therefore excess acetyl-CoA, which does not end up
in the Krebs cycle, but in the ketogenesis process
[86, 87]. In this process, acetoacetyl-CoA is formed
from two acetoacetyl-CoA molecules, which under-
goes successive transformations, the product of which
is acetoacetate. Subsequently, spontaneous, nonen-
zymatic decarboxylation of acetoacetate leads to the
formation of acetone, which is absorbed into the
bloodstream and excreted through the alveoli with
exhalation [31, 84, 85].

Based on the literature review the exhaled acetone
concentration vary in the range of 0.176-25 ppm, as
it was shown in table 2. Although, the concentrations
of acetone in the breath of healthy people were lower
than for patients with diabetes.

3. Data acquisition systems

3.1. Gas sampling methods

The gas-sampling procedure is a crucial element of
exhaled breath analysis. Generally, it can be divided
into two subcategories, the direct and indirect meth-
ods, whereas the indirect method is the most popular.

3
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Table 2. Acetone concentration in health and diabetes samples.
Reproduced from [40]. CC BY 4.0.

Measured acetone

Diabetic stage concentration References
T2DM 1.76-3.73 ppm [31]
Healthy 0.22-0.80 ppm [31]
Controlled 0.19-0.66 ppmv [35]
diabetic

Untreated T2DM  0.92-1.20 ppmv [35]
Diabetes 1.25-2.5 ppm (or up to [36]

25 ppm)

Healthy 0.2-1.8 ppm [36]
T1DM 4.9 ppm [83]
T2DM 1.5 ppm [83]
Healthy 1.1 ppm [83]
Diabetes >1.8 ppmv [89]
Healthy <0.8 ppmv [89]
T1DM 2.19 ppmv (mean) [90]
Healthy 0.48 ppmv (mean) [90]
Healthy 0.177-2.441 ppm [91]
Healthy 0.176-0.518 ppm [92]

Residual Volume
1200 ml

o 1100ml

Alveolar Tidal Volume
Dead Space (Tidal) || 350ml1

150 ml

Figure 4. Breath fractional volumes for an average size
healthy male at rest.

In the direct method, the gas sample is exhaled dir-
ectly into the device [62, 63, 65, 66, 71], while in the
indirect method it is collected in specially designed
bags, for example Tedlar® bags [57-60, 67, 69, 93, 94],
Teflon sealed bag with saliva and moist filter [68] and
fluorinated ethylene propylene breath gas collection
bag [83]. Tedlar”® bags (Dupont de Nemours) which
are made of polyvinylfluoride, are the most popular
bags used in breath sampling studies [95]. The air
in the human lungs is composed of death that has a
volume of approximately 150 ml and approximately
350 ml of alveolar volume [7, 96]. Breath fractional
volumes for an average size healthy male at rest [96]
are shown in figure 4.

The most important compounds for the biomark-
ers analysis, such as VOCs, are in the endtidal part
of exhalation. Endogenous particles concentrations
are highest at the end of expiration, when the end-
tidal pressure of exhaled CO, reaches a plateau, there-
fore it is recommended to use capnometers or CO,
sensors and consider the obtained results during pre-
processing and selecting the data fragment to determ-
ine the sensor responses [41, 97]. Within the indirect

A Paleczek and A Rydosz

Table 3. Gas-collecting methods.

Method ~ System References

Indirect  Air supplied directly to  [62, 63, 65, 66, 71]
the device
Direct  Tedlar” bags [57-60, 66, 67, 93, 94]
Fluorinated ethylene [83]
propylene (FEP) bag
Teflon sealed bag with ~ [68]
saliva and moist filter

method, patients, for example, were asked to blow
into Tedlar® bags flushed with N, and heated at 40 °C
for 1 h [66]. In the case of the use of Teflon sealed
bags, the bags were flushed with dry air [68]. Silica
gel dehumidifier is commonly used as hygroscopic
material [57, 58, 66] and did not show an influence
on diabetes detection [57]. Collected breath samples
were stored at 4 °C until analysis [60].

Beauchamp et al compared the stability of VOCs
after storing the breath sample in Tedlar® bags for
10 and 70 h. The result shows that the above 80%
compounds in the sample remain stable within 10 h,
but within 70 h the percentage of recovery is unac-
ceptable for future breath analysis. They also proved
that there is a diffusion of compounds through the
surface of the bag. This is noticeable by the expo-
nential decrease in relative humidity (RH), tending
to the ambient level. Another evidence of diffusion
is observed inside the bags the increased level of
contaminants from the environment. Nevertheless,
the decrease in humidity inside the bag can be an
advantage for measurements that are sensitive to high
humidity [95].

In another study, Righettoni et al also showed that
the humidity inside the Tedlar” bag decreased dur-
ing measurements. For this reason, they decided to
heat the breath sample in the bag for 1 h at 40 °C.
This allowed the RH to stabilize from about 90% to
less than 30%. Moreover, the RH content inside the
collecting bag has decreased tending to the humidity
level contained in the ambient air [98].

The research carried out by Mansour et al showed
that the respiratory temperature is the range of
31.4 °C-35.4 °C and 31.4 °C-34.8 °C, while the RH
is 65.0%—-88.6% and 41.9%-91.0%, for Halifa and
Parisian participants, respectively [99]. Other studies
by Ferrus et al showed that RH in human exhaled air
is in the range of 89%-97% [100]. Table 3 shows dif-
ferent gas-collecting systems.

3.2. Systems for exhaled breath analysis

Currently, there are several known commercial
devices (e-nose systems) on the market that are
used to diagnose disease based on exhaled air, but
none of them have been adapted to detect dia-
betes in the exhaled air. The most popular are
FOX 4000 (AlphaMOS, France) [101, 102], FAIMS
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Table 4. The most commonly used sensors in exhaled breath analysers for the detection of diabetes according to the literature review.

Sensor Target gas/measured value References
TGS4161 Carbon dioxide [57,59]
TGS822 VOCs, hydrogen, carbon monoxide, etc. [57-59, 71]
TGS1820 Acetone [40]
TGS8100 Air contaminants [40,113]
TGS2620 Alcohol, solvent vapors [40, 57-59, 71, 113]
TGS825 Hydrogen sulphide [57,71]
TGS826 Ammonia, VOCs, hydrogen [57, 58]
TGS2201 Nitric oxide, Nitrogen dioxide [57]
TGS821 Hydrogen [57, 58]
TGS2602 VOCs, hydrogen, ammonia, hydrogen sulphur [57-59]
MiCS-5524 VOCs [40, 64, 65]
MQ-2 Propane, hydrogen, methane [60]

MQ-3 Alcohol [40, 60, 62, 63]
MQ-5 Hydrogen, acetone, carbon monoxide, alcohol [62, 63]
MQ-7 Carbon monoxide [64, 65]
MQ-9 Carbon monoxide [60]
MQ-135 Benzene, ammonia, carbon dioxide, nitric oxide [60, 64, 65]
MQ-137 Ammonia [60]
MQ-138 Toluene, acetone, ethanol, formaldehyde [60, 64, 65]
HTG3515CH Temperature, relative humidity [58,59]
DHT-22 Temperature, relative humidity [64, 65]
SHT85 Temperature, relative humidity [40]
Honeywell Relative humidity [60]

HIH 4000-002

breath analyser (Owlstone Medical, UK) [103],
Ketonix Bluetooth and USB noninvasive breath ana-
lyser (Ketonix AB, Sweden) [104, 105], Portable
Breath Acetone Meter PBAM (Biosense™ Readout
Health, USA) [106, 107], Cyranose Electronic Nose
(Sensigent, USA) [108, 109] and Keyto Breath Sensor
(Keyto, USA) [110].

Most often, breath analyser systems consist of
matrices of several commercially available sensors
sensitive to selected compounds [59, 60, 62-65, 71,
94,111, 112]. Additionally sensors for the detection of
RH [58-60, 64, 65] and temperature [58, 59, 64, 65]
are also used in breath analysers. The most popular
sensors, reported in the literature for the utilization
in breath analysers for the detection of diabetes were
are shown in table 4.

3.2.1. Metal oxide semiconductor sensors

The most popular gas sensors used in breath analysis
are metal oxide semiconductor (MOS) and temper-
ature modulated MOS (TM-MOS) sensor arrays spe-
cially optimized for the requirements of a breath ana-
lysis system by selecting sensors with increased sensit-
ivity and selectivity to the potential biomarker of the
detected disease [59, 93]. The MOS sensor resistance
changes during interaction with oxidizing and redu-
cing gases (71, 94, 113]. TM-MOS sensors showed
greater efficiency in respiratory analysers than tra-
ditional MOS sensors [59]. The high RH of exhaled
air affects the results of the measurements, especially
those performed with the use of MOS sensors [63, 95,
114], which is why many groups of researchers use
humidity absorbing systems and systems to measure

humidity and temperature, which are used to com-
pensate for their impact in the algorithms created.

3.2.2. Polymer sensor array

Polymer sensors consist of electrodes made of metal
alloys, for example Pt/Pd, arranged on the surface
of a ceramic substrate. The electrodes are deposited
in the polymer layer synthesized by polymerization.
Thickness of sensor can be adjusted by controlling
the polymerization parameters such as amount of
organic solvent. Detailed information on the produc-
tion of polymer sensors was described by Yu et al
[68]. The authors used a portable gas analysing sys-
tem constructed from a conducting polymer sensor
array (polypyrrole). The designed sensor array con-
sists of Pt/Pd alloy electrodes placed on the surface of
an alumina substrate coated by polypyrrole thin film
sensors with different thicknesses obtained by chem-
ical polymerization. The applied layers showed differ-
ent levels of response to acetone and ethanol concen-
trations, which were controlled by the mass flow con-
troller. The sensors were tested on breath samples of
diabetics and healthy people as well as various con-
centrations of acetone and ethanol [68].

3.2.3. The proton exchange membrane fuel cell

Proton exchange membrane fuel cell (PEMEC) con-
sists of a polymer electrolyte membrane that allows
proton conductivity and transport of protons from
the anode to the cathode. In the presence of gas, the
potential for the working electrode changes [69, 115].
Jalal et al proposed a system for the acetone real-
time monitoring composed of three-electrode fuel

5
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cell sensor. The PEMFEC sensor was constructed from
a sandwiched structure of the membrane electrode
assembly. These sensors are characterized by long life,
scalability, portability, good accuracy, and selectivity;
however, they are susceptible to external factors such
as pressure, humidity, and temperature. The sensors
were tested on various concentrations of acetone [69].

3.2.4. MEMS (micro-electro-mechanical systems)
cantilever sensor

The polymer-coated MEMS cantilever sensor consists
of a cantilever beam with a rectangular cross section.
It is arranged in a capacitor configuration with par-
allel plates. The cantilever plate is movable relative to
the rigid substrate. Depending on the components of
the gases that have been applied, the parameters of
the cantilever such as the cantilever mass, stiffness,
and surface stress condition change due to the sorp-
tion of particles on the polymer surface that covers
the cantilever. This causes the cantilever to bend. The
value of the deflection depends on the concentration
of the compound to which the coating is selective,
and it can be measured in the static mode sensing,
i.e. with a laser reflectometer or by measuring capa-
city changes. Another measurement method is the
dynamic mode sensing, which involves electrostatic
induction of the cantilever by applying AC voltage to
the capacitor plates and measuring electronically or
by a laser Doppler vibrometer the change in reson-
ance frequency caused by the presence of gases [70,
116]. Gupta et al designed a polymer-coated MEMS
cantilever sensor. The authors selected polymers for
the cantilever coating using fuzzy C-means clustering
and fuzzy subtractive clustering methods. The sensors
were tested on simulated artificial breath [70].

3.2.5. Gas chromatograph coupled to a mass
spectrometer

In a gas chromatograph (GC) coupled to an mass
mpectrometer (MS) system, the GC enables the sep-
aration of the analyzed mixture into its components
over time. Separation of the mixture components
takes place due to the differences in the migra-
tion rates of the individual components of the mix-
ture through the chromatographic column. The mass
spectrometer then records their mass spectra, on the
basis of which each of the components of the separ-
ated mixture can be identified by measuring the mass
to charge ratio [46, 117]. Siegel et al used an Agilent
7890A GC coupled to an Agilent 5975C mass spec-
trometer to analyze breath samples collected in Ted-
lar bags from 56 type 1 diabetes patients. To obtain as
many as possible unidentified trace components, the
automated mass spectral deconvolution and identi-
fication system was applied, and the components have
been automatically identified using the SpectConnect
server at the University of Georgia. They decided to
apply manual prescreening to exclude components
that were observed in less than 50% of hypo or total
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samples, eliminating the influence of known contam-
inants from components present in the measurement
equipment or Tedlar bags and components with low
signal-to-noise ratio [67].

4. Preprocessing

The measured responses are commonly filtered, nor-
malized [40, 42, 47, 50, 69, 76, 77], and preprocessed
using baseline manipulation [57, 94, 118] and/or
baseline subtraction [57-59, 94, 119]. Figures 5 and
6 show the baseline fitting and subtraction. Baseline
manipulation is used to enhance contrast, com-
pensate for drift, and scale the data [24, 57]. An inter-
esting method for computing the sensor response
after a baseline manipulation process is given in
[24], where the baseline manipulation is expressed by
equation (1):

By
seli 1
SRI()E‘SS";% =SR(s,p,1) — By ZSR(s,u,z), (1)
=1

where, SR(s p,) and SR(s p,y) are sensors responses to
sample S from D sensor response data, at time T and
time t, By is stabilized data.

Further, data normalization is applied to elimin-
ate the fluctuation caused by analyte concentration
and oxygen pressure [57, 118]. Raw response normal-
ization can be performed in two different ways, fea-
ture wise (column wise normalization) and sample
wise (row wise normalization) [119]. When humidity
and temperature sensors were used in their analysis
system, the algorithm was designed to compensate or
handle variations in collected breath samples caused
by humidity and the presence of alveolar air [59].
To reconstruct the signal and compensate for noises
whose source could be unstable voltage or variable
temperature and humidity, the discrete wavelet trans-
form was applied to the Z-normalized signal [64].

4.1. Features extraction

The most popular approach is to use preprocessed
raw data obtained from sensors to train machine
learning models. To increase the performance of
breath analysis systems, feature extraction algorithms
are commonly used before training selected classific-
ation or regression models [60, 63, 93, 119]. Com-
monly used methods to extract features from raw
sensor data are, for example, the calculation value of
maximum response, integral/area under the sensor’s
response curve (AUC), maximum derivative, and
extreme response. The use of these methods signific-
antly increases the dimension of features [60, 93, 119].
A more advanced feature extraction and reduction
technique is the singular value decomposition (SVD)
algorithm, which decomposes the input matrix into
orthogonal eigenvectors and eigenvalues [63].
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Figure 6. Data after baseline subtraction.

4.2. Features selection

To remove irrelevant or superfluous features and
keep the most useful information, feature selection
algorithms are applied [63, 93, 119], such as SVD,
sequential forward selection, principal component
analysis (PCA). Due to the high dimensionality of the
data set that contains responses frequently from more
than ten different gas sensors [57, 59, 93, 94, 119] and
the increasing amount of features after applying fea-
ture extraction methods, algorithm is used to extract
low dimensional features, because the PCA algorithm
projects the higher dimensional data onto a lower-
dimensional data subspace [57-59, 64, 118, 120]. The
feature is also omitted when it has a high correl-
ation with the other or alone provides low accur-
acy in the given task [60, 93, 119]. Another way to
decrease the number of not significant features are
statistical methods such as screening, selection, and
multiple comparisons. Elimination of the impact of
components with a significantly low signal-to-noise
ratio and pollution present in Tedlar bags or meas-
urement devices can be done by applying the manual
prescreening method [67]. Reducing the number of
redundant features can improve model accuracy and
training speed by decreasing the computational com-
plexity of algorithms [67, 68, 93] and prevent over-
fitting, which is common problem when analyzing
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data from multiple gas sensor matrices because the
number of features may exceed the number of breath
samples taken [24, 120, 121].

5. Algorithms

5.1. Principal component analysis

PCA currently is the most popular dimensionality
reduction algorithm. It is an unsupervised learning
model and the main aim of this method is to find
the hyperplane closest to the data and then project the
data onto it. The algorithm based on the PCA determ-
ines the axis that retains the highest value of the vari-
ance of the training data set. The number of determ-
ined mutually orthogonal axes is equal to the dimen-
sion of the features. A training set is transformed into
a dot product of three matrices using SVD algorithm
[122]. One of the resulting matrices contains the prin-
cipal components arranged in the order of decreasing
variance [70], which are then used to project the ori-
ginal training data set to a given number of dimen-
sions (equation (2)).

Xa=X-Wy, (2)

where X; is the result of dimensionality reduction, d
is the number of target dimensions, X is the original
data set matrix, and Wy is a matrix of the d-first val-
ues from the principal component matrix calculated
using SVD method.

Usually, instead of choosing randomly the num-
ber of target dimensions of the feature space, the
number of dimensions allows to keep a given value
of variance [122] and at the same time minimizing
information loss [123]. On the other hand, preserving
the highest variance by the PCA algorithm can also be
a drawback in tasks such as regression [93]. The indi-
vidual principal components are not correlated with
each other [124].

Saidi et al used the PCA algorithm to differentiate
between diabetes and health states. The authors have
extracted the features such as dynamic slope of the
conductance (dG/dt), AUC, and conductance change
(AG) for each of sensors, but the result shows that
only AUC and AG had the ability to classify health
and diabetes samples and other sensors’ responses
were strongly correlated. The algorithm assigns the
new sample to one of four classes: DM, chronic kid-
ney disease, healthy subjects with high creatinine
and healthy subjects with low creatinine, which have
been separated in a three-dimensional graph using
PCA methods. Moreover, the trained model correctly
classified samples obtained after one month, which
means that the model was stable and did not need
retraining or recalibration. External validation car-
ried out on samples from new people showed that the
algorithm is 100% correct in diseases identification
[60]. Eliminating features with low variance helps
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to decrease overlapping between two or more differ-
ent concentration points [69]. Additionally, the PCA
method can be used to calculate the Euclidean dis-
tance between samples. Results show that this met-
ric has the ability to differentiate between healthy
and diabetic patients. The Euclidean distance was cal-
culated on the samples taken from exhaled breath
of diabetes, non-diabetes as well as an reference gas
acetone sample, where diabetes and reference, and
non-diabetes and reference distances were calculated.
The results have shown that the Euclidean distance
between non-diabetics and reference acetone was
higher than for diabetics and [68].

This unsupervised learning method is also com-
monly used to preprocess the data and reduce the
dimensionality of complex data sets before applying
supervised learning methods such as linear discrimin-
ant analysis (LDA) [67], k-nearest neighbours (KNN)
classifier [57, 58], because results obtained independ-
ently by PCA algorithm may be not sufficient to prop-
erly generalize and classify breath samples [67].

Dimension reduction is also widely used for data
visualization. To prepare clear and human-readable
visualizations of multidimensional data is needed to
limit the number of dimensions to two or three [67,
122].

5.2. Support vector machines

Support vector machines (SVM) are supervised learn-
ing models which can be used to solve classification
and regression problems [61, 125]. The SVM clas-
sifier is one of the most frequently used classific-
ation algorithms for a small but high-dimensional
data set [69], which most often characterizes medical
data, especially VOCs measured with the use of sev-
eral independent sensors or semiconductor gas sensor
matrices [59, 60, 6265, 71, 94, 111]. The principles
of SVM are in detail presented and discussed in the
literature, for example Burges [126] and Cherkassky
etal [127]. Briefly, the m-dimensional input data set is
separated by the algorithm into I-dimensional feature
space using hyperplanes. Hyperplane is the decision
surface obtained by solving the optimization prob-
lem to maximize the margin [125]. The number of
determined hyperplanes is equal to n — 1, where n is
the number of classes. The margin is calculated as the
distance between the hyperplanes that are defined by
moving the boundary hyperplane all the way to the
first points of the classes. The points closest to the
boundary hyperplane form the support vectors. The
selection of the appropriate margin plays a key role
in the design of the algorithm. If the margin is too
small, a slight change in the decision boundary may
even result in a change of the predicted class. On the
other hand, a wider margin makes it possible to limit
the phenomenon of overfitting and increases the gen-
eralization of the model. For these reasons, it is imper-
ative to use margin maximization algorithms. SVM
classification is robust to outliers [126—128].

8

A Paleczek and A Rydosz

For non-linearly separable datasets, the choice
of a linear decision function can lead to underfit-
ting the model to data. To avoid this problem, the
kernel trick with the maximum-margin hyperplanes
is widely used. In such case, every dot product is
replaced by a nonlinear kernel function [125]. SVM
classifiers commonly used in breath analysis systems
were trained with different kernels, e.g. Gaussian ker-
nel [59], a polynomial kernel function (3) [94], radial
basis function as presented by the following equation
(4) [111].

K(x7 X,’) = (xle+7)p7 (3)

where ~y is a kernel parameter and p is polynomial
degree [94].

Kinw) —ep( )

where x is the class, x; is the data set corresponding
to that class, and o is the variance of the testing data
[111].

To avoid model overfitting, the leave-one-out
cross-validation can be applied to SVM algorithm, as
was presented by Saidi et al in [60].

One of the main disadvantages of the SVM
algorithm is the choice of the proper kernel which
will fit well input data and decrease time of training,
especially for large datasets [125]. Results obtained by
different researches show that SVM classifier model
can obtain high sensitivity and specificity greater than
90% on the separated test set for the differentiate
between health and diabetes VOCs samples [59-61,
94, 111]. Yan et al used the SVM algorithm to differ-
entiate between the breath samples of healthy people
and diabetics. The algorithm was trained on 140 ran-
domly selected samples from sick people and the same
number of samples for healthy people. The remain-
ing samples (139 for each class) were used to val-
idate the model. The authors trained the model 50
times, as a result, they obtained an average sensitiv-
ity of 91.51% and a specificity of 90.77% for diabetes
screening [59].

5.3. K-nearest neighbour

KNN is a supervised learning algorithm that classi-
fies a given unknown sample into a category based
on the distance between k closest examples from the
training data set. The distance between samples p and
q in n-dimensional space is usually defined by Euc-
lidean distance (5) [129-132] and less often by Man-
hattan, Minkowski [132] and Canberra metrics. Can-
berra distance is weighted Manhattan distance [65].

(5)

where p and g are two samples in n-dimensional
space.
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In the KNN classification algorithm new obser-
vations are assigned to the class in the following
way: placing the new observation x in the data space,
determining the KNN according to the selected dis-
tance metric, and then predicting the class based on
the majority of classes that are represented by the
selected KNNs. The class for the new observation can
be selected not only on the basis of most classes, but
also by a weighted method [133-135].

One of the difficulties in applying this method
and obtaining satisfying results is to choose an accur-
ate k number of the nearest neighbours because there
are no strict or mathematical rule to determine the
value of this parameter [129]. Too large k value results
in a simplification problem and loose local informa-
tion, on the other hand, if k is too small, the model
becomes too sensitive to outliers [136]. Commonly,
it is chosen after many experiments and comparing
the accuracy, sensitivity, specificity metrics between
different models [130]. Features in favor of using
this classifier are its simplicity of implementation and
possibility to adapt to local information, but on the
other hand, this model has very high computational
complexity associated with calculating the distance to
each training example for each new sample [129].

In breath analysis, the KNN model is commonly
prepared using features extracted from a data set
using PCA method [57, 58]. Researches design the
algorithm with small k values, e.g. k =3 [58], k=5
[57] and k = 8 [65]. Classification results using this
classifier are promising, researches obtained the sens-
itivity of the diabetes diagnosis higher than 87%, the
specificity higher than 86% [57, 58] and the accuracy
95% [65]. Yan et al used the KNN algorithm to distin-
guish between breath samples of healthy people and
diabetics. The authors collected 294 healthy samples
and 404 diabetes. 147 samples from each class were
selected for training. The algorithm was tested on the
same number of samples. The authors trained the
model 50 times, as a result, they achieved an average
sensitivity of 91.43% and a specificity of 89.86% for
diabetes screening [58]. Guo et al trained the KNN
algorithm to distinguish breath samples between
healthy and sick people using data from 57 people
with diabetes and 48 healthy people. Algorithm tests
were performed on separate samples (60 for each
class). The sensitivity of this diagnosis was 87.67%
and the specificity was 86.87% [57].

Hariyanto et al showed that the KNN algorithm
results in higher accuracy and was easier to imple-
ment than the SVM and neural networks (NN) mod-
els. Moreover, the designed KNN classifier performs
the fastest classification in the web system designed
by researches [65]. This method can be also applied
to regression problems [129, 130].

5.4. Linear discriminant analysis
LDA is a supervised machine learning algorithm
commonly used for binary classification problems
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[67,132,137]. The main goal of the LDA model is
to maximize the variance between classes and min-
imize the variance within each group [132, 137, 138]
by finding a projection vector that separates the input
data in two categories [132, 138]. LDA assumes that
the probability density functions in the classes k have
D-dimensional normal distributions N with equal
covariance matrices in the classes. In this algorithm,
matrices characterizing the intergroup and intra-
group variability are calculated, the ratio of determ-
inants of these matrices is maximized. The main goal
of the algorithm is its minimization of intra-group
variability, and the maximization of inter-group vari-
ability [139]. The model is prone to overfitting on a
training data set if it has a large number of variables
[67]. LDA can be used as a linear classifier or feature
selection method before applying other classification
algorithms [132, 138].

Siegel et al attempted to use LDA model to
detect hypoglycaemia in breath samples by distin-
guish hypo from non-hypo samples. To increase and
test performance of the model leave-one-one-out
cross-validation (LOOCV) method was used. The
calculated metrics were 91% sensitivity and 86% spe-
cificity for the training dataset. These results prove
that due to the observed differences in the composi-
tion of breathing during a hypoglycaemic episode, it is
possible to create an automatic hypoglycaemia detec-
tion system [67].

5.5. Extreme gradient boosting

Extreme gradient boosting (XGBoost) is state-of-the-
art algorithm which was developed by Chen and
Guestrin in 2016 [140]. This algorithm can be suc-
cessfully used in both regression and classification
problems and often achieves higher performance than
traditional machine learning algorithms [140-143]. It
is an algorithm based on many decision trees. This
type of learning is called ensemble learning. This
algorithm makes a prediction based on the results
obtained by individual trees, which are added dur-
ing the training of the algorithm. In the case of using
Gradient Boosting, the loss of the algorithm is minim-
ized using the gradient descent method. The XGBoost
algorithm shows high efficiency in dealing with miss-
ing data, and additionally, thanks to parallelization
and hardware optimization through the use of out-
of-core and cache-aware computing, it is one of the
fastest operating algorithms, especially in the case of
large data sets [140].

Paleczek et al used XGBoost to detect diabetes
based on acetone concentration in a simulated arti-
ficial breath. The hyperparameters of the model
were optimized using the grid search and cross-
validation method to avoid overfitting. The algorithm
was optimized to achieve high recall, which was,
on the test data set, 100%, while the Fl-score was
97.4%. The researches also compared the results
achieved by traditional machine learning algorithms
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such as Decision Tree Classifier, Random Forest Clas-
sifier, SVM and KNN. The results of the comparison
showed that the other decision tree-based algorithms
achieved similarly high performance as XGBoost
[40].

5.6. Neural networks

Not only traditional machine learning methods are
used to detect diabetes in the exhaled air, but also
different types of NNs such as ANN [71], deep NN
(DNN) [64] and convolutional NN (CNN) [62, 63]
were proposed.

Nowadays, ANNs are referred to as a computing
architecture that consists of extremely high number
of massively parallel simple neuron interconnections
[144]. Each of the inputs is assigned a weight by which
it is multiplied. The higher the weight of a given con-
nection, the associated input has a greater effect on
the output value of the neuron. If it is decided to use
bias, its value is added to the multiplication result.
Then the results of these multiplications and adding
biases are summed up and the appropriate activa-
tion function is applied [144]. Widely used activa-
tion functions are unipolar and bipolar step func-
tions, symmetric ramp function, logistic function,
and hyperbolic tangent function. The choice of the
right one depends on the problem faced by networks
[145]. The main goal of ANN is to adjust the weight
vector in such a way as to obtain the most accurate
representation of the expected output values [144].

DNNGs are in general ANN with additional hid-
den layers. Due to this modification, DNNs have a
higher computational complexity. In deep learning,
nonlinear data transformations are performed using
many hidden layers. The lowest layers represent the
basic features of the input data set, the next layers
create more detailed features. In the case of using
DNNes, it is not necessary to properly prepare the fea-
tures, because it is implemented in individual deep
layers of the network. One of the advantages of using
DNN instead of ANN is that in contrast to ANN, it
is possible to use a dropout layer in DNN [64]. This
technique is the most commonly used technique for
weight regularization. It consists of randomly switch-
ing off the weights of neurons with a given probability
(most often 50%) [146].

The last of the mentioned NN structures, CNNs,
are commonly used to deal with grid-like data topo-
logies such as time series or images. The network per-
forms a linear convolution between an input signal
and a predefined kernel. The CNN output is called a
feature map. In classification problems, the calculated
features are transferred to a fully connected layer and
then assigned to classes by the softmax layer accord-
ing to the calculated highest probability of belonging
to a class. There are several network regularization
and optimization methods such as adding dropout
layer, pooling, L? regularization, L! regularization,
and batch normalization, which are commonly used
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to increase model generalization and avoid underfit-
ting or overfitting the network to input data [146].

Prepared models can be optimized using differ-
ent optimizers. The most popular are Adam, Adagrad,
Adelta, Stochastic Gradient Decent [64]. The width of
the model is determined by the dimensionality of the
used layers [146].

Lekha et al proposed to modify convolutional lay-
ers and use a Gaussian based 1D kernel to filter the
raw input signals and produce the feature maps for-
warded to the next layer of the network. Researches
attempted to compare the proposed 1D CNN clas-
sifier model with different machine learning models
such as SVM, NN combined with preprocessing tech-
niques such as PCA or SVD. During leave-one out
cross validation algorithm achieved misclassification
rate of 0.0714 and a mean square error of 0.1436. The
obtained results showed that the calculated accur-
acy, sensitivity, and specificity metrics, respectively,
almost 98%, 97.5%, and 97.5%, were higher for CNN
than for SVM and NN, preceded by the feature extrac-
tion algorithms in the one-label multiclass classific-
ation problem (diabetes type 1, type 2 and healthy
samples classification). Moreover, it was observed
that the measured computational complexity of the
1D-CNN algorithm was significantly lower [63].

To obtain better performance, in another study,
it was proposed to use CNN with Gaussian kernel
and modify it by replacing the fully connected mul-
tilayer perceptron (MLP) classifier with the SVM
algorithm. The proposed architecture integrates the
concept of CNN feature extraction technique with the
SVM classifier. The aforementioned modifications
increase the classification accuracy, sensitivity, and
specificity metrics caluculated on separated test set,
respectively, to 98%, 99%, and 98%. The algorithm
was trained on the signals from the examination of 15
breath samples, and six samples were used for testing.
Moreover, replacing fully connected MLP with the
SVM classifier significantly decreased the measured
computational time. Researchers also compared the
performance of other architectures such as traditional
CNN, CNN-SVM with linear kernel, and CNN-SVM
with polynomial kernel, but none of them showed a
better ability to distinguish between the three classes
which are healthy, type 1 diabetic and type 2 diabetic
and the computational complexities were higher [62].

Not only the CNN architectures have been used,
but the optimized DNN structure has been pro-
posed by Sarno et al to separate the collected
samples into three predefined categories such as
healthy, prediabetes and diabetes. Before performing
the classification, PCA algorithm was used to select
the most significant averages of sensor responses.
Research compared the results for different optim-
izers and the Adam optimizer showed the utmost
accuracy that was 96%. The results obtained by the
proposed optimized DNN were compared with com-
monly used machine learning methods such as KNN,
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SVM, Naive Bayes (NB), and LDA. These methods
showed much lower accuracy than the proposed NN
based model, where the highest was 83.33% for the
SVM classifier [64].

6. Discussion

Metabolic variability between patients and other
factors such as gender, age [67], as well as length of
time living with type 1 diabetes [147] and course of
treatment [35] hampers the development and testing
of versatile e-nose system for the detection of diabetes
in exhaled breath. Furthermore, as is shown in the lit-
erature, breathing acetone levels differ between type
1 diabetes and type 2 diabetes [83] and depend on
whether the disease is being treated and controlled
[35], therefore it is necessary to develop and test the
e-nose system based on breath samples obtained from
alarge in a group of patients, varied in terms of meta-
bolic conditions, medical history and type of dis-
ease, not just based on acetone concentration. One
of the possibilities of customization the device for
the patient is the development of the device calib-
ration function [93], e.g. using a traditional blood
sugar meter, and then using it to determine the indi-
vidual relationship between blood glucose level and
the exhaled acetone level obtained from the breath
analyzer.

To prepare a versatile breath analysis system, it
should be considered whether intrasubject variance
factors such as diet [148] and insulin [149] should
be handled by the algorithm of the system. In the
papers presented in this review, researchers trained
algorithms with input data obtained only from meas-
urement devices. Additionally, the influence of meta-
bolic factors on the relationship between acetone and
blood glucose level is unknown. Due to the high and
variable RH of human breathing, it is necessary to
measure it during the breath analysis, as well as to take
into account its influence on the sensor response in
the algorithms [40, 63, 95, 114].

Based on the literature review it was observed
that the studies are conducted on a small number of
patients, therefore it is difficult to prepare and valid-
ate a system for breath analysis taking into account
the variables affecting the acetone level in the exhaled
air [63].

Another limitation of the use of breath ana-
lysis for the noninvasive diagnosis of patients is
the very low concentration of VOCs in exhaled air
[7]. The performance of breath analyzer can be
increased by selecting sensors highly selective to acet-
one or by using other measurement methods and
by using pre-concentrators at the input of the ana-
lyzers [35, 38, 39]. Ueta et al used In-needle pre-
concentration method whose the main advantages
are repeatability without performance decrease and
simple extraction/desorption process. The calculated
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recovery obtained using the needle extraction device
was more than 99% for the standard acetone sample
[22]. Rydosz et al proposed to use a pre-concentrator
manufactured with the LTCC method. The results
show that the concentration factor depends not only
on measurement parameters such as adsorption time,
gas flow and desorption temperatue, but also on
absorbent volume, grain size and surface area. The
obtained concentration factors, calculated for acet-
one, were up 16.35 at 30 min adsorption time. The
main advantage of the LTCC micropreconcentrator is
the possibility of integrating it with a matrix of gas
sensors manufactured using this method [25, 26].

The breath analysis systems and diabetes detec-
tion algorithms presented in this paper have shown
the importance of data preprocessing, as well as the
appropriate features extraction and selection used to
train the algorithm. In the case of systems based not
only on MOS sensor array, but also on GS/MS and
other systems presented in this paper, the researchers
obtained a large number of features for the input data.
In addition, they processed the raw data obtained
from the measurement system in different ways, for
example, by calculating the AUC [60] and/or the
DWT [64], to obtain the highest possible efficiency
of the system. Determining which of the many fea-
tures obtained from the measuring device signific-
antly increases the performance of the algorithm is
possible, for example, by using tree algorithms that
allow checking feature importance [40]. This inform-
ation can be useful to determine a sufficient num-
ber of sensors and their type when custom designed
sensor matrices are used.

PCA is a helpful algorithm to reduce the dimen-
sionality of data, often used by researchers to reduce
the number of input features to the algorithm, as
well as for visualization and exploratory data analysis.
In addition to using this method for feature selec-
tion, it is possible to use it as a classifier, but research
has shown that better results are achieved by classify-
ing the computed principal components using other
machine learning algorithms such as LDA [67], KNN
[57, 58].

An alternative to PCA, has been proposed by
Lekha et al, The autors have used CNNs to extract fea-
tures from sensor data [63]. The results showed that
the use of CNN with the SVM showed higher per-
formance in detecting diabetes than the use of CNN
with the fully connected multilayer perceptron layer
[62].

All algorithms presented in this paper show very
high performance in diabetes detection tasks based
on multidimensional data obtained from exhaled
air analyzers. An important element in the design
of algorithms is the selection of model hyperpara-
meters, e.g. k number of the nearest neighbors, to
ensure the best generalization and prevent overfit-
ting [136]. Model overfitting can also be reduced
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Table 5. Comparison of selected algorithms used to detect diabetes in exhaled breath from patient samples.

Algorithm  Features Data samples Accuracy Sensitivity Specificity References
LDA PCA 52 Type 1 DM 91% 84% [67)
(hypoglycaemia
detection)
LDA PCA,DWT 10 Healthy/ 74.07% [64]
prediabetes/
diabetes
KNN PCA 108 Healthy 87.67% 86.87% [57]
117 Diabetes
KNN PCA 294 Healthy 91.43% 89.86% [58]
117 Inpatient diabetes
287 Outpatient
diabetes
KNN PCA, DWT 10 Healthy/ 81.47% [64]
prediabetes/
diabetes
KNN DWT 20 Healthy 95% [65]
20 Diabetes
SVM Calculated 3 Healthy 100% [61]
acetone 4 Type 2 DM
concentrations 3 Type 1 DM
SVM PCA, DWT 10 Healthy/ 83.33% [64]
prediabetes/
diabetes
SVM PCA 295 Healthy 91.61% 90.77% [59]
279 Diabetes
SVM CNN with 12 Healthy 98% 99% 98% [62]
Gaussian 4 Type 2 DM
kernel 9 Type 1 DM
SVM CNN with 12 Healthy 98% 97.5% 97.5% [62]
polynomial 4 Type 2 DM
kernel 9 Type 1 DM
SVM CNN with 12 Healthy 97.55% 97.25% 97.5% [62]
linear kernel 4 Type 2 DM
9 Type 1 DM
SVM dG/dt, AUC, AG 38 Healthy 100% [60]
6 Diabetes
SVM SVD 11 Healthy 97.4% 97.1% 97.4% [63]
9 Type 2 DM
5 Type 1 DM
SVM PCA 11 Healthy 96.1% 96.9% 94.9% [63]
9 Type 2 DM
5 Type 1 DM
SVM PCA 108 Healthy 90 92.66% [94]
Diabetes (healthy),
93.52%
(diabetes)
CNN CNN 12 Healthy 97.25% 97% 96.5% [62]
4 Type 2 DM
9 Type 1 DM
NN SVD 11 Healthy 95.4% 95.9% 94.9% [63]
9 Type 2 DM
5 Type 1 DM
NN PCA 11 Healthy 96.1% 96.9% 94.9% [63]
9 Type 2 DM
5 Type 1 DM
1D CNN 1D CNN 11 Healthy 97.9% 97.4% 97.4% [63]
9 Type 2 DM
5 Type 1 DM
DNN PCA,DWT 10 Healthy/ 96.29% 91.61% 90.77% [64]
prediabetes/
diabetes
NB PCA, DWT 10 Healthy/ 74.07% [64]
prediabetes/diabetes
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by using cross-validation methods such as LOOCV
in the case of classic machine learning algorithms
[63, 67], while using NNs, popular methods of net-
work regularization are dropout, L2 regularization, L!
regularization, and batch normalization [146]. Lekha
et al compared the use of NNs with SVM classi-
fier. The results showed that CNN outperformed the
other algorithms [63], and it is also possible to com-
bine CNN with SVM to increace the performance of
diabetes detection [62]. The results obtained by the
researches with the use of selected algorithms presen-
ted in this review are summarized in table 5.

When analyzing breath samples, one of the chal-
lenges is choosing the right algorithm. The results
showed that all algorithms achieved high perform-
ance. In the case of medical diagnostics, it is worth
using explainable Al algorithms, such as decision
trees or XGBoost, which allow you to accurately trace
the action and decisions made by the algorithm. This
is of great importance in the case of misdiagnoses, and
the algorithm’s conclusions can broaden the know-
ledge of doctors and indicate which correlations are
most important for diagnosis. Another advantage of
this type of algorithms is the ability to determine
the features importance factors, which are valuable
information when the system includes a sensor mat-
rix, using sensors with semiconductor layers can use
this knowledge to develop better parameters of these
layers or compose a different set of sensors.

Medical diagnostics supported by machine learn-
ing and artificial intelligence methods, and especially
non-invasive diagnostics based on exhaled air, has
many advantages and limitations. Machine learning
models enable the processing of a huge amount of
multidimensional data, which is constantly increas-
ing, which is not possible to be processed and under-
stood by a human in a reasonable time. Thanks to the
use of algorithms, it is possible to detect linear and
non-linear relationships between data, detect bio-
markers by analyzing the differences between samples
from sick and healthy people, as well as select appro-
priate sensors in the matrices in order to minimize
cross-sensivity. A noninvasive respiratory diagnostic
device can reduce healthcare costs by performing
more screening tests and diagnosing disease early.
The main limitation in the use of a Al-assisted dia-
gnostics is the individual variability of the paramet-
ers of each patient and the need to train models on
a large number of people, with different medical his-
tories, treatments and different livestyles in order to
obtain the highest generalization. Continuous valid-
ation and calibration of medical devices is also neces-
sary in order to quickly detect errors in the opera-
tion of the system. Not all algorithms are explainable,
e.g. NN, therefore in the case of a wrong diagnosis it
is practically impossible to discover what influenced
the decision of the model [150, 151]. In the case of
breath testing, there is no specific protocol for collect-
ing, storing samples and testing procedures, groups of
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scientists use different bags, as well as direct air supply
to devices which mainly consist of different sensors,
so it is difficult to compare the results obtained in the
literature. It also limits access to data, as compared to
other diagnostic methods such as x-ray or MRI, it is
not possible to share data from different research cen-
ters and create huge databases.

7. Conclusions

The development of the breath analyzer is associ-
ated with many limitations such as small patient
groups, metabolic variability, no determined correl-
ation between acetone and blood glucose level, low
concentrations, and a large number of different VOCs
per breath. To prepare a versatile breath analysis sys-
tem, it may be necessary to develop a calibration pro-
cedure for the patient. The use of a matrix of vari-
ous sensors, selective for various compounds (espe-
cially acetone), and then the use of artificial intelli-
gence can be helpful in determining the correlation
of sensor responses with the patient’s disease state.
Before developing the classification algorithms, it is
necessary to perform extraction and selection of fea-
tures. It is important to select hyperparameters and
apply regularization and validation in order to avoid
underfitting and overfitting of the algorithm. In addi-
tion to traditional machine learning algorithms, the
use of a novel XGBoost algorithm or CNNs to increase
performance of breath analysis system for diabetes
detection are worth to be considered.
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3. The experimental results obtained
during the laboratory studies

This chapter presents the results of laboratory studies using an electronic nose system
developed by the Author and the Biomarkers Analysis LAB AGH Research group
to detect biomarkers of metabolic diseases in exhaled air. The first phase of the study was
focused on artificially prepared gas mixtures, which provided a controlled and repeatable
experimental environment. The composition of the mixtures was based on a literature review
to closely mimic human exhaled air. This approach enabled the evaluation of the measurement
system's performance under laboratory conditions, free from variables resulting from
environmental influences, dietary intake, or individual variability. Particular attention was paid
to acetone (C3HeO, CAS No. 67-64-1), considered one of the best-documented biomarkers
present in exhaled air associated with carbohydrate metabolism disorders. Its concentration
in exhaled air increases in diabetes and prediabetes, as well as in conditions of increased
ketogenesis. Due to its direct relationship with glucose metabolism, acetone is considered
a key diagnostic indicator, useful for non-invasive diagnostics and monitoring the progression
of diabetes.

Analysis of data from the e-nose system requires the use of machine learning algorithms
because the responses of gas sensors are multidimensional and nonlinear signals,
which are difficult to interpret using classical methods. Depending on the experimental goal,
regression algorithms were used to predict the concentrations of individual biomarkers, while
classification algorithms were employed to distinguish between samples representing different
health states. The results obtained in the laboratory studies formed the basis for further clinical
studies on exhaled air samples, described in the next chapter.

This chapter summarises three research papers documenting the successive
stages of laboratory research. Each chapter focuses on a different aspect of the e-nose system's
use in detecting metabolic disorders.

The first research paper [AP1] examined the potential of using the developed e-nose
system to detect diabetes based on the concentration of acetone in prepared gas mixtures.
The experiments were conducted using samples with different concentrations
of acetone (C3HeO, CAS 67-64-1), ethanol (CoHsO, CAS 64-17-5),
propane  (CsHs, @ CAS  74-98-6), ethylbenzene  (CgHio, CAS 100-41-4),
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carbon dioxide (CO, CAS 124-38-9) and relative humidity (RH) corresponding to levels
observed in the breath of healthy individuals and diabetic patients. The study tested several
machine learning algorithms for classifying samples. The results showed that the e-nose
system, supported by XGBoost, is capable of classifying mixtures simulating the exhaled air
of healthy individuals and those with diabetes. The main challenge was to differentiate acetone
levels in the mixtures into two classes: concentrations less than 1.5 ppm and concentrations
greater than or equal to 1.5 ppm. This threshold was selected based on literature research,
and the mixtures also contained other components found in exhaled air. The effect of gas
mixture humidity on sensor response was also examined, as this is a crucial factor given the
high humidity of exhaled air. As part of the work, for the XGBoost algorithm,
an accuracy of 99%, a recall of 100% and a specificity of 97.9% were obtained for the
classification of gas mixtures based on acetone concentration. This work was the first test of
the developed e-nose and examined whether and which machine learning algorithms could be
used to classify gas mixtures based on acetone levels.

The second research paper [AP2] focused on the problem of interference resulting from
the presence of interfering compounds, particularly ethanol. Ethanol is a common component
of human breath - it can come from both endogenous and external sources
(e.g., alcohol consumption, use of oral hygiene fluids or eating certain meals) - and can
significantly affect the accuracy of acetone measurements. Typical acetone concentrations in
healthy individuals range from 0.3 to 1.5 ppm, and in diabetics, they can reach
several ppm or higher. In contrast, ethanol concentrations can exceed hundreds of ppm or even
higher. Gas sensors, especially MOS sensors, are often poorly selective, and ethanol has similar
adsorption and reactive properties on the sensor surface as acetone, making it difficult to detect
very low acetone concentrations when ethanol is also present in the mixtures. In this study, gas
mixtures containing various proportions of acetone and ethanol were prepared, and then the
possibility of predicting acetone concentration was analysed using regression algorithms.
The results showed that appropriately selected machine learning methods can effectively
compensate the effect of ethanol presence in the mixtures, maintaining high accuracy in
predicting acetone concentrations. The study achieved a mean absolute error (MAE)
of 0.245 ppm for diabetic breath acetone levels using four sensors and XGBoost.
In mixtures with high ethanol content and 0-8.62 ppm of acetone, CatBoost performed best
with an error of 0.568 ppm of acetone concentration prediction. This research paper had high

practical significance, as it confirmed that the e-nose system can also be helpful in more
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complex and realistic conditions, where the presence of interfering compounds is unavoidable
and should be considered when designing e-nose systems.

The third research conference paper [AP3] expanded the scope of the analyses, focusing
on the classification of gas samples into three categories corresponding to different health
states: healthy individuals, pre-diabetics, and diabetics. For this purpose, gas mixtures were
prepared to reflect the typical biomarker profiles characteristic of each group,
and the composition of the mixtures was selected based on literature research. Classification
algorithms in Python were employed for the analysis, enabling effective differentiation
between the studied classes with high accuracy. The highest health prediction accuracy scores
were obtained using CatBoost and were 95%, 79% and 88% for healthy, prediabetes, diabetes
classes, respectively. The results confirmed that the e-nose system has the potential not only to
detect the disease itself but also to identify intermediate states, including those differing by
small acetone concentrations, which is particularly important for prevention and early
diagnosis. The results were presented by the Author at the "8th International Conference
on Bio-Sensing Technology” — 12-15 May 2024, Seville, Spain.

The presented research papers [AP1, AP2, AP3] document a coherent
sequence of laboratory studies on the e-nose system developed by the Author
and the LAB Research group, which can be generalised to other e-nose devices for the
diagnosis of metabolic diseases. The research began by detecting a single biomarker,
then proceeded to investigate how different interferences affected the e-nose and how well
machine learning could handle them. Finally, the system was tested in multiclass classification.
Altogether, the findings suggest that the system could be developed into a useful diagnostic
tool. The obtained results enabled the refinement of both measurement methods and machine
learning algorithms, which were subsequently applied in clinical trials. These provide the

foundation for further real human samples analysis presented in the next chapter.
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Abstract: Exhaled breath analysis has become more and more popular as a supplementary tool
for medical diagnosis. However, the number of variables that have to be taken into account forces
researchers to develop novel algorithms for proper data interpretation. This paper presents a system
for analyzing exhaled air with the use of various sensors. Breath simulations with acetone as a
diabetes biomarker were performed using the proposed e-nose system. The XGBoost algorithm
for diabetes detection based on artificial breath analysis is presented. The results have shown that
the designed system based on the XGBoost algorithm is highly selective for acetone, even at low
concentrations. Moreover, in comparison with other commonly used algorithms, it was shown that
XGBoost exhibits the highest performance and recall.

Keywords: breath acetone; diabetes; XGBoost; VOCs; machine learning; algorithms; e-nose

1. Introduction

Nowadays, groups of researchers are focused on non-invasive methods for diagnosing
various diseases. One of the promising tools is exhaled breath analysis. Its potential in
medical diagnosis has been known since the time of Hippocrates when he used the smell
of the breath to diagnose liver disease and uncontrolled diabetes [1].

The air inhaled and exhaled by humans consists mainly of nitrogen, oxygen and
carbon dioxide (Figure 1). Exhaled air contains more carbon dioxide and less oxygen than
inhaled air because oxygen is used to generate energy during respiration, while carbon
dioxide is produced as a by-product of the energy production process. Among the major
components, exhaled breath consists of over 3500 Volatile Organic Compounds (VOCs)
and a single breath consists of around 500 various VOCs, which are typically in the part
per million (ppm), part per billion (ppb) or part per trillion (ppt) range [2]. Some of them
are named biomarkers since their presence, as well as various concentration levels, may
indicate several diseases. Biomarkers are compounds present in the body that can be
used as indicators of physiology and diseases present. These types of VOCs are called
endogenous VOCs and are produced by the metabolism of cells. On the other hand,
the second type of VOCs are exogenous VOCs used to assess the effects of substances
such as drugs, diet, cigarettes, toxic or noxious vapors and environmental pollution on
the body. Exogenous VOCs are present in, for example, breath or blood as a result of
circulation and/or internal metabolism [3-5]. Clear separation of biomarkers into these
two groups is not possible because the same VOCs can be induced physiologically in
the body as a result of disease, and also under the influence of external factors [4,5].
A general approach to determining biomarkers for a given pathological condition is to
compare the VOC composition of a group of healthy and sick people [3]. There are several
types of biomarkers: monitoring, predictive, prognostic, safety and susceptibility /risk
biomarkers [6]. Systemic biomarkers are used to determine the functioning of the whole
organism, while lung biomarkers are used to determine the processes and changes taking
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place in the respiratory system [7]. Currently, research is focused on biomarkers of various
diseases, for example asthma [8,9], various types of cancers [10-13], chronic obstructive
pulmonary disease [14,15] and, recently, metabolic disorders, such as diabetes [7,16-24],
which will allow non-invasive detection and monitoring of these diseases using exhaled
air. However, diet and pathological changes may affect the exhaled breath compositions;
therefore, every person has their own unique molecular breath signature [7,25]. Similarly
to a fingerprint, the exhaled profile is called the “breath-fingerprint” or “personal breath
profile”. Common biomarkers of several diseases are listed in Table 1.

[ ~79% Nitrogen ]

~13-16% Oxygen

~4% Carbon dioxide ]
VOCs ]

Figure 1. General composition of humans’ exhaled breath.

Table 1. Potential disease biomarkers in the breath.

Disease Biomarkers References
Diabetes Acetone [2,7,16-24,26]
Asthma Nitric Oxide [2,8,9]
Cystic fibrosis Hydrogen cyanide [27,28]
Lung cancer VOC pattern [10,11,26]
Chronic kidney disease Trimethylamine [29]
Colorectal cancer Methane [30,31]
Myocardial infarction Pentane [32,33]
Obstructive sleep apnea Pentane and Nitric Oxide [34]
Renal failure Ammonia [35,36]

Usually, the biomarker concentrations are too low to be detected without the utilization
of advanced analytical systems such as GC/MS (Gas Chromatograph coupled to a Mass
Spectrometer) [37,38], SIFT-MS (Selected Ion Flow Tube-Mass Spectrometry) [39,40], PTR-
MS (Proton Transfer Reaction-Mass Spectrometry) [41]. One of the promising techniques
to increase the volume of biomarkers is the utilization of preconcentrators, including
micropreconcentrators [22,42,43].

One disease prevalent in civilization that requires constant monitoring is diabetes.
Briefly, there are two main types of diabetes: type 1 (T1IDM) and type 2 (T2DM); T2DM
is the most common (90% of all cases). According to data provided by the World Health
Organization (WHO), approximately 500 million people worldwide have diabetes, and this
number is constantly growing. The vast majority of them live in low- and middle-income
countries. The WHO also reports 1.6 million deaths annually from diabetes [44]. Diabetes
over time damages the nervous system, blood vessels and heart, as well as the eyes and
kidneys, leading to an increased risk of premature death [45]. Due to the ever-increasing
number of people with diabetes and deaths from it, the WHO reports that there is a globally
agreed goal to halt the development of diabetes and obesity by 2025 [44]. At present, there
are no known methods of preventing type 1 diabetes. Its treatment consists of continuous
monitoring of blood glucose level (BGL) and the patient’s insulin intake. However, in the
case of type 2 diabetes, it is possible to reduce its incidence by adhering to a proper diet,
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increasing physical activity, and reducing smoking. In addition to diet and exercise, early
diagnosis plays an important role in the treatment of diabetes, so it is important to develop
an easily accessible and non-invasive device that can be used for screening [44-46]. In terms
of exhaled breath analysis, acetone was identified as a biomarker of diabetes [7,16-24,47].
Results presented in Table 2 show that breath acetone concentrations for healthy peoples
were lower than for diabetes patients.

Table 2. Acetone concentration in health and diabetes samples.

Diabetic Stage Measured Acetone Concentration References
T2DM 1.76-3.73 ppm [18]
Healthy 0.22-0.80 ppm
Controlled diabetic 0.19-0.66 ppmv [22]
Untreated T2DM 0.92-1.20 ppmv
Diabetes 1.25-2.5 ppm (or up to 25 ppm) [23]
Healthy 0.2-1.8 ppm
T1DM 4.9 +16 ppm [47]
T2DM 15+ 1.3 ppm
Healthy 1.1+0.5 ppm
Diabetes >1.8 ppmv [48]
Healthy <0.8 ppmv
T1DM 2.19 ppmv (mean) [49]
Healthy 0.48 ppmv (mean)
Healthy 0.177-2.441 ppm [50]
Healthy 0.176-0.518 ppm [51]

Experimental results have shown that relative humidity (RH) and temperature of
exhaled human breath vary between subjects. Mansour et al. examined Parisian and Halifa
participants. The measured values were 31.4-35.4 °C and 65.0-88.6% for Halifa participants
and 31.4-34.8 °C and 41.9-91.0% for Parisian participants [52]. Ferrus et al. showed that the
RH in exhaled air from humans varies between 89 and 97% [53]. Due to the high relative
humidity of the breath and its influence on the sensitivity of the measurement systems
(especially metal oxide semiconductor sensors) [54-56], it is necessary to use moisture
absorbers to properly store the breath samples and to take into account the influence of
humidity on the measurements in designed algorithms.

The researchers present the results of using various supervised machine learning and
deep learning algorithms to classify breath samples and detect diabetes. The most popular
are K Nearest Neighbours (KNN) [57-60], Support Vector Machines (SVM) [37,59,61-63],
Naive Bayes (NB) [59,64], Deep Neural Network (DNN) [59] and also Convolutional Neural
Networks (CNN) [65]. The extraction and selection of features was most often performed
using Principal Component Analysis [57,59,61,66]. The main limitation of the conducted
research is the lack of an adequate number of patient samples. Only a small fraction of the
research has been carried out on sample numbers above a hundred [57,58,61].

In this paper, the experimental results on the e-nose system for discrimination be-
tween healthy and diabetic patients based on the exhaled breath analysis are presented.
Within this study, an artificial breath profile was developed to simulate real conditions and
enable testing without involving real samples.

2. Materials and Methods

The scheme of the system proposed in this paper is presented in Figure 2.

All algorithms were developed using scikit-learn Machine Learning in Python [67,68]
and XGBoost, an open-source software library that provides a gradient boosting framework
for C++, Java, Python, R, Julia, Perl, and Scala [69].
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Figure 2. Block scheme of the proposed system.

2.1. Equipment

Selected gas sensors (listed in Table 3) were placed in a measurement chamber with
a 180 mL capacity and supplied with appropriate voltages in accordance with their data
sheets. Due to the relative humidity influence on sensors’ sensitivity, in addition to gas
sensors, temperature, relative humidity and pressure sensors were also used. The BME280
(Bosch Sensortec, Reutlingen, Germany) and SHT85 (Sensirion, Staefa ZH, Switzerland)
sensors were placed inside the measurement chamber, while the second SHT85 sensor was
placed before the gases entered the measurement chamber. All used sensors, except SGP30
and SHTS85, responded to the dosed gases as voltage. For SGP30, the sensor returned Total
Volatile Organic Compounds (TVOCs) and an equivalent carbon dioxide reading (eCO2)
over the I2C communication bus. TGS1820 (Figaro Engineering Inc, Mino, Osaka, Japan),
TGS2620 (Figaro Engineering Inc, Mino, Osaka, Japan), TGS8100 (Figaro Engineering
Inc, Mino, Osaka, Japan), MQ3 (Waveshare, Shenzhen, China) and MICS5524 (Amphenol
SGX Sensortech, Corcelles-Cormondreche, Switzerland) sensors’ responses were measured
using Keithley 617 (Tektronix, Beaverton, OR, USA), Keithley 6514 (Tektronix, Beaverton,
United States) and multimeter Keysight 34450A electrometers (Keysight, Santa Rosa, CA,
USA). If the sensor sent the measured values using the Serial Peripheral Interface (SPI) or
Inter-Integrated Circuit (I2C) communication bus, the ESP32 dev board (Espressif Systems,
Shanghai, China) was used to read these values and send them to the measurement
application written in the Python programming language. Figure 3 shows a scheme of
the proposed e-nose measurement system. The glass flask shown in Figure 3 was used to
simulate the humidity.

2.2. Exhaled Breath Simulations

The gas mixtures composed of synthetic air, acetone, ethanol, propane and ethylben-
zene were dosed with a variable relative humidity to simulate exhaled air using the GF40
series (Brooks, Hatfield, United States) mass flow controllers with a Brooks 0254 controller.
Due to the high humidity of the exhaled air, the measurements simulated humidity ranging
from 0 to 70%. However, the relative humidity measured inside the chamber was 0 to 40%
due to the increased temperature in the measurement chamber. Taking into account the
number of all possible combinations of gas mixtures, the total duration of measurements
was estimated to be more than 700 days. Thanks to the use of an artificial exhaled breath
mixture, the experiments could be conducted constantly (24 h/7 d) without involving the
diabetic patients. Since acetone is the key biomarker of diabetes, it was decided to measure
the response to various concentrations of acetone contaminated with other gases in the
concentration ranges that have been previously confirmed by the utilization of analytical
techniques such as GC/MS [37,38]. Based on the obtained results presented in Table 2,
the simulations assumed that the concentration of acetone in the exhaled air for a healthy
person is <1.5 ppm and for a diabetic patient is >1.5 ppm.
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Figure 3. Scheme of the proposed measurement system.

Table 3. Sensors used in measurements.

Table 3.

Sensor Target Gases Typical Detection Range
TGS1820 (CH3),CO 1-20 ppm (CH3),CO
TGS2620 C,H50H, 50-5000 ppm CoH5OH

Solvent apors
TGS8100 Air contaminants 1-30 ppm Hj
(Hp, C,H50H etc.)
MICS5524 CO, VOCs 1-1000 ppm CO
10-500 ppm C,H;OH
1-1000 ppm Hj
1-500 ppm NHj3
>1000 ppm CHy
MQ3 CoH50H, CHy, 0.04-4 mg/L C,H50H
Benzine, Hexane,
LPG, CO
SGP30 CO,, VOCs 0-1000 ppm H

0-1000 ppm C,H50H
0-60,000 ppb eq tVOCs
400-60,000 ppm eq CO,

2.3. Preprocessing

In order to obtain input data for the algorithms, preprocessing and features extraction
were carried out. The use of baseline subtraction is important due to baseline drift. The

result of the long-term stability test is given in Figure 4.

The baseline was fitted to the raw data obtained from the sensors and then subtracted

(Figure 5).
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Figure 4. Result of the long-term test for different gas mixtures—MICS5524.
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Figure 5. Baseline subtraction. (a) Sensor raw response with fitted baseline; (b) result of the

baseline subtraction.

The following features have been extracted from each gas sensor:

*  The sensor response (S) defined by Equation (1):

S

_Rs

Ro

@

*  The sensor response change (AS) defined by the Equation (2):

where:

Rg—sensor exposed to target gas, e.g., acetone;

Ro—sensor exposed to pure synthetic air;
®  Area under sensor’s response curve (AUC) calculated when the sensor is exposed to
gas. Result approximated by the trapezoidal numerical integration.

AS = Rg — Ry

@
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The prepared dataset from the simulation of acetone in the breath was divided into
two separate sets—the training set and the test set. In order to simulate the real case, where
samples from healthy subjects are overwhelmingly obtained [37,38,70,71], the simulations
were conducted with an unbalanced number of samples. Moreover, not every algorithm,
i.e., Support Vector Machines, K Nearest Neighbours [72-74], works well with an unbal-
anced dataset; therefore, such experiments are crucial. Due to the unbalanced number of
samples belonging to the “healthy” and “diabetes” classes, the data were divided in such a
way that the same percentage of samples from each class was included in both the test and
training sets. Distribution of samples in the dataset are given in Figure 6.

EEl Healthy
500 A IR Diabetes

400 A

300 A

200 A

100 A

0_

Train set Test set

Figure 6. Dataset abundance and distribution.

2.4. Features Selection

Due to the correlation between the features extracted from the raw data from each
sensor, we decided to use the calculated S results and the values read from the temperature
and humidity sensors as an input to the algorithms. As detailed in Section 3.3, the gas
sensors, except SGP30, used the S value that slightly changes with the change in humidity,
which is important when measuring exhaled air, characterized by high humidity.

2.5. XGBoost Classifier

Recently, extreme gradient boosting (XGBoost) state-of-the-art algorithms are becom-
ing more and more popular not only for classification, but also for regression problems, due
to their high performance [69,75-77]. The XGBoost alghorithm is a scalable tree boosting
system which was developed by Chen and Guestrin in 2016. Parallel, distributed, out-
of-core and cache-aware computing makes the algorithm more than ten times faster than
popular models used in machine learning (ML) and deep learning (DL). Another advantage
of this algorithm is that it is well optimized and scalable. Due to this innovation, it can be
successfully used to process billions of examples in distributed or memory-limited settings.
This cutting-edge application of gradient boosting machines was designed to handle real-
world problems where the input data sparsity is a common issue. The algorithm is aware
of the presence of missing values, too frequent zero values in the dataset and results of
applied feature engineering techniques. The ensemble technique is the recursive addition
of new models until further addition no longer noticeably enhances the performance of
existing models. The loss of the model is minimized by the gradient descent algorithm [69].
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2.6. Hyperparameter Optimization

To determine the best performance, the model’s hyperparemeters were optimized
by a grid search algorithm. Model evaluation was performed using the stratified k-fold
cross-validation method. It is commonly used to evaluate models with limited datasets. We
decided to use a stratified version of this algorithm due to the unbalanced dataset; it splits
the dataset, keeping the equal proportions of each output class in each fold. The use of this
method enables the selection of optimal model hyperparameters and reduces overfitting of
the data. The training set was divided into k sets, then the model was trained with the use
of k—1 datasets, and the remaining set was used to validate the model using the selected
metrics. The final value of a metric is the average of the k iteration [78,79].

2.7. Classifiers” Performance Evaluation Metrics

In this paper, we mainly focused on obtaining the highest possible sensitivity value
(recall score) defined by Equation (3):

TP

TPR =757 FN

©)
where:

TPR—true positive rate (recall, sensitivity);

TP—true positive;

FN—false negative [80].

This metric is especially important in medical applications, when the dataset is unbal-
anced, and we strive to minimize the type II error. For example, in the case of screening
tests, it is important to mark all potentially sick patients and possibly, in further, more
accurate, as well as invasive and more expensive tests, confirm or rule out diabetes.

3. Results and Discussion
3.1. Sensors’ Sensitivity to Gases Used in Simulations

Figure 7 shows the responses of each sensor to different acetone concentrations. Each
concentration was repeated at least twice in order to check the stability of the sensors and
the repeatability of the response to individual gas concentrations. The results show that
each of the sensors is sensitive to changes in acetone concentration, and in the case of
the same concentration being used several times, the sensors are stable and the responses
are repeatable.

3.2. Sensors’ Selectivity to Acetone

The results of measurements of the sensor response to various gas mixtures with a
constant concentration of acetone—1.5 ppm in each mixture, given in Figure 8—show
that none of the sensors included in the designed e-nose system is fully acetone selective.
Therefore, it is important to use a sensor array where each sensor is selective for different
gases/gas mixtures.

3.3. Relative Humidity Dependency

Due to the high humidity of the breath, measurements were made at different simu-
lated humidities. For each of the sensors used, the characteristics of the relative dependence
of the sensor’s response to humidity were determined and the dependence of the sensitivity
to 1 ppm of acetone on the ambient humidity was also calculated. Results are given in
Figure 9.
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Figure 7. Sensors’ responses to different acetone concentrations in 0% RH. (a) TGS1820; (b) TGS2620;
(c) TGS8100; (d) MQ3; (e) MICS5524; (f) SGP30 eCO2; (g) SGP30 tVOC.
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Figure 8. Sensors’ responses to different simulated mixtures in 0% RH. A. 1.5 ppm acetone, 2.5 ppm
ethanol, 1 ppm propane; B. 1.5 ppm acetone, 1 ppm ethanol, 2.5 ppm ethylbenzene; C. 1.5 ppm
acetone, 1.5 ppm ethanol, 1 ppm ethylbenzene, 1 ppm propane; D. 1.5 ppm acetone, 1.5 ppm ethanol,
1 ppm propane; E. 1.5 ppm acetone, 1.5 ppm ethanol, 0.5 ppm ethylbenzene, 0.5 ppm propane;
F. 1.5 ppm acetone, 1 ppm ethanol, 1 ppm ethylbenzene, 0.5 ppm propane; (a) TGS1820; (b) TGS2620;
(c) TGS8100; (d) MQ3; (e) MICS5524; (f) SGP30 eCO2; (g) SGP30 tVOC.
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3.4. Classification

The optimal model hyperparameters were determined using the grid search algorithm.

In order to assess whether the model is underfitted or overfitted, validation was used with
the use of a separate validation set. Learning curves showing the dependence of the
classification error on the number of training epochs are shown in Figure 10.

0.7
—— Train set

0.6 —— Validation set

0.5

0.4

Classification Error

o

50 100 150 200 250 300 350
Epoch

Figure 10. XGBoost learning curves.

3.5. Feature Importance

The results of the algorithm showed that the three most important features for the
classification were measurements from the MQ3, TGS1820, SGP30 and SHT85 sensors
placed inside the chamber. Feature importance values for the most significant sensors are
given in Figure 11.
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3.6. Performance Evaluation

In the case of using the algorithm based on the gradient of boosted trees, the recall
equals 1, which means that all the sick patients were correctly marked as sick and the
type II error was minimized. The other calculated performance evaluation metrics are
summarized in Table 4. As we assumed, the algorithm’s hyperparameters were selected in
such a way that it achieved the highest recall value.

Table 4. Classifier performance evaluation results.

Metric Result
Accuracy 99%

Recall 100%

Specificity 97.9%

Area under ROC curve 97.9%

Fl-score 97 4%

Confusion Matrix

The algorithm’s confusion matrix is shown in Figure 12. It shows that the healthy
diabetes samples were classified properly. The confusion matrix allows one to accurately
quantify the true positive, true negative, false positive and false negative test samples.
Based on these values, the remaining metrics are calculated. In the case of the proposed
XGBoost Classifier algorithm, two cases of simulated diabetes patients were incorrectly
classified. This is a type I statistical error.

3.7. Comparison with Classic Machine Learning Algorithms

In this paper, we also compared the classification performance achieved using the
XGBoost algorithm with the results of classic classifiers such as Support Vector Machines
(SVM), K Nearest Neightbour (KNN), Decision Tree Classifier (DT) and Random Forest
Classifier (RF), commonly used in previous research. For these algorithms, the hyperpa-
rameters were also determined using the grid search method and the K-Fold validation
was performed. The classification was carried out using the same train and test sets as
for XGBoost.
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Figure 12. XGBoost Classifier confusion matrix.

Figure 13 shows a comparison of the achieved recall of the algorithms.

XGradientBoost Decision Tree Random Forest Support Vector ~ K-Nearest
Classifier Classifier Classifier Machines Neighbours

Recall
o
(6)]

Figure 13. Recall comparison of different algorithms.

The receiver operating characteristics (ROC) curve shows the dependence between
recall and 1-specificity. It is commonly used in machine learning tasks for medical applica-
tions. The closer the curve for a given model is to the point (0,1), the better the classifier.
The most common problem in designing models for medical data is that the data contain
more healthy cases than disease ones [81]. Figure 14 shows the ROC comparison for each
of the algorithms used in this research.
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All of the used algorithms exhibited good performances. Each of these algorithms
obtained recall and false positive rates of over 80%. By analyzing the determined metrics,
it can be seen that the XGBoost Classifier has the highest accuracy and recall equal to 99
and 100%, respectively. Decision Tree Classifier obtained a recall identical to the XGBoost
Classiffier, but the results differ in the amount of false positives. It is true that in screening
tests, the most important detection is as many true positives as possible, but reducing
the number of false positives, i.e., healthy ones classified as sick, reduces the cost of
further diagnosis.

3.8. Discussion

Due to the individual variability shown in the literature, depending on, inter alia,
sex, age, diet, duration of diabetes life, the course of treatment and its type, it is necessary
to conduct tests on breath samples. It may also be necessary to develop a method for
calibrating the device tailored to an individual patient. The results presented in this paper
show that the designed system is highly selective for acetone, even at low concentrations.
In order to confirm the selectivity of the system towards all breath components, it is
necessary to carry out measurements on samples of exhaled air taken from healthy people
and diabetics. The graphs of dependence of the sensor’s response and sensitivity on the
ambient humidity in the measurement chamber showed that the all sensors used, except
SGP30, are slightly sensitive to humidity. Measurements of humidity in the chamber and
taking these results into account in the input data to the algorithms made it possible to
compensate for its influence. In the case of the presented sensors’ system and the algorithm
used, the classification of diabetics was independent of the relative humidity inside the
measuring chamber. Comparison with other commonly used algorithms showed that
XGBoost showed the highest performance and recall. One of the disadvantages of the
system is the long response and retention time of each of the sensors used; therefore,
in order to use such a system for medical applications, it is necessary to use a different
sensor matrix, a preconcentrator, increase the total air flows in the chamber or reduce the
volume of the measurement chamber.

4. Conclusions

Exhaled breath analysis consists of several steps including sample collection, com-
pound detection, data analysis, and data interpretation. Each stage could be realized in
various manners. So far, the researchers have made efforts to develop the compound
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detection units, for example, by the utilization of electronic noses, which offer cheap, fast,
and reliable results. However, due to the number of compounds present in exhaled human
breath as well as high humidity concentration, the detection unit has to be supported by an
artificial intelligence element to deliver reliable results. In this paper, the XGBoost algo-
rithm for diabetes detection based on the exhaled breath analysis is presented. The results
have shown that the designed system based on the XGBoost algorithm was highly selective
for acetone, even at low concentrations. Moreover, in comparison with other commonly
used algorithms, it was shown that XGBoost exhibits the highest performance and recall,
which makes it a first choice for data analysis in terms of diabetes detection.
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The growing number of people with diabetes has paved the way for the creation of non-invasive devices to
measure blood glucose levels and enable the detection of diabetes non-invasively, for example, through exhaled
air. This paper presents the development of a breath detection system using multiple sensors (e-nose system) for
the non-invasive estimation of blood glucose levels. The system employs commercially available ethanol, CO5,
and acetone sensors, with synthetic breath mixtures used for testing, including four scenarios with high ethanol
concentrations (0-570 ppm) as an influence factor. Results showed a mean absolute error of 0.245 ppm when
analysing commonly observed acetone concentrations in diabetic breath using four sensors and the XGBoost
Regressor. In mixtures with high ethanol concentrations and varying acetone concentrations (0-8.62 ppm), the
CatBoost Regressor outperformed other machine learning algorithms with a mean absolute error of 0.568 ppm.
This study emphasises the significant impact of ethanol on acetone detection and the need to consider ethanol
levels in the developing of non-invasive devices for blood glucose prediction based on the exhaled acetone
measurements. The research shows that a set of three gas sensors is optimal for estimating acetone concentra-
tions in gas mixtures. The presented results constitute a preliminary step towards developing a non-invasive
device for estimating blood glucose levels based on breath analysis, with the novelty of considering alcohol

intake as a potential influencing factor.

1. Introduction

According to the World Health Organisation (WHO), the number of
people with diabetes is growing rapidly, especially in low- and middle-
income countries. The most common types are type 1 diabetes mellitus
(T1DM), type 2 diabetes mellitus (T2DM), and gestational diabetes
mellitus (GDM). T2DM accounts for about 90% of patients. Diabetes
causes many diseases of the heart and the kidneys as well as blindness.

Monitoring of blood glucose and early prevention play the most
important role for all types of diabetes [1]. Currently, invasive devices
such as self-blood glucose monitors (SBGM) and minimally invasive
continuous glucose monitoring (CGM) systems are used to monitor
blood glucose levels (BGL) [2-5]. However, there remains a need to
develop a non-invasive system, for example, based on breath measure-
ments. The non-invasive devices will be very helpful for screening tests
and for people with needle fears and phobia, especially for children with
diabetes. The number of people with type 2 diabetes and obesity that
require regular glucose blood tests is increasing exponentially, and some

* Corresponding author.
E-mail address: paleczek@agh.edu.pl (A. Paleczek).
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studies have shown that this group does not follow clinical recommen-
dations mostly due to needle fears [6].

Human breath consists mainly of nitrogen (78-79%), oxygen
(13-16%), carbon dioxide (4%) and volatile organic compounds (VOCs)
[7]. According to the literature, there are more than 3000 different VOCs
in human exhaled air, which occur at very low concentrations of a few
parts per million (ppm) or even a few parts per trillion (ppt) [8,9]. They
can be of exogenous origin, for example, air pollution, drugs and ciga-
rette smoke, as well as of endogenous origin [10,11]. The latter group is
used most often as an indicator of the metabolic state of the body and
includes biomarkers of diseases such as diabetes [12-14], asthma
[15-17] and cancer [18-22].

A well-known biomarker of diabetes is exhaled acetone, which is
produced in the body as a result of metabolic processes of glucose from
blood, such as the oxidation of free fatty acids [23-25]. Many studies
report acetone concentrations in exhaled air in the range of 0.2-5 ppm,
where lower concentrations are observed in healthy people and higher
in people with diabetes [26-31].
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The expected correlation between acetone in exhaled air and blood
glucose level is a positive correlation, where as BGL increases, the level
of exhaled acetone increases. Such relationships have been observed
previously in the literature [32,33]. However, some articles show that
this correlation may also be negative and as BGL increases, the con-
centration of acetone in the exhaled air may decrease, and this rela-
tionship is individual for each person. These were the results shown by
Rydosz. Researcher analysed acetone samples from several people with
type 1 diabetes. Based on the research, he showed a negative correlation
between acetone in exhaled air and blood glucose level [34]. Similar
research was also conducted by Prabhakar et al. in which they also
observed a negative correlation between acetone and blood glucose
level examined in patients after fasting [35]. A negative correlation was
also observed by Sha et al. [36]. This is an important observation and
means that large-scale studies should be conducted, involving people
with all types of diabetes and various treatments, as well as healthy
people [37]. By creating a device based on machine learning algorithms,
it will be possible to train or calibrate them for each patient.

Taking into account the low concentrations of VOCs, devices such as
the gas chromatograph (GC) coupled to a mass spectrometer (MS) sys-
tem [38] and proton transfer reaction time of flight mass spectrometry
(PTR-TOF-MS) [14] are used to measure VOCs in the breath, but their
disadvantage is their high price and large size. For this reason, scientists
are working on various measurement techniques and devices that enable
detection but with definitely lower prices, such as metal oxide semi-
conductor sensors (MOS). Due to the complex composition of breath and
the lack of selectivity and poor sensitivity at low concentrations of gas
sensors [39], it is necessary to use an array of sensors (e-nose) in order to
identify the components of exhaled air. One of the methods to increase
the 3 S properties of the gas sensor (known as sensitivity, selectivity and
specificity) is to apply artificial intelligence algorithms, for example,
deep learning models, for disease detection (classification) and gas
concentration estimation (regression) [40].

In general, estimating gas concentration in mixtures using data from
sensor matrices is a complex problem and this includes exhaled breath
analysis. The most commonly used solutions use real-time analysis of the
entire sensor response signal, taking into account the dynamics of its
response [39,41-43]. Another approach is based on extracting infor-
mation from one time point for each mix. Values such as sensitivity are
then calculated and used as a characteristic vector to train machine
learning and/or deep learning algorithms [44-46].

With regard to detecting diabetes in exhaled human air, the most
common approach is the classification of people as either healthy or
with diabetes [23,40,45,47-53]. Solutions based on the collection of
breath samples from patients both online [45,54] and offline [55,56] are
proposed as well as algorithm tests based on synthetic breath [47,57,
58]. The most used classification algorithms are K-Nearest Neighbours
[45,56], Support Vector Machines [45] and XGBoost [47,59]. However,
due to research that indicates the relationship between blood glucose
concentration and exhaled acetone concentration, it is necessary to
develop a regression algorithm that enables the estimation of acetone
concentration in gas mixtures. Such algorithms have been proposed by
other researchers; for example, Li et al. developed a system to recognise
gas concentrations in acetone and ethanol gas mixtures based on
thin-line fabricated SnO, gas sensor and the 1D-CNN model. The authors
used three concentrations of acetone (5, 10, 15 ppm) and three con-
centrations of ethanol (0.5, 1, 1.5 ppm) which results in the testing of
nine types of mixtures. They compared different sensor data
pre-processing methods, such as normalisation and trained 1D-CNN and
modified 1D-CNN. The results showed that the minimum mean absolute
error (MAE) to estimate acetone concentration was 0.47 ppm which was
achieved by a modified 1D-CNN model and a SnO, sensor, the sensing
area of which was optimised by the nanometric thin lines structure to
increase its surface-to-volume ratio and the modified 1D-CNN algorithm
[58].

Wang et al. used the Tafel curve for the quantitative detection of
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acetone and ethanol in gas mixtures at concentrations in the range of
0-200 ppm. As compound concentration estimators, the authors tested
XGBoost, Gradient Boosting Decision Tree (GBDT) and Random Forest
(RF) algorithms. The gradient-boosted algorithm showed a lower mean
absolute percentage error (MAPE) of 11.3% and 23% for acetone and
ethanol, respectively [59]. Zhu et al. recently proposed collecting data of
acetone and ethanol and those mixtures using a CGS-8 intelligent gas
sensing analysis system (Beijing Elite Technology Company Ltd.) and a
seven-MOS sensor array. The authors proposed Kernel Principal
Component Analysis (KPCA) as feature extraction and then hybrid ma-
chine learning algorithms such as AdaBoost, XGBoost (XGB), MVRVM,
and SVM with or without optimisation (Grid Search, Particle Swarm
Optimisation algorithm) for classification and gas concentration pre-
diction. In the prediction of acetone concentration, they achieved ab-
solute errors in the range from —0.072 to 0.094 ppm, RMSE 0.027 and
R? 0.9999. For ethanol, the results were —0.103 to 0.102 ppm, 0.030
and 0.9999, respectively. The presented results were for acetone and
ethanol concentrations in the range of 1-12 ppm and for unknown
relative humidity in the chamber [60].

The review of the literature suggests that the concentration of
acetone in exhaled air can be correlated with the glucose concentration
in the blood with a high level of precision. Additionally, a large pro-
portion of the papers and patents in which machine learning algorithms
are used are based on measurements of acetone in high concentrations
(mostly above the acetone concentrations present in the exhaled human
breath), e.g. Thakur et al. used partial least squares (PLS) and multiple
linear regression (MLR) to predict acetone concentration in the range of
0-80 ppm [57], Chen et al. proposed a backpropagation neural network
(BPNN) to predict the concentration of gases such as ethanol, toluene,
acetone and formaldehyde in the range of 0-100 ppm [44] which,
however, is far from practical application in breath analysis, where, as
mentioned above, the concentration of acetone does not exceed 5 ppm.

Algorithms that enable the prediction of low concentrations of
acetone in gas mixtures are necessary, especially when the real breath
sampling is considered with portable devices such as e-nose systems.
Moreover, to be considered as clinically accepted, the proposed algo-
rithms should fulfil the requirements described by the ISO standards.
Due to the lack of the ISO standard for exhaled breath analysis, the
currently used standard for SBGM devices [61] can be used as a refer-
ence. However, it is expected that an ISO standard dedicated for exhaled
analysis will be available in the coming years. Furthermore, it has to be
underlined that the consumption of ethanol-based drinks will affect the
glucose concentration in the blood even hours after consumption, thus
the effect of high ethanol concentration on e-nose response for diabetes
detection in exhaled breath has to be investigated and taken into ac-
count when non-invasive devices are considered. According to the
American Diabetes Association (ADA), the drinking of alcohol by people
with diabetes is not prohibited but requires caution for patient safety.
The patient should monitor blood sugar levels and seek guidance from
their healthcare team before consuming alcohol [62].

In this paper, we focus on the prediction of acetone concentration in
simulated exhaled air, including after possible alcohol intake, and the
selection of a set of commercially available sensors that will be sufficient
to determine the acetone content. Additionally, it has to be understood
that prior to the clinical trials, laboratory studies have to be conducted
in order to limit the intake of alcohol by the patients taking part in the
clinical trials. Thus, the presented results are the first step for including
the influence of high ethanol concentration to the response of the e-nose
system designed for acetone measurements of exhaled breath.

2. Experimental Section
2.1. Measurement system

The proposed gas measurement system is presented in Fig. 1. The
system contained TGS1820, TGS2620 and TGS2600 sensors (Figaro

96



A. Paleczek and A. Rydosz

Sensors and Actuators: B. Chemical 408 (2024) 135550

N Gas dosing control Signals acquisition
( software software
A A A
s > MKS GF50 MFC N > DAQ970A
e MKS GF50 MFC N 4
———————3{ MKS GF50 MFC [N gas out
’_%—; MKS GF50 MFC N K33
MKS GF50 MFC [ A
MKS GF50 MFC N AL-03S
MKS GFSOMFC N A
gas in
Al-03P

€O, 100%

Ethylbenzene 10ppm

Propane 10ppm

Ethanol 3000ppm

W

Acetone 25ppm
Syntetic air

v,—T

1GS2620

ITGS1820 SHT8S
ITGS2600 STC31

Fig. 1. Gas measurement system.

Engineering Inc, Mino, Osaka, Japan) and AL-03 P and AL-03S sensors
(MGK SENSOR Co., Ltd., Saitama, Japan) and their voltage responses
were measured using DAQ970A (Keysight Technologies, Santa Rosa,
CA, USA). Figaro sensors were used with dedicated DevBoards that
enable voltage measurement as a sensor response, while signal ampli-
fiers were designed for MGK SENSOR sensors in accordance with the
documentation provided by the sensor manufacturer. The SHT85 and
STC31 sensors (Sensirion, Staefa ZH, Switzerland) were measured using
the SEK-SensorBridge (Sensirion, Staefa ZH, Switzerland). The typical
detection range and target gas of each of the sensors used are presented
in Table 1. The communication between the PC and the K33 sensor
(Senseair, Delsbo, Sweden) was implemented in the Python program-
ming language using the UART and Modbus communication protocol,
according to the manufacturer’s suggestions. The control and commu-
nication of the gas dosing system, Sensirion sensors and DAQ970A were
implemented in the Python programming language using libraries such
as pyModbusTCP, pySerial, and pyVisa.

Table 1
Details of the sensors used in the measurements.
Manufacturer Sensor Target gas and typical Signal
Type detection range
Figaro TGS1820 Acetone (1-20 ppm) Voltage
Engineering TGS2620 Ethanol Voltage
Inc. (50-5000 ppm)
TGS2600 Air contaminants (1 ~ Voltage
30 ppm of Hy)
MGK SENSOR AL-03S Ethanol (0 ~ 2.0 mg/L)  Voltage
Co. AL-03 P Ethanol (0 ~ 2.0 mg/L) ~ Voltage
Senseair K33 Carbon dioxide Carbon dioxide level
(0-10%) as digital sensors’
response
Sensirion STC31 Carbon dioxide Carbon dioxide level
(0-100%) as digital sensors’
response
SHT85 Relative humidity RH level as digital

(0-100%)

sensors’ response
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2.2. Gas mixtures

The gases were dosed using GF50 MKS (MKS, Andover, Massachu-
setts, USA) mass flow controllers (MFC). Each of the MFC had a full Ny
range of 10 standard cubic centimetres per minute (sccm). The total flow
during the measurement was set to 10 sccm. For each mixture, the gas
dosing time was 30 min and the purging time with synthetic air was
45 min. The specified durations were necessary to allow sufficient time
for gas mixing in the gas configuration depicted in Fig. 1. It is important
to note that both the gas dosing and purging times can be notably
decreased if the patient exhales directly into the chamber equipped with
gas sensors.

The prepared gas mixtures assumed concentrations of acetone in the
range of 0-8 ppm (focussing most on the range of 0.5-2 ppm, which is
most often mentioned in the literature as the range found with diabetic
patients) [26-31] and high concentrations of ethanol in the range of
0-600 ppm. The water bubbler was used to manipulate the RH of the gas
mixtures. The relative humidity of the simulation of the mixtures was in
the range of 50-95% to mimic the humidity level in human exhaled air
[63]. Detailed measurement conditions are presented in Table 2. The
dataset is available online [64].

Fig. 2 shows the concentration of acetone in gas mixtures used during
measurements and the marked range of acetone concentration
commonly reported in literature on diabetes breath.

To simulate the possible concentration of ethanol in human breath,
we assumed the maximum to be 2%o BAC which is equal to 0.95 mg/1 of
BrAC - Blood Breath Ratio (BBR) assumed as 2100:1 (BBR range from
2000:1-2400:1 empirically determined for each country; BBR 2100:1 is
used, for example, in Germany, the USA and Sweden) [65-67]. We then
convert mg/1 to ppm using Eq. 1 [68]. Assuming a temperature of 36°C
and pressure during measurements of 1013 hPa, the 0.95 mg/l BrAC
equals 522 ppm. Therefore, the 0-570 ppm range of ethanol was used
since it covers the assumed conditions well. In practice, when BAC
extend 2%o the measurement based on exhaled breath analysis should
not been performed and the user should be advised to use another
method, preferably SBGM.

mg 22,4 (273+7) 1 1013

P . e e—e
1 M 273 10 P

© 10000 ®
where:

ppm - BrAC in ppm;

mg/1 - BrAC in mg/1;

22.4 (L) - the volume of 1 mol at 1 atmospheric pressure at 0°C;
273 (K) - corresponds to 0°C, needed for conversion;

1013 (hPa) — atmospheric pressure;

P — atmospheric pressure during measurements;

o M — molecular weight.

2.3. Data preprocessing

Sensor responses were calculated as given in Eq. 2. The data set was
split into train and test sets in the 80:20 ratio.

S=R,—R, @

Table 2
Composition of gas mixtures.
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Table 3
Measurement scenarios proposed in the paper.

Scenario No.  Acetone concentration Ethanol concentration

[ppm] [ppm]

1. 0-25 0
2. 0-2.5 0-570
3. 0-8.62 0-570
4. 0-8.62 0

120 4 Acetone concentration commonly

N observed in diabetes breath
(see caption)
100
80 1

No of mixtures
o
3

40

201 R

4 5 9
Acetone [ppm]

Fig. 2. Acetone concentration in gas mixtures. The highlighted range includes
the concentration of acetone commonly observed in diabetes breath based on
the literature review [26-31].

where:

e S — sensor response;
e R; —sensor response under exposure to the gas mixture;
e Ry - sensor response under the synthetic air and RH exposure.

2.4. Algorithms

As a first step, we decided to compare mean absolute error for
different sets of sensors and algorithm such as Linear Regression (LR),
Random Forest Regressor, Decision Tree Regressor (DT), XGBoost Re-
gressor, Light GBM Regressor (LGBM) and CatBoost Regressor (CB).
Algorithms were implemented using the Python programming language
and scikit-learn Machine Learning in Python [69,70] and XGB [71],
LGBM [72,73], CB [74,75] software libraries. Sets were constructed
using Table 4. For each test, the sensor response and algorithm were
chosen from each column. The test also included the value of 'None’,
which indicates the absence of a specific sensor.

The best set with regard to the mean absolute error and the mean
square error was chosen. The sensor choice procedure was performed to
estimate the acetone concentration in four different scenarios (Table 3).

Table 4

Sensors and algorithms used to create test sets. The responses of each sensor
were given as Rg and S. S means the sensor response given by Equation 2 and Rg
means the sensor response under exposure to the gas mixture.

Gas Concentration range (median) [unit] Acetone sensor Ethanol sensor CO,, sensor RH sensor Algorithm
Acetone 0-8.62 (1.4) [ppm] None, None, None, None, LR,
Ethanol 0-570 (72) [ppm] TGS1820 TGS2620, K33, SHT85 RF,
Propane 0-4.8 (0.35) [ppm] TGS2600, STC31 DT,

CO2 2.5-6.8 (4.4) [%] AL-03 P, XGB,
Ethylbenzene 0-4.2 (0.3) [ppm] AL-03S CB,

RH 20-90 (70) [%] LGBM
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Scenarios 1 and 2 were created to predict the acetone concentration
commonly observed in diabetes breath (see Fig. 2), whereas Scenario 3
and 4 were created to predict acetone concentration across a wider
range also reported in the literature.

3. Results
3.1. Sensors’ characteristics

The presence of high concentrations of ethanol affects the sensitivity
of many metal oxide-based sensors, including sensors used in this study
(see Table 1). The TGS1820 sensor was designed to work as a standalone
acetone sensor [76]; however, in the case of predicting acetone con-
centration, it was not sufficient to use only the TGS1820 sensor (as the
experimental results have shown). The sensor response under exposure
to the various concentration of acetone in the mixtures is presented in
Fig. 3 and Fig. 4. Analysis of the obtained results shows that the
TGS1820 sensor is imperfectly selective for acetone in the presence of
high concentrations of ethanol; however, by applying data processing
algorithms, this issue can be overcome.

The results showed that it is important to analyse both Rg and S. In
the absence of ethanol in the mixture, we noticed the linear S of the
TGS1820 sensor. However, in the case of the Rg, the sensor response to
acetone concentrations is less linear. However, the S analysis showed
that the sensor has an offset in response which is dependent upon the
concentration of ethanol present in the mixture. These observations
were obtained for several sensors used during the experiments. For this
reason, it was necessary to use a set of sensors and machine learning
algorithms and consider developing a system with two possible cases: in
the first case, if any alcohol is detected, the device will select an algo-
rithm specifically designed for individuals who have consumed alcohol.
Alternatively, in the second case, upon detecting alcohol during the
breath test, the device will inform the patient that it cannot provide a
measurement due to the presence of alcohol.

The TGS1820 response Rg to a different concentration of pure
acetone at different levels of relative humidity was shown in Fig. 3a,
whereas Fig. 3b presents the TGS1820 response Rg which is dependent
upon the concentration of acetone in all the mixtures used during
measurements, i.e. acetone and ethanol in the range of 0-8.62 ppm and
0-570 ppm, respectively. Ethanol levels are explained in the figure
legend. Similarly, the results for S are presented in Figs. 4a and 4b. The
results show that TGS1820 R¢ and S have a linear dependence (R? score
in range 0.69-0.99 - detailed results are shown in Figs. 4a and 4b) in
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pure acetone and RH mixtures; however, in the presence of ethanol and
other gases in the mixture, the sensor response is no longer linear in
either case. This proves that in the case of the presence of ethanol in the
sample, simple algorithms are not valid and more sophisticated ap-
proaches have to be implemented. Another approach is to use a highly
selective ethanol sensor that can operate at high RH concentrations, i.e.
AL-03S.

As shown in Fig. 5, the AL-03S ethanol sensor has high selectivity and
linear response (R? score 0.97) for ethanol concentration at different
levels of RH, so it can be used as a reference sensor to determine alcohol
intake before measurements. Therefore, we recommend to use it a first
step to detect alcohol consumption and as a reference sensor for
algorithms.

The primary distinction between acetone and ethanol is their
chemical categorisation: acetone is a ketone, while ethanol is an alcohol.
While these organic compounds consist of carbon, hydrogen, and oxy-
gen, their divergent chemical and physical properties classify them into
distinct groups. Acetone, formulated as (CH3)2CO, notably varies from
ethanol, which has the chemical formula C;HsOH. Despite their separate
groups and differing properties, both compounds, due to their shared
carbon, hydrogen, and oxygen content, can interfere with each other in
the context of sensors relying on metal oxides. Semiconductor sensors
show a similar mechanism of sensitivity to compounds such as acetone
and ethanol, and ethanol after alcohol consumption reaches concen-
trations 100 times higher than the concentrations of acetone present in
human breath, even in diabetic patients for whom increased concen-
trations are observed. The ethanol sensors used in this work show high
selectivity and sensitivity to the acetone contained in the mixtures and
do not show the influence of other gases contained in the mixture on
their response. The tests were performed on gas mixtures with different
RH contents, but the results showed that the sensors did not show a
significant difference in response at different relative humidity values,
which is an important advantage because of the high RH content in
exhaled air.

The choice of whether to consider the raw sensor response Rg or the
relative response S in the case of TGS1820 depends on the presence of
ethanol. If ethanol is absent from the mix, the S response to acetone is
more linear than the response of Rg. However, in the presence of
ethanol, the characteristic S is not linear, and a better choice is the Rg
response, which shows a linear dependence (offset) of the sensor
response depending on the concentration of ethanol in the mixture (as
presented in Fig. 3 and Fig. 4). Interestingly, in the case of the ethanol
sensor, better results were obtained using the AL-03S sensor when there
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Fig. 3. Dependence of TGS1820 Rg on the concentration of acetone in: a) pure acetone in different levels of relative humidity; b) all gas mixtures used in mea-
surements in different levels of RH (ethanol concentration is shown in the figure legend).
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Fig. 5. Dependence of AL-03S Rg on ethanol concentration in gas mixtures.

was no ethanol in the mixture and the TGS2620 when the mixture
contained ethanol. For this reason, when designing the target device, it
is necessary to make assumptions regarding its operating conditions and
prepare the final ensemble model.

3.2. Acetone concentration prediction

The results have shown that the CatBoost Regressor outperforms
other algorithms. For the first scenario (see Table 3), the best results
were obtained using the XGBoost Regressor, where the feature impor-
tance analysis shows that the most important for acetone concentration
prediction were TGS1820_S (42%) and STC31_RG (37%). In the second
scenario, data from TGS1820 had the highest feature importance (55%)
and the TGS2620_RG ethanol sensor had 37% importance. In the case of
0-8.12 ppm acetone concentrations in mixtures (Scenario 3) the
importance of TGS1820 decreased slightly and TGS2620 increased. In
the last scenario presented in Table 5, the most important was, as in all
cases, the TGS1820 response (46%), but of almost similar importance
was the ethanol sensor (44%), so it is very important to take the into
account and to also use an ethanol sensor in addition to the acetone
sensor. The analysis shows that in the case of the presence of ethanol in
gas mixtures, ethanol sensors are crucial and significantly improve the

Table 5

Results of experiments in the estimation of the acetone concentration. A-acetone
concentration, E-ethanol concentration, and FR - full range of concentrations.
The results are given in the following order: MAE, min error, max error, RMSE,
mean MAE of 5-fold cross-validation.

No. Scenario Results Best set
1. A <25 0.245, TGS1820.S,
E=0 -0.691, AL-03S RG,
0.600, STC31_RG,
0.091, SHT85,
0.297 XGB
2. A <25 0.358, TGS1820_RG, TGS2620_RG,
EFR -1.182, SHT85,
0.844, CB
0.215,
0.392
3. AFR 0.567, TGS1820_RG, TGS2620_RG,
EFR -2.677, SHT85,
2.621, STC_31_RG,
0.639, CB
0.541
4 AFR 0.430, TGS1820.S,
E=0 -1.488, AL03-SS,
1.396, STC_31.S,
0.336, SHT85,
0.418 CB

prediction. The TGS1820 acetone sensor was of greatest importance in
all scenarios, but it is not sufficient as a standalone sensor to predict
acetone concentrations in gas mixtures due to the cross-selectivity of the
observed sensor. The tests performed according to the four proposed
scenarios, which describe situations that may occur in real conditions
quite well, have shown that the TGS1820 sensor is completely ineffec-
tive in situations when even a trace of ethanol appears in the sample,
despite its response having the highest feature importance. It has to be
underlined that alcohol cannot be completely excluded from the diet of a
person with diabetes; therefore, it is necessary to take this factor into
account when it comes to the practical use of test results and the
development of a device for predicting blood glucose levels based on
exhaled air. As discussed before, the results in Table 5 show that without
the presence of ethanol, the most important factor is the Rg response, but
with the presence of ethanol, the most important factor is the sensor S
sensitivity, so it will be important to develop a multi step algorithm
which first analyses ethanol concentration and then applies an appro-
priate model for acetone concentration prediction.
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When analysing the results, the use of the CO, sensor slightly
decreased the prediction error. The best results were obtained in a set
with the STC31 sensor. Furthermore, the use of the SHT85 sensor to
monitor RH increased the accuracy of the prediction. However, to limit
the number of sensors (and device costs) in the target breath acetone
monitoring device, it is possible to monitor RH using the slightly less
accurate SHT31 sensor incorporated into the STC31 sensor used for COy
detection. Thus, three parameters can be measured by a single module,
namely temperature, RH and CO».

The predictions of acetone concentration tested under four mea-
surement scenarios that mimic real-case situations are presented in
Fig. 6. These are the results of the algorithm running on the test data.
When comparing Fig. 6a and Fig. 6b (acetone < 2.5 ppm, without and
with ethanol presence), there is a noticeable overestimation of the
acetone prediction results in the case where ethanol is present in the
mixture, the same when comparing Fig. 6¢ and Fig. 6b. The "offset’ effect
was also observed in Fig. 3 and Fig. 4, but it was handled by the pro-
posed algorithms. In each scenario, the algorithm is prone to underes-
timate the predicted acetone relative to the acetone present in the
mixture, especially in Scenario 4 (acetone full range without ethanol). In
the target device for estimating the blood glucose concentration based
on exhaled air, it will also be necessary to calibrate the device based on
data collected from patients.
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4. Discussion

There is a lack of research that combines acetone detection
(including diabetes prediction) in exhaled air in mixtures with high
concentrations of ethanol that simulate alcohol intake and even other
influencing factors such as food, drinks oral hygiene products and
smoking. Such analyses are important considerations in the research and
development of non-invasive devices, for example, those designed to
monitor blood glucose levels based on exhaled air. Taking into account
the results presented in this study, it is necessary to measure alcohol in
breath during acetone measurement to ensure that BGL estimation will
be reliable and not influenced by ethanol. It is important to note that this
presence may not necessarily be attributed to direct alcohol consump-
tion but could also originate from certain drugs and various food items
such as sweets and salsas. Additionally, when real-case diabetes moni-
toring is considered, it has to be understood that blood glucose is
measured before and after food intake, thus ethanol may appear in
exhaled breath and the e-nose also has to have scenarios to work in this
case. Moreover, there is a need to identify other factors such as eating
different types of food, smoking before measurement using a breath-
based device, and test those influence to sensors response. Then, for
example, as shown in this study, a different algorithm based on the
preliminary detection of the influencing factor is applied and the user is
warned about the possibility of a lack of reliability of the device.

Review of the literature shows that there is also a lack of acetone
concentration prediction in the low range commonly observed in

3.0

® Model prediction results
—— Ideal prediction
25

2.0

15

1.0

°
°® Scenario 2
Acetone 0-2.5 ppm
Ethanol 0-570 ppm

0.5 °

Predicted acetone concentration [ppm]

0.0

0.0 0.5 1.0 15 2.0 25 3.0
Acetone concentration [ppm]

b)
8.0

754 @ Model prediction results
704 — Ideal prediction

6.5 4
6.0 4
5.51
5.0 4
4.5
4.0 o ®
354 °

3.0 L]

2.5 °

2.0 () e o

154 N % ’. ° Scenario 4.
1.0 (4

Acetone 0-8.62 ppm
Ethanol 0 ppm
0.5

Predicted acetone concentration [ppm]
°

0.0 — T T T T T T T T T T T
0.0 05 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0 55 6.0 6.5 7.0 7.5 8.0
Acetone concentration [ppm]

d)

Fig. 6. Algorithms results on a test set: a) Scenario 1, b) Scenario 2, ¢) Scenario 3, d) Scenario 4.
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diabetic breath using machine learning algorithms. One such example is
the work of Chen et al. who proposed the prediction of acetone in the
range of 0-100 ppm [44], Wang et al. predicted acetone in the range of
0-200 ppm [59].

We have developed algorithms using gas mixtures with acetone in
the range of 0-8.12 ppm and a median value of 1.42 ppm, which are the
lowest values from similar studies included in the literature review, and
it is more demanding and challenging to correctly predict small differ-
ences between concentrations such as 0.2 ppm than 20 ppm. Sensitivity
and detection limits are directly related to the sensors and their physical
capabilities, and the use of machine learning algorithms may slightly
improve selectivity but not sensitivity. Li et al. tested only nine mixtures
with acetone and ethanol (in comparison with the 560 different com-
positions used within this study) at low concentrations and achieved
MAE 0.42 ppm in the prediction of the acetone concentration using 1D-
CNN [58]. This result is similar to ours (named Scenario 4), but the
experiments were performed on limited gas concentrations. In the study
performed by Zhu et al, the authors achieved a lower RMSE range of
—0.072 to 0.094 ppm (our RMSE results are 0.091-0.639 ppm) in pre-
dicting the concentration of acetone gas. Experiments were conducted
using sixty-two gas samples containing acetone, ethanol (and those
mixtures) but were limited only to 0-12ppm for each gas [60].
Considering the use of a system proposed by the authors in the detection
of diabetes, more contaminants (factors of influence) are added to the
gas mixtures to best mimic breath.

Our study was also the first one to analyse the influence of sensors on
the prediction of acetone concentration and proposed an optimal set of
sensors to develop a non-invasive device to estimate BGL. Reducing the
number of sensors in the device is important to reduce production costs,
device size and power consumption. In this paper, we have also pre-
sented one of the first uses of CatBoost for gas sensor data, which are
typically quantitative variables (not categorical) and contain noise,
especially for the prediction of acetone concentration.

As presented above, it is confirmed that the TGS1820, the acetone
sensor, is not fully selective for acetone in the presence of a high con-
centration of ethanol; therefore, it is necessary to develop several al-
gorithms to predict the concentration of acetone in exhaled air and the
initial detection of ethanol, and to then use the appropriate algorithm to
predict acetone and warn the patient that the results after drinking
alcohol can be unreliable. The set of sensors and the choice of the
ethanol sensor depend on whether the target device is adapted to detect
acetone after consuming ethanol. The results show that the use of three
sensors is sufficient to predict acetone in exhaled air.

5. Conclusions

In conclusion, this research has demonstrated the effectiveness of
employing ethanol, CO, and acetone sensors in estimating acetone
concentrations in breath samples, which is crucial for measuring dia-
betic blood glucose. The study revealed that while a combination of four
sensors and the XGBoost Regressor yielded a mean absolute error of
0.245 ppm for typical acetone concentrations, the CatBoost Regressor
performed better (0.568 ppm) in scenarios with high levels of ethanol.
These findings underscore the necessity of accounting for the influence
of ethanol on acetone detection when designing non-invasive glucose
measurement devices. The study suggests that a set of three gas sensors
offers the optimal estimation of acetone concentrations and marks a
promising initial step towards developing non-invasive glucose mea-
surement tools based on breath analysis, pioneering the consideration of
alcohol intake as a potential influential factor. The next step of the
research work will be a study using the breath of healthy people and
people with diabetes in order to find the correlation between blood
glucose level and exhaled acetone also after alcohol intake during the
measurement and verification of the proposed system. Additionally, the
developed regression algorithm will be adjusted to fulfil the re-
quirements described in EN ISO 15197:2015 [61].

Sensors and Actuators: B. Chemical 408 (2024) 135550
Funding

The work was partially supported by the IDUB AGH 4122 grant and
the statutory activity at the Institute of Electronics AGH and the NCN
OPUS 2021/41/B/ST7/0027612 grant.

CRediT authorship contribution statement

Anna Paleczek: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Software, Validation, Visualization,
Writing - original draft, Writing — review & editing. Artur Rydosz:
Conceptualization, Funding acquisition, Investigation, Methodology,
Project administration, Resources, Supervision, Writing — original draft,
Writing — review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data Availability

We cited dataset in the article: https://doi.org/10.58032/AGH/
SOCH7M.

References

[1] Diabetes. [cited 2023 Jan 22]. Available from: (https://www.who.int/heal
th-topics/diabetes#tab=tab_1).

[2] R.M. Bergenstal, D.M. Mullen, E. Strock, M
comparison of self-monitored blood glucose (BGM) versus continuous glucose
monitoring (CGM) data to optimize glucose control in type 2 diabetes, J. Diabetes
Complicat. 36 (3) (2022) 108106.

[3] M. Montagnana, M. Caputo, D. Giavarina, G. Lippi, Overview on self-monitoring of
blood glucose, Clin. Chim. Acta 402 (1-2) (2009) 7-13.

[4] J.R. Petrie, A.L. Peters, R.M. Bergenstal, R.W. Holl, G.A. Fleming, L. Heinemann,

Improving the clinical value and utility of CGM systems: issues and

dationsa joint of the p Association for the Study of

Diabetes and the American Diabetes Association Diabetes Technology Working

Group, Diabetes Care 40 (12) (2017) 1614-1621. (https://diabetesjournals.org/ca

re/article/40/12/1614/36887 /Improving-the-Clinical-Value-and-Utility-of-CGM

[cited 2023 Mar 21].

N. Poolsup, N. Suksomboon, A.M. Kyaw, Systematic review and meta-analysis of

the effectiveness of continuous glucose monitoring (CGM) on glucose control in

diabetes, Diabetol. Metab. Syndr. 5 (1) (2013) 1-14. (https://link.springer.

com/articles/10.1186,/1758-5996-5-39). cited 2023 Mar 21].

[6] A. Rydosz, 2022, Diabetes Without Needles: Non-invasive Diagnostics and Health

Management, Elsevierl-302, (Available from), http://www.sciencedirect.com:

5070/book/9780323998871/diabetes-without-needles..

B. Buszewski, M. Kesy, T. Ligor, A. Amann, Human exhaled air analytics:

biomarkers of diseases, Biomed. Chromatogr. 21 (6) (2007) 553-566.

M. Phillips, J. Herrera, S. Krishnan, M. Zain, J. Greenberg, R.N. Cataneo, Variation

in volatile organic compounds in the breath of normal humans, J. Chromatogr. B

Biomed. Sci. Appl. 729 (1-2) (1999) 75-88.

[9] A. Smolinska, E.M.M. Klaassen, J.W. Dallinga, K.D.G. van de Kant, Q. Jobsis, E.J.
C. Moonen, et al., Profiling of volatile organic compounds in exhaled breath as a
strategy to find early predictive signatures of asthma in children, PLoS One 9 (4)
(2014). Available from: (https://pubmed.ncbi.nlm.nih.gov/24752575/).

[10] M. Westhoff, M. Friedrich, J.I. bach, Simul of inhaled
air and exhaled breath by double multicapillary column ion-mobility spectrometry,
a new method for breath analysis: results of a feasibility study, ERJ Open Res. 8 (1)
(2022). (https://openres.ersjournals.com/content/8/1/00493-2021) (Available
from).

[11] W. Filipiak, V. Ruzsanyi, P. Mochalski, A. Filipiak, A. Bajtarevic, C. Ager, et al.,
Dependence of exhaled breath composition on exogenous factors, smoking habits
and exposure to air pollutants, J. Breath. Res. 6 (3) (2012) 036008. Available from:

https://iopscience.iop.org/article/10.1088/1752-7155/6/3/036008).

[12] J. Guo, D. Zhang, T. Li, J. Zhang, L. Yu, Green light-driven acetone gas sensor based
on electrospinned CdS nanospheres/Co304 nanofibers hybrid for the detection of
exhaled diabetes biomarker, J. Colloid Interface Sci. 606 (2022) 261-271.

[13] I Fufurin, P. Berezhanskiy, 1. Golyak, D. Anfimov, E. Kareva, A. Scherbakova, et
al., Deep learning for type 1 diabetes mellitus diagnosis using infrared quantum
cascade laser spectroscopy, Materials 15 (9) (2022) 2984. Available from: (https://
www.mdpi.com/1996-1944/15/9/2984/htm).

[14] S.K. Das, K.K. Nayak, P.R. Krishnaswamy, Q. Wang, S. Ricote, Y. Wang, et al.,
Indole as a new tentative marker in exhaled breath for non-invasive blood glucose

L. Johnson, M.X. Xi, Randomized

[5

[7.

[8.

102



A. Paleczek and A. Rydosz

[15]

[16]

[171

[18]

[19]

[201

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[301

[31]

[32]

[33]

[34]

[35]

[36]

[37]

monitoring of diabetic subjects, J. Breath. Res. 16 (2) (2022) 026001. Available
from: (https://iopscience.iop.org/article/10.1088/1752-7163/ac4610).

J.M. Escamilla-Gil, M. Fernandez-Nieto, N. Acevedo, Understanding the cellular
sources of the fractional exhaled nitric oxide (FeNO) and its role as a biomarker of
type 2 inflammation in asthma, Biomed. Res. Int. 2022 (2022).

P. Xepapadaki, Y. Adachi, C.F. Pozo Beltran, Z.A. El-Sayed, R.M. Gémez, E. Hossny,
et al., Utility of biomarkers in the diagnosis and monitoring of asthmatic children,
World Allergy Org. J. 16 (1) (2023) 100727.

G. Guida, V. Carriero, F. Bertolini, S. Pizzimenti, E. Heffler, G. Paoletti, et al.,
Exhaled nitric oxide in asthma: from diagnosis to management, Curr. Opin. Allergy
Clin. Immunol. 23 (1) (2023) 29-35.

H. Tyagi, E. Daulton, A.S. Bannaga, R.P. Arasaradnam, J.A. Covington, Electronic
nose for bladder cancer detection, Chem. Proc. 5 (2021) 1.

M.H.M.C. Scheepers, Z. Al-Difaie, L. Brandts, A. Peeters, B. van Grinsven, N.

D. Bouvy, Diagnostic performance of electronic noses in cancer diagnoses using
exhaled breath: a systematic review and meta-analysis, JAMA Netw. Open
[Internet] 5 (6) (2022) €2219372-e2219372. Available from: (https://jamanetw
ork.com/journals/jamanetworkopen/fullarticle/2793773).

S.R. Sutaria, S.S. Gori, J.D. Morris, Z. Xie, X.A. Fu, M.H. Nantz, Lipid p idation

[381]

[39]

[401

[411

[42]

Sensors and Actuators: B. Chemical 408 (2024) 135550

hypoglycaemic clamps, J. Breath. Res. 3 (4) (2009) 046004. Available from: (https:

//mpsclence 1op org/amde/l 0.1088/1752-7155/3/4/046004).

F. il ki, I.A. Ratiu, B. Brozek, T. Ligor,

B. Buszewski, Needle trap devlce GC-MS for characterization of lung diseases based

on breath VOC profiles, Molecules 2021 26 (6) (2021) 1789. Available from:

(https://www.mdpi.com/1420-3049/26/6/1789/htm).

S. De Vito, A. Castaldo, F. Loffredo, E. Massera, T. Polichetti, I. Nasti, et al., Gas

concentration estimation in ternary mixtures with room temperature operating

sensor array using tapped delay architectures, Sens Actuators B Chem. 124 (2)

(2007) 309-316. Available from: (https://www.researchgate.net/publication

/235641849 _Gas_concentration_estimation_in_ternary_mixtures with_room_temper

ature_operating_sensor_array_using_tapped_delay_architectures).

A. Paleczek, A. Rydosz, Review of the algorithms used in exhaled breath analysis

for the detection of diabetes, J. Breath. Res. 16 (2) (2022) 026003. Available from:

(https://iopscience.iop.org/article/10.1088/1752-7163/ac4916).

V. Pareek, S. Chaudhury, S. Singh, Hybrid 3DCNN-RBM Network for Gas Mixture

Concentration Estimation with Sensor Array, IEEE Sens J. (2021).

M. Li, J. He, R. Zhou, L. Ning, Y. Liang, Research on prediction model of mixed gas
ion based on CNN-LSTM network, ACM Int. Conf. Proc. Ser. (2021).

produces a diverse mixture of saturated and unsaturated aldehydes in exhaled
breath that can serve as biomarkers of lung cancer- a review, Metabolites 2022 12
(6) (2022) 561. (https://www.mdpi.com/2218-1989/12/6/561/htm) (Available
from).

S. Kazeminasab, R. Ghanbari, B. i
A. Taghizadieh, A. Jouyban, et al., Exhaled breath condensate efficacy to identify
mutations in patients with lung cancer: a pilot study, Nucleosides Nucl. Nucl. Acids
41 (4) (2022) 370-383. (https://www.tandfonline.com/doi/abs/10.1080/1525
7770.2022.2046278) (Available from).

R. Anzivino, P.I. Sciancalepore, S. Dragonieri, V.N. Quaranta, P. Petrone,

D. Petrone, et al., The role of a polymer-based e-nose in the detection of head and
neck cancer from exhaled breath, Sensors 2022 22 (17) (2022) 6485. Available
from: (https://www.mdpi.com/1424-8220/22/17/6485/htm).

A.T. Glintner, 1.C. Weber, S. Schon, S.E. Pratsinis, P.A. Gerber, Monitoring rapid
metabolic changes in health and type-1 diabetes with breath acetone sensors, Sens.
Actuators B Chem. 367 (2022) 132182.

W. Li, Y. Liu, X. Lu, Y. Huang, Y. Liu, S. Cheng, et al., A cross-sectional study of
breath acetone based on diabetic metabolic disorders, J. Breath. Res. 9 (1) (2015)
016005. Available from: (https://iopscience.iop.org/article/10.1088/1752-7155
/9/1/016005).

P.R. Galassetti, B. Novak, D. Nemet, C. Rose-Gottron, D.M. Cooper, S. Meinardi, et
al., Breath ethanol and acetone as indicators of serum glucose levels: an initial
report, Diab. Technol. Therap. 7 (1) (2005) 115-123. (https://www.liebertpub.
com/doi/10.1089/dia.2005.7.115). Available from: (https://www.liebertpub.com
/d0i/10.1089/dia.2005.7.115).

A. Rydosz, Sensors for enhanced detection of acetone as a potential tool for
noninvasive diabetes monitoring, Sensors 18 (7) (2018) E2298.

C. Deng, J. Zhang, X. Yu, W. Zhang, X. Zhang, Determination of acetone in human
breath by gas chromatography-mass spectrometry and solid-phase microextraction
with on-fiber derivatization, J. Chromatogr. B 810 (2) (2004) 269-275.

1. Ueta, Y. Saito, M. Hosoe, M. Okamoto, H. Ohkita, S. Shirai, et al., Breath acetone
analysis with miniaturized sample preparation device: in-needle preconcentration
and subsequent determination by gas chromatography-mass spectroscopy,

J. Chromatogr. B 877 (24) (2009) 2551-2556.

K. Schwarz, A. Pizzini, B. Arendacka, K. Zerlauth, W. Filipiak, A. Schmid, et al.,
Breath acetone—aspects of normal physiology related to age and gender as
determined in a PTR-MS study, J. Breath. Res. 3 (2) (2009) 027003.

V. Saasa, M. Beukes, Y. Lemmer, B. Mwakikunga, Blood ketone bodies and breath
acetone analysis and their correlations in type 2 diabetes mellitus, Diagnostics 9 (4)
(2019).

H. Dong, L. Qian, Y. Cui, X. Zheng, C. Cheng, Q. Cao, et al., Online accurate
detection of breath acetone using metal oxide semiconductor gas sensor and
diffusive gas separation, Front Bioeng. Biotechnol. 10 (2022) 296.

C. Wang, A. Mbi, M. Shepherd, A study on breath acetone in diabetic patients using
a cavity ringdown breath analyzer: exploring correlations of breath acetone with
blood glucose and glycohemoglobin A1C, IEEE Sens. J. 10 (1) (2010) 54-63.

M. Sun, Z. Wang, Y. Yuan, Z. Chen, X. Zhao, Y. Li, et al., Continuous monitoring of
breath acetone, blood glucose and blood ketone in 20 type 1 diabetic outpatients
over 30 days, J. Anal. Bioanal. Tech. 8 (5) (2017) 1-8. (https://www.omicsonline.
org/open-access/continuous-monitoring-of-breath-acetone-blood-glucose-and-b
lood-ketone-in-20-type-1-diabetic-outpatients-over-30-days-2155-9872-1000386-9
5035.html) (Available from).

A. Rydosz, A negative correlation between blood glucose and acetone measured in
healthy and type 1 diabetes mellitus patient breath, J. Diabetes Sci. Technol. 9 (4)
(2015) 881 [cited 2024 Jan 18].

A. Prabhakar, A. Quach, D. Wang, H. Zhang, M. Terrera, D. Jackemeyer, et al.,
Breath acetone as biomarker for lipid oxidation and early ketone detection, Glob. J.
Obes. Diabetes Metab. Syndr. 1 (1) (2014) 012-019. Available from: (http://www.
peertechzpublications.org/Obesity-Diabetes-Metabolic-Syndrome/GJODMS-1-
103.php).

M.S. Sha, M.R. Maurya, S. Shafath, J.J. Cabibihan, A. Al-Ali, R.A. Malik, et al.,
Breath analysis for the in vivo detection of diabetic ketoacidosis, ACS Omega
[Internet] 7 (5) (2022) 4257-4266. (https://pubs.acs.org/doi/full/10.1021/
acsomega.1c05948) (Available from:).

C. Turner, C. Walton, S. Hoashi, M. Evans, Breath acetone concentration decreases
with blood glucose concentration in type I diabetes mellitus patients during

deh, V. Jouyb: 1 Teli

[431

[44]

[45]

[46]

[47]

[48]

[491

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

(https://dl.acm.org/doi/10.1145/3503047.3503110) [cited 2023 Jan 22];
Available from:.

M. Kang, I. Cho, J. Park, J. Jeong, K. Lee, B. Lee, et al., High accuracy real-time
multi-gas identification by a batch-uniform gas sensor array and deep learning
algorithm, ACS Sens. [Internet] 7 (2) (2022) 430-440. (https://pubs.acs.or
g/doi/full/10.1021 /acssensors.1¢01204) (Available from:).

Z. Chen, Y. Zheng, K. Chen, H. Li, J. Jian, Concentration estimator of mixed VOC
gases using sensor array with neural networks and decision tree learning, IEEE
Sens. J. 17 (6) (2017 Mar 15) 1884-1892.

Hariyanto, R. Sarno, D.R. Wijaya, Detection of diabetes from gas analysis of human
breath using e-Nose. Proceedings of the 11th International Conference on
Information and Communication Technology and System, ICTS, 2017,

pp. 241-246, 2018 Jan 19;2018-January.

Y. Xu, X. Zhao, Y. Chen, W. Zhao, Research on a mixed gas recognition and
concentration detection algorithm based on a metal oxide semiconductor olfactory
system sensor array, Sensors 2018 18 (10) (2018) 3264. Available from: (https://
‘www.mdpi.com/1424-8220/18/10/3264/htm).

A. Paleczek, D. Grochala, A. Rydosz, Artificial breath classification using xgboost
algorithm for diabetes detection, Sensors 21 (12) (2021).
Rydosz A., K., Putynk ki G. A Novel

to Non-Invasive Diabetes Control. J Diabetes Treat. 2020;
S. Lekha, M. Suchetha, Non-invasive diabetes detection and classification using
breath analysis. 2015 International Conference on Communication and Signal
Processing, ICCSP 2015, Institute of Electrical and Electronics Engineers Inc., 2015,
pp. 0955-0958.

R. Sarno, S.I. Sabilla, D.R. Wijaya, Electronic nose for detecting multilevel diabetes
using optimized deep neural network, Eng. Lett. 28 (1) (2020).

D. Guo, D. Zhang, N. Li, L. Zhang, J. Yang, Diabetes identification and classification
by means of a breath analysis system, Lect. Notes Comput. Sci. (Incl. Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinforma.) (2010) 52-63. (https://link.springer.co
m/chapter/10.1007/978-3-642-13923-9 6) [cited 2023 Mar 15];6165 LNCS.

H.K. Akturk, J. Snell-Bergeon, L. Pyle, E. Fivekiller, S. Garg, E. Cobry, Accuracy of a
breath ketone analyzer to detect ketosis in adults and children with type 1 diabetes,
J. Diabetes Complicat. 35 (2021) 1056-8727, https://doi.org/10.1016/j.
jdiacomp.2021.108030.

K. Yan, D. Zhang, D. Wu, H. Wei, G. Lu, Design of a breath analysis system for
diabetes screening and blood glucose level prediction, IEEE Trans. Biomed. Eng. 61
(11) (2014) 2787-2795.

R. Kalidoss, S. Umapathy, R. Kothalam, U. Sakthivelu, Adsorption kinetics feature
extraction from breathprint obtained by graphene based sensors for diabetes
diagnosis, J. Breath. Res 15 (1) (2020) 016005.

T. Saidi, O. Zaim, M. Moufid, N. el Bari, R. Ionescu, B. Bouchikhi, Exhaled breath
analysis using electronic nose and gas chromatography-mass spectrometry for non-
invasive diagnosis of chronic kidney disease, diabetes mellitus and healthy
subjects, Sens. Actuators B 257 (2018) 178-188.

D. Guo, D. Zhang, N. Li, L. Zhang, J. Yang, A novel breath analysis system based on
electronic olfaction, IEEE Trans. Biomed. Eng. 57 (11) (2010) 2753-2763.

U.N. Thakur, R. Bhardwaj, P.K. Ajmera, A. Hazra, ANN based approach for
selective detection of breath acetone by using hybrid GO-FET sensor array, Eng.
Res. Express 4 (2) (2022) 025008. Available from: (https://iopscience.iop.org/art
icle/10.1088/2631-8695/ac6487).

X. Li, X. Hu, A. Li, R. Kometani, I. Yamada, K. Sashida, et al., Identification of
binary gases’ mixtures from time-series resistance fluctuations: a sensitivity-
controllable SnO2 gas sensor-based approach using 1D-CNN, Sens. Actuators A
Phys. 349 (2023) 114070.

B. Wang, J. Zhang, W. Li, Y. Zhang, T. Wang, Q. Lu, et al., Artificial olfaction based
on tafel curve for quantitative detection of acetone ethanol gas mixture, Sens.
Actuators B Chem. 377 (2023) 133049.

H. Zhu, C. Liu, Y. Zheng, J. Zhao, L. Li, A Hybrid machine learning algorithm for
detection of simulated expiratory markers of diabetic patients based on gas sensor
array, IEEE Sens. J. (2022).

BS EN ISO 15197:2015 - TC | 30 Jun 2015 | BSI Knowledge [Internet]. [cited 2023
Nov 4]. Available from: (https://knowledge.bsigroup.com/products/in-vitro-di
agnostic-test-syst for-blood-glucose-monitoring-systems-for-self-
testing-in-managing-diabetes-mellitus?version=tracked).

Mixing Alcohol with Your Diabetes.

h for Device Dedicated

equir

103



A. Paleczek and A. Rydosz
[63] E.Mansour, R. Vishinkin, S. Rihet, W. Saliba, F. Fish, P. Sarfati, et al., Measurement
of temperature and relative humidity in exhaled breath, Sens. Actuators B 304
(2020) 127371.

A. Paleczek, A. Rydosz, Replication data for: the effect of high ethanol
concentration on E-nose response for diabetes detection in exhaled breath:
laboratory, Stud. AGH Univ. Krakow (2024), https://doi.org/10.58032/AGH/
SOCH7M.

Jones A.W. The Relationship between Blood Alcohol Concentration (BAC) and
Breath Alcohol Concentration (BrAC): A Review of the Evidence Forensic Blood
Alcohol Calculations View project Theory and practice of forensic breath alcohol
analysis View project. [cited 2023 Feb 3]; Available from: (www.dft.gov.uk/pgr
/roadsafety/research/rsrr).

A.P. Drummond-Lage, R.G. de Freitas, G. Cruz, L. Perillo, M.A. Paiva, A.J.

A. Wainstein, Correlation between blood alcohol concentration (BAC), breath
alcohol concentration (BrAC) and psychomotor evaluation in a clinical monitored
study of alcohol intake in Brazil, Alcohol 66 (2018) 15-20. (https://pubmed.ncbi.
nlm.nih.gov/29277283/) (Available from:).

A. Kaisdotter Andersson, J. Kron, M. Castren, A. Muntlin Athlin, B. Hok,

L. Wiklund, Assessment of the breath alcohol concentration in emergency care
patients with different level of consciousness, Scand. J. Trauma Resusc. Emerg.
Med. 23 (1) (2015) 1-9. Available from: (https://sjtrem.biomedcentral.com/article
5/10.1186/513049-014-0082-y).

Concentration unit conversion | GASTEC CORPORATION [Internet]. [cited 2023
Feb 3]. Available from: (https://www.gastec.co.jp/en/technology/knowledge/con
centration/).

Buitinck L., Louppe G., Blondel M., Pedregosa F., Miiller A.C., Grisel O., et al. APT
design for machine learning software: experiences from the scikit-learn project.
2013 Sep 1 [cited 2023 Mar 14]; Available from: (https://arxiv.org/abs/1309.02
38vl).

F. Pedregosa, et al., Scikit-learn: machine learning in python, J. Mach. Learn. Res.
12 (85) (2011) 2825-2830. (http://jmlr.org/papers/v12/pedregosalla.html
[cited 2023 Mar 14].

Chen T., Guestrin C.. XGBoost: A Scalable Tree Boosting System. Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining [Internet]. [cited 2023 Mar 14]; Available from: https://doi.org/10.11
45/2939672.2939785.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, et al., LightGBM: a highly
efficient gradient boosting decision tree, Adv. Neural Inf. Process Syst. (2017) 30.
https://github.com/Microsoft/LightGBM) (Available from).

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Sensors and Actuators: B. Chemical 408 (2024) 135550

[73] Welcome to LightGBM’s documentation! — LightGBM 3.3.5.99 documentation
[Internet]. [cited 2023 Mar 14]. Available from: (https://lightgbm.readthedocs.io/
en/latest/index.html).

L. Prokhorenkova, G. Gusev, A. Vorobev, A.V. Dorogush, A. Gulin, CatBoost:
unbiased boosting with categorical features, Adv. Neural Inf. Process Syst. (2018)
31. (https://github.com/catboost/catboost) (Available from).

CatBoost [Internet]. [cited 2023 Mar 14]. Available from: (https://catboost.ai/en
/docs/).

TGS1820 - Featured Products - FIGARO Engineering inc [Internet]. [cited 2023 Feb
5]. Available from: (https://www.figaro.co.jp/en/product/feature/tgs1820.html).

[74]

[75]

[761

A. Paleczek is a PhD Student in field of Automatic, Electronics and Electrical Engineering.
She graduated in Biomedical Engineering (major Computing and Electronics in Medicine)
in 2021. Her master thesis was concerned on Development of algorithms for the detection
biomarkers of diabetes in exhaled air. In 2020, she defended her engineering thesis enti-
tled Recognition of sign language images using a neural network, in which she prepared a
database of photos of 22 Polish Sign Language characters, designed a GUI and a con-
volutional neural network that automatically classified images obtained in real-time from
a web camera. In 2021, she defended with distinction her master thesis “Artificial Breath
Classification Using XGBoost Algorithm for Diabetes Detection”.

A. Rydosz received his MSc and PhD degrees in electronics engineering from the AGH
University of Science and Technology, Krakow, Poland in 2009 and 2014, respectively. In
2019, he received the DSc (habilitation) in automatic control and robotics, electrical en-
gineering. His current research interests include gas sensors and micropreconcentrators,
LTCC, MEMS technology, and gas sensors system applications. He is also interested in the
PVD method of the fabrication of various sensing materials with special emphasis on the
volatile organic compounds detection in exhaled human breath, for example, as a potential
tool for noninvasive measurements of several diseases, such as diabetes. Since 2019 he
works as a professor in the Department of Electronics AGH and serves as the Vice-chair of
the Joint Chapter AP03/AES10/MTT17, IEEE Poland Section. He was awarded several
awards for young researchers, including START 2015, START 2016 from the Foundation
for Polish Science, Ministry of Science and Higher Education, and recently from the
POLITYKA journal. He is a member of several societies, such as the Polish Vacuum Society,
the Polish Sensor Society, the IMAPS, the 500 Innovators Society, Section of Microwaves
and Radiolocation, Polish Academy of Science.

104



Prediction of diabetes state using artificial breath

and e-nose system supported by machine learning

Anna Paleczek', Dominik Grochala? and Artur Rydosz®, Senior Member, IEEE

1.23Institute of Electronics, Faculty of Computer Science, Electronics and Telecommunications,
AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland

paleczek@agh.edu.pl, *grochala@agh.edu.pl, *rydosz@agh.edu.pl

Abstract—Human  breath contains volatile organic
compounds that can be a source of information about the state
of human health and can be used to detect diseases such as
cancer and metabolic disorders, for example, diabetes. A well-
known bi ker of diabetes is Due to the growing
number of people with diabetes, with special emphasis on
undiagnosed people, we have developed a system consisting of
an array of sensors and machine learning algorithms developed
to detect diabetes in human exhaled air. System tests were
carried out on gas mixtures that mimic human breath. For
multiclass classification tasks (healthy, prediabetes, and
diabetes) CatBoost Classifier algorithm outperforms other tree-
based machine learning algorithms. The result showed 86%
accuracy in multiclass diabetes state prediction.

Keywords—Dbreath acetone; CatBoost; classification; diabetes;
e-nose; machine learning; sensors

I. INTRODUCTION

Human breath consists largely of nitrogen (78%), oxygen
(15%) and carbon dioxide (4%). A small part of the exhaled
air is the dead space (end-tidal part) [1], which contains
volatile organic compounds (VOCs). VOCs are present in the
breath at very low concentrations of parts per million (ppm)
and even parts per trillion (ppt), making them difficult to
detect using e-noses with gas sensor arrays [2], [3].
Exogenous VOCs result from external factors, e.g. drug use,
smoking or inhaled air pollution, while endogenous VOCs
are produced as a result of metabolic processes taking place
in the human body [4], [5], diseases such as diabetes [6]-[11],
cancer [12], [13], asthma [14] etc. For example, acetone is
known from literature studies as a diabetes biomarker
[6]-[10]. The World Health Organization (WHO) [15]
reports a continuously growing number of people with
diagnosed and undiagnosed diabetes. In the case of diabetes,
it is important to detect the disease quickly, as well as
constant care and blood glucose measurements, which are
currently performed mainly using invasive methods [16]—
[19]. The development of a noninvasive method for
determining blood glucose level (BGL) and detecting
diabetes, e.g. based on the analysis of exhaled air, may
increase the number of people diagnosed at an early stage of
the disease and reduce related complications.

The work was partially supported by the IDUB AGH 4122 grant and
the statutory activity at the Institute of Electronics AGH

According to the literature review, there is a proven
correlation between BGL and acetone concentration in
exhaled breath. The review of the literature shows a
concentration of acetone in the breath acetone concentration
0.3-0.9 ppm in healthy people 0.3-0.9 ppm, 0.9-1.8 ppm in
the breath of prediabetes and more than 1.8 ppm in the breath
of diabetes [20], [21]. Mansour ef al. report relative humidity
(RH) of human exhaled air in the range 41.9-91% [22].

Sarno et al. used five gas sensors supported by
Deep Neural Networks to predict multilevel diabetes from
patients based on exhaled breath. The authors achieved 96%
accuracy, but used the same data set for testing and training
[23].

Guo et al. proposed an e-nose system consisting of twelve
gas sensors to predict the four-level diabetes stage
(BLG levels). The experiments were carried out using
90 breath samples collected from people with diabetes. The
authors performed prediction with linear polynomial,
quadratic polynomial, and exponential function fitting. The
best accuracy for each of the four levels, 75%, 65.31%,
65.31%, and 55%, was obtained with a linear model. In
addition, they successfully classified diabetes and healthy
samples using Support Vector Machines with accuracy
greater than 92% on the test set [24].

In our previous work, we proposed the XGBoost
algorithm to classify the state of diabetes based on gas
mixtures and 1.5 ppm acetone as a threshold level between
healthy and diabetes state. The algorithm achieved 99%
binary classification accuracy, but in a narrower acetone
range in gas mixtures [24], so a system with a wider acetone
range was needed to best mimic human exhaled air in the case
of diabetes. Here, we have improved accuracy by using more
categories and different acetone ranges for predictions of
each diabetes stage.

In this paper, we proposed an e-nose system with metal
oxide semiconductor and electrochemical sensors combined
with machine learning algorithms to classify the
concentration of acetone in simulated human breath to predict
the state of diabetes. This could be a preliminary step in
developing a noninvasive device for diabetes detection,
including prediabetic state.

3.3. Prediction of diabetes state using artificial breath
and e-nose system supported by machine learning
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II. METHODS

A. Measurement system

To simulate the breath of patients with diabetes and
prediabetes, as well as healthy people, gas mixtures
consisting of ethylbenzene, propane, CO2 and acetone were
prepared. The mixtures were dosed using six GF50 mass flow
controllers (MKS, Andover, Massachusetts, USA). The water
bubbler was used to simulate the relative humidity of the gas
mixture to mimic human exhaled air. The measurement
system is shown in Figure 1. The sensors used and their
measurement ranges are listed in Table I. Acetone in the
mixtures was in the range of 0-5.12 ppm, COz in the range of
2.8-6.8%, propane in the range of 0-4.8 ppm, and
ethylbenzene 0-2.6 ppm. The average RH of the mixtures was
75% to best mimic human breathing. Sensor signal
acquisition was performed using DAQ970A
(Keysight Technologies, Santa Rosa, CA, USA).

As input data from sensors, raw sensor responses Rg and
sensitivity S values given by equation 1 were used.

S=R,— Ry (1)

where:
e S —sensor sensitivity,
e R, —sensor exposed to the gas mixture exposure,
e R, —sensor exposed to the synthetic air and RH
exposure.
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Fig. 1. The sketch of the measurement system.

TABLE L. SENSORS USED IN MEASUREMENT SYSTEM
Sensor Target gas Typical detection range

TGS1820* (CH;)CO 1-20 ppm
TGS2620* C>HsOH 50-5000 ppm
TGS2600 * Air Contaminants 1 ~30 ppm of H>
AL-03S"® C>HsOH 0~2.0mg/L
AL-03P" C2HsOH 0~2.0mg/L
K33¢ CO2 0-10%
STC31¢ CO2 0-100%
SHTS85* RH 0-100%

“ Figaro Engineering Inc, Mino, Osaka, Japan
"MGK SENSOR Co., Ltd., Saitama, Japan
“Senseair, Delsbo, Sweden

dSensirion, Stacfa ZH, Switzerland

B. Algorithm

CatBoost is an open-source supervised machine learning
framework based on Gradient Boosted Decision Tree
(GBDT) [25] commonly used in medical machine learning
tasks [26], [27], especially with heterogeneous data. CatBoost
supports categorical features and deals with gradient bias,
which leads to reducing overfitting [28].

Duplicates from the data set were removed and then the data
set was divided into training and test data in the 80:20 ratio.
For algorithms development, scikit-learn Machine Learning
in Python [29], [30] and XGBoost [31], LGBM [32], [33],
CatBoost [25], [34] software libraries were used.

III. RESULTS

Experiments were performed with several machine learning
algorithms such as Random Forest Classifier, Decision Tree
Classifier, XGBoost Classifier, LGBM Classifier, and
CatBoost Classifier. Algorithms achieved (on the test set)
average accuracy: 81%, 83%, 83%, 77%, and 86%,
respectively. CatBoost slightly outperforms other algorithms
even in the case of homogeneous data. Detailed classification
results are shown in Table II.

TABLE I CATBOOST CLASSIFIER RESULTS
Class Precision Recall Fl-score
Healthy 0.95 0.90 0.93
Prediabetes 0.79 0.88 0.83
Diabetes 0.88 0.78 0.82

The confusion matrix is shown in Figure 2. Some cases were
incorrectly classified, but only within two adjacent
categories, which means that the model did not misclassify
diabetes with healthy case. Such a mistake could result in the
person with diabetes being omitted and not referred for
further examination. If the model got confused between
prediabetes and diabetes categories, it would actually have
less impact since both patients should be referred for further
tests to clarify the disease status and treatment planning.
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Fig. 2. Confusion matrix.

The feature importance analysis shows that the most
important sensor for the multiclass classification of diabetes
state was TGS1820. Less important were the data from gas
sensors TGS2620, TGS2600, AL03-P, and AL03-S. The
results show that the measured relative humidity was less
important than the response of TGS1820, but higher than the
response values of other sensors.

IV. CONCLUSIONS

The early diagnosis of diabetes plays a significant role in its
further treatment and reduction of its complications.
Therefore, it is important to conduct research and develop a
device for non-invasive disease detection. The device based
on breath measurements consists of gas sensors, but due to
low concentrations of VOCs and poor selectivity of the
sensors, it is necessary to use an array of sensors and machine
learning algorithms. Most often, binary classifications of
healthy/disease are carried out, while in the case of diabetes,
it may be insufficient due to small differences in the ranges
of acetone concentrations in exhaled air depending on the
stage of the disease. The e-nose proposed in the paper enables
multiclassification for healthy, prediabetic, and diabetes
samples based on gas mixtures with high accuracy. The next
step in the research on the development of noninvasive
devices should be to test the system using human breaths and
to develop algorithms to predict blood glucose levels that can
be used both for the detection of diabetes and its subsequent
monitoring.
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4. The exhaled breath analysis results
obtained during the medical
experiment

This chapter presents the results of analysis of breath samples collected during the medical
experiment using an electronic nose system designed and optimised based on previous
laboratory studies. The study was conducted in collaboration
with the Department of Prosthodontics and Orthodontics, Dental Institute, Faculty of Medicine,
Jagiellonian University Medical College, Krakow, Poland, and with the approval of
the Jagiellonian University Bioethical Committee (KBET: 1072.6120.40.2023). The study
targeted participants aged 45 years or older to identify those at risk of developing metabolic
syndrome features. The study participants completed a questionnaire regarding gender, weight,
height, age, medications, past and present illnesses, and a questionnaire related to denture wear
and dental cavities.
The study was conducted on the breath samples collected from 151 subjects, including
92 women and 59 men. The participants had a mean age of 67 years, with a standard deviation
(SD) of 9.3 years, an average body weight of 77 kg (SD = 15.5), an average height
of 166 cm (SD = 9.4), and an average body mass index (BMI) of 27.7 kg/m? (SD = 4.11),
suggesting a tendency towards overweight. Additionally, capillary blood tests were performed,
analysing metabolic parameters using test strips and dedicated diagnostic devices.
The mean values of the obtained results are as follows:
e Glucose: 110.5 mg/dL (SD =31.32)
e Uric acid: 5.66 mg/dL (SD = 1.49)
e Total cholesterol: 174.33 mg/dL (SD = 39.02)
e Triglycerides: 124.5 mg/dL (SD = 84.53)
These data indicate that the participants comprised a group with diverse metabolic
parameters, with results ranging from normal to potentially elevated values.
These experiments aimed to test the practical application of the developed e-nose
system for predicting metabolic and biochemical parameters based on analysis of exhaled air

composition. This part of the project was especially important because it demonstrated how the
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system performs in real clinical settings and tested the ideas developed from the gas mixture
experiments. Unlike the earlier stages, which used artificial gas mixtures, this stage utilised
only breath samples from real subjects. Therefore, this study enables verification whether
previously developed methods for measuring and analysing sensor data, as well as selected
configurations of the e-nose system, could predict metabolic parameters based on exhaled
breath analysis.

Particular attention was paid to compounds whose concentration in the body
has significant diagnostic and preventive significance, such as cholesterol, glucose,
and uric acid. These parameters are closely linked to metabolic disorders such as diabetes,
hypercholesterolemia, and metabolic syndrome. Their non-invasive assessment
can be a valuable tool for diagnosis and patient monitoring in daily clinical practice, given the
high prevalence of metabolic disorders. Machine learning algorithms played a key role in
analysing data from the medical experiment. Sensor signals measured from the e-nose require
advanced processing to extract characteristic features and correlate them with reference results,
such as biochemical blood tests. The analysis was performed using regression models, which
enabled the prediction of selected health parameters based on breath samples.

The first research paper [AP6] on clinical research analysed the feasibility of predicting
total cholesterol levels based on the composition of exhaled air. The study
included 151 participants, from whom breath samples were collected and compared with
capillary blood test results. Using machine learning, the sensor data were analysed to build
a regression model for predicting cholesterol levels. Cholesterol prediction was performed
using an e-nose composed of TGS1820, TGS2620, TGS2600, MQ3, Semeatech 7e4 NO2
and 7e4 H2S, SGX NO2, SGX H2S, K33, AL-03P, and AL-03S sensors supported by the
Light Gradient Boosting Machine (LGBM) Regressor. The model achieved mean absolute
percentage error (MAPE) values of 13.7% for the full measurement range and 8% within the
norm range (<200 mg/dL). Feature importance analysis highlighted TGS1820, AL-03P,
TGS2620, MQ3 sensors as key contributors. The results demonstrate that gas sensors combined
with machine learning enable non-invasive cholesterol estimation from breath.
The results showed that the e-nose system can be used to predict total cholesterol levels based
on exhaled breath analysis. This work highlights the system’s potential as a non-invasive tool
for evaluating the risk of cardiovascular and metabolic disorders.

The second conference research paper [AP7] presented a preliminary evaluation
of the system’s potential to predict additional biochemical parameters, such as glucose and uric

acid levels, from exhaled breath samples. The results showed a link between the sensor signals
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and these biochemical markers, suggesting that the method could be developed
for non-invasive monitoring of metabolic state. Using data from the three gas sensors included
in the e-nose (TGS1820, AL-03P, K33) and LGBMRegressor, the mean absolute error
was 19.32 mg/dl for glucose, 31.33 mg/dl for total cholesterol, and 1.43 mg/dl for uric acid.
This study also complements earlier work by confirming that the system has applications
beyond cholesterol analysis.

Both published papers were significant steps in the development of the e-nose system,
starting from laboratory research to clinical validation. Results obtained from breath samples
during the medical experiment demonstrated the ability to predict key metabolic parameters,
including cholesterol, glucose, and uric acid, using non-invasive methods based on exhaled
breath analysis. These studies showed the effectiveness of machine learning algorithms
in analysing sensor data. They significantly complement previous laboratory studies and
advance the practical application of the system in personalised medicine and the prevention
of metabolic diseases. The presented results confirm that it is possible to use the e-nose system
supported by machine learning algorithms to estimate health parameters such as blood glucose
level, total cholesterol and uric acid level based on the exhaled breath analysis.

The results were presented by the Author at the 47th Annual International Conference

of the IEEE Engineering in Medicine and Biology - 14-17 July 2025, Copenhagen, Denmark.
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4.1. Noninvasive Total Cholesterol Level
Measurement Using an E-Nose System and Machine
Learning on Exhaled Breath Samples
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LGBMRegressor algorithm was used to predict cholesterol level based
on the breath sample. Machine learning algorithms were developed for - 7 R—
the entire measurement range and for the norm range <200 mg/dL . @@  ciscosesinexhaled air
achieving MAPE 13.7% and 8%, respectively. The results show that it is

possible to develop a noninvasive device to measure total cholesterol level from breath.

collection e-nose

KEYWORDS: E-nose system, exhaled breath analysis, gas sensors, LGBMRegressor, machine learning, noninvasive measurement,
predictive modeling, total cholesterol level

B VOLATILE ORGANIC COMPOUNDS

In recent times, researchers have been working to develop ~21% Oxygen
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from metabolic processes occurring in the body. Exogenous
VOCs are the result of external factors, such as smoking, air
pollution, or drug metabolism.'”> The relative humidity of
human breath is 89%—97%."%

Figure 1. Composition of inhaled and exhaled air.
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cholesterol is responsible for various immune, development
and reproductive processes as well as mineral metabolism."®
Despite this biological significance, hypercholesterolemia
contributes to the pathogenesis of cardiovascular diseases
(CVDs)—a leading cause of death worldwide. According to
the WHO 17.9 million people die of CVDs every year.'®
Cholesterol can accumulate in the walls of arteries and form
atheromatous plaques. After long asymptomatic period, plaque
can rupture causing intravascular coagulation and ischemia.
This phenomenon occurs particularly within the coronary,
cerebral, and peripheral circulation, leading respectively to
myocardial infarction, stroke, and limb ischemia. It is estimated
that up to 90% of CVDs could be avoided by modifying risk
factors."” Hypercholesterolemia is one of the most important
modifiable risk factors for CVDs, so regular assessment of
cholesterol levels and early implementation of appropriate
treatment are valuable for patients. Although the clinical use of
total cholesterol (TC) in relation to the LDL-cholesterol
(LDL-C) is very limited, a linear correlation of TC levels with
cardiovascular risk has been demonstrated.'®

B THE RELATIONSHIP BETWEEN BLOOD
CHOLESTEROL AND VOCS

It is presumed that isoprene is formed during cholesterol
biosynthesis in nucleated cells by nonenzymatic conversion of
DMAPP. Thereafter, it enters the alveoli via the vascular
system and is excreted with exhaled air. The metabolic
pathway of cholesterol and its relationship to isoprene in
breath'”™** is shown in Figure 2.
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Figure 2. Metabolic pathway of cholesterol and its relationship to
isoprene in breath.

B GAS SENSING METHODS

VOCs in breath occur in concentrations of parts per million (ppm),
parts per billion (ppb), or even parts per trillion (ppt); therefore,
determining their concentration in exhaled air is difficult using the
commercially available gas sensors. There are reference methods, such
as gas chromatography coupled with mass spectrometry,”** selected
ion flow-tube mass spectrometry,” proton-transfer-reaction time-of-
flight mass spectrometry,”® which allow for the separation of gas
mixtures into components and their quantitative analysis. The
operation of such devices is complicated, they require special storage
or long-term start-up procedures, and they are very expensive.
Therefore, gas sensors for detecting low concentrations of compounds
in gas mixtures have been widely developed. Because sensors can
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detect multiple substances and exhaled air contains numerous volatile
organic compounds, employing a matrix of gas sensors and machine
learning algorithms is essential to increase the sensitivity and
selectivity of the e-nose systems.

B BREATH SAMPLING METHODS

Most often, breath is collected in bags specially designed for this
purpose, which maintain the initial concentration of compounds
contained in the gas mixture for up to several days.”’ ">’ Such bags
include Tedlar Bag, FlexFoil PLUS.* It is also possible to supply
exhaled air directly to the device.’*> Currently, there is no
standardized method for storing and collecting breath samples,
which leads to problems with reproducing studies and comparing
results with those of other researchers.

B RELATED WORKS

In the related literature, the study of exhaled isoprene and its
relationship with cholesterol concentration is often mentioned,
but no studies using e-nose to estimate cholesterol from
exhaled breath have been presented yet. Gouma et al. proposed
a selective nanosensor for exhaled breath analysis, which can be
used for noninvasive monitoring of cholesterol levels. They
developed sensor arrays for measuring isoprene, carbon
dioxide and ammonia gas, however the sensor was tested
only on synthetic gases that were composed to mimic human
exhaled air.>* Similar research was conducted by Giintner et al,,
who developed a Ti-doped ZnO sensor for selective sensing of
isoprene for breath diagnosis. This sensor showed a
significantly higher response to isoprene than to acetone,
ammonia, or ethanol at 90% RH, which is the observed RH of
human breath. In this case the authors also tested the sensor
only on synthetic gas mixtures.”*

This paper introduces the first e-nose system combined with
a machine learning algorithm for noninvasive measurement of
total cholesterol levels using exhaled air samples. The study
involved 151 participants from whom a breath sample was
collected, and the level of total cholesterol was measured.

B EXPERIMENTAL SECTION

Information About the Study Involving Human Partic-
ipants. In collaboration with the Department of Prosthodontics and
Orthodontics at the Dental Institute, Faculty of Medicine, Jagiellonian
University Medical College, Krakow, Poland, tests were conducted on
breath samples and capillary blood samples collected from 151
individuals (Jagiellonian University bioethical committee approval
KBET: 1072.6120.40.2023). The study included patients over the age
of 45 to identify those at risk of developing features of metabolic
syndrome.

Patients’ Information. Each of the 151 participants completed a
questionnaire that included questions about gender, weight, height,
age, medications taken, past and current illnesses, and well-being
related to the use of dentures and dental cavities. 92 women and 59
men participated in the study. Descriptive statistics of the sample
population including data on participants’ age, height, weight, and
BMI are included in Table 1.

Table 1. Descriptive Statistics of the Sample Population

Parameter Mean Standard Deviation
Age 67 9.3
Weight 77 [kg] 15.5 [kg]
Height 166 [cm] 94 [cm]
BMI 27.7 [kg/m?] 4.11 [kg/m?]

https://doi.org/10.1021/acssensors.4c02198
ACS Sens. 2024, 9, 6630—6637
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Capillary Blood Tests. Participants in the study had their
capillary blood samples analyzed by a physician using devices that
measure parameters via the strip technique, such as

e Glucose (Accu-Chek Instant, Roche Diabetes Care GmbH,
Sandhofer Strasse 116, 68305 Mannheim; www.roche.com.).

e Uric acid (PEMPA 3inl device, General Life Biotechnology
Co., Ltd. SF,, No. 240, Shinshu Rd., Shin Juang Dist., New
Taipei City 242, Taiwan; www.BeneCheck.com.tw.).

e Cholesterol (PEMPA 3inl device, General Life Biotechnology
Co., Ltd. SF., No. 240, Shinshu Rd,, Shin Juang Dist., New
Taipei City 242, Taiwan; www.BeneCheck.com.tw.).

o Triglycerides (Accutrend Plus, Accutrend Glucose, Roche
Diagnostics GmbH, Sandhofer Strasse 116, 68305 Mannheim;
www.roche.com).

Descriptive statistics of blood test parameters, including data on

measured values of glucose, uric acid, cholesterol, and triglycerides
from capillary blood of the participants, are included in Table 2.

Table 2. Descriptive Statistics of Blood Test Parameters

Parameter Mean Standard Deviation
Glucose 110.5 [mg/dL] 31.32 [mg/dL]
Uric acid 5.66 [mg/dL] 149 [mg/dL]
Cholesterol 174.33 [mg/dL] 39.02 [mg/dL]
Triglycerides 124.5 [mg/dL] 84.53 [mg/dL]

Cholesterol Levels Distribution. In this paper, we focus on
predicting cholesterol levels based on exhaled air measurements. The
PEMPA 3-in-1 device allows cholesterol to be measured from fresh
capillary blood in the range of 100—400 mg/dL (2.59—10.35 mmol/
L). With this test, the norm is a result of <200 mg/dL (5.17 mmol/
L).** The distribution of cholesterol values measured in the study
participants is presented in Figure 3.

25
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Figure 3. Distribution of cholesterol levels among the study
participants.

Breath Tests. Breath samples were collected in Tedlar bags and
analyzed using an electronic nose (e-nose) twice. Tedlar bags are
specialized bags for collecting and storing breath samples. Their
advantage is maintaining high concentrations of the collected
substances, which allows the bags to be transported to the external
laboratory and to cooperate with remote research centers or
hospitals.”***~** However, the e-nose system that we propose is
portable and allows for quick testing of the sample in a hospital or
medical center (Figure 4).

E-Nose System. The e-nose comprised a system for pumping air
from the bags and a set of sensors, including TGS1820, TGS2620,
and TGS2600 (Figaro Engineering Inc., Mino, Osaka, Japan), MQ3

Eose for detecting diseases in exhaled air

Figure 4. E-nose system used during measurements.

(Winsen, ZhengZhou, HeNan, China), 7e4 NO2, 7e4 H2S
(SemeaTech, Los Angeles, USA and Shanghai, China), SGX_NO2,
SGX_H2S (SGX SENSORTECH, Switzerland), K33 (Senseair,
Delsbo, Sweden), and AL-03P, AL-03S (MGK SENSOR Co., Ltd.,
Saitama, Japan).

Sensors’ Responses. As part of the study, the breath sample
collected from each patient in a Tedlar bag was measured twice using
the prepared e-nose system. The time of rinsing with ambient air
collected through the filter was 10 min between subsequent
measurements, and the time of air injection from the bag was 15
min. For each measurement, the R, (sensor response to purge gas)
and R (sensor response to breath sample) values were determined
(as shown in Figure S) and the responses of the S and S, sensors were
calculated (egs 1 and 2).

S=Rg—Ry (1)
s=Ra
R, (2)

Gas sensor data typically consist of electrical values affected by
measurement errors, noise, or drift’”*" due to changes in sensor layer
properties. These quality issues can impact model training and
performance, so researchers use signal processing techniques like

3.8
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Figure S. Stages of the breath sample measurement using the
developed e-nose system.
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filtering and baseline normalization, to prepare the data for
next steps in the processing pipeline. In our solution, we used a mean
filter" to reduce noise, calculating an average of 10 samples, while
calculating the sensor response (eqs 1 and 2), which takes into
account the baseline value (in the sensor response in the purge stage),
allows to minimize the influence of drift. Additionally, before testing
using human breaths, the sensors were tested on synthetic mixtures
and results were published in our previous papers.*”**

Outliers Handling. Based on the sensor responses, four outliers
were removed for the K33 (CO, sensor) and AL-03P (ethanol
sensor) sensors. Measurements were removed where the K33 sensor
measured a CO, value lower than 2%, which means that the breath
sample was incorrectly collected, and measurements where the AL-
03P sensor indicated a response indicating the presence of ethanol in
exhaled air, which could come from the mouthwash.

Train Test Split. The data set was divided into training and test
sets in a ratio of 90:10 so that both measured values of the breath
sample of one patient were located in only one of the sets. The
training set included breath sample measurements collected from 136
patients, and the test set included 15 patients. This means that when
two measurements from each patient were used, the training and test
sets included 272 and 30 samples, respectively.

Machine Learning Algorithms. The aim of the study was to
develop an algorithm that would allow prediction of cholesterol
concentration in blood using e-nose and breath sample. The Rg, S,
and S, data from sensors available in e-nose and BMI were taken as
features. For this purpose, machine learning algorithms were used for
the regression problem. The study tested machine learning
algorithms: linear regression, lasso regression, ridge regression,
random forest, LGBM regressor, XGB regressor, CatBoost regressor,
KNN regressor, and neural networks. The results for all algorithms
were compared (Table 3) and the best results were obtained using

Table 3. Comparison of Machine Learning Algorithm
Performance (Measured as Mean Absolute Error) in Total
Cholesterol Level Prediction (Norm Range)

Algorithm Mean absolute error
Linear Regression 17.02
Lasso Regression 20.82
Ridge Regression 16.43
Random Forest 17.11
LightGBM Regressor 12.94
XGBoost Regressor 19.41
CatBoost Regressor 16.84
KNN Regressor 19.11

LGBM regressor. For each algorithm, the hyperparameter space for
searching was determined. The best hyperparameters were
determined using the RandomSearchCV*®*’ method from the
scikit-learn library (30 splits, negative mean absolute error
optimization)

LightGBM Regressor Model. LightGBM is a gradient boosting
framework that employs tree-based learning algorithms designed for
distribution and efficiency. It offers several key benefits including
faster training speed, higher efficiency, and lower memory usage.
Additionally, it provides better accuracy and supports parallel,
distributed, and GPU-based learning, making it capable of handling
large-scale data sets effectively.*® Linear regression models, lasso, and
ridge, assume linear relationships between variables, which is a major
limitation in the case of sensors’ data processing. LGBM, like random
forest, CatBoost, and XGBRegressor, is a tree model that can better
handle nonlinear relationships in the data.*” LightGBM handles large
numbers of features very well, which can lead to more accurate
predictions, even when other models may struggle to maintain
performance. LightGBM has parameters that allow for overfitting
control (e.g, max_depth, num_leaves, and feature_fraction). This
makes it easy to tune to generalize well to the data, which is an
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advantage oversimpler models, such as linear regression, that have
limited overfitting control. Additionally, LGBMRegressor has built-in
function for feature importance calculation and analysis.*”

Metrics. The following metrics were used to evaluate the
effectiveness of regression algorithms: mean absolute error (MAE),
root-mean-square error (RMSE), mean absolute percentage error
(MAPE), and R? coefficient.

B RESULTS AND DISCUSSION

Cholesterol Level Distribution Analysis. The distribu-
tion of measured cholesterol levels in the patients is previously
shown in Figure 3. The analysis of the histogram and the
values of mean (174.33), median (166.0), and calculated
skewness index (1.18) shows that the distribution of
cholesterol level among the patients participating in the
study is right-skewed (the skewness coefficient is greater than 0
and the mean is greater than the median). Twenty-six patients
had a score above 200 mg/dL (norm result) and only 7 above
260 mg/dL.

Considering the aforementioned problem, we decided to
train two separate algorithms.

Prediction of cholesterol level in the entire range.
Prediction of cholesterol level within the norm (<200
mg/dL).

Additionally, the predicted value logarithm technique was
used to limit the influence of skewness.”" For prediction over
the full range, we obtained better results using only one
measurement for each patient. The results for both cases are
compared in Table 4.

Table 4. Comparison of Metrics for the Entire Range and
Norm Range Prediction using LGBM Regressor

Metric Entire range Norm range
MAE 212 12.9
RMSE 264 15.8

R? 0.22 0.52
MAPE 13.7% 8%

Prediction of Cholesterol Level in the Entire Range.
On average, the predicted cholesterol levels deviate from the
actual values by about 21.22 mg/dL. The R-squared value
indicates how well the model explains the variance in the target
variable. An R? of 0.224 means that the model explains about
22.4% of the variance in cholesterol levels, which is relatively
low. A MAPE of 13.73% means that, on average, the model’s
predictions are about 13.73% off from the actual cholesterol
levels. A comparison of the values predicted by the machine
learning algorithm based on breath sample testing and the
values measured using the test strip and capillary blood is
shown in Figure 6.

Prediction of Cholesterol Level within the Norm. The
performance metrics obtained from the prediction model for
total cholesterol levels in the norm range based on exhaled air
are indicative of a quite successful model. On average, the
predicted cholesterol levels deviate from the actual values by
approximately 12.94 mg/dL. This RMSE value indicates that
the typical prediction error is around 15.79 mg/dL, providing a
more substantial penalty for larger errors. The R-squared (R*)
value of 0.522 signifies that the model explains about 52.2% of
the variance in the cholesterol levels, which is moderately good
but also highlights that there is room for improvement.
Additionally, the model’s predictions are, on average, within

https://doi.org/10.1021/acssensors.4c02198
ACS Sens. 2024, 9, 6630-6637
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Figure 6. Results of prediction of the total cholesterol level in the
entire range.

7.99% of the actual values. These results suggest that while the
model has a reasonable predictive capability, further refine-
ment, additional features, and additional data could enhance its
accuracy and reliability. A comparison of the values predicted
(in norm range) by the LGBMRegressor algorithm based on
breath sample testing and the values measured using the test
strip and capillary blood is shown in Figure 7.
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Figure 7. Results of prediction of the total cholesterol level in the
norm range.

The Bland— Altman plot analysis provides further insight
into the agreement between the predicted and actual total
cholesterol levels. The mean difference (or bias) between the
predictions and the actual measurements is 2.42 mg/dL. This
small mean difference indicates that, on average, the model
slightly overestimates the cholesterol levels by 2.42 mg/dL.
The limits of agreement (LOA) are defined as the mean
difference plus and minus 1.96 times the standard deviation of
the differences. The upper LOA is 33.00 mg/dL, and the lower
LOA is —28.15 mg/dL. This range suggests that 95% of the
differences between the predicted and actual cholesterol levels
fall within this interval. The Bland-Altman plot is illustrated in
Figure 8.

Features Importance. Analysis of the most important
features showed that the most important for prediction were
the responses of the TGS1820, AL-03P, TGS2620, and MQ3
sensors. These are mainly sensors for acetone, ethanol, and
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VOC:s. Isoprene, which is most often observed as a cholesterol
biomarker in breath, is also a volatile organic compound and
can be detected by semiconductor sensors, such as TGS1820
or TGS2620. Gas sensors, especially those based on metal
oxides (e.g, Sn0O,), operate on the principle of electrical
conductivity change in the presence of volatile organic
compounds. Isoprene, being a VOC, can cause a change in
conductivity similar to that of acetone or ethanol. Due to the
cross-selectivity of sensors and the large number of VOCs in
exhaled air, it is necessary to use a gas sensor matrix and
machine learning algorithms.

B CONCLUSIONS

In this paper, we proposed the first e-nose for prediction of
total cholesterol concentration in blood based on the exhaled
breath analysis. Machine learning algorithms were developed
for the entire measurement range and for the norm range <200
mg/dL achieving MAPE 13.7% and 8%, respectively. These are
the first results allowing further development of the solution
and achieving better results. One of the limitations of our study
was that only 151 people participated in the study, which is a
good introduction to research, while a larger population would
improve the results. Total cholesterol level values observed in
patients have a right skewed distribution and a small number of
people achieved results above the norm, which was difficult for
the model to generalize; however, the results in the norm
range, where the number of patients was higher, show that
such prediction is possible, and it is possible to achieve smaller
errors with a larger population. One of the disadvantages of
our study is that as a method of determining total cholesterol
level in blood, we adopted a portable device for a capillary
blood test strip and not measurements from venous blood
performed in a professional laboratory with venous blood
samples. Measurements with such a device are also burdened
with measurement errors. Studies and reports show that the
mean absolute relative difference of the five cholesterol self-
tests ranged from 6 + 5% (Accutrend Plus) to 20 + 12%
(Mylan Mytest).>>>* Our study included people who fasted
before the test and those who fasted after a meal. Studies show
that there are no clinically significant differences in the level of
total cholesterol in the blood after fasting and after a meal.**
Our method copes with both cases.

Human breath is composed of many compounds that reflect
the state of the body but also affect the response of sensors and
the prediction of algorithms. Factors that can distort the results
include external air po]lution,lz’55 smoking, drinking, or eating
immediately before the test. In addition, medications taken or
other co-occurring diseases also have an impact. Often, when
patients have metabolic synclrome56 (as was the case in our
studies), a simultaneous increase in blood parameters such as
cholesterol, blood glucose level or triglycerides is observed.
Therefore, it is important to collect additional data about
patients, as well as to determine the patient’s behavior before
the test, just as is done with standard blood tests.

The next stages of the study development are the
development of a portable device that would allow for broader
screening of patients in various medical centers and
comparison of results with total cholesterol determined in
venous blood. One of the possibilities is also the study of
additional parameters such as LDL-C and HDL-C levels and
an attempt to predict them based on breathing. In summary,
our study and the developed e-nose with machine learning
algorithms provide a good basis for further research on a larger
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Figure 8. Bland-Altman plot of predictions of total cholesterol level in the norm range.

population and the development of a portable device for
noninvasive prediction of total cholesterol, HDL-C and LDL-C

levels based on a breath sample.
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4.2. Revolutionizing Health Monitoring:
A Three-Gas Sensor System Powered by Machine
Learning for Predicting Cholesterol, Glucose, and
Uric Acid Levels from Exhaled Breath

Revolutionizing Health Monitoring: A Three-Gas Sensor System Powered by
Machine Learning for Predicting Cholesterol, Glucose, and Uric Acid Levels
from Exhaled Breath

A.Paleczek, J. Grochala, D. Grochala, J. Stowik, M. Pihut, J. E. Losterand A. Rydosz

Abstract— Nowadays, more and more people are struggling
with elevated levels of total cholesterol, glucose and uric acid. In
this study, we developed an electronic nose and examined the
patients' breaths with it. Using three gas sensors from our
e-nose and machine learning algorithms, we managed to achieve
mean absolute error of 19.32 mg/dl, 31.33 mg/dl, 1.43 mg/dl in
the prediction of glucose, total cholesterol, uric acid,
respectively.

Clinical Relevance—This study highlights the potential for
using a portable, non-invasive electronic nose to predict glucose,
cholesterol, and uric acid levels from breath, enabling early
detection of metabolic disorders and improving patient
outcomes through timely intervention.

[. INTRODUCTION

Exhaled breath analysis is being studied as a non-invasive
method to diagnose and monitor diseases by detecting VOCs
like isoprene (linked to heart disease) and acetone (indicating
diabetes). While current methods are accurate, they are costly.
Researchers aim to improve gas sensors and use machine
learning to make detection more affordable and accessible for
carly disease detection [1]. This study aims to test the
feasibility of estimating parameters like glucose, cholesterol,
and uric acid from exhaled air using three gas sensors.

II. METHODS

The study conducted at the Department of Prosthodontics
and Orthodontics at the Dental Institute, Faculty of Medicine,
Jagiellonian University Medical College, Krakow, Poland
involved 151 patients who were asked to inflate a Tedlar® bag
and had health parameters measured from capillary blood.

* The work was supported by the IDUB AGH 4122 grant and the statutory
activity at the Institute of Electronics AGH.
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Based on previous studies [2], 3 sensors were identified as
having high significance for cholesterol estimation -
TGS1820 (Figaro Engineering Inc, Japan), AL-03P (MGK
SENSOR Co., Ltd., Japan), K33 (Senseair, Sweden). Due to
outliers in the response of the TGS1820 sensor, the final
number of patients included in this study was 123. The
participants in the study had an average: glucose level of
110.36 mg/dL, triglycerides 124.63 mg/dL, total cholesterol
170.70 mg/dL, BMI 27.73 kg/m?, age 67 years. For
parameters estimation, the response of three sensors, BMI
and machine learning algorithms with optimized
hyperparameters were used. The data was divided into
training and test sets.

III. RESULTS

For predicting each parameter, the best results were
achieved by LGBMRegressor. Results are shown in Table 1.

TABLE L. RESULTS OF BEST PERFORMING ML ALGORITHMS
Resul
Pa];‘:‘feetter Algorithm MAE Img/dLe]su (sﬂlAPE 1%]
Glucose LGBMRegressor 19.32 15.58
Total cholesterol LGBMRegressor 31.33 19.74
Uric acid LGBMRegressor 1.43 26.56

MAE — mean absolute error, MAPE — mean absolute percentage error.

IV. DISCUSSION & CONCLUSION

The results from three sensors show promise for
developing a portable, non-invasive device for early detection
of metabolic disorders, enabling quicker treatment and
prevention of complications like cardiovascular diseases or
diabetes. Next steps involve testing a larger group, using
venous blood, and exploring breath-based detection of other
health parameters (e.g. HDL, LDL, Beta-Hydroxybutyrate).
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5. Summary and Conclusions

5.1. Summary of the Dissertation and Research
Achievements

Based on the obtained results presented in this dissertation as well as in the reference
papers [AP1, AP2, AP3, AP4, APS, AP6, AP7] it can be stated that the research hypothesis
was confirmed. Although, further clinical trials would be required to implement the developed
approach in the daily clinical practice.

Chapter 2 presents the current state of knowledge regarding the use of exhaled air
analysis in disease diagnosis. The importance of this method as a non-invasive approach
is discussed, which can be an alternative or complement to traditional laboratory tests.
This chapter presents the diseases currently being investigated for diagnostics using e-nose and
machine learning systems, as well as those for which this method has already been approved
for clinical use. Particular attention is paid to the role of selected biomarkers, such as acetone,
in the diagnosis of diabetes and monitoring metabolic health, which formed the basis for
planning further research.

Chapter 3 presents the next stage of the work: laboratory studies. This stage involved
research on sensors suitable for detecting acetone in artificial gas mixtures designed to mimic
exhaled air in various patient health states, including those containing influencing factors.
At this stage of the research, effective classification of gaseous samples containing acetone,
compensation  for interference resulting from the presence of ethanol,
and classification of samples into three classes (healthy, pre-diabetic, and diabetic) were
achieved.

Chapter 4 presents the results of the initial clinical validation of the e-nose system
supported by machine learning algorithms. Based on the experience and results from laboratory
studies, clinical trials were conducted to predict cholesterol, glucose, and uric acid levels.
The study was conducted on a group of 151 participants, confirming the method's potential

in medical practice.
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Summary of the research achievements:

e Designing and testing the e-nose system capable of analysing artificially prepared gas
mixtures and clinical samples [AP3, AP4, AP5].

e Developing experimental protocols based on a literature review simulating various
biomarker concentrations and the presence of additional influence factors (e.g., ethanol)
[AP3, AP4, APS].

e Selecting and testing multiple machine learning algorithms, both for disease
classification and for predicting biomarker concentrations (regression)
[AP3, AP4, APS].

o Effective classification of artificial breath samples into three groups
(healthy, pre-diabetic, diabetic) in laboratory conditions [AP5].

e Predicting acetone concentrations by taking into account inference factors
present in mixtures, which allowed for the quantitative prediction of biomarkers [AP4].

e Conducting a study on a group of 151 patients, which allowed for the first evaluation
of the method's performance in a clinical setting [AP6].

e Using data from the e-nose system and machine learning algorithms to predict

cholesterol, glucose, and uric acid concentrations from breath samples [AP7].

5.2. Conclusions

The conducted studies have shown that the e-nose system, supported by machine learning
algorithms, is an effective tool for analysing exhaled breath in the context of detecting
metabolic diseases.

In both laboratory studies and medical experiments, it was possible to classify
and distinguish participants' health states and quantitatively predict selected biomarkers,
such as acetone, as well as predict parameters related to the assessment of patients” metabolic
health, such as cholesterol, glucose, and uric acid.

Studies conducted by the Author have shown that the e-nose system,
combined with machine learning algorithms, enables noninvasive detection of selected
metabolic parameters and health status based on exhaled breath analysis. In studies on diabetes
detection, the system successfully classified acetone concentrations in synthetic gas samples,
achieving 99% accuracy, 100% sensitivity, and 97.9% specificity for the XGBoost algorithm.

XGBoost achieved a 0.245 ppm mean absolute error in the prediction of acetone concentration,
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while CatBoost achieved an error of 0.568 ppm in mixtures with high-ethanol content.
Extended studies presented classification of samples into three health groups
(healthy, pre-diabetic, and diabetic individuals), achieving precision of 95%, 79%, and 88%,
respectively.

In human studies aimed to predict total cholesterol levels using the e-nose and LGBM
Regressor, the MAPE 13.7% was achieved for the full measurement range and 8% within the
normal range (<200 mg/dL). Key sensors (TGS1820, AL-03P, TGS2620, and MQ3)
for the  prediction were identified by  feature  importance  analysis.
Preliminary studies on glucose, cholesterol and uric acid prediction demonstrated the ability to
estimate these parameters with mean errors of 19.32 mg/dL, 31.33 mg/dL, and 1.43 mg/dL,
respectively, using data from only three gas sensors (TGS1820, AL-03P, and K33).

These results confirm that the e-nose, supported by machine learning algorithms,
can effectively predict both the levels of selected metabolites and the patient's health status,
opening prospects for noninvasive monitoring of patient metabolic health and the diagnosis
of metabolic diseases.

The tested machine learning methods also demonstrated the potential for compensating
for the effects of interfering substances, such as ethanol, in artificial breath mixtures,
which represents a significant step towards the practical application of this technology.
Preliminary results from the initial clinical trials confirm the potential of the e-nose system
as a non-invasive diagnostic method, highlighting the need for further development to support
metabolic monitoring and early diagnosis.

Despite promising results, the current study has several limitations.

First, the initial clinical trials were conducted at a single medical centre with a small
group of 151 participants, which limited the generalizability of the results.
Therefore, it is crucial to expand the study to include a larger group of patients from various
medical centres and provide detailed information about their health and medications.

Secondly, there was no direct comparison with gas analysis reference methods that
would allow for the unambiguous identification of all relevant biomarkers. Further research
will also require comparison of results with advanced reference techniques,
such as GC/MS, PTR-MS, or SIFT-MS, to identify and quantitatively analyse biomarkers.

Thirdly, the study focused primarily on several metabolic parameters, including total
cholesterol, glucose, and uric acid. Furthermore, the reference method for these measurements
was capillary blood testing using portable point-of-care strip tests. This measurement is also

subject to greater measurement error than venous blood testing in a laboratory.
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Furthermore, biological variability between patients and the lack of a standardised
breath sampling protocol are significant sources of potential uncertainty in the results
and should have been considered. The protocol should include the appropriate preparation
of the patient before the examination, such as fasting and refraining from smoking
for at least 2 hours prior to the examination. Literature studies report various protocols and
methods for breath collection. In some cases, the patient was asked to exhale as much air as
possible to capture the end-tidal portion of the breath. At the same time, in other studies,
capnometers are used to obtain a sample containing the maximum carbon dioxide concentration
and consequently the highest biomarker concentrations. Some studies also include instructions
in the protocol for the patient to hold their breath for a specified period before exhaling directly
into the device or a special bag, such as a Tedlar® bag. The lack of measurement standardisation
makes it difficult to compare study results across different medical centres and research teams.

These limitations indicate the need for further research involving larger and more
diverse populations, standardisation of breath sampling and storage procedures,

and the use of reference techniques to verify the system's performance.

5.3. Future Work and Perspectives

Analysis of the study's limitations enables the identification of several directions for future
research on using an e-nose system supported by machine learning algorithms for disease
detection and health monitoring based on exhaled air analysis.

Further research on monitoring metabolic syndrome and diabetes will require
expanding diagnostics to include additional biomarkers,
such as Low-Density Lipoprotein (LDL), High-Density Lipoprotein (HDL), triglycerides,
and inflammatory markers, as well as conducting blood tests using an accurate method,
i.e., venous blood sampling. One possible development direction for the conducted research
also involves applying the e-nose system and ML to other diseases, such as cancer (lung cancer,
colon cancer), neurodegenerative diseases (Alzheimer's, Parkinson's), and infectious diseases
(COVID-19, tuberculosis).

Research on both metabolic syndrome and the detection of other diseases requires the
development of standardised breath sampling procedures, as well as studies on larger and more
diverse patient populations in multicenter, randomised clinical trials. A key aspect will also be

comparing e-nose results with reference techniques (GC/MS, PTR-MS, SIFT-MS), which will

124



enable the identification of biomarkers responsible for the studied metabolic states
and the identification of interfering factors from other diseases, diet, or individual patient
variability.

The study of other sensors and their selection for specific biomarkers or disease entities
is also important. The use of Explainable AI algorithms may be beneficial,
as they enhance the interpretability of results in clinical practice, thereby increasing
patient and physician confidence in the diagnosis.

The design of a detailed patient questionnaire and access to their medical data might
also be crucial. Integrating multimodal data, such as e-nose signals, clinical data,
and patient demographics, will enable the analysis of the impact of medications, diet,
and other diseases on breath test results. This will facilitate the creation of more universal
algorithms that achieve high performance regardless of inference factors.

Another aspect that should be considered is the technological development
and implementation of the e-nose in clinical practice and everyday use by patients.
To this end, it is necessary to conduct research on system miniaturisation, including analysing
the impact of sensor responses on model decisions and identifying the most important ones.
One aspect of the device's implementation is its potential integration with telemedicine

systems, allowing for real-time monitoring (continuous assessment of the patient's health).
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