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Abstract

Modern production lines are characterized by a complex industrial process, driven by the demand for in-

creasingly complex products. As a result, there is a growing need for flexibility, which requires these lines to

quickly adapt to changing production conditions. This demand is especially evident in assembly processes,

where the complexity comes from the need for precise positioning and integration of various components.

Although automated stations using industrial robots are becoming more common, they face challenges in

quickly adapting to the assembly of different products. Traditional robot control methods, such as follow-

ing manually programmed trajectories, often fall short in flexible production lines. Furthermore, equipping

robotic assembly cells with advanced sensors or tool-changing systems significantly increases the costs of

developing and maintaining a production line. As a result, there has been a growing interest in methods

based on algorithms using artificial intelligence, particularly reinforcement learning (RL), in recent years.

The aim of the presented dissertation was to develop an RL-based method to effectively assemble var-

ious elements on a single production line. Research involved developing an efficient framework to train

an RL agent using a real industrial robot and introducing a novel algorithm called Multimodal Variational

DeepMDP (MVDeepMDP). This algorithm allowed for a quick adaptation of the pre-trained RL agent to

new products on production lines by combining the Soft Actor-Critic (SAC) algorithm, which belongs to

the family of off-policy actor-critic algorithms, with a multimodal with a multimodal variational autoen-

coder. The proposed method focuses on learning a multimodal latent representation of the dynamics of the

environment, allowing the RL agent to receive task-relevant features. Additionally, the framework is char-

acterized by an asynchronous data collection process relative to the learning process, which improves the

RL agent’s interaction with the environment. Furthermore, the robot arm is controlled using the admittance

control system, ensuring a safe and seamless learning process.

The proposed method was evaluated by testing its performance in inserting electronic parts into specific

locations on a printed circuit board. This electronic assembly task served as an effective benchmark for

assessing the overall effectiveness and generalization capability of the proposed solution, given the diversity

and complexity of the components. The initial experiments focused on evaluating the proposed framework

using the SAC algorithm. Analysis of results indicated that the presented framework achieved significantly

better quality metrics compared to conventional insertion techniques. Afterward, a series of experiments

were performed to test the ability of MVDeepMDP to quickly adapt to newly assembled products. The

results demonstrated that, in most cases, this method could perform zero-shot transfer to unseen components.

In cases where zero-short transfer failed, fine-tuning took a maximum of 5 minutes.

v



In summary, the presented solution allows for rapid adaptation of the robotic assembly station to con-

stantly changing products in a flexible production environment. This functionality is desirable from the

point of view of modern manufacturing standards, which makes it a potential replacement for commonly

used solutions.



Streszczenie

Współczesne linie produkcyjne cechują się skomplikowanymi procesami przemysłowymi, które są

spowodowane produkcją coraz to bardziej złożonych produktów. Dodatkowo coraz częściej wymaga się od

linii produkcyjnych elastyczności, co oznacza, że muszą one być zdolne szybko adaptować się do zmieniają-

cych się warunków produkcyjnych. Sytuacja ta jest najbardziej widoczna w przypadku procesów montażu,

gdzie złożoność procesu jest związana z koniecznością precyzyjnego pozycjonowania i łączenia różnych

elementów. Obecnie coraz częściej stosuje się stanowiska zautomatyzowane, bazujące na robotach prze-

mysłowych, jednak tak wyposażone linie produkcyjne są często niezdolne do szybkiego dostosowania się

do montażu często zmieniających się produktów. Dodatkowo tradycyjne metody sterowania robotami (m.in.

ręczna definicja trajektorii) często są niewystarczające w przypadku elastycznych linii produkcyjnych. Nato-

miast uzbrojenie stanowisk montażowych w zaawansowane czujniki, czy też systemy do zmiany narzędzi

znacząco podnosi koszty stworzenia i konserwacji linii produkcyjnej. W związku z tym w ostatnich lat-

ach coraz większą popularność zdobywają metody oparte na algorytmach wykorzystujących sztuczną in-

teligencję, a w szczególności uczenie ze wzmocnieniem (ang. Reinforcement Learning (RL)).

Celem prezentowanych badań było uzyskanie metody bazującej na uczeniu ze wzmocnieniem, która

pozwoli na efektywne rozwiązanie problemu montażu różnorodnych elementów na jednej linii pro-

dukcyjnej. W ramach przeprowadzonych badań stworzono wydajną procedurę uczenia agenta RL na

rzeczywistym robocie przemysłowym, a także opracowano algorytm Multimodal Variational DeepMDP

(MVDeepMDP). Algorytm ten pozwolił na szybką adaptację wstępnie wytrenowanego agenta RL do

nowych produktów na liniach produkcyjnych. MVDeepMDP łączy algorytm Soft Actor-Critic (SAC), z

rodziny algorytmów off-policy actor-critic, z multimodalnym wariacyjnym autoenkoderem. Zaproponowana

metoda charakteryzuje się uczeniem wielomodalnej reprezentacji dynamiki środowiska, dzięki której agent

RL uzyskuje istotne informacje o wykonywanym zadaniu. Dodatkowo wspomniana metodologia charak-

teryzuje się asynchronicznym procesem zbierania danych w stosunku do procesu uczenia, co znacząco

usprawnia interakcję agenta RL ze środowiskiem. Co więcej, ramię robota sterowane jest admitancyjnie,

dzięki czemu proces uczenia jest bezpieczny i płynny.

Proponowana metoda została przetestowana na problemie montażu elementów elektronicznych do

odpowiednich miejsc na płycie drukowanej. Zadanie montażu elektronicznego stanowiło doskonałe

środowisko do oceny ogólnej wydajności proponowanego rozwiązania oraz możliwości jego generaliza-

cji, ze względu na różnorodność i złożoność elementów. Wstępne eksperymenty zakładały ewaluację pro-

ponowanej metodologii z wykorzystaniem algorytmu SAC. Analiza uzyskanych wyników sugerowała, że

przedstawiona metodologia osiągnęła znacznie wyższe wskaźniki jakości niż powszechne techniki mon-
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tażu. W następnej kolejności wykonano serię eksperymentów, których celem było sprawdzenie możliwości

szybkiej adaptacji MVDeepMDP do nowych montowanych produktów. Wykazano, że metoda ta w więk-

szości przypadków jest w stanie montować nowe elementy bez konieczności dodatkowego trenowania. W

pozostałych przypadkach, w których błyskawiczne przeniesienie nie powiodło się, douczenie trwało maksy-

malnie 5 minut.

Podsumowując, zaprezentowane rozwiązanie pozwala na szybkie dostosowanie się zrobotyzowanego

stanowiska montażowego do ciągle zmieniających się produktów w elastycznych środowisku produk-

cyjnym. Funkcjonalność ta jest pożądana z punktu widzenia współczesnych standardów produkcyjnych,

co sprawia, że potencjalnie może zastąpić powszechnie stosowane rozwiązania.
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Chapter 1

Introduction

1.1 Background

In modern manufacturing systems, industrial robots serve as integral components for automating repeti-

tive and labor-intensive tasks. These systems are designed to peform a wide range of operations, including

pick-and-place, welding, and assembly. The majority of existing industrial robotic systems are designed

for low-mix, high-volume (LMHV) production lines that are characterized by highly specialized and linear

production systems. Such systems are commonly employed in industries such as automotive manufacturing,

where dedicated production lines are configured for specific vehicles and operate for extended periods.

However, the emergence of high-mix, low-volume (HMLV) production lines has highlighted the in-

creasing importance of flexible manufacturing systems (FMS). Flexible manufacturing systems characterize

production lines capable of quickly adapting to changing production requirements, such as new products or

variations in existing products. These systems are prevalent in industries such as electronics manufacturing,

where a multitude of devices with lower production volumes, such as specialized devices, are produced.

This type of electronic manufacturing epitomizes a high-mix, low-volume production line, which requires a

flexible production process to adapt to frequent changes in product design and production volume.

In such systems, the ability to rapidly re-tool automated machines, such as robotic cells, is critical to

minimize production downtime. Nevertheless, achieving this level of flexibility in industrial robotic systems

is challenging due to the complexity of the tasks involved and the need for precise control of the robot’s mo-

tion and interaction with the environment. In most cases, tasks requiring high dexterity and precision are still

performed manually by human operators, such as the assembly of non-standardized electronic components

or the attachment of engine components in the automotive industry.

Although human operators demonstrate high precision and adaptability in performing these tasks, they

are also prone to fatigue and errors, leading to a lower productivity and quality issue. Consequently, there is

a growing interest in developing robotic systems capable of performing these tasks with the same level of

precision and adaptability as human operators, while also being able to operate continuously without fatigue

or errors.

The field of robotics has made significant advances in recent years, especially in the context of contact-

rich manipulation. Contact-rich manipulation refers to tasks that involve physical interaction between robots
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1. Introduction 2

and their environment, such as grasping, manipulating, and assembling objects. Achieving effective contact-

rich manipulation is challenging, as it necessitates the robot’s understanding of the physical characteristics

of the environment, including factors such as friction and contact forces.

Conventional approaches to contact-rich manipulation rely on techniques such as hybrid force/motion

and impedance control law to control the interaction between the robot end-effector and the surrounding

objects. Force-controlled robots execute predefined motions while maintaining a desired force in the given

axis or impedance profile. Although these methods have demonstrated success in various applications, they

require manual tuning of control parameters, impeding their quick adaptation to new tasks or manipulated

objects.

One common strategy to extend the capabilities of force-controlled robots is to integrate tool change sys-

tems that enable the robot to switch between different end-effectors to perform various tasks. However, this

approach presents drawbacks, such as the need for additional hardware and the need to stop the production

cycle to change the end-effector. Moreover, tool change systems may not handle all types of objects present

in the production line within a single robotic cell. Therefore, while effective, these systems are costly and

require significant space to accommodate all the necessary tools.

An alternative method to improve the flexibility of industrial robotic systems involves utilizing computer

vision systems to provide visual feedback to the robot about its environment. Visual feedback can be used

to adjust the robot’s motion based on observed objects and task requirements. However, these systems often

require complex preprocessing and stable lighting conditions to operate effectively. Achieving consistent

performance and reusability across different manipulated objects is time consuming and expensive, leading

to configurations tailored for specific sets of objects. Furthermore, for high-precision tasks, the cost of the

vision system is significant, as it often necessitates high-resolution cameras and complex image processing

algorithms.

Recent advances in deep reinforcement learning (DRL) have introduced new possibilities for developing

robotic systems capable of performing high-precision manipulation tasks with adaptability. Reinforcement

learning (RL) is a machine learning paradigm in which an agent learns to solve a given task by interacting

with an environment and receiving feedback as a reward value that indicates the quality of the made decision.

Integrating RL algorithms with robotic systems can provide solutions to tasks that are difficult to solve

using traditional vision-based control systems. Moreover, as DRL algorithms rely on deep neural networks

to approximate the policy function, they can reduce the need for complex preprocessing and manual tuning

of control parameters, thereby reducing system costs and potentially improving reusability across different

tasks and manipulated objects. However, it is important to note that "raw" RL algorithms struggle to quickly

adapt to new tasks or manipulated objects. Therefore, training a policy from scratch for each new task is

time-consuming and impractical in real-world scenarios. Rapid adaptation to new tasks is crucial in the

manufacturing industry; hence, this remains an open research problem.

1.2 Industrial Robotic Assembly Tasks

Automation of insertion tasks by industrial robots is a common practice in modern manufacturing systems,

where robots play a crucial role in the assembly of objects by inserting one component into another. One of

G. Bartyzel RL for Industrial Assembly
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Figure 1.1: Schemas of an industrial robotic assembly task. Top: Single peg-in-hole insertion task. Bottom:

Multiple peg-in-hole insertion task. The object diameter is defined as do, while the hole diameter is defined

as dh. The multiple peg-in-hole task is more challenging due to the complex geometry of the object and

the need to insert multiple pegs into corresponding holes. In the visualized example, one of the pegs makes

contact with the edge of the hole, while the other pegs are still in the process of insertion. Therefore, the

robot must adjust its motion to ensure that all pegs are inserted correctly.

the fundamental tasks in this domain is the peg-in-hole insertion, where the robot is tasked with inserting

a peg into a corresponding hole, as illustrated in the top schema of Figure 1.1. The task is considered

successfully completed when the peg is fully inserted into the hole.

Although the peg-in-hole task may seem relatively straightforward for a human operator, it presents

significant challenges when performed by a robot. Complexities arise from various factors, including the

complex geometry of objects and the clearance of the hole, both of which have a substantial impact on

the control system. Achieving submillimeter precision is often necessary because of the small clearance

between the peg and the hole. Additionally, the robot must adapt its motion to accommodate the friction

between the peg and the hole, as well as the contact forces that emerge during the insertion process.
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The complexity of the insertion task is further intensified when multiple pegs need to be inserted into

their corresponding holes, as shown in the lower schema of Figure 1.1. For instance, the assembly of elec-

tronic components, such as non-standardized transformers using through-hole technology (THT), involves

the insertion of multiple leads into the respective holes on the printed circuit board (PCB). These leads are

typically thin and fragile to external forces, making them difficult to insertion process due to the risk of

damage. Moreover, the tightness of the PCB holes further complicates the insertion process, particularly

when coupled with fragile leads.

Let’s now explore the general details of the peg-in-hole insertion task. The objective of this task is to

insert a peg into a hole, as illustrated in Figure 1.1. The peg and hole are characterized by their respective

diameters, do and dh. The insertion process begins with the peg being grasped and moved towards the

hole. Subsequently, the robot is required to adjust its motion to align the peg with the hole and execute the

insertion. In most cases, aligning the peg with the hole and performing the straight movement on the given

axis is sufficient. However, in certain scenarios, the peg may come into contact with the edge of the hole

during insertion. In such cases, the robot needs to adjust its tool orientation to ensure proper alignment of

the peg with the hole. Furthermore, in high-precision insertion tasks, the robot must not only ensure correct

alignment, but also compensate for the contact forces. The task ends when the peg is fully inserted into the

designated hole. The same procedure applies to the multiple-peg-in-hole insertion task, where the robot is

tasked with inserting multiple pegs into their corresponding holes.

1.3 Research Objectives

The main objective of this dissertation is to demonstrate the feasibility of using deep reinforcement learning

in a real-world industrial robotic assembly task, such as electronic component assembly. It is hypothesized

that deep reinforcement learning algorithms combined with multimodal representation learning can be used

effectively in flexible manufacturing systems to train robotic systems that can quickly adapt to new tasks

and manipulated objects. Furthermore, it is expected that the multimodal information fusion mechanism will

have an impact on extracting task-relevant features, which, in turn, will improve the generalization capability

of the learned policy.

1.4 Thesis Content

The following dissertation is organized as follows. In Section 1.5, a comprehensive review of the literature

related to intelligent robotic systems and representation learning is presented. The review begins with an

overview of contact-rich manipulation in the field of robotic manipulation tasks (Section 1.5.1), followed by

a discussion of methods for multiple peg-in-hole insertion tasks (Section 1.5.2). Subsequently, the review

delves into representation learning in reinforcement learning (Section 1.5.3), focusing on methods aimed

at improving sample efficiency and policy generalization. Finally, the review concludes with a discussion

of multimodal generative learning (Section 1.5.4), presenting methods designed to learn the joint latent

representation of multiple modalities. The introduction of the dissertation is concluded with a summary of

contributions (Section 1.6), providing details on the research objectives (Section 1.3).

G. Bartyzel RL for Industrial Assembly
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In the following chapter, Chapter 2 provides essential background knowledge for understanding the

subsequent chapters. The chapter begins with a comprehensive overview of reinforcement learning (Sec-

tion 2.1), covering key concepts such as the Markov Decision Process (MDP) [8], as well as value-based

and policy-based methods. This section also explores deep reinforcement learning, with a focus on the Soft

Actor-Critic (SAC) [31], the core algorithm in this dissertation. The chapter then delves into a discussion

of compliance control (Section 2.2) for industrial robots, a critical component in applications for contact-

rich manipulation tasks. This section briefly discusses popular compliant control methods, including hybrid

position/force control and admittance control. Finally, the chapter concludes with a brief introduction to

Variational Autoencoders (VAE) (Section 2.3). The theoretical foundation of VAE is utilized in subsequent

chapters as an approach to learning the joint latent representation of multiple modalities.

Chapter 3 introduces the proposed framework for robotic industrial assembly tasks. The chapter begins

with a detailed description of the task within the context of the Markov Decision Process in Section 3.1.

Then, the control architecture designed for the robotic system is introduced in Section 3.2. Additionally, this

section presents the communication software stack for efficient training of RL agents in a real robotic system.

The chapter continues with a description of the laboratory setup in Section 3.3, covering the hardware

components used in the robotic system, the objects used in the experiments, and the reset procedure for

the environment. Furthermore, the implementation of the model architecture used in the experiments is

presented in Section 3.4. The chapter concludes with a comprehensive analysis of the experimental results

and a discussion of the results obtained in Section 3.5. Initially, a detailed analysis of the influence of visual

observation on policy performance is provided. Subsequently, a performance comparison between RL agents

and conventional control methods is presented. Finally, qualitative results are discussed at the end of this

chapter.

In Chapter 4, the dissertation presents key contributions. The chapter begins with a detailed description

of the novel method, called Multimodal Variational DeepMDP (MVDeepMDP), which was developed to

improve the generalizability of the learned policy deployed in a real-world industrial robotic system. This

section provides information about the multimodal fusion mechanism (see Section 4.4), the model archi-

tecture (refer to Section 4.1.3), and algorithmic details (refer to Section 4.1.4). Then, the chapter presents

the experimental results. The first part of the results section (Section 4.3) covers the quantitative analysis of

the learned policy, comparing the transferability of MVDeepMDP to other state-of-the-art methods through

a set of benchmark test scenarios. The second part focuses on the qualitative analysis of the proposed ap-

proach. The author discusses the impact of the multimodal fusion mechanism on policy performance and

analyzes design choices. Finally, the chapter concludes with a discussion of the method for preprocessing

state-based observations of different physical quantities.

1.5 Related Work

1.5.1 Contact-rich Manipulation

The field of contact-rich manipulation in robotics is dedicated to studying the interaction between robots

and their environment. This field focuses on tasks that involve physical interaction, such as grasping, ma-
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nipulating, and assembling objects. Achieving effective contact-rich manipulation poses a challenge, as it

requires the robot to comprehend the physical characteristics of the environment, such as friction, compli-

ance, and contact forces. Due to its relevance in practical applications such as manufacturing, contact-rich

manipulation has garnered substantial attention within the robotics community over the years [56].

Traditional approaches to contact-rich manipulation rely on force control techniques, such as impedance

control and admittance control, to manage the interaction between industrial robots and their surround-

ings [122, 41, 94]. In these approaches, the robot executes predefined motions while maintaining a desired

force or impedance profile. Although these methods have proven successful in various applications, such as

industrial assembly [22, 86] and grinding [48], they require manual adjustment of control parameters and

are not suitable for tasks involving intricate environmental interactions. Furthermore, force-control-based

solutions are vulnerable to environmental uncertainties and lack adaptability to new tasks or manipulated

objects.

To overcome these limitations, researchers have delved into the realm of learning-based methods and

explored the integration of richer sensory data, such as vision [45] and tactile sensing [65, 119], to facilitate

robots in performing contact-rich manipulation tasks. Notable advancements have been achieved through

the application of deep learning methods in this domain. For example, the Dex-Net project [77, 75, 76] has

successfully employed deep learning in object grasping by leveraging a comprehensive dataset of 3D object

models and associated grasps to train a deep neural network to predict the quality of a grasp for a given

object. Another area of research worth mentioning where deep learning has been extensively applied is in

the realm of robotic industrial insertion. Yu et al. [132] and Triyonoputro et al. [114] have introduced deep

learning-based visual servoing (VS), which computes the robot’s motion based on visual input processed

by a convolutional neural network (CNN). Furthermore, a multimodal approach, as proposed in works by

Spector et al. [104, 105], has combined visual and wrench components to compute the desired robot motion,

exhibiting greater resilience to environmental uncertainties and adaptability to newly manipulated objects

compared to a visual-only approach.

Reinforcement learning has emerged as a promising solution to address the problem of contact-rich

manipulation, as evidenced by the recent literature [140]. A prevalent approach involves training a neural

network policy using proprioceptive and haptic feedback data to control industrial robots [46, 49]. These

policies are often combined with compliance control, allowing robots to interact safely with their environ-

ment. While typical RL agents compute the desired robot motion, recent studies [71, 79, 9, 1] have demon-

strated that allowing RL agents to adjust the control system parameters online can improve the performance

of the learned policy.

However, the reliability of learned policies, based on proprioceptive and haptic feedback data, is fre-

quently compromised by environmental uncertainties, making efficient training and deployment in the real

world challenging. Therefore, researchers have investigated the use of visual [64, 118, 95, 68] and mul-

timodal [62, 72] observations for policy training. In these approaches, visual feedback is predominantly

acquired from vision sensors attached to the robot’s end-effector, whereas multimodal feedback comprises

visual, wrench components, and proprioception. These techniques have shown promise in terms of robust-

ness to environmental uncertainties and adaptability to new manipulated objects.
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However, the aforementioned approaches typically involve training an RL agent from scratch for

each new task or manipulated object, which presents limitations in real-world scenarios due to the time-

consuming nature of the training process. To address this issue, common approaches include integrating

human demonstrations [100, 120, 70] and performing transfer learning from simulated environments to the

real world (sim2real) [4, 133, 136]. In learning from human demonstrations (LfD), expert demonstrations

are utilized to pre-train the policy, which is then fine-tuned using reinforcement learning or jointly sampled

with online collected data. Another set of techniques that facilitate the transferability of learned policies

between tasks involves context-based meta-learning [96, 137, 124] and weakly supervised learning, such as

image segmentation of the observed environment [126, 47].

1.5.2 Multiple peg-in-hole Insertion

In the previous section, an overview of contact-rich manipulation was provided within the field of robotic

manipulation tasks, along with a discussion of recent advancements in reinforcement learning-based robotic

solutions. This dissertation focuses on a case study of flexible manufacturing systems, specifically an elec-

tronic component assembly task. The insertion of an electronic part, as a multiple-peg-in-hole task, poses

challenges for industrial robots due to the complex geometry of the object [92, 22]. To address this challenge,

Hou et al. [44] have proposed an RL-based method utilizing a Deep Deterministic Policy Gradient (DDPG)

algorithm [67] supported by a fuzzy logic system and variable time-scale prediction. In this approach, the RL

agent computes a 6-dimensional action representing translations and rotations along the XYZ-axes based on

the object’s pose relative to the target and wrench components. Similar approaches have been introduced by

Hou et al. [43] and Xu et al. [127], where DDPG is the core algorithm used, and the policy network output

is employed to correct the control signal computed by the manually tuned proportional-derived (PD) force

controller. However, these works differ in the reward function they use. Notably, Xu et al. [127] propose a

fuzzy reward system in place of a complex hand-crafted reward function. These advances aim to expedite

training and ensure safe exploration. It is important to note that the manipulated objects in these works were

solid metal blocks, which are more resistant to damage than electronic components. Moreover, these objects

were rigidly attached to the robot’s end-effector, simplifying the problem by reducing uncertainties from the

grasping procedure.

In contrast, Ma et al. [73] propose a reinforcement learning-based solution for the assembly of electronic

components, such as the pin header. Their approach incorporates high-quality cameras and a precise 6D

force/torque (F/T) sensor. However, the agent’s observation space consists solely of wrench components,

and cameras are used for the pre-policy control step. In contrast to the aforementioned works, the action

space in their approach computes only translations along the XYZ-axes.

1.5.3 Representation Learning in Reinforcement Learning

Representation learning, a subfield of machine learning, is concerned with acquiring a compact and infor-

mative representation of input data. There are three primary approaches: variational information bottleneck

(VIB) [2, 21], contrastive learning [116, 38, 14], and reconstruction-based methods [55, 18, 26]. These
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approaches have been effectively utilized in various machine learning tasks, prompting recent investigations

into their application in reinforcement learning to enhance sample efficiency and policy generalization.

Early studies involved training autoencoders (AEs) to learn representations for reconstructing observa-

tions, which were subsequently used to train RL agents [57, 58]. However, this approach does not ensure that

the learned representations encapsulate the information necessary for effective policy computation. Further-

more, training a policy using raw visual input for continuous action spaces often exhibits poor performance

and sample inefficiency compared to state-based observations.

Yarats et al. [131] proposed an approach called SAC-AE, which involves joint training of the policy and a

deterministic regularized autoencoder (RAE) [25] to learn representations relevant for policy computation.

The RAE’s encoded representation serves as input for actor and critic networks. Moreover, the authors

observed training instability when passing gradients from the actor to the encoder and subsequently proposed

stopping this gradient flow. However, a model solely trained for observation reconstruction may not capture

relevant representations as effectively as a model learning environmental dynamics.

Consequently, researchers have explored the use of latent dynamics models to learn more informative

representations. Ha and Schmidhuber [29] proposed World Models, a method that generates sequential latent

representations of the observable environment. This approach involves a two-stage training procedure, first

training a VAE with a standard evidence lower bound objective (ELBO) [50], followed by training a dynamic

recurrent model based on the VAE’s latent representations.

In addition, PlaNet [33] and Dreamer [32] are algorithms that jointly learn a continuous latent dynamics

model and observation encoder, with the resulting latent representation used for training the RL agent. These

models predict future latent states and rewards while reconstructing observations, enabling long-horizon

planning through the use of the Recurrent State-Space Model (RSSM). Subsequent improvements to the

Dreamer algorithm [34, 35] significantly improved sample efficiency and policy generalization.

Furthermore, Lee et al. [61] introduced the Stochastic Latent Actor-Critic (SLAC) algorithm, which

learns latent beliefs through a latent variable model incorporating model-based rollouts for the computa-

tion of belief representation. The aforementioned methods integrate latent dynamic models with off-policy

model-free RL algorithms. Meanwhile, ian approach suitable for an on-policy model-free RL algorithm has

been proposed by Gregot et al. [27]. This method computes a latent belief representation as does SLAC.

Reconstruction-based representation learning has been shown to significantly improve the sample effi-

ciency of the RL agent. However, these approaches are often sensitive to irrelevant changes in the observed

environment, particularly when dealing with visual input [135]. As a result, there has been a recent explo-

ration of integrating non-reconstruction-based methods with RL agents. One notable approach is CURL,

introduced by Laskin et al. [60], which integrates contrastive learning with an off-policy model-free RL al-

gorithm. The method proposes a contrastive objective tailored for the reinforcement learning domain, com-

puted between randomly cropped images. Another method, Augmented Temporal Contrast (ATC), presented

by Stooke et al. [106], also employs contrastive learning. ATC trains a convolutional encoder to associate

pairs of observations separated by short time intervals under image augmentation using contrastive loss. In

this case, the input images are augmented by random shifting [17].
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In addition to the exploration of contrastive learning in the realm of reinforcement learning, there are

studies directly focusing on learning task-irrelevant representation. A notable work by Zhang et al. [3] intro-

duces a method called DBC. DBC uses a bisimulation metric to learn task-relevant features. Experimental

results have shown that employing the bisimulation metric substantially enhances the generalization capa-

bility of the RL agent. Furthermore, a study by Fu et al. [23] presents an improvement that improves the

extraction of task information for the Dreamer algorithm. The extraction of task-informed latent represen-

tation is achieved through the introduction of two models: the task model and the distractor model. The

task model captures task-relevant features associated with reward prediction, while the distractor model

captures task-irrelevant features through adversarial objectives. Furthermore, Fan and Lee [19] have de-

veloped a robust method called DRIBO, which is based on RSSM and employs a multiview-information

bottleneck (MIB). In this work, the MIB objective is adapted to the sequential model. Another noteworthy

approach involves prototypical representation [129]. The self-supervised framework, called Proto-RL, links

representation learning with exploration through prototypical representations. These prototypes serve as

task-agnostic representations that are pre-trained solely with exploratory data, without any task-informative

signals.

The above-mentioned methods involve incorporating auxiliary objectives, often accompanied by addi-

tional reconstruction models, into RL agents. At the same time, research on image augmentation has shown

promising results. Yartas et al. [17, 130] presented the foundations for this area with their method called

DrQ, demonstrating that applying simple random shift image augmentation during training significantly im-

proves the sample-efficiency of the RL agent. Similarly, Laskin et al. [59] introduced a method named RAD,

which employs random crop image augmentation during training. In addition to DrQ, the SVEA [84] and

SODA [37] algorithms have been proposed, showing that involving hard augmentation techniques such as

random convolution and random overlay during training significantly improves the generalizability of the

RL agent.

1.5.4 Multimodal Generative Learning

In the context of multimodal generative modeling, previous approaches have focused primarily on cross-

modal generation. When provided with data from two domains x1 and x2, these approaches aim to learn

the conditional generative model p (x1|x2). It should be noted that the conditioning modality x2 and the

generation modality x1 are typically not interchangeable. One of the most prevalent methodologies for

cross-modal generation involves conditional variational autoencoders (CVAEs) [54, 102, 128, 85]. CVAEs

leverage the input modality to condition the latent representation, allowing for the generation of samples

from the target modality. However, these techniques are generally limited to handling only two modalities

and are not adept at scaling to multiple modalities.

Recent research efforts have delved into approaches that compute the joint latent representation of mul-

tiple modalities. Among these, the Joint Multimodal Variational Autoencoder (JMVAE) [112] and the Mul-

timodal Variational Autoencoder (MVAE) [125] have gained prominence. The JMVAE seeks to explicitly

learn a joint distribution but does so by training separate inference networks for each potential subset of

present modalities, which becomes computationally infeasible as the number of modalities increases. On
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the other hand, the MVAE approximates the joint latent representation using the Product-of-Experts (PoE),

offering greater scalability and the ability to handle missing modalities while processing multiple modalities.

Another notable approach, introduced by Shi et al. [99], is the Mixture of Multimodal Variational Au-

toencoders (MMVAE), which employs a Mixture-of-Experts (MoE) to estimate the joint variational posterior

based on individual unimodal posteriors. Sutter et al. have proposed two enhancements to multimodal vari-

ational autoencoders, namely mmJSD [107] and MoPoE [108]. The mmJSD is a method for training mul-

timodal VAEs that takes advantage of the Jensen-Shannon (JS) divergence instead of the Kulback-Leibler

(KL) divergence to quantify the disparity between the true and approximate posteriors. Meanwhile, MoPoE

amalgamates the advantages of MVAE and MMVAE by computing the joint posterior for all subsets of

modalities. Nevertheless, it is important to note that the aforementioned methodologies primarily assess

their robustness in terms of their capacity to handle missing modalities during inference, while not explic-

itly addressing their limitations against perturbations in the input data.

1.6 Contributions

According to the information presented in Section 1.3, this dissertation aims to propose an innovative solu-

tion for robotic industrial assembly tasks. The primary focus of the experimental results in this work is on

the electronic component assembly task, as it continues to present challenges for industrial robots in real-

world applications. Additionally, the complexity of this task makes it an excellent benchmark for evaluating

the RL agent’s generalization capability. The main contributions of this dissertation are outlined as follows:

• Development of an efficient framework for training RL agents on actual robotic systems, with a spe-

cific focus on industrial robotic assembly tasks. This framework features a multimodal observation

space that contains state-based and visual observations, as well as an admittance control system to

ensure safe interaction with the environment. Additionally, a communication software stack has been

integrated to facilitate efficient data exchange between the RL agent and the Robot Operating System

2 (ROS 2) middleware [74].

• Introduction of a novel approach called Multimodal Variational DeepMDP, designed to improve the

transferability of RL agents to new objects on production lines. This method integrates a multimodal

dynamic latent representation learning mechanism with the model-free off-policy RL algorithm, Soft

Actor-Critic [31]. In this proposed approach, multimodal information is combined using the general-

ized Product-of-Experts (gPoE) mechanism [12].

• A comprehensive analysis of the impact of the multimodal fusion mechanism on policy performance

and generalization capability. The experimental results demonstrate that the proposed method sig-

nificantly improves the transferability of the RL agent to new objects and can extract task-relevant

features from multimodal observations.

• A detailed analysis of the method for preprocessing state-based observations of different physical

quantities. It is shown that the independent processing of state-based observations significantly im-

proves the overall performance of the RL agent.
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In the upcoming chapters, the dissertation will demonstrate the aforementioned contributions by present-

ing a series of experiments conducted on an actual robotic system. The experimental findings will provide

insights into the effectiveness of the proposed method and its influence on the generalizability of the RL

agent. The dissertation will be summarized with a discussion of the results obtained and potential avenues

for future research.
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Chapter 2

Background

2.1 Reinforcement learning

In this work, the robotic industrial insertion problem is modeled as a standard reinforcement learning [91]

framework. The interaction between the agent and the environment is formulated as a Markov Decision

Process [8], which is a discrete-time stochastic control decision-making process. The MDP is represented

by a tuple (X ,A, P r,R), where X denotes the state space and A represents the action space. The function

Pr represents the probability of state transition, denoted as Pr (xt+1 | xt,at), which controls the agent’s

transition from state xt to state xt+1 after taking action at. The function R defines the reward function

R (xt,at), which evaluates the quality of the agent’s decision.

In the RL framework, which is illustrated in Figure 2.1, at each discrete time step t, the agent is in state

xt ∈ X , computes and executes the action at ∈ A. Following the execution of the action at, the RL agent

transitions to the next state xt+1, which is randomly selected from an unknown state transition distribution

xt+1 ∼ Pr(· | xt,at), and receives a scalar reward value rt that evaluates the quality of the decision made,

calculated by the reward function rt = R(xt,at). The agent interacts with the environment until the terminal

state xdt is reached, ending the episode, or until a predefined time horizon T is reached. An episode with a

predefined time horizon is referred to as an episodic task, while an episode with an infinite time horizon is

referred to as a continuing task. The state xt, the action at, and the reward rt collected during the interaction

are collectively referred to as the trajectory τ of length T :

τ = {(x0,a0, r0) , (x1,a1, r1) , . . . , (xT ,aT , rT )} (2.1)

The main objective of the RL agent is to learn a policy π(at | xt) that maps the state xt to the action

at in order to maximize the expected return G. The return G is calculated as the sum of discounted rewards

over the time horizon T , expressed as:

G = r0 + γr1 + γ2r2 + . . .+ γT−1rT−1 + γT rT =

T∑

t=0

γtrt (2.2)

Therefore, the objective to be optimized is the following:

J (π) = Eτ∼π

[
T∑

t=0

γtrt

]
(2.3)
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Agent

Environment

at

xt+1

rt+1

xt rt

Figure 2.1: Reinforcement learning block diagram. The agent computes action at based on the observed

state xt. Following this interaction, the agent transitions to the new state xt+1 and receives a scalar reward

value rt

where γ ∈ [0, 1] is the discount factor that influences the importance of future rewards and balances the

trade-off between short-term and long-term rewards. A γ value close to 0 implies that the agent focuses on

immediate rewards, while a γ value close to 1 suggests that the agent considers future rewards. The policy π

can be deterministic or stochastic, depending on the action space. In a deterministic policy, the agent selects

the action with the highest probability, whereas in a stochastic policy, the agent selects the action based on

the probability distribution over the action space.

When addressing real-world problems, it is common for the problem at hand to be complex and high-

dimensional, making it difficult to directly learn the optimal policy. Additionally, the state transition dynam-

ics is often not known, and the state is not fully observable. Consequently, such problems are often charac-

terized as Partially Observable Markov Decision Processes (POMDPs) [139], which is an extension of the

MDP framework that takes into account the agent’s partial observation of the environment. The POMDP

is specified by a tuple (X ,A,Ω, P r,R,O), where Ω represents the observation space, and O is a set of

conditional observation probabilities. In this framework, the agent’s observation ot ∈ Ω serves as a noisy

and partial representation of the state xt, and is generated by the observation function O(ot+1 | xt+1,at).

In this setting, the agent’s objective remains the same as in the MDP framework, but the policy π(at | ot) is

conditioned on the observation ot rather than the state xt. The graphical models for MDP and POMDP are

depicted in Figure 2.2.

The problem defined as an MDP or POMDP is commonly addressed using either value-based or policy-

based methods. Value-based methods involve estimating the value function V π(x) or the action-value func-
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xt xt+1

at

rt

at+1

rt+1

xt xt+1

at at+1

rt
rt+1

ot
ot+1

Figure 2.2: Probabilistic graphical models for MDP and POMDP. Left: MDP graphical model, where the

agent interacts with the environment by selecting actions at based on the observed state xt. Right: POMDP

graphical model, where the agent interacts with the environment by selecting actions at based on the partial

observation ot of the state xt.

tion Qπ(x,a) to determine the optimal policy. On the other hand, policy-based methods directly learn the

policy π(at | xt) to maximize the expected return. Subsequent sections will dive into both approaches in

detail.

2.1.1 Value-based Methods

Value-based methods are used to estimate the optimal policy π∗ based on the cumulative reward obtained

following the policy π from an initial state x0 to a terminal state xdt . These methods are typically solved using

dynamic programming (DP) [7], which iteratively improves the value function estimates until convergence.

In the context of solving MDP, the Bellman equation plays a fundamental role in decomposing the value

function into two components: the immediate reward rt and the discounted value of the next state xt+1. For

the state-value function V π(x), the Bellman equation takes the form:

V π(x) = Eπ [rt + γV π(xt+1) | xt = x] (2.4)

where Eπ denotes the expected value of a random variable given that the agent follows policy π, and t is the

time step. It is important to note that the value function for the terminal state xdt is always zero, as there are

no future rewards to be collected. Following the formulation of the Bellman equation for the value function,

the optimal value function V ∗ has to satisfy the following formula:

V ∗(x) = max
π

V π(x) (2.5)

for all states x ∈ X . Furthermore, for the action-value function Qπ(x,a), the Bellman equation takes the

form:

Qπ(x,a) = Eπ [rt + γQπ(xt+1,at+1) | xt = x,at = a] (2.6)
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Subsequently, the optimal action-value function Q∗ is defined as follows:

Q∗(x,a) = max
π

Qπ(x,a) (2.7)

for all states x ∈ X and actions a ∈ A. By introducing the Bellman equations for the value function V π(x)

and the action-value function Qπ(x,a), the optimal policy π∗ can be determined by selecting the action a

that maximizes the action-value function Q∗(x,a):

π∗(a | x) = argmax
a

aQ∗(x,a) (2.8)

Temporal-Difference Learning

One of the most widely used value-based approaches to determine the optimal policy π∗ is Temporal-

Difference Learning (TD) [109]. This method combines concepts from both Monte Carlo (MC) [101] and

dynamic programming (DP) [7]. Comparable to MC techniques, TD learning extracts knowledge directly

from raw experience without the need for a model of the dynamics of the environment. Currently, similar to

DP methods, TD learning adjusts the value function estimates according to the Bellman equation. Benefiting

from aspects of both MC and DP, TD learning achieves faster convergence compared to MC methods and

improved sample efficiency relative to DP methods. Unlike MC techniques, TD learning operates without

necessitating knowledge of the environment’s dynamics, making it particularly applicable to continuous

state and action spaces.

The TD(0) algorithm, which constitutes the fundamental form of TD learning, iteratively estimates and

updates the value function V π(x) by computing the temporal difference error between the current estimate

and the target value. The TD error is defined as the difference between the sum of the immediate reward

rt and the discounted value of the subsequent state xt+1, and the current value estimate V (xt). Thus, the

update rule for the value function is expressed as:

V (xt)← V (xt) + η

[ TD-target︷ ︸︸ ︷
rt + γV (xt+1)−V (xt)

]

︸ ︷︷ ︸
TD-error

(2.9)

where η denotes the learning rate and γ represents the discount factor. A summary of the TD(0) algorithm

for estimating the value function V π(x) is presented in Algorithm 1.

Q-learning

One of the important advances in the field of reinforcement learning came with the introduction of Q-

learning [121]. Q-learning is an off-policy temporal difference learning algorithm. The Q(x,a) function is

updated by solving the following equation:

Q(xt,at)← Q(xt,at) + η
[
rt + γmax

a
Q(xt+1,a)−Q(xt,at)

]
(2.10)

where η denotes the learning rate, maxaQ(xt+1,a) represents the maximum Q-value for the next state xt+1,

and γ is the discount factor. In particular, Q-learning directly estimates the optimal action-value function

Q∗(x,a) independently of the policy being followed.
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Algorithm 1 TD(0) algorithm for estimating the value function V π(x)

Parameters: learning rate η ∈ (0, 1]

Initialize V (x), for all x ∈ X , arbitrarily except that V (xdt ) = 0

for each episode do

Initialize state xt

for each step of episode do

Take action at according to policy π(at | xt)

Observe reward rt and next state xt+1

V (xt)← V (xt) + η [rt + γV (xt+1)− V (xt)]

xt ← xt+1

end for

end for

The interaction between the agent and the environment is facilitated by the behavior policy πb, which is

instrumental in exploring the environment. When dealing with a discrete action space, the behavior policy

typically employs a ϵ-greedy exploration strategy. This strategy selects the action with the highest Q-value

with probability 1 − ϵ and picks a random action with probability ϵ, effectively balancing the trade-off

between exploration and exploitation. A common practice is to gradually decrease the value of ϵ over time

to reduce the exploration rate as the agent learns more about the environment. This approach allows the

agent to improve its understanding of the environment while also leveraging its acquired knowledge. For

further details, the Q-learning algorithm is outlined in Algorithm 2.

Algorithm 2 Q-learning algorithm

Parameters: learning rate η ∈ (0, 1], exploration rate ϵ > 0

Initialize Q(x,a), for all x ∈ X and a ∈ A, arbitrarily except that Q(xdt ,a) = 0

for each episode do

Initialize state xt

for each step of episode do

Choose action at using policy derived from Q (e.g., ϵ-greedy)

Take action at, observe reward rt and next state xt+1

Q(xt,at)← Q(xt,at) + η [rt + γmaxaQ(xt+1,a)−Q(xt,at)]

xt ← xt+1

end for

end for

2.1.2 Policy Gradient Methods

In the preceding section, the concept of value-based methods has been introduced, which involve estimating

the value function to determine the optimal policy. To achieve this, most of these methods rely on selecting

actions based on the estimated action-values. On the contrary, the policy gradient methods directly learn the
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policy through optimization of the policy parameters, denoted as θ ∈ R
d, with the goal of maximizing the

expected return. Consequently, the policy is represented as a probability distribution

πθ(at | xt,θ) = p(at | xt,θ) (2.11)

that maps the state xt and the parameter vector θ to the action at. One advantage of directly learning the

policy lies in its independence from the need to estimate the value function, which makes it particularly

suitable for problems with high-dimensional action spaces. The optimization of the policy parameters is

accomplished based on the gradient of an objective function J (θ) with respect to the policy parameters θ.

Since the aim of the RL agent is to maximize the expected return, the gradient ascent method is employed

to update the parameters as follows:

θt+1 ← θt + η∇J (θt) (2.12)

where ∇J (θt) signifies the gradient of the objective function J (θt) with respect to the policy parameters

θt, and η denotes the learning rate. Approaches that adhere to this method are commonly known as policy

gradient methods, regardless of whether they learn the approximate value function. For methods that learn

the value function alongside the policy, the term actor-critic methods is used, with the actor denoting the

policy and critic denoting the value function, typically a state-value function. Actor-critic methods prove to

be particularly valuable in mitigating the variance of the gradient estimates and enhancing learning stability.

One of the key benefits of policy gradient methods is their ability to represent the policy as a distribution.

This allows the approximated policy to gradually approach the deterministic policy. On the contrary, value-

based methods that use an ϵ-greedy exploration strategy may struggle to converge to the optimal policy,

as there is always a chance of selecting a suboptimal action. Additionally, parameterizing the policy as a

distribution allows it to be stochastic, which is advantageous in environments with unpredictable dynamics

and significantly enhances the agent’s exploration capabilities.

REINFORCE Algorithm

One of the most fundamental policy gradient methods is the REINFORCE algorithm [123], which is based

on the likelihood ratio policy gradient theorem [111, 78]. In this approach, the policy gathers a trajectory

τ of length T by interacting with the environment and calculates the reward-to-go, denoted as Ĝt, at each

time step t. The reward-to-go is computed as the sum of the rewards obtained from time step t to the end of

the trajectory, discounted by the factor γ, as shown in the equation below:

Ĝt =
T∑

k=t

γk−trk (2.13)

The length of the trajectory T can be limited to a fixed time horizon that spans multiple episodes or

can be set to the length of a single episode. Once the trajectory is collected, the policy parameters θ are

updated based on the gradient of the action probability at with respect to the policy parameters, scaled by

the reward-to-go Ĝt. The policy gradient theorem assumes the differentiability of the action probability at

with respect to the policy parameters θ. However, in practical scenarios, the environment model is unknown

and the policy is stochastic, making it infeasible to estimate the gradient based on the trajectory probabilities.
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Therefore, the REINFORCE algorithm approximates the gradient of the policy parameters using the log-

likelihood of the action at, as expressed by:

∇J (θ) ∝ Eτ∼π

[
T∑

t=0

∇θ log πθ(at | xt)Ĝt

]
(2.14)

θt+1 ← θt + η∇J (θ) (2.15)

where∇ log πθ(at | xt) denotes the gradient of the log-likelihood of the action at with respect to the policy

parameters θ. The complete REINFORCE algorithm is outlined in Algorithm 3.

Despite its simplicity and proven convergence properties, the REINFORCE algorithm is plagued by high

variance in gradient estimates, which can impede learning progress and destabilize training. Moreover, this

issue frequently results in becoming stuck in local minima, hindering the agent’s ability to learn the optimal

policy. The primary cause of this high variance is the reward-to-go Ĝt, which represents a noisy estimate of

the return due to the stochastic nature of trajectory collection.

Algorithm 3 REINFORCE algorithm

Parameters: learning rate η ∈ (0, 1]

Initialize policy parameters θ (e.g., randomly)

for each episode do

Collect trajectory τ = {(x0,a0, r0) , (x1,a1, r1) , . . . , (xT ,aT , rT )} of length T using π(at | xt,θ)

for each step of trajectory t = 0, 1, . . . , T do

Gt =
∑T

k=t γ
k−trk ▷ Compute the return of the trajectory

θ ← θ + η∇J (θ) ▷ Update policy parameters using (2.14)

end for

end for

Actor-Critic Methods

The REINFORCE algorithm, although effective in learning the policy, is hindered by high variance in the

gradient estimates, which can impede the learning process. However, Williams [123] demonstrated that the

policy gradient theorem can be generalized to include a comparison of the reward-to-go to an arbitrary

baseline b(xt):

∇J (θ) ∝ Eτ∼π

[
T∑

t=0

∇θ log πθ(at | xt)(Ĝt − b(xt))

]
(2.16)

The baseline b(xt) can be any function depending on the state xt. A natural choice for the baseline is

the value function V π(xt) parameterized by ω, which estimates the expected return from the state xt. By

using the value function as a baseline, the variance of the gradient estimates can be reduced, resulting in

more stable learning. This is known as the actor-critic method. It is important to note that the actor-critic

method is a general framework that can be implemented using various policy gradient algorithms and value

function estimation methods.

One of the simplest actor-critic methods is the One-step Actor-Critic algorithm, which combines the

REINFORCE algorithm with TD(0) learning. In this approach, the policy parameters θ are optimized using
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formula (2.16), while the parameters of the value function ω are updated using the TD(0) update rule (2.9).

This means that optimization occurs at every step of the episode, rather than waiting until the trajectory is

complete. The pseudocode for the one-step actor-critic algorithm is presented in Algorithm 4.

Algorithm 4 One-step Actor-Critic algorithm

Parameters: learning rates ηπ, ηV ∈ (0, 1]

Initialize policy parameters θ and value function parameters ω (e.g., randomly)

for each episode do

Initialize state xt

Initialize importance sampling ratio I = 1

for each step of episode do

at ∼ πθ(at | xt) ▷ Sample action from policy

xt+1 ∼ Pr(xt+1 | xt,at), rt = R(xt,at) ▷ Observe reward and next state

δt = rt + γVω(x
′

t)− Vω(xt) ▷ Compute TD error

ω ← ω + ηV δt∇ωVω(xt) ▷ Update value function parameters

θ ← θ + ηπIδt∇θ log πθ(at | xt) ▷ Update policy parameters

I ← γI ▷ Update importance sampling ratio

xt ← xt+1

end for

end for

2.1.3 On-policy and Off-policy

There are two primary categories of reinforcement learning methods: on-policy and off-policy. On-policy

methods, such as REINFORCE [123], learn the policy π(at | xt,θ) that is the same as the behavior pol-

icy πb. This approach introduces sensitivity to the exploration strategy, as the policy is updated based on the

actions selected by the behavior policy. Therefore, the optimization process can produce suboptimal policies

with more conservative behavior. Moreover, due to the way the policy is updated, on-policy methods require

a large number of samples to learn the optimal policy. However, the training process is more stable and less

sensitive to the choice of hyper-parameters.

In contrast, off-policy methods, such as Q-learning [121], learn the policy π(at | xt,θ) that is differ-

ent from the behavior policy πb. This distinction allows off-policy methods to learn from historical data,

improving sample efficiency, and incorporating more aggressive exploration strategies. However, despite

being able to converge faster than on-policy methods, off-policy methods are more sensitive to the choice of

hyper-parameters and require careful tuning to ensure convergence. This drawback is significant when the

method is parameterized by a function approximator, such as a neural network, as the training process can

become unstable.
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2.1.4 Model-free and Model-based Methods

In the reinforcement learning framework, two main categories of methods can be distinguished: model-free

and model-based methods. Model-free methods, exemplified by Q-learning [121] and REINFORCE [123],

directly infer the policy or value function from the gathered data without explicitly modeling the environ-

ment’s dynamics. In contrast, model-based methods, such as Dyna-Q [110] and PILCO [16], learn a model

of the environment’s dynamics and utilize it for planning the agent’s actions. Thus, it can be stated that

model-based methods rely on planning as the primary mechanism for policy improvement, while model-

free methods rely primarily on learning.

In practice, model-based methods are more sample-efficient than model-free methods, as they can ex-

ploit the learned model to plan the agent’s actions. This planning process is facilitated by the model’s ability

to estimate transition dynamics xt+1 ∼ p(xt+1 | xt,at) and predict reward rt ∼ p(rt | xt,at), enabling the

simulation of the environment and prediction of hypothetical trajectories. Formerly, the model was repre-

sented as a tabular lookup table, updated using the collected data. Currently, the model is often depicted as

a neural network (e.g., MuZero [97], and Dreamer [32]) trained through supervised learning to predict the

next state and reward.

However, model-based methods are more sensitive to model errors, potentially resulting in suboptimal

performance in practical applications. In contrast, model-free methods are not influenced by model errors,

but they necessitate more samples to learn the policy. Nevertheless, both approaches are based on the same

fundamental principles for computing the value function V π(x) or the action-value function Qπ(x,a). Fur-

thermore, all of the methods stem from the practice of anticipating future events, computing a backed-up

value, and utilizing it as an update target for an approximate value function.

2.1.5 Deep Reinforcement Learning

The early research in reinforcement learning algorithms, exemplified by Q-learning, were initially designed

for tabular representations of the state-action space, presenting efficiency in solving problems with small

state-action spaces through dynamic programming methods. However, this approach faces scalability issues

when dealing with continuous state and action spaces, as the number of bins required to discretize the state-

action space expands exponentially with the number of dimensions. Furthermore, the quantization process

may result in the loss of crucial information, significantly impacting the learning process.

To address these limitations, an alternative approach involves employing linear function approximators

to generalize the value function across the state-action space; however, these approximators might not ad-

equately represent complex functions, leading to suboptimal performance in high-dimensional state-action

spaces. In addition, both tabular and linear function approximators are affected by the curse of dimension-

ality, making them inadequate for real-world problems such as robotic manipulation.

In response to these challenges, deep reinforcement learning methods have emerged, using deep neural

networks as function approximators to learn the value function or policy. Nonetheless, training deep neu-

ral networks using reinforcement learning poses significant challenges due to the instability of the learning

process, particularly in the case of off-policy algorithms. The pioneering Deep Q-Network (DQN) algo-

rithm, introduced by Mnih et al. [82], successfully integrated neural networks with off-policy reinforcement
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learning, achieving human-level performance in playing Atari games. This achievement was facilitated by

techniques such as experience replay and target networks, which were proposed to stabilize the training

process.

Target networks are used to stabilize the learning process by fixing the target Q-values for a specific

number of iterations or by updating the target network parameters using an exponential moving average.

Meanwhile, experience replay involves storing the agent’s experiences in a replay buffer and sampling mini-

batches of experiences to train the RL agent.

The success of the DQN algorithm has spurred the development of various DRL algorithms, including

the DDPG [67], the Twin Delayed Deep Deterministic Policy Gradient (TD3) [24], and the SAC [31],

which have demonstrated efficacy across a broad spectrum of control tasks, including robotic manipulation.

These advances highlight the evolving landscape of reinforcement learning and its increasing applicability

to complex real-world problems.

2.1.6 Soft Actor-Critic

The Soft Actor-Critic is an off-policy actor-critic algorithm that integrates the actor-critic optimization ap-

proach with the maximum entropy reinforcement learning framework, as introduced by Haarnoja et al. [31].

This framework encourages the agent to explore the environment by maximizing the entropy of the policy.

Additionally, SAC learns a stochastic policy that enables the generation of a diverse set of actions, which

is advantageous for exploration. This algorithm has shown notable effectiveness in leveraging samples ef-

ficiently and maintaining stability in continuous control tasks. It has been successfully applied to a wide

range of robotic manipulation tasks, including dexterous manipulation and robotic assembly. Consequently,

SAC is currently one of the most widely used algorithms for contact-rich robotic manipulation tasks.

As mentioned above, SAC is an off-policy actor-critic algorithm; thus its architecture uses neural net-

works to approximate the policy πφ(at | xt) and the soft Q-functionQθ(xt,at), which are parameterized by

ϕ and θ, respectively. The soft Q-function parameters are updated by minimizing the soft Bellman residual,

which is defined as follows:

JQ(θ) = Ext,at∼D

[
1

2
(Qθ (xt,at)− (rt + γVθ̄ (xt+1)))

2

]
(2.17)

where D is an experience replay buffer that stores transitions (xt,at, rt,xt+1), and yt denotes the soft value

target that can be approximated by the minimum value of the soft Q-functions. The soft value target is

computed as:

Vθ̄ (xt) = min
i∈{1,2}

Qθ̄i
(xt,at)− α log πφ (at | xt) (2.18)

where θ̄ is the target soft Q-function, and α is an entropy temperature coefficient. The parameters θ̄ of

the target soft Q-function are obtained as an exponential moving average of the weights of the soft Q-

function. SAC uses two soft Q-functions with independent parameters to mitigate positive bias in the policy

improvement steps. The target Q-value is computed by taking the minimum value from the Q-function ap-

proximations. Both networks are independently optimized by solving the objectives JQi
(θi). The Gaussian
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policy parameters ϕ are trained by minimizing

Jπ(ϕ) = Ext∼D

[
α log πφ (at|xt)− min

i∈{1,2}
Qθi (xt,at)

]
(2.19)

using the reparameterization trick [55]. Finally, the entropy temperature coefficient α can be fixed during

training or dynamically adjusted, as proposed by [30, 115]. This coefficient can be optimized by solving the

following objective:

J (α) = Eat∼D

[
α log πφ(at | xt)− αH̄

]
(2.20)

where H̄ is a target entropy that is usually set empirically to H̄ = dim(A). The SAC algorithm with

automatic entropy tuning is summarized in Algorithm 5.

Algorithm 5 Soft Actor-Critic Algorithm

Parameters: learning rates ηQ, ηπ, ηα, target update coefficient υ

Initialize function approximators parameters θ1,θ2,ϕ, temperature coefficient α

Replay buffer D

for each iteration do

Initialize state xt

for each environment step do

at ∼ πθ (at|xt) ▷ Sample action from policy

xt+1 ∼ Pr (xt+1|xt,at), rt = R (xt,at) ▷ Sample next state and reward

D ← D ∪ (xt,at, r (xt,at) ,xt+1) ▷ Store transition in replay buffer

xt ← xt+1

end for

for each update step do

{(xt,at, rt,xt+1)} ∼ D ▷ Sample batch of transitions from replay buffer

θi ← θQ + ηQ∇Qθ
JQ(θi) for i ∈ {1, 2} ▷ Update Q-function parameters with (2.17)

ϕ← ϕ+ ηπ∇πφJπ(ϕ) ▷ Update policy parameters with (2.19)

α← α+ ηα∇αJα(α) ▷ Update temperature coefficient with (2.20)

end for

θ̄i ← (1− υ)θ̄i + υθi for i ∈ {1, 2} ▷ Update θ̄i using EMA of θi, where υ defines Polyak

coefficient

end for

Squashed Gaussian Policy

The SAC algorithm utilizes a Gaussian policy to generate stochastic actions, which, by default, can result

in unbounded action values. In scenarios where the policy interacts with real-world systems, such as robotic

manipulators, the unbounded action space can pose safety risks and potential harm to the system. To address

this, Haarnoja et al. [31] introduced a modification to the Gaussian policy by incorporating a squashing

function to confine the action space to a bounded interval. The sampled action at is transformed using the

tanh function, which maps the action to the interval [−1, 1]. Given z ∈ R
d as a sample from a standard
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Gaussian distribution and π(z | x) as the corresponding density with infinite support, the random variable

a = tanh(µ + σ ⊙ ϵ), where µ and σ are the mean and standard deviation of the Gaussian policy, has

support in [−1, 1] with density given by:

π(a | x) = π(z | x)

∣∣∣∣det
(
da

dz

)∣∣∣∣ (2.21)

The objective of policy optimization requires the log-likelihood of the policy distribution. Given that

the Jacobian of the tanh function is da
dz

= diag
(
1− tanh2(z)

)
and is diagonal, the log-likelihood of the

squashed Gaussian policy can be expressed as:

log π(a | x) = log π(z | x)−
d∑

i=1

log(1− tanh2(zi)) (2.22)

where zi is the i-th element of the vector z.

2.2 Compliance Control in Industrial Robotics

In the field of manufacturing, industrial robots predominantly operate in position or velocity control modes.

While these control strategies are suitable for general applications, they are not well-suited for tasks that

require the robot end-effector to manipulate objects or perform operations on surfaces. Examples of such

tasks include deburring, polishing, and assembly, where the robot needs to be compliant with external forces

to prevent damage to the workpiece or the robot itself. Compliance control systems address these tasks by

allowing the robot to adapt to external forces while maintaining high precision.

When considering compliance or interaction control, two primary approaches can be distinguished:

passive and active interaction control. Passive interaction control relies on the mechanical compliance of the

robot structure or the use of passive compliance devices such as flexible grippers. On the contrary, active

interaction control involves the use of force sensors and control algorithms to regulate the interaction forces

between the robot and the environment.

The passive approach to compliance control is characterized by its simplicity and cost-effectiveness.

However, it is limited in terms of flexibility and adaptability. Specifically, for specific tasks, a new compliant

end-effector must be designed and installed on the robot. In contrast, active compliance control utilizes

force sensors and control algorithms to regulate interaction forces, enabling a wide range of tasks without

requiring modification of the robot’s end-effector, as control parameters can be adjusted on-the-fly. However,

active compliance control has a slower response time compared to passive compliance control, as it requires

additional computational resources to process force sensor data and adjust control signals.

This section will provide an in-depth discussion of the most common active compliance control strate-

gies used in industrial robotics, given their relevance to the scope of this dissertation.

2.2.1 Notation Introduction

In order to delve into the discussion of compliance control strategies, it is essential to first provide a brief

overview of the symbols used in this section. The position of the robot end-effector is expressed as x =
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[x, y, z, qw, qx, qy, qz]
T ∈ R

7, where x, y, z denote the Cartesian coordinates of the the position of end-

effector and qw, qx, qy, qz represent its orientation in quaternion form. Following this notation, the twist of

the end-effector is denoted as ẋ = [ẋ, ẏ, ż, ωx, ωy, ωz]
T ∈ R

6, where ẋ, ẏ, ż represents the linear velocity

of the end-effector, and ωx, ωy, ωz denotes the angular velocity. Finally, the wrench of forces and torques

acting on the end-effector is represented asW = [Fx, Fy, Fz, τx, τy, τz]
T ∈ R

6, where Fx, Fy, Fz represents

the forces and τx, τy, τz denote the torques.

2.2.2 Hybrid Force/Motion Control

In robotic applications, the hybrid force/motion control strategy is commonly used to achieve compliance

control. This method involves the use of two mutually orthogonal control loops: one for position control and

the other for force control. Initially introduced for torque-actuated robots by Craig and Raiber [15, 89], this

control strategy has also been examined in Manson’s research [81]. In this section, an in-depth overview of

the position-based version of the hybrid force/motion control strategy will be presented.

The hybrid force/motion control system computes two control signals, xpr and Wr, for position and

force control, respectively. The position control signal, xpr , is derived based on the error, ∆x, between the

desired position of the end-effector, xd, and the current position, x. Simultaneously, the force control signal,

Wr, is calculated using the error, ∆W , between the desired contact wrench,Wd, and the measured contact

wrench,W . In this approach, both proportional (P) and proportional-integral (PI) gains are commonly use

to compute control signals and can be represented as follows:

xpr = xd +KPp∆x+KIp

∫ t

0
∆xdτ

Wr =Wd +KPf∆F +KIf

∫ t

0
∆Wdτ,

(2.23)

with semi positive-definite gain matrices KPp, KIp for position control, and KPf , KIf for force control.

The integration terms in Equation (2.23) serve to eliminate steady-state errors in control signals. Depending

on the specific application, different controllers, such as PD or proportional controllers, can be employed.

The control signals x
p
r and Wr are combined into a common reference signal xr using the following

equation that incorporates two selection matrices Sp and Sf :

xr = Spx
p
r +K−1SfWr (2.24)

where K−1 represents the inverse stiffness matrix used to map the force control signal to the position control

signal. The obtained control signal xr is represented in the Cartesian space and then mapped to the joint

space using the inverse Jacobian matrix J−1 as follows:

qr = J−1(q)xr (2.25)

In practice, the joint control signal qr is computed using the inverse kinematics (IK) solver, which converts

the Cartesian control signal xr to the joint control signal qr. The hybrid force/motion control system is

graphically depicted in Figure 2.3. A key feature of the hybrid approach is the decoupling of the position

and force control signals, allowing the robot to adapt to external forces while maintaining high precision in

position control. Selection matrices are required to satisfy the relationship STp Sf = 0 in each configuration.

In addition, users need to specify mutually exclusive components of xd andWd for given tasks.
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Figure 2.3: Hybrid force/position control system.

2.2.3 Admittance Control

The hybrid force/motion control system, while effective, comes with several limitations. One notable draw-

back is that the position-controlled degrees of freedom (DOFs) lack compliance, meaning that they do not

adapt to external forces acting on the robot. Additionally, this approach fails to offer precise control over

the position of the robot’s end-effector when it comes to force-controlled DOFs. Alternatively, the admit-

tance control [98] together with the impedance control [41] provides a more adaptable and robust solution

to maintain a compliant motion in robotic systems. This is achieved by modeling the end-effector using a

dynamical system.

As Hogan [41] pointed out, impedance control can be viewed as a shift from flow to effort, while ad-

mittance control involves the conversion from effort to flow. The dynamics of the end-effector are often

represented through a general mass-spring-damper system, as expressed by the equation:

M∆ẍr +D∆ẋ+K∆x =W, ∆x = xd − x (2.26)

where M, D, and K represent the mass, damping, and stiffness positive-definite matrices, respectively.

Impedance control involves substituting the time derivatives of the desired trajectory xd(t) and the actual

trajectory x(t) into Equation (2.26) to derive the control wrenchW . The control wrenchW is represented

in Cartesian space and then mapped to the joint torques τ using the Jacobian transpose matrix JT according

to the equation:

τ = JT (q)W (2.27)

This relationship is a fundamental aspect of Khatib’s operational space formulation [51, 52], which is widely

employed in robotics. Conversely, admittance control treats Equation (2.26) as a differential equation of the

variable x. In this case, the desired trajectory xd, ẋd, and ẍd are considered as the reset position of the

system. The solution x(t) is obtained by numerically integrating the Equation (2.26). When employing the

forward Euler method as a numerical integrator, Equation (2.26) needs to be converted to a set of 1st-order

Ordinary Differential Equations (ODEs) in the state-space representation. From the state-space representa-

tion, the simulated x is taken as the Cartesian reference position xr and is mapped to the joint space using

the Equation (2.25). The general admittance control system block diagram is depicted in Figure 2.4.
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Figure 2.4: Admittance control system.

2.3 Variational Autoencoders

Variational autoencoders [55] are a type of generative models that utilize neural networks to learn the under-

lying representation of the data distribution. The overview of the VAE architecture is depicted in Figure 2.5.

This framework can be seen as a directed graphical model with latent variables, such as Gaussian latent vari-

ables, used to model the data distribution. The VAE generative process includes sampling a latent variable

z from a prior distribution z ∼ p(z) and generating the data x from the conditional distribution p(x | z).

The VAE inference process aims to estimate the posterior distribution q(z | x) of the latent variable z

given the data x. The distributions q(z | x) and p(x | z) are modeled by neural networks with parameters

ϕ and θ, respectively. However, directly optimizing the parameters is challenging due to the intractability

of the posterior distribution. To tackle this challenge, the VAE framework estimates the parameters in the

stochastic variational gradient Bayes (SVGB) framework by maximizing the evidence lower bound objective

(ELBO [50]), which is defined as follows:

J (ϕ,θ;x, z) = Ez∼qφ(z|x) [log pθ(x | z)]︸ ︷︷ ︸
Reconstruction term

−DKL(qφ(z | x) ∥ p(z))︸ ︷︷ ︸
Regularization term

(2.28)

whereDKL(∥) denotes the Kullback-Leibler divergence between the posterior distribution qφ(z | x) and the

prior distribution p(z). The reconstruction term in Equation (2.28) is defined as the negative log-likelihood

(NLL) of the data x given the latent variable z. However, in practice, the generative distribution pθ(x | z)

is often approximated as a Gaussian distribution with a diagonal covariance matrix x̂ ∼ N (g(z), I), where

g(z) denotes the output of the decoder neural network and is treated as the mean of the distribution. There-

fore, the reconstruction term is approximated by the mean squared error (MSE) between the input data x

and the reconstructed data x̂:

Ez∼qφ(z|x) [log pθ(x | z)] ≈ −
1

2

D∑

i=1

(
1 + log(σ2

i )− µ2
i − σ2

i

)

≈ ∥x− x̂∥2

(2.29)

In order to make the optimization of Equation (2.28) feasible in practical applications, it is common

to make certain assumptions. The prior distribution p(z) and the posterior distribution qφ(z | x) are often

assumed to be Gaussian distributions with diagonal covariance matrices. The prior distribution is defined
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qφ(z | x) pθ(x | z)x xz
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z ∼ N (µ,σ)

Eqz∼φ(z|x)[log pθ(x | z)]

DKL(qφ(z | x) ∥ p(z))

Input

Reconstructed

Input

Figure 2.5: Model architecture of the VAE with a Gaussian latent space. The encoder network qφ(z | x)

maps the input data x to the latent space z. The decoder network pθ(x | z) reconstructs the input data from

the given latent space. The VAE parameters ϕ and θ are optimized by minimizing the ELBO objective.

as p(z) = N (0, I), where 0 is the zero vector and I is the identity matrix. The posterior distribution

qφ(z | x) is parameterized by a neural network, which outputs the mean µ and standard deviation σ of

the Gaussian distribution. Therefore, in order to enable the gradient to flow through the sampling operation,

the reparameterization trick [55] is employed as follows:

z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I) (2.30)

2.3.1 β-VAE

The vanilla VAE framework is often plagued by the issue of posterior collapse, in which the latent variables

are marginalized by the model, resulting in subpar reconstruction quality. In response to this challenge,

Higgins et al. [39] introduced the β-VAE framework, which introduces a hyperparameter β to regulate the

disentanglement of latent variables. This hyperparameter is integrated into the ELBO objective function as

shown below:

J (ϕ,θ;x, z) = Ez∼qφ(z|x) [log pθ(x | z)]− βDKL(qφ(z | x) ∥ p(z)) (2.31)

Choosing an appropriate value for the hyperparameter β is essential in order to achieve the desired

disentanglement of the latent variables. When β = 1, the model follows the standard VAE framework,

while setting β > 1 encourages the model to learn more disentangled representations. On the contrary,

when β < 1, the model focuses more on the quality of the reconstruction. The β-VAE framework has found

widespread use in various applications, such as image generation, representation learning, and anomaly

detection.
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Chapter 3

Framework for Robotic Industrial

Assembly Tasks

3.1 Industrial Assembly Tasks as a Reinforcement Learning Problem

In this dissertation, a robotic assembly task, such as insertion of electronic parts in a PCB, is framed as a

reinforcement learning problem. The environment is based on the framework for assembling electronic parts

tasks proposed by Bartyzel et al. [28]. Within this setup, a robotic manipulator represents the agent and the

workspace serves as the environment in which the robot interacts with the task objects. To equip the agent

with the information necessary for the execution of the task, a multimodal observation space is constructed.

This space comprises two images captured from cameras attached to the end-effector, the tool’s current

pose relative to the target insertion location, a wrench measurement, and the tool’s current twist. The tool’s

orientation perceived by the RL agent is represented by Euler angles, resulting in a 6-dimensional vector

for the pose modality. Figure 3.1 illustrates the process of capturing images using the vision tool. The angle

of view of the camera is empirically set at 30◦ to provide a comprehensive view of the assembly location

and its surroundings. The raw images, with an arbitrarily large resolution H ×W , are typically too large

for real-time processing by the neural network. Therefore, the images are downsampled to H
8 ×

W
8 pixels

and then resized to achieve a 1:1 aspect ratio, resulting in W
8 ×

W
8 pixels to facilitate the use of the neural

network. In this dissertation, the raw images are 1024× 512 pixels in the RGB color space. As a result, the

processed images are 128× 128 pixels.

Let’s denote the robot base frame as {r}, the workspace frame as {w}, and the tool frame as {t}. The

workspace frame {w} represents the insertion pose of the currently manipulated object, while the tool frame

{t} is restricted to the tip of the attached tool. These reference frames are depicted in Figure 3.2. The robot

operates within a cylindrical workspace with a radius of Rlimit and an infinite height. The robot tool is

restricted to a maximum rotation of ψlimit about each axis to prevent damage to the attached cameras and

cables. At the beginning of each episode, the robot moves to an initial pose xinit. Depending on the task

requirements, the initial Z-axis position zinit can be positioned just above the surface of the workspace or

in the free-space above the workspace. Furthermore, the initial Z-axis position can be adjusted during the

training process to enhance the agent’s learning. For the electronic parts insertion task, the initial position

28
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View 1 View 2

Camera 1 Camera 2

Figure 3.1: The conceptual visualization of the image acquisition process. The selection of the camera

mounting angle at 30◦ was based on empirical trials. This setup allows for a detailed view of the manipulated

object and the surrounding tools.

on the Z axis is set to zinit = 2mm above the surface of the workspace, the radius of the workspace is

Rlimit = 15mm, and the rotation limits are ψlimit = 45◦.

In each episode, the agent’s interactions with environment are limited to 100 steps. In a single step,

the agent computes a translation along the XYZ-axes and a rotation around the Z-axis in the tool reference

frame {t}, resulting in a 4-dimensional action space at = [∆xt,∆yt,∆zt,∆ψ
z
t ]. It is important to note

that the action space can be extended to include additional DOFs, such as rotations about the X- and Y-

axes, to handle more complex tasks. Each variable in the action space is limited within a specific range

{aimin ≤ ait ≤ aimax : i ∈ {1, 2, 3, 4}}, where aimin and aimax represent the minimum and maximum

values for the i-th action variable. The limits for the action space variables are determined empirically

based on the task requirements. For the electronic part insertion task, the translations range from −2.0mm

to 2.0mm, and the rotations range from −1.0◦ to 1.0◦. The policy output at is given in the reference

frame of the tool {t}, while the robot control system requires the target pose xd in the reference frame

of robot base {r}. Furthermore, the RL agent operates in the reference frame of the workspace {w}. The

homogeneous transformation between the tool frame and the workspace frame is given by Twt = T −1
w Tt,

and the transformation between the robot base frame and the workspace frame is given by Trw = T −1
r Tw.

Therefore, to obtain the target pose xd in the reference frame of the robot base, the output of the policy at

is transformed by Trt = T −1
r T

−1
w Tt.

For each non-terminal step, the agent receives a reward given by the equation

r = − tanh (α · d) , (3.1)
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Figure 3.2: In the framework for robotic assembly tasks, the reference frames are designated as follows: The

robot base frame is denoted as {r}, the workspace frame is denoted as {w}, and the tool frame is denoted

as {t}. The workspace frame is specifically defined as the target insertion pose of the currently manipulated

object.

where d represents the ℓ2-distance between the tool center point (TCP) and the insertion pose, and α is

the reward sensitivity coefficient. The insertion pose used in the reward calculation is the target pose of the

tool in the reference frame of the workspace. The parameter α influences the shape of the reward function,

thereby affecting the agent’s learning process. The task is considered complete when the Z-axis position of

the tool in the workspace reference frame is less than or equal to 0.0 mm, indicating the successful insertion

of the electronic part into the target location, and the agent receives a reward of r = 10.0 in this case.

An episode is terminated if the agent exceeds the time limit, leaves the workspace, or exceeds the rotation

limits. If the episode is interrupted due to the agent leaving the workspace or surpassing the time limit, the

agent receives the same reward as during non-terminal steps. However, if the episode is terminated due to

exceeding the rotation limits, the agent receives a reward of r = −2.0 to ensure the safety of the attached

cameras and cables. The design of the reward function aims to encourage the agent to complete the task

efficiently and safely.

The discerning reader may observe that the reward function does not impose a penalty on the agent for

damaging the inserted part. This deliberate design choice stems from the fact that if damage occurs during

the insertion attempt, the agent will continuously receive negative rewards resulting from Equation (3.1).

To illustrate, consider the task of inserting electronic components. A common form of damage is the bend

of the leads, as depicted in Figure 3.3. If the RL agent bends the leads during the trial, the part becomes
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Bent lead
Bent lead

Figure 3.3: Close up of the damaged electronic part.

infeasible to insert, resulting in negative rewards for each attempt. This adverse feedback encourages the

agent to learn more delicate insertion techniques.

3.2 Control Architecture

To facilitate effective interaction between the agent and the real-world robotic system, Bartyzel et al. [28]

developed a control architecture that allows communication between the agent and the robot. The block

diagram of the control architecture can be found in Figure 3.4. This architecture comprises two control loops:

a high-level loop utilizing an off-policy RL algorithm as a control unit and a low-level loop employing the

Cartesian admittance control system to directly regulate the robot. In this study, the off-policy RL algorithm

adopted is SAC [31]. The RL agent transmits commands to the admittance controller at a frequency of

10Hz and receives feedback information at the same frequency. The control signal is computed on the basis

of multimodal observation. Feedback from the admittance controller includes state information such as the

pose x, twist ẋ, and contact wrenchW of the tool. Images are obtained from the cameras’ drivers, which

operate independently of the controller. The low-level control loop runs at a frequency of 500Hz to ensure

smooth motion of the industrial robot. The admittance controller receives the control signal representing the

desired tool pose xd and calculates the reference joint positions qr using the IK solver. The resulting joint

positions qr are then sent to the robot controller to execute the desired motion.

The conventional training process of the reinforcement learning agent is a sequential operation involving

interaction with the environment, receiving feedback, and updating the policy based on the collected data.

This approach can be computationally expensive and time-consuming, particularly when training in real-

world robotic systems. With a sequential training pipeline, it is challenging to achieve real-time control with

a stable frequency of commands sent to the robot. To address this challenge, the Ape-X architecture [42] has

been integrated with the SAC algorithm. This architecture enables distributed training of the RL agent, where

multiple actors are spawned, each with its instance of the environment. The actors generate experiences and

store them in the shared replay buffer. The learner samples mini-batches from this shared replay buffer

and updates the network parameters. The actors’ parameters are periodically synchronized with the latest

learner’s parameters. In this study, the Ape-X architecture is implemented with one spawned actor, since

only one robot is used in the experiments. However, this solution can be easily scaled to a large number of

robots, for example, in the case of a cooperative multi-robot assembly process.
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Figure 3.4: The block diagram of the control architecture for the industrial insertion task. Left: the Ape-X

framework for asynchronous RL training. Right: the industrial insertion environment with the admittance

controller and peripheral devices drivers. The high-level control loop involves the RL agent sending a target

pose xd to the admittance controller at a frequency of 10Hz. The controller then commands the joint po-

sitions qr of the robot at a frequency of 500Hz. The RL agent receives feedback that includes the pose x,

twist ẋ, and contact wrench components of the toolW , and RGB images acquired from the cameras.

3.2.1 Robot-Agent Communication Software Stack

The control architecture is implemented using the ROS 2 middleware [74]. ROS 2 is an open source mid-

dleware that provides a comprehensive set of tools and libraries to develop robotic applications. Among

its key features are real-time capabilities and support for distributed systems. In ROS 2, the software stack

components are represented as nodes in a graph structure, with each node being responsible for a specific

task. The nodes commnicate with each other using the publish-subscribe mechanism or service calls. Data

are transferred between nodes using the Data Distribution Service (DDS)1 protocol, ensuring reliable and

decentralized communication.

In the presented control architecture, each component of the system is implemented as a separate ROS 2

node. The nodes responsible for communication with the robot controller, the cameras, and the F/T sensor

are implemented in C++, to ensure real-time and reliable communication. The RL agent with Ape-X ar-

chitecture is implemented in Python with the RLlib [66] library. RLlib provides a ready-to-use engine for

distributed training as well as the framework for implementing various reinforcement learning algorithms.

RL agent models are implemented using the PyTorch library [87].

The RL agent interacts with the environment through the well-established interface for reinforcement

learning tasks, known as Gymnasium [113] (formerly OpenAI Gym [10]). Gymnasium provides a stan-

1https://www.omg.org/spec/DDS/
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Figure 3.5: The diagram illustrating the communication flow between the RL agent and the robotic en-

vironment. The interaction between the Gymnasium environment and ROS 2 nodes is performed via the

ROS 2-Gym Bridge node, which facilitates the data exchange by exposing ROS 2 functionalities through the

XML-RPC protocol.

dard API for defining reinforcement learning tasks, which includes the definition of the observation space,

action space, and reward function. Implemented in Python, this library is convenient for use with frame-

works like RLlib. The Gymnasium API allows one to control the environment via env.reset() and

env.step(action)methods. The former resets the environment to the initial state and returns the initial

observation, while the latter executes the action and transitions to the next state, returning the next observa-

tion, reward, and information about episode termination. Additionally, Gymnasium provides an additional

functionality for applying wrappers over the environment, which can be used to preprocess observations, re-

wards, or actions before they are passed to the agent. Wrappers enable easy modification of the environment

for broader experimentation without changing the core implementation, such as converting RGB images to

grayscale or resizing images to a specific resolution.

In the software stack for training the RL agent, the Gymnasium environment is directly integrated into

the training pipeline. Therefore, the transition to the next state is synchronized with the inference time of

the RL policy. However, as mentioned at the beginning of this section, ROS 2 middleware is used to control

the industrial robot and handle peripheral devices. This middleware relies heavily on the message-passing

mechanism, which is asynchronous by design. Therefore, the node is synchronized with the communica-

tion ecosystem through the internal trigger mechanism. The messages are handled in the callback functions,

which are triggered when the new message is received. The most common and efficient way to synchronize

the nodes in ROS 2 is to use a call trigger mechanism within an endless loop. This ensures that the node

is always ready to handle the most recent message. The asynchronous nature of the ROS 2 middleware

contrasts with the synchronous nature of the Gymnasium environment. If the triggering mechanism in the

Gymnasium environment were directly implemented, the RL agent would end up waiting for the next ob-

servation while the robot is still executing the previous action.observation while the robot is still executing

the previous action. In the software stack used to train the RL agent, the Gymnasium environment is directly

integrated into the training pipeline, which means that the transition to the next state is synchronized with

inference time of the RL policy.
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To address this issue, a bridge has been developed between the Gymnasium environment and the ROS 2

middleware. This bridge, called ROS 2-Gym Bridge, is implemented as a separate ROS 2 C++ node and ex-

poses ROS 2 messages via the XML-RPC2 protocol. The ROS 2 Gym Bridge combines ROS 2 node with the

XML-RPC server, which is responsible for handling communication with the Gymnasium environment. To

ensure compatibility with reinforcement learning pipeline and facilitate implementation of the environment

logic, this server offers the following methods:

• execute_trajectory - executes the given trajectory on the robot, such as moving the TCP to

the element grasping or insertion pose. The trajectory is performed via the joint trajectory controller.

• execute_action - executes the action provided by the RL agent. The action is transformed to the

robot base reference frame and then executed by the Cartesian admittance controller.

• get_observation - gathers time-synchronized sensory data from robot’s sensors and returns it to

the RL agent. The observation is composed of RGB images, the pose, the twist, and the wrench of the

tool.

• command_gripper - commands the robot’s gripper to open or close.

These methods are accessed within the Gymnasium environment through the XML-RPC client. The use

of the XML-RPC protocol allows for seamless integration of ROS 2 middleware with the Gymnasium

environment, ensuring that the RL agent is always in sync with the recent state of the robot and the sensors.

The communication diagram for robot-agent communication is presented in Figure 3.5.

3.3 Labotatory Setup

In accordance with the control architecture described in Section 3.2, we established a laboratory setup to

facilitate industrial assembly experiments. The illustration of the laboratory setup is depicted in Figure 3.6.

The primary objective of this setup is to emulate the operational conditions of a real-world production line.

The laboratory setup encompasses various devices and tools, including:

• Universal Robots UR5e3 - a 6-DOF collaborative robot arm with a reachability of 850mm.

• Robotiq Hand-E4 - a servoelectric gripper with 50mm stroke and the maximum gripping force of

185N.

• ATI Axia 805 - a 6D F/T sensor with following specifications: Fx = 200N, Fy = 200N, Fz = 360N,

τx = 8Nm, τy = 8Nm, τz = 8Nm.

• Custom vision tool - a tool equipped with two Basler Dart cameras6 with a resolution of 1280× 960

pixels. The visualization of this tool is presented on Figure 3.1

2https://xmlrpc.com/
3https://www.universal-robots.com/products/ur5-robot/
4https://robotiq.com/products/hand-e-adaptive-robot-gripper
5https://www.ati-ia.com/products/ft/ft_models.aspx?id=Axia80-M20&campaign=axia80
6https://www.baslerweb.com/en/cameras/dart/
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Figure 3.6: The laboratory setup used for the experiments that involve the control architecture. This setup

consists of: 1 - industrial robot Universal Robots UR5e-series; 2 - tool with servoelectric gripper Robotiq

Hand-e, F/T sensor ATI Axia80 and custom vision system with two Basler Dart cameras; 3 - workspace

with various PCBs panels; 4 - trays with electronic componenets; 5 - workstation with Ubuntu 22.04 LTS,

ROS 2 Humble Hawksbill and custom software.

• Workstation - a computer with Ubuntu 22.04 LTS operating system, ROS 2 Humble Hawksbill mid-

dleware7, and custom software for controlling the robot and handling the peripheral devices. The

computer is equipped with an AMD Threadripper 1950X CPU, 64 GB of RAM, and an NVIDIA

GeForce RTX 4070 GPU8.

In the experimental setup, the robot’s workspace is equipped with various PCB panels and electronic

components to closely mimic real-world assembly line conditions. In production lines, PCBs are delivered

to robotic manufacturing cells in panel form, each panel containing multiple PCBs. The use of panels aims

to streamline the handling of PCBs and optimize the production process, such as defining the constant belt

conveyor width and standardizing the clamping mechanism. Within the test bed, electronic parts are placed

on 3D-printed trays specifically designed for the experiments. Each electronic part has a dedicated tray

to ensure consistent and reliable experimentation. These trays are positioned on the workstation’s surface

near the robot’s workspace, with the electronic parts arranged in a predetermined orientation known to the

environment software stack.

In the laboratory setup, to simulate real-world conditions in a flexible assembly line, the robot’s

workspace contains various PCB panels and electronic components. The specific PCBs and electronic parts

used in the experiments are illustrated in Figure 3.7. The electronic parts selected for the experiments are

transformers chosen for their non-standardized physical appearance (such as geometrical shape), requiring

7https://docs.ros.org/en/humble/index.html
8https://www.nvidia.com/pl-pl/geforce/graphics-cards/40-series/rtx-4070-family/
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Part 1

Part 4

Part 3

(a) PCB Layout 1

Part 1

Part 7 Part 6

Part 5

(b) PCB Layout 2

Part 2

(c) PCB Layout 3

Figure 3.7: The presentation of the PCB variants and the electronic parts that were used in the experiments.

For each electronic part, the corresponding insertion place is highlighted. Electronic parts differ in shape,

color, and number of leads.

manual insertion by human workers. These electronic parts vary in shape, appearance, number of leads, and

lead arrangements, providing a wide range of components for evaluating the proposed framework. Through-

out this work, electronic parts are referred to as Electronic Part 1, through Electronic Part 7, or shorter

Part 1 to Part 7. Additionally, the PCBs in the workspace differ in design layout, laminate color, and hole

clearance, which can have a significant impact on the insertion process.
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3.3.1 Environment reset procedure

In the context of training an RL agent within a real-world environment, the reset procedure is of signifi-

cant importance to ensure the reproducibility of experiments and the safe operation of the robotic system

during the training process. Specifically, in the context of industrial assembly tasks presented in this dis-

sertation, it is assumed that electronic parts are picked anew from the trays for each training episode, and

further, the subsequent PCB from the panel is chosen, thus affecting the target pose of the insertion denoted

xtarget ∈ Ptarget.

To achieve this desired behavior, the environment reset procedure is initiated by selecting a grasping

pose xgrasp ∈ Pgrasp, which is drawn from a predefined set Pgrasp corresponding to the various poses

in the trays. The size of Pgrasp depends on the design of the tray, which can accommodate, for example,

up to 12 electronic parts in 3D-printed trays and potentially hundreds of parts in trays provided by the

manufacturer. Following the selection of the grasping pose, the robot executes a grasp action to pick up

the object located in the specified pose xgrasp. Subsequently, the target pose xtarget is chosen from a set

of target poses denoted as Ptarget. The size of Ptarget aligns with the number of PCBs present in a single

panel.

To introduce randomness during the training process, the initial pose xinit is perturbed by sampling the

disturbance values from a uniform distribution, denoted as U(−lxy, lxy) for the XY-plane and U(−lψ, lψ)

for rotation around the Z-axis, where lxy and lψ represent the range values for disturbances in the XY-

plane and rotation around the Z-axis respectively. Consequently, the initial pose xinit is obtained from the

transformation Tinit = T −1
targetT∆. The disturbance transformation matrix T∆ is computed based on the

sampled disturbance values and has the form:

T∆ =




cos(∆ψ) − sin(∆ψ) 0 ∆x

sin(∆ψ) cos(∆ψ) 0 ∆y

0 0 1 0

0 0 0 1




(3.2)

Having established the initial pose xinit, the robot proceeds to move to this pose and perform the in-

sertion test. Afterward, upon completion of the trial, the manipulated object is returned to its grasp pose

xgrasp, thus preparing the environment for the next episode. The environmental reset procedure is outlined

in Algorithm 6.

3.3.2 Admittance control system

In the context of the control architecture, the admittance control system plays a critical role by ensuring

the robot’s compliant interaction with the environment, particularly in the manipulation of fragile objects

such as electronic components. Section 2.2.3 provided an overview of the general admittance control law.

However, in the framework designed for robotic industrial assembly tasks, the admittance control system is

specifically implemented as a position-based Cartesian admittance controller. Consequently, the control law

can be expressed as follows:
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Algorithm 6 Environment reset procedure

Require:

Set of electronic parts poses Pgrasp in the trays

Set of target insertion poses Ptarget placed on the PCBs

Initial pose disturbance range values lxy and lψ

1: Get the grasp pose xgrasp from Pparts

2: Get the target pose xtarget from Ptarget

3: Perform the grasp action to pick up the object pgrasp

4: Sample the disturbance from [∆x,∆y] ∼ U(−lxy, lxy) and ∆ψ ∼ U(−lψ, lψ)

5: Compute the disturbance transformation T∆ from sampled disturbance values

6: Compute initial pose xinit from Tinit = T
−1
targetT∆

7: Move the robot to the initial pose xinit

8: Perform insertion trial ▷ RL agent interacts with the environment

9: Place back manipulated object to previous pose xgrasp

ẍr = M−1 (W −Dẋ−K (x− xd)) , (3.3)

The control signal ẍr denotes the intended acceleration of the end-effector of the robot in the reference

frame of the robot base. However, since this signal cannot be sent directly to the robot, it is necessary to

integrate the desired acceleration to acquire the desired pose xr. Subsequently, this target pose is trans-

formed into joint space utilizing the IK solver. Within the implemented control system, the computation of

the coefficients dii of the damping matrix D is governed by the following expression:

dii = 2ζii
√
kiimii, (3.4)

where ζii signifies the damping ratio, kii denotes the coefficient of the stiffness matrix K, andmii represents

the coefficient of the inertia matrix M. Index i corresponds to the degrees of freedom of the robot. The

parameters of the admittance control system chosen for the developed framework are outlined in Table 3.1.

In order to ensure smooth motion of the robot’s end-effector and to mitigate excessive oscillations, the

wrench measurement is subjected to filtering through a low-pass filter with a cutoff frequency of 25Hz.

To verify the performance of the admittance control system, the robot was commanded to perform a

series of Z-axis end-effector movements. The outcomes of the robot’s response to the admittance control

Table 3.1: Admittance control system parameters

Parameter Value Unit

K diag([1000, 1000, 1000, 20, 20, 20]) N/m, Nm/rad

ζ diag([2.8, 2.8, 2.8, 2.8, 2.8, 2.8]) -

M diag([3.0, 3.0, 3.0, 0.04, 0.04, 0.04]) kg, kgm2
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Figure 3.8: Visualization of admittance controller logs obtained from the robotic system during various z-

axis end-effector movements. The orange line illustrates the desired position, and the blue line represents the

actual position. Left: The command corresponded to a free-space movement, resulting in close adherence

to the target position. Right: The robot wad commanded to make contact with a rigid surface, causing the

actual position to be limited by the admittance control law.

law are detailed in Figure 3.8. Initially, the robot executed a free-space movement, resulting in the end-

effector closely approaching the target position. Subsequently, the robot was commanded to make contact

with a rigid surface, causing the controller to limit the actual position. The acquired results substantiate the

effectiveness of the formulated admittance controller in facilitating a compliant interaction between the robot

and its surroundings. This attribute is crucial to the successful completion of robotic assembly operations,

particularly when handling fragile items, such as electronic parts.

3.4 Model Architecture

The SAC algorithm was chosen as the RL agent in the framework for robotic industrial assembly tasks. As

outlined in Section 3.1, the agent is provided with multimodal observations, including two camera images

and state information such as the pose, twist, and contact wrench of the tool. The original SAC implemen-

tation was designed only for state-based observationsonly. Therefore, the model architecture was modified

to accommodate the multimodal observation space. Visual modalities are processed by independent CNNs,

while state information is handled by the projection layer. The projection layer, which consists of a dense

layer followed by LayerNorm [5] and a tanh activation function, is responsible for normalizing the input data

and projecting them into a specific dimension. The state information is projected into a 64-dimensional em-

bedding. The CNN used to process the visual modality comprises four convolutional layers with filter sizes

of 32, 64, 128, and 256, followed by a spatial softmax layer [64]. The CNN’s features are then normalized

via the projection layer, resulting in a 128-dimensional embedding. Each convolutional layer is followed by
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xt, ẋt,Wt

CNN1

CNN2

Projection

Q

π

qt

at

Stop gradient operation

Concatenation operation

(a) Block diagram of the model architecture for the SAC agent.

Image 128× 128× 3

Conv2D Block, 32, 5x5, 264× 64× 32

Conv2D Block, 64, 3x3, 232× 32× 64

Conv2D Block, 128, 3x3, 216× 16× 128

Conv2D Block, 256, 3x3, 28× 8× 256

Spatial Softmax256× 2

Flatten512

Projection Layer128

LayerNorm

Conv2D

SiLU

Conv2D Block

LayerNorm

Linear

Tanh

Projection Layer

(b) CNN architecture for the visual modalities and overview of the projection layer.

Figure 3.9: Visualization of the model architecture used in the experiments.

LayerNorm with the SiLU activation function [90]. The pixel values of the input images are divided by 255

and scaled to the range of [−0.5, 0.5]. The obtained embeddings are concatenated and then directly passed

to the actor πφ and critic Qθ networks. Both function approximators are implemented as feedforward neural

networks with two hidden layers of 512 units each. ReLU is used as an activation function for every layer.

Since the SAC’s policy is stochastic, the actor-network outputs the mean and log standard deviation of a

Gaussian distribution. To ensure the stability of the training process, the logarithm of the standard deviation

of the policy distribution is limited to the range of log σ = [−11.5, 1.6]. The action sampled from the Gaus-

sian distribution is then clipped via the tanh function to ensure that the action is within the valid range. The

complete model architecture is illustrated in Figure 3.9.
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The CNNs utilized for processing visual inputs are shared by both the actor and the critic networks.

This approach significantly reduces the model’s parameters and training time, making it suitable for real-

world robotic applications. However, as demonstrated by Yarats et al. [131], sharing convolutional layers

between actor and critic networks may lead to training instability, as the gradient computed from policy loss

introduces noise during the optimization phase. To address this, the authors proposed restricting the gradient

flow from the policy network to the convolutional layers. This optimization approach was implemented in

the presented study.

3.5 Experiments and Results

The proposed framework for robotic industrial assembly tasks was evaluated through a series of experiments

conducted in a laboratory setup (Figure 3.6). The primary objective of these experiments was to evaluate the

performance of the RL agent in executing the insertion of electronic parts into PCBs. The evaluation process

involved a comparison of the agent’s performance with conventional methods, such as random search, and

an investigation into the impact of visual observations on the agent’s performance. In this section, the results

presented are solely for Electronic Part 1 and PCB Layout 1 (see Figure 3.7). Additional results for the

remaining electronic parts are provided in Appendix B.1.

3.5.1 Training Procedure

Throughout the training phase, the RL agent aims to learn the optimal policy for placing electronic compo-

nents on PCBs. The training process consists of a total of 50000 steps, with each step representing a single

interaction between the agent and the environment. The framework combines the Ape-X architecture with

the SAC algorithm, allowing asynchronous data collection during the training process. In this setup, the actor

sends a rollout of 10 transitions to the shared replay buffer, while the learner process synchronizes the latest

parameters of the policy network with the actor every 10 steps. Similarly to the original Ape-X work [42],

the transitions are stored in the prioritized experience replay (PER) buffer [93]. The prioritized replay buffer

is a variation of the replay buffer that assigns a priority to each transition based on the TD-error. Transitions

with higher priority are sampled more frequently, improving the learning process. The learner process starts

by updating the policy network after the replay buffer contains at least 400 samples. This configuration en-

sures that the RL agent can be trained from scratch in approximately 2.5 hours for multimodal observations

and 1.5 hours for state-based observations.

To improve the agent’s exploration capabilities and its robustness to disturbances, the disturbance values

for the initial pose were set to lxy = 2mm and lψ = 3◦. Furthermore, the initial Z-axis position of the tool

zinit was gradually increased from 2mm to 30mm after every 100 consecutive successful insertions to

optimize the training process and collect diverse data. This approach, known as curriculum learning, is

designed to facilitate the agent’s learning process by gradually increasing the task’s complexity.

The more detailed hyperparameters of the SAC algorithm used for the experiments can be found in Ap-

pendix A. The policy and critic networks, as well as the temperature coefficient, were optimized using the
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Adam optimizer [53] with a learning rate of 0.0003. The target entropy was set to −1
2dim(A), instead of

−dim(A) as suggested in the original SAC paper.

3.5.2 Evaluation Metrics

In the manufacturing industry, the efficiency of the assembly process assumes paramount importance as it

directly influences the production line throughput and overall manufacturing costs. Key metrics traditionally

used to assess the performance of assembly applications include the success rate and the mean time to

complete a given task. These fundamental yet robust metrics offer valuable insight into the performance

of the method and the efficacy of the assembly process. The success rate is defined as the proportion of

successful insertions relative to the total number of attempts, while the mean time to complete the task

denotes the average duration taken by the method to successfully insert the manipulated object into the

target location. In a real-world production setting, these metrics are computed over specific time frames,

such as a single shift or a full day of operation. Nonetheless, in the context of the laboratory experiments

presented in this dissertation, the metrics are computed over 100 trials, as this quantity of trials yields a

reliable estimation of the method’s performance.

3.5.3 Evaluation Procedure

The solutions implemented in industrial robotic assembly cells must not only achieve high-performance

metrics but also demonstrate robustness to disturbances and uncertainties. Within these cells, three primary

sources of disturbance can be identifiable:

• Objects feeding system - This particular disturbance is associated with the accuracy of the appli-

cation, which defines the grasping position of the manipulated object. Typically, object detection

systems are used to establish the grasping position. The precision of the object detection system is

highly dependent on the quality of the cameras, the lighting conditions, and the algorithms utilized.

• End-effector design - The design of the end-effector plays a crucial role in ensuring precise insertion.

For example, using grippers designed to specific object’s shapes helps ensure high grasp precision.

However, this approach limits the robot’s rapid adaptation to different tasks and increases the costs of

the robotic setup. In contrast, the use of universal grippers can reduce costs and improve the flexibility

of the robotic setup, but it may also introduce uncertainty in the grasping position.

• Assembled object positioning mechanism - In manufacturing lines, assembled items are commonly

placed on conveyor belts or on trays. The accuracy of the object positioning mechanism can greatly

affect the precision of the insertion. For example, in the electronics industry, PCB panels are trans-

ported to robotic workstations via conveyor belts. The precision of the clamping mechanism can cause

misalignment between the programmed target insertion position and the actual object position.

In the experiments presented, the first two sources of disturbances are directly modeled by the laboratory

setup design and the environment reset procedure. The gripper utilized in the experiments comprises two

universal fingers designed to grasp a wide range of objects. Although the laboratory setup presented in
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Table 3.2: Test cases for evaluating the agent’s performance under initial pose disturbances.

Test case 1 Test case 2 Test case 3 Test case 4 Test case 5 Test case 6 Test case 7

lxy 0mm 5mm 10mm 0mm 0mm 5mm 10mm

lψ 0◦ 0◦ 0◦ 7◦ 15◦ 7◦ 15◦

Figure 3.6 does not incorporate an object detection system, the design of the trays, in combination with

the environment reset procedure, introduces uncertainty in the grasping pose. This intentional feature in the

experimental setup aims to replicate real-world conditions. The third source of disturbances is modeled by

applying the disturbance values to the initial pose during the environment-reset procedure.

The evaluation process was developed to assess the performance of the agent in the presence of the

third source of disturbance. The test scenario comprises 7 test cases, each case corresponding to a specific

disturbance value. These cases are detailed in Table 3.2 and cover a broad spectrum of disturbances that can

occur in a real-world robotic assembly environment. Notably, test cases 3 and 7 are the most demanding,

introducing significant disturbances in the XY plane and rotation around the Z-axis. Although disturbances

of this magnitude are unlikely to be encountered in a real-world robotic assembly environment, they serve as

good indicators of the agent’s robustness to disturbances. The performance of the agent during the evaluation

is evaluated based on the metrics outlined in Section 3.5.2.

3.5.4 Impact of Visual Observations

When considering the use of RL agents for continuous control tasks, it is common to have a state-based

observation space, which may include the robot’s joint angles, end-effector pose, wrench measurements,

and so on. In order to effectively train an RL agent in such an environment, the task needs to be formulated

as an MDP, where the current state encompasses all the information necessary for decision-making. How-

ever, in real-world robotic applications, the state-based observation space can suffer from disturbances and

uncertainties, making it difficult for the agent to learn the optimal policy. Real-world robotic tasks, such as

robotic assembly, can be viewed as POMDP, where the agent lacks access to full state information. This

limitation can be mitigated by providing the agent with additional observations, such as visual data.

In the following section, an investigation is conducted on the impact of visual observations on the per-

formance of the RL agent. The SAC algorithm was used to train the agent with and without visual observa-

tions. The state-based observation space was characterized by the concatenation of the tool pose, twist, and

wrench data. Due to the substantial influence of the seed on the training process, the agent was trained with

five different seeds for each observation space. The outcomes of the training are depicted in Figure 3.10.

The duration of training for the agent using visual observations was approximately 2.5 hours while

training with state-based observations alone took approximately 2 hours. The SAC model with combined

observations converged in approximately 10000 steps, equivalent to 25 minutes of training. On the contrary,

most iterations with state-based observations commenced converging after 40000 steps. However, the train-

ing curves indicate that achieving full convergence would require more than 50000 steps. This observation
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Figure 3.10: Training results for the SAC algorithm with and without visual observations. For each method,

five runs of different random seeds were performed. The shaded area represents the minimum and maximum

values, while the bold line represents the mean. The results show that the use of visual observations leads to

a significant improvement in the learning performance.

suggests that an agent relying on state-based observations requires more data to mitigate the disturbances

and uncertainties introduced in real-world robotic applications.

After the agents completed their training, they were assessed using the test scenario outlined in Sec-

tion 3.5.3. The evaluation results are detailed in Figure 3.11. Both agents demonstrated comparable success

rates, although the agent with visual feedback in the observation space achieved a slightly higher success

rate. However, the most notable disparity between the agents was observed in the average time taken to

complete the task. The agent with combined visual feedback with the state-based information notably out-

performed the state-based agent in terms of time efficiency. Specifically, as disturbance values increased,

the state-based agent required more time to complete the task, while the visually trained agent consistently

maintained a mean completion time of 1 s to 3 s. This suggests that visual feedback significantly enhances

the agent’s performance in the presence of disturbances and uncertainties, as the CNN is able to learn and

extract pertinent features from the images relevant to the task.

3.5.5 Performance Against Baselines

In the manufacturing industry, most robotic cells designed for assembly tasks rely on traditional meth-

ods, which are typically rule-based and use predefined trajectories or scripts. They often employ a hybrid

force/position control system (Section 2.2.2) to execute the specified trajectory. Although these methods are

easy to implement and require minimal computational resources, they lack the flexibility and adaptability

necessary to handle disturbances and uncertainties in real-world robotic assembly tasks. In this section, the

performance of the method introduced in this dissertation is compared with the following baselines:
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Figure 3.11: Evaluation results for the SAC algorithm with and without visual observations. The results

are shown for the electronic part type 1. The advantage of using visual observations is clearly visible in

context of the mean time to complete the task. The success rate is also slightly higher when using visual

observations, but the difference is not as significant as in the case of the mean time. Top: Success rate over

100 trials, higher is better. Bottom: Mean time to complete the task over 100 trials, lower is better.

Straight down - The robot moves vertically along the Z-axis until it detects the signal to stop, like success-

ful insertion. Displacements on the XY plane are set to zero. The force controller maintains a constant

contact force of 2N to control the vertical displacement.

Random search - Stochastic search strategy, described in [80], where the robot moves randomly in the XY

plane until it detects a successful insertion or receives a signal to terminate the trial. Displacements

along these axes are sampled from a uniform or normal distribution at each time step. This strategy

can be defined as follows:

xt+1 = xt + kx∆x, ∆x ∼ U(−1.0, 1.0)

yt+1 = yt + ky∆y, ∆y ∼ U(−1.0, 1.0)
(3.5)

where xt and yt represent the current position of the robot in the XY plane, and kx and ky denote

the step sizes along the X and Y axes, respectively. The displacement in the Z-axis is controlled by

the force controller, maintaining a constant contact force of 2N. The sample trajectory of the random

search strategy is illustrated in Figure 3.12a.
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Figure 3.12: Conventional strategies for object insertion task. Trajectories were generated by 200 time steps.

Spiral search - The robot executes a predefined spiral trajectory [80] on the XY plane until it detects a

successful insertion or receives a signal to terminate the trial. The trajectory can be mathematically

expressed as:

xt+1 = xt + rt cos(θt)

yt+1 = yt + rt sin(θt)
(3.6)

where θt = n∆θ, rt = ∆rθt, n represents the current step, ∆θ is the angle step, and ∆r is the radius

step. The force controller maintains a constant contact force of 2N on the Z-axis. The spiral search

strategy’s sample trajectory is depicted in Figure 3.12b.

In this section, the results for the Electronic Part 1 and PCB Layout 1 (see Figure 3.7) are presented.

Additional results for the remaining electronic parts are provided in Appendix B.1. The methods were eval-

uated based on the test scenario outlined in Section 3.5.3. The results, depicted in Figure 3.13, highlight the

significant outperformance of the RL agent compared to the baselines in terms of success rate and mean

time to complete the task. The RL agent achieved a success rate of 100% or close to 100% in all test cases,

demonstrating its robustness to disturbances and uncertainties.

In contrast, baselines exhibited a notable decrease in performance as disturbance values increased. In

particular, the straight-down method, which executes only vertical movements, failed to solve the task when

disturbances were applied in the XY plane. Furthermore, even the random search strategy and the spiral

search strategy, while more flexible than the straight-down method, were unable to achieve success rates

comparable to those of the RL agent. The poor performance of these strategies can be explained by analyzing

the generated trajectories, as illustrated in Figure 3.12.

The random search strategy samples consecutive displacements in the XY plane at each time step from a

uniform distribution, theoretically allowing it to find the target position with more allowable steps. Similarly,

the spiral search strategy, with a significantly low radius step ∆r and angle step ∆θ, should be able to
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Figure 3.13: Comparison of the RL agent and the conventional methods against the initial pose disturbances.

The results are shown for the Electronic Part 1. It is clear that the RL agent outperforms the conventional

methods in terms of success rate and mean time to complete the task. Top: Success rate over 100 trials,

higher is better. Bottom: Mean time to complete the task over 100 trials, lower is better.

cover the entire XY plane around the target position. However, in both cases, these configurations lead to

an increased mean time to complete the task, as the robot executes many unnecessary movements before

reaching the goal. In contrast, the RL agent learned the optimal policy for the task, resulting in a high success

rate and a low mean time to complete the task.

In conclusion, the findings suggest that the RL agent is capable of replacing conventional methods in

robotic assembly tasks, offering a more flexible and adaptable solution.

3.5.6 Qualitative Analysis

The preceding sections have mainly focused on quantitatively evaluating the performance of the RL agent

in robotic assembly tasks. Metrics such as success rate and mean time to task completion have provided

valuable insights into the agent’s efficiency. However, to gain a deeper understanding of the agent’s decision-

making process and the strategies used, a qualitative analysis of its behavior is necessary. In this section, a

qualitative analysis of the RL agent’s behavior will be conducted, with a specific focus on its trajectories

and wrench measurements collected during the insertion process.
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Figure 3.14: Visualization of the trajectories produced by the RL agent over 100 insertion attempts. The

insertion task started 40mm above the target position to showcase the efficacy of the proposed method.

The paths illustrate successful insertion attempts. Left: 3D view of the trajectories. Right: 2D view of the

trajectories.

In order to provide a comprehensive overview of the agent’s behavior, the agent completed 100 insertion

trials for Electronic Part 1 and PCB Layout 1. In this experimental setup, the initial Z-axis position (zinit)

was set at 40mm above the target insertion position, while the initial XY position was perturbed by the

disturbance values specified in test case 7. During the insertion process, the agent’s trajectories and wrench

measurements were recorded at a sampling rate of 250Hz.

The trajectories of the agent during the insertion process are depicted in Figure 3.14. The subplot on

the left displays the trajectories in a 3D space, whereas the subplot on the right shows a top-down view of

the trajectories in the XY plane. It is evident from the visualization that the agent initially moves toward

the target insertion position in the XY plane before descending vertically along the Z-axis. This approach

demonstrates the efficiency of the RL agent’s decision-making process, as it moves directly toward the target

position without unnecessary movements, in contrast to conventional methods.

The raw wrench measurements obtained during the insertion process were not directly interpretable due

to variations in trajectory lengths. To facilitate analysis, the data were truncated when the robot was within

10mm of the target insertion position, as the robot’s movement in further distance registers minimal contact

force. Subsequently, the wrench measurements were binned using a statistical method. The outcomes of this

post-processing are shown in Figure 3.15 The wrench measurements provide valuable insights into the in-

teraction between the robot’s end-effector and the environment during the insertion process. In particular, as

the robot approaches the target insertion position, the contact force in the Z-axis increases, signifying contact

between the tool and the surface. Furthermore, the lateral forces in the XY plane deviate from 0N, indicating

the robot’s positional adjustments to align with the target insertion position. Ultimately, the wrench mea-
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Figure 3.15: Band plot of the wrench measurements obtained from 100 insertion attempts. The insertion trial

started 40mm above the target position to ensure consistent data for subsequent analysis. The collected data

was truncated when the robot reached a 10mm distance from the target position, as beyond this point, the

robot typically executed free-motion without environmental contact. The plots were generated by grouping

the data through statistical data binning, with subsequent calculation of mean, minimum, and maximum

values for each bin. Additionally, individual insertion attempt measurements were included to enhance data

visualization.
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surements stabilize as the robot completes the insertion process. The analysis of the wrench measurements

leads to the conclusion that the RL agent combined with the admittance control system effectively manages

the interaction between the robot’s end-effector and the environment during insertion.
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Chapter 4

Multimodal Variational DeepMDP

The previous section of this thesis has focused primarily on introducing a framework for industrial insertion

tasks, a crucial component of flexible manufacturing systems. The experimental results presented thus far

have demonstrated that the RL-based method outperforms conventional methods like random search in terms

of performance and robustness to position perturbations. As a result, the proposed framework shows promise

in automating the insertion task in flexible production lines. However, due to the nature of flexible manu-

facturing systems, the RL-based method still faces limitations in generalizing to new tasks or environments,

as generalization remains a challenging problem in reinforcement learning [20, 134, 25, 103]. Training an

RL agent from scratch for each new task or environment is impractical in real-world applications due to the

significant time and resources it requires. Therefore, this chapter introduces a novel approach to improve

the transferability of RL agents within the environment of flexible production lines. The concept and some

preliminary results of this chapter have been published in journal article [6]. The chapter begins with an

extensive introduction to the proposed approach, providing a detailed explanation of the model architecture

and its integration with the off-policy algorithm. Subsequently, a series of experiments are conducted to

assess the performance of the proposed method in terms of transferability to new tasks or environments.

The results of the experiments are presented and thoroughly discussed. Finally, the chapter concludes with

a discussion of the potential impact of the proposed method in the field of flexible manufacturing systems

and outlines future research directions.

4.1 Methodology

The successful deployment of RL agents in real-world applications is highly dependent on transferability

and robustness. The previous chapter demonstrated the ability of the proposed framework for industrial in-

sertion to learn a policy that effectively inserts objects into a target position despite various disturbances.

However, the generalizability of the RL agent to new tasks or environments remains a significant challenge.

This dissertation tries to address this limitation by introducing a novel approach called Multimodal Varia-

tional DeepMDP. This approach combines the benefits of variational inference of multimodal data and the

DeepMDP framework [13]. MVDeepMDP is designed to learn a joint multimodal latent representation of

observed modalities and predict transitions and rewards in the latent space, similar to the DeepMDP algo-
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rithm. The joint latent representation is computed using the generalized Product-of-Expert [12] mechanism,

which balances the confidence of each expert based on the input modalities. This approach can seamlessly

integrate with any off-policy algorithms, allowing the RL agent to learn a policy that can be quickly trans-

ferred to the assembly of new product types or operated in a new environment. Furthermore, the proposed

method is built on the framework detailed in Chapter 3; thus, the SAC algorithm is used as the core compo-

nent.

4.1.1 Mixing Multimodal Observation

Let X = {x1, . . . ,xM} represent a collection ofM modalities observed by the agent. Each modality xi may

belong to different types, such as images, wrench measurements, or point clouds. In scenarios like this, it is

common to preprocess each modality separately using a corresponding encoder f ienc and then concatenate

the extracted features into a single representation vector, which is subsequently directly fed into the policy

and value networks. However, this method does not capture the correlation between the modalities in the

representation. Discovering the interaction between the modalities is crucial for learning a task-relevant

feature representation. This challenge is often addressed in the modern deep learning literature by employing

an attention mechanism [117], which has proven effective in various multimodal tasks [88, 83, 11, 138] .

Nonetheless, the attention mechanism is computationally expensive and requires a large amount of data to

learn the meaningful interaction between the modalities. On the other hand, an interesting alternative can be

found in the domain of variational inference. Existing approaches [125, 63] utilize the Product-of-Experts

mechanism to compute a joint multimodal latent representation. In this approach, the modalities are equally

weighted, and the joint latent representation is computed as the product of the experts’ distributions. The

formula for computing the PoE is as follows:

P (z) =
1

Z

M∏

i=0

p (z) (4.1)

In a study by Hinton et al. [40], it was pointed out that training a model using the Product PoE approach

to maximize likelihood is challenging due to the renormalization term Z. However, assuming a special case

of Gaussian experts, where pi (z|xi) = N (µi(xi)|Σi(xi)), the output distribution remains Gaussian. The

mean and variance of this distribution are given by the following equations:

µPoE(z) =

(
∑

i

µi(z)Ti(z)

)(
∑

i

Ti(z)

)−1

(4.2)

ΣPoE(z) =

(
∑

i

Ti(z)

)−1

(4.3)

where Ti(z) = Σi(z)
−1 is the precision of the i-th Gaussian expert in z. However, the PoE approach tends

to result in the output distribution being influenced more by highly confident experts than less confident

ones, potentially affecting the model’s ability to generalize and discover interactions between modalities.

This limitation can be overcome using the gPoE, which introduces a weighted mechanism to balance the
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confidence of each expert. The formula for computing the gPoE is as follows:

P (z) =
1

Z

∏

i

pλi(z) (z) (4.4)

Assuming Gaussian experts once again, the mean and variance of the gPoE distribution can be defined as

follows:

µgPoE(z) =

(
∑

i

µi(z)λi(z)Ti(z)

)(
∑

i

λi(z)Ti(z)

)−1

(4.5)

ΣgPoE(z) =

(
∑

i

λi(z)Ti(z)

)−1

(4.6)

The weights λi can be computed in various ways. The most common approach is to consider them

as a change in entropy from prior to posterior at point x, denoted as ∆H(x) = H(p(z|x)) − H(p(z)).

This approach requires almost no additional computational cost. Using the entropy change to weigh experts

is suitable for supervised learning tasks, where the entropy change can be directly derived from the data.

However, in the reinforcement learning domain, computing the change in entropy requires using the previous

latent representation zt−1 during the inference of the current latent representation zt. Additionally, training

such a model requires storing the previous observations and recomputing the latent representation at each

training step, which is computationally and memory intensive.

In the proposed method, the weights λi are parameterized by the function fgPoE (E) approximated

by a neural network, where E is a set of output embeddings {e1, . . . , eM}. A single output embedding

ei is obtained from the feature extractor gφi of the i-th modality. The part of the encoders that extracts

features is shared with the parameterization function fgPoE (E). It is important to note that ei is the output

of the encoder gφi , not the stochastic latent representation zi. To avoid the "veto" problem, where the expert

with the highest confidence λi → ∞ dominates the output, the obtained weights are normalized using the

softmax function to distribute importance across available modalities, ensuring that for each latent dimension
∑

i λi = 1.

Having introduced the gPoE, we can formulate a joint latent representation as:

zjoint ∼ N (µgPoE (z1, . . . , zM ) ,ΣgPoE (z1, . . . , zM ))

∼ N (µgPoE(Z),ΣgPoE(Z))
(4.7)

or, more generally:

zjoint ∼ q (zjoint|x1, . . . ,xM )

∼ q (zjoint|X)
(4.8)

where Z = {z1, . . . , zM} is a set of latent representations of the observed modalities.

4.1.2 Integration with Reinforcement Learning Agent

In the MVDeepMDP framework, the joint latent representation z
joint
t serves as an input observation for

both the actor and the critic networks. As a result, the policy πθ

(
at

∣∣∣zjointt

)
and the Q-value functions

Qθ

(
z
joint
t ,at

)
are conditioned on the multimodal latent representation z

joint
t . The actor and critic networks
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are parameterized by the functions πθ and Qθ, respectively. Given that the joint latent representation is

considered an input observation, the SAC algorithm can be directly applied to the MVDeepMDP framework.

Consequently, the objectives from Section 2.1.6 take on the following form:

Q-value objective:

JQ(θ) = E

z
joint
t ∼qφ(·|Xt),

z
joint
t+1

∼qφ(·|Xt+1),
at∼D

[
1

2

(
Qθ

(
z
joint
t ,at

)
−
(
rt − γVθ̄

(
z
joint
t+1

)))2]

Vθ̄(z
joint
t+1 ) = E

z
joint
t+1

∼qφ(·|Xt+1),

at+1∼πθ(·|zjoint
t+1 )

[
min
i=1,2

Qθ̄i

(
z
joint
t+1 ,at+1

)
− α log πθ

(
at+1

∣∣∣zjointt+1

)] (4.9)

Policy objective:

Jπ(θ) = E

z
joint
t ∼qφ(·|Xt),

[
α log πθ

(
at

∣∣∣zjointt

)
−Qθ

(
z
joint
t ,at

)]
(4.10)

Entropy objective:

Jα(α) = E

z
joint
t ∼qφ(·|Xt),

[
α log πθ

(
at

∣∣∣zjointt

)
− αH̄

]
(4.11)

Similarly to the training procedure defined in Section 3.4, the MVDeepMDP encoder components are shared

between the actor and critic networks.

4.1.3 Model Architecture

The MVDeepMDP method combines the learning of multimodal dynamic latent representations with the

off-policy actor-critic algorithm. An overview of the MVDeepMDP architecture is illustrated in Figure 4.1.

In this framework, each modality is preprocessed by an independent stochastic encoder [55] that computes

the mean and standard deviation of a Gaussian distribution, from which a 128-dimensional latent represen-

tation is sampled. Depending on the type of observation modality, the encoder is either a fully connected

network with two dense layers of size 512 or a CNN as described in Section 3.4. The gPoE weight estimator

is parameterized by a neural network with two dense layers of 1024. In this architecture, the reward pre-

diction neural network is shared across all modalities, while the transition models are independent for each

modality. The transition models and the reward decoder follow the design of the encoder models for state-

based modalities. To obtain the joint dynamic latent representation, the gPoE mechanism is also applied to

the dynamic latent representations of the individual modalities. However, the gPoE estimator’s parameters

are not shared with the encoder networks to ensure the independence of the latent representations. Layer-

Norm [5] followed by the SiLU activation function [90] is applied to all neural networks in MVDeepMDP.
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4.1.4 Learning Objectives

The proposed approach involves learning a joint latent representation of the multimodal observation space.

For each modality, MVDeepMDP independently computes a latent representation zit ∼ qφi
(
zit
∣∣xit
)

and

predicts the transition in the latent space z̃it+1 ∼ pφi
(
zit+1

∣∣zit,at
)

and the reward rt ∼ pφ
(
rt
∣∣zit,at

)
.

Furthermore, the joint latent representation is sampled from z
joint
t ∼ qΦ

(
z
joint
t

∣∣∣Xt

)
and the joint transition

z̃
joint
t+1 ∼ pΦ

(
z
joint
t+1

∣∣∣Zt,at
)

. The components of the MVDeepMDP model, as detailed in Section 4.1.3, are

optimized together to maximize the variational lower bound (ELBO [50]). In this proposed approach, the

bound includes reward reconstruction terms and a KL regularizer for the transition:

JDYN(Φ) =
1

M

M∑

i=0

DKL

(
qφi

(
zit+1

∣∣xit
) ∥∥ pφi

(
z̃it+1

∣∣zit,at
))

+DKL

(
qΦ

(
z
joint
t+1

∣∣∣Xt

) ∥∥∥ pΦ
(
z̃
joint
t+1

∣∣∣Zt,at
)) (4.12)

JREW (Φ) =
1

M

M∑

i=0

E
zit∼qφi(·|x

i
t)
[
log pφi

(
rt
∣∣zit,at

)]

+ E
z
joint
t ∼qΦ(·|Xt)

[
log pΦ

(
rt

∣∣∣zjointt ,at

)] (4.13)

JM (Φ) = JREW (Φ)− βJDYN (Φ) (4.14)

The parameters Φ of the representation and reconstruction models are updated using stochastic back-

propagation [55]. The impact of the KL regularizer is controlled by β [39], and in this study, it is set to

β = 1. As discussed in Section 2.3, the reconstruction term in the ELBO is commonly approximated by

the MSE loss. However, in the context of MVDeepMDP, the reward prediction term is approximated by the

negative NLL loss, with the standard deviation of the Gaussian distribution set to σ = 0.2. Using the NLL

loss instead of the MSE loss ensures the model’s robustness to reward prediction, as the NLL loss is less

sensitive to outliers. The optimization procedure for MVDeepMDP is outlined in Algorithm 7.

4.2 Experimental Setup

In the FMS environment, automated machines must be able to quickly adapt to new products or sometimes

even new tasks. Conventional applications involve mainly manual reprogramming of robotic manipulators or

the use of tool changers. However, manual reprogramming is time consuming and requires a skilled operator,

while tool changers are expensive and require additional space. Therefore, a more advanced solution, such as

the RL-based method, is needed to address this problem. Nonetheless, the RL-based method still encounters

difficulties in generalizing to new tasks and often requires retraining from scratch.

In the following sections, the MVDeepMDP is evaluated in terms of its generalization capability through

a series of experiments. Performance analysis begins with a quantitative evaluation, in which the trained pol-

icy is tested in various scenarios reflecting real-world challenges. Then a qualitative evaluation is conducted

to analyze the impact of the design choices included in the proposed method. The experiments are conducted

in the same environment as in Chapter 3, with the same setup.
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Algorithm 7 Multimodal Variational DeepMDP

Parameters: learning rates ηQ, ηπ, ηM , target update coefficient υ

Initialize function approximators parameters θQ, θπ,Φ, temperature coefficient α

Replay buffer D

1: for each iteration do

2: Initialize state Xt

3: for each environment step do

4: z
joint
t ∼ pgPoE

Φ
(zt|Xt) ▷ Sample latent state at time t

5: at ∼ πθ
(
at

∣∣∣zjointt

)
▷ Sample action from policy

6: Xt+1 ∼ Pr (Xt+1|Xt,at), rt = R (Xt,at) ▷ Sample next state and reward

7: D ← D ∪ (Xt,at, rt,Xt+1) ▷ Store transition in replay buffer

8: Xt ← Xt+1

9: end for

10: for each update step do

11: {(Xt,at, rt,Xt+1)} ∼ D ▷ Sample batch of transitions from replay buffer

12: θQ ← θQ + ηQ∇Qθ
JQ(θ) ▷ Update Q-function parameters with (4.9)

13: Φ← Φ+ ηM∇MJM (Φ) ▷ Update model parameters with (4.14)

14: θπ ← θπ + ηπ∇πθJπ(θ) ▷ Update policy parameters with (4.10)

15: α← α+ ηα∇αJα(α) ▷ Update temperature coefficient with (4.11)

16: θ̄ ← (1− υ)θ̄ + υθ ▷ Update θ̄ using EMA of θ, where υ defines Polyak coefficient

17: end for

18: end for

4.2.1 Training Procedure

In the conducted experiments, the training procedure for MVDeepMDP closely resembled the one outlined

in Section 3.5.1. However, in this case, the disturbance values for the initial pose were set to lxy = 5mm

and lψ = 15◦, as in these experiments, the transferability of the trained policy to new tasks was the main

focus. Under these conditions, MVDeepMDP was trained for approximately 3 hours, with a noticeable

convergence in success rate observed after 18 minutes.

MVDeepMDP representation and reconstruction models were trained using the AdamW optimizer [69],

with a learning rate of 0.0003 and a weight decay of 0.01. On the other hand, the RL component of MVDeep-

MDP was trained using the SAC algorithm with the Adam optimizer [53] and the same learning rate. Opti-

mizing the parameters of the MVDeepMDP model with the AdamW optimizer was found to be more stable

and efficient than using the Adam optimizer. The hyper-parameters used for MVDeepMDP can be found

in Appendix A.
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4.3 Towards Generalization in Flexible Manufacturing Systems

To assess the potential of MVDeepMDP in terms of generalization, two test scenarios were designed to

simulate real-world challenges in the FMS environment. The first scenario evaluates the resilience of the

trained policy when the background view changes. The second scenario assesses the transferability of the

trained policy to new product types within the same domain. Finally, to obtain complete results, the proposed

method is evaluated in terms of its cross-domain transferability to objects from a different domain. To

provide a comparative evaluation, the MVDeepMDP method was benchmarked against the following state-

of-the-art methods:

SAC [31]: This algorithm serves as a core component of the framework for industrial insertion tasks pre-

sented in Chapter 3. Moreover, it is considered a benchmark for state-of-the-art model-free learning

methods. The same policy checkpoint was used in those experiments as in the Section 3.5.

DrQ [17]: This is an extension of SAC that applies a random shift augmentation to visual modalities. It is

designed to improve the sample efficiency of the off-policy algorithms, as well as to slightly improve

the robustness of the learned policy.

SVEA [84]: This is an extension of DrQ that involves applying extra random convolution augmentation to

visual modalities. The hard augmentation in SVEA is specifically applied to the critic’s objective. It

has been observed that this type of augmentation enhances the robustness of the learned policy against

background perturbations.

PAD [36]: This method integrates self-supervised learning with the actor-critic algorithms to adapt to the

test environment. In this experiment, the self-supervised task is inverse dynamics prediction, since the

original implementation of PAD was designed for continuous control tasks.

DeepMDP [13]: This algorithm forms the foundation of the MVDeepMDP. It combines a semi-supervised

objective with an RL. This objective learns a transition model to predict future latent representations

and a decoder to predict a reward. In this implementation, the encoders’ embeddings are concate-

nated and fed into the projection layer (see Section 3.4). The output of the projection layer forms the

deterministic latent representation.

DBC [3]: The algorithm utilizes bisimulation metrics to learn an invariant representation directly in the

latent space. The DBC method improves the generalization capability of the learned policy by ex-

tracting task-relevant features from the latent space. As in the DeepMDP, the latent representation of

the DBC is obtained from the projection layer.

To ensure a fair comparison, the feature extractor design described in Section 3.4 was used for all of the

evaluated methods. The benchmark RL agents were trained for approximately 2.5 hours of training, with

noticeable successful repetitions observed between 12 and 20 minutes, depending on the method. When

evaluating the trained policies, the metrics introduced in Section 3.5.2 were gathered and analyzed. The

results of the experiments are detailed in the following sections.
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Part Type 1 Part Type 2

Figure 4.2: Partially assembled PCB variant 1. The target insertion position of part type 1 is surrounded by

additional components, and thus it can be seen as an adversarial case.

4.3.1 First Test Scenario: Robustness

The first test scenario evaluates whether the MVDeepMDP can insert elements that were used during training

under perturbations of the background view. In the area of electronic assembly, this scenario can be seen as

a differing PCB layout or a partially assembled PCB. This holds significant importance from a production

perspective, particularly in HMLV production setups, where product configurations are frequently modified.

Additionally, this capability has the potential to facilitate the training of an RL agent off the production line

and the deployment of it in a real-world robotic cell.

The policies were trained using Electronic Part 1 and PCB Layout 1 (see Figure 3.7a). Subsequently, the

trained policies were evaluated in two different test cases. The first test case reflects the scenario in which

the PCB is partially assembled; thus, the background view is different from that used during training. The

partial assembly is depicted in Figure 4.2. It is important to note that the surrounding components can be

viewed as adversarial perturbations since they may obstruct the target location. The second test case reflects

the scenario in which the PCB layout is different from the one used during training. The PCB Layout 2

was used in this test case, as illustrated in Figure 3.7b. This PCB varies from the one used during training

in terms of laminate color and hole clearance, making it a more challenging task. For the purposes of this

experiment, this partially assembled PCB (PCBA) will be referred to as PCBA Layout 1. The additional

results for the electronic part type 2 are presented in Appendix B.2.

In each test case, 100 insertion trials were conducted for each policy and performance metrics were

collected. The results can be found in Table 4.1. It can be observed that most of the methods effectively

inserted electronic parts into the target place on a partially assembled PCB. This was an expected outcome,

as the color of the laminate and the layout design were utilized during training, albeit with additional sur-

rounding components. Furthermore, the holes clearances matched those in the training environment, which

significantly influenced the performance of the learned policy. However, when it came to inserting compo-

nents into a PCB that differed in all aspects from the one used during training, the best performing methods

were MVDeepMDP, DBC, and SVEA. These methods achieved a success rate close to 100%, demonstrat-

ing their resilience to background disturbances. MVDeepMDP and DBC achieved such results by learning

a task-relevant feature representation, while SVEA improved the robustness of the learned policy to back-

ground perturbations by applying hard augmentation in the critic’s objective.
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Table 4.1: Comparison of benchmark methods and MVDeepMDP to handle background perturbations. For

each method and layout, 100 insertion trials were performed. The results show that MVDeepMDP along

with SVEA and DBC were the most successful methods in this test scenario.

Success rate [%] Mean time [s]

PCBA Layout 1 PCB Layout 2 PCBA Layout 1 PCB Layout 2

SAC 4 11 8.94 5.25

DrQ 66 5 4.98 8.93

SVEA 100 100 1.77 1.86

PAD 99 60 2.38 7.89

DeepMDP 100 73 2.07 4.50

DBC 100 99 1.81 2.61

MVDeepMDP 100 100 1.81 1.77

4.3.2 Second Test Scenario: Transferability

In the next phase, trained policies were evaluated in a second test scenario to determine their transferability

to new product types within the same domain. The evaluation involved training the policies using Electronic

Part 1 and PCB Layout 1, and then testing them on the remaining Electronic Parts (see Figure 3.7). This

experiment is more challenging than the previous one, as the test components differed in the number and

arrangement of leads. Moreover, each component had a unique PCB layout designed to potentially disrupt

policy inference. From an FMS point of view, the ability to quickly adapt to new products is crucial, as it

can minimize downtime and increase overall efficiency of the production line.

As in previous experiments, 100 insertion trials were conducted for each selected test component and

policy and performance metrics were recorded. The results are detailed in Table 4.2. It can be immediately

seen that the MVDeepMDP outperformed all other algorithms. In four out of the six test cases, the success

rate was nearly 100% or even 100%, while for the remaining two electronic parts, the success rate was close

to 90%. Among the compared algorithms, only SVEA and DBC achieved relatively high results. However,

as emphasized in Section 3.5.2, the mean assembly time is also an important factor in the FMS environment.

Further examination of the recorded assembly times revealed that MVDeepMDP completed the task more

quickly than the benchmark algorithms. For Electronic Parts 3, 4, and 5, MVDeepMDP completed the task

in approximately 2 seconds, while for the remaining electronic parts, the average assembly time ranged

between 2.5 and 3.5 seconds. In contrast, the SVEA and DBC methods required significantly more time to

complete the task, with the average assembly time ranging from 3 s to 9 s. The least effective methods were

SAC and DrQ, which achieved a success rate below 30% in most test cases.

The results of this experiment suggest that acquiring a dynamic representation or integrating more chal-

lenging augmentations during training significantly improves transferability to other objects within the same

domain. While soft augmentations such as random shift enhance the algorithm’s sample efficiency, they do

not contribute to its generalization capability. Of particular interest is the performance of the PAD algorithm,
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Table 4.2: Comparison of the transferability of benchmark methods and MVDeepMDP to unseen objects

within the same domain. The objects used in this test scenario are electronic parts shown in Figure 3.7.

For each object and method, the 100 insertion trials were performed. The results show that MVDeepMDP

outperforms the benchmark methods in terms of success rate and mean time to complete the task.

Success rate [%]

Type 2 Type 3 Type 4 Type 5 Type 6 Type 7

SAC 6 7 1 15 10 5

DrQ 2 0 28 18 13 27

SVEA 43 95 84 12 68 64

PAD 1 32 81 18 6 52

DeepMDP 4 93 91 81 29 31

DBC 56 97 80 79 90 21

MVDeepMDP 87 100 100 100 99 85

Mean time [s]

SAC 8.07 8.71 9.10 8.23 6.34 8.93

DrQ 8.57 9.20 7.38 7.96 8.42 7.56

SVEA 6.43 2.76 3.41 8.41 4.99 5.07

PAD 13.85 10.94 5.09 11.91 13.27 8.17

DeepMDP 9.02 2.54 2.92 4.02 7.43 7.37

DBC 6.04 2.91 3.82 4.31 3.72 8.11

MVDeepMDP 3.59 2.15 1.83 2.08 2.13 3.55

which adapts during deployment. Although adaptation during deployment theoretically should improve the

generalization capability of the learned policy, the metrics reveal that only learning the inverse dynamics is

insufficient for effective adaptation in the insertion task.

4.3.3 Test-time Adaptation

The results presented above show that MVDeepMDP can perform a zero-shot transfer to unseen objects

within the same domain in most cases. However, it did not achieve a 100% success rate for all test cases.

Specifically, for Electronic Parts 2 and 6, the success rate was below 90%. This raises the question: Can

MVDeepMDP be fine-tuned to achieve a success rate 100% for the test cases where it failed in zero-shot

transfer? To address this question, a test-time adaptation experiment was conducted. MVDeepMDP was

fine-tuned in the test cases where it failed to achieve a 100% success rate. The adaptation involved training

the pre-trained MVDeepMDP for 100 episodes using the same hyperparameters as in the initial training

phase. The results of the test-time adaptation experiment are presented in Figure 4.3. It can be seen that

the proposed method achieved a success rate of 100% in 30 episodes for Part 2 and 40 episodes for Part 6,

which corresponds to approximately 5 minutes of training. These results indicate that MVDeepMDP can
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Figure 4.3: Test-time adaptation of the MVDeepMDP method. The pretrained MVDeepMDP was fine-tuned

on the test cases from the transferability experiment (refer Section 4.3.2) where it failed to achieve a 100%

success rate. The fine-tuning was performed for 100 episodes with the same hyper-parameters as in the

training phase.

be effectively fine-tuned if it cannot perform zero-shot transfer. This is particularly important in the FMS

environment, as test-time adaptation is significantly faster than training the RL agent from scratch.

4.3.4 Cross-domain Transferability

The previous test scenarios evaluated the transferability of the learned policy to unseen objects within the

same domain, an important factor in FMS, particularly in HMLV production lines. However, it would be

beneficial from a production perspective to have a method that can quickly adapt to objects from a differ-

ent domain. Hence, this experiment aims to evaluate the cross-domain transferability of the MVDeepMDP

method. The policy was trained using Electronic Part 1 and PCB Layout 1, and then tested on 3D-printed

blocks placed in a robot’s workspace. These custom 3D-printed blocks are depicted in Figure 4.4. The

blocks were designed to simulate a simplified version of real-world insertion tasks. The blocks differ from

the electronic parts in overall appearance and size. The results of the experiment are detailed in Table 4.3. It

can be seen that MVDeepMDP achieved a success rate a 100% in all test cases, demonstrating its resilience

to cross-domain transferability. Furthermore, the average assembly time ranged from 1.68 s to 2.42 s. How-

ever, it is important to note that the blocks were specifically designed for experimentation purposes, making

this task a simplified version of real-world insertion. For a more comprehensive evaluation, MVDeepMDP

should be tested with a wider range of objects from different domains. Nevertheless, the results of this ex-

periment suggest that the MVDeepMDP method has the potential to be transferred to objects from different

domains, which is an important feature from a production perspective.
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Block Type 1
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Figure 4.4: The presentation of the test bed with 3D-printed blocks. The blocks differ in shape and size. In

this test bed, the clearance of insertion holes is 2mm

Table 4.3: Evaluation of the proposed method in terms of transferability to objects from a different domain.

As objects from the new domain, 3D printed blocks were used (see Fig. 4.4). The obtained results show that

MVDeedMDP is capable of transferring the learned policy to the objects from the new domain, achieving

a success rate of 100%. However, the 3D printed blocks were designed to serve as a simply test bed, thus

further evaluation on more complex objects is required.

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

Success Rate [%] 100 100 100 100 100 100

Mean Time [s] 1.79 2.42 1.68 1.93 1.89 1.82

4.4 Modality Mixing Mechanism

In order to analyze whether the proposed modality mixing mechanism plays a crucial role in learning uni-

modal encoders being able to generalize to new objects, the proposed technique is compared with other

mechanisms existing in the literature. Given that MVDeepMDP is built on the concept of cross-modal VAE,

a natural comparison is made with the Product-of-Experts and Mixture-of-Experts, which are widely used

for integrating information from multiple modalities in latent space. Moreover, the naive approach is also

considered to provide a comprehensive analysis, where the latent representation is obtained from the mean

of the unimodal latent representations. To ensure a fair comparison, only the fusing mechanism is modified,

while the rest of the MVDeepMDP architecture remains unchanged.
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Product-of-Experts is not a new concept in mathematics, but its first application in multimodal variational

autoencoders was introduced by Wu and Goodman [125]. This mechanism involves computing the joint

latent representation as a product of unimodal posterior distributions. The detailed formulation of the PoE

mechanism is presented in Equations (4.1) to (4.3). Since the PoE mechanism can be viewed as a special

case of the gPoE mechanism with equal weights, the same learning objectives as in MVDeepMDP were

utilized. This characteristic enables an unbiased comparison between the two methods.

Mixture-of-Experts for the mixing multimodal information in the latent space was proposed by

Shi et al. [99]. They proposed a mechanism called the mixture-of-experts multimodal variational autoen-

coder. This mechanism factorizes joint posterior by weighted averaging of individual posteriors. Instead

of learning individual weights for the modalities, MMVAE suggests giving equal weight to each modal-

ity present to avoid a dominant-modality issue as in PoE. Assuming the same training strategy as in the

MVDeepMDP, the ELBO objective for the MVDeepMDP with the MoE mechanism is as follows:

JMoE(Φ) =
1

M

M∑

i

(
E
zit∼qφi(·|x

i
t)
[
log pΦ

(
rt
∣∣zit,at

)]

−DKL

(
qΦ
(
zit+1

∣∣x1:M
t

) ∥∥ pΦ
(
zit+1

∣∣z1:Mt ,at
)))

(4.15)

Naive Approach is a simple mechanism that computes the joint latent representation as the mean of the

unimodal latent representations. The formula for the naive approach is as follows:

µnaive(Z) =
1

M

M∑

i

µi(zi) (4.16)

Σnaive(Z) =
1

M

M∑

i

Σi(zi) (4.17)

znaive ∼ N (µnaive(Z),Σnaive(Z)) (4.18)

Since the output of the naive approach is a Gaussian distribution, the same learning objectives those of the

MVDeepMDP were utilized.

To compare the performance of the proposed method with the mechanisms mentioned above, all vari-

ants of MVDeepMDP were trained using the same procedure described in Section 4.2. Furthermore, the

trained policies were evaluated based on the second test scenario (see Section 4.3.2) as it serves as a suitable

benchmark to assess the transferability of the learned policy. The results of the experiment are depicted

in Figure 4.5.

First, let’s delve into the training process of the RL agents. It is worth noting that, apart from the MoE

mechanism, all methods achieved convergence in approximately 6000 training steps. On the contrary, the

MoE mechanism required more than 20000 training steps to converge. The trained policies were then tested

for potential transferability to new objects within the same domain. In particular, the MVDeepMDP with the

gPoE mechanism outperformed all the compared methods. Surprisingly, the naive approach yielded slightly

worse results compared to the original implementation.
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Figure 4.5: Comparison of alternative methods for fusing information from unimodal posterior distributions.

For PoE and Naive, the learning objectives remains unchanged, while for MoE, the learning objective was

adjusted accordingly. The results show that the proposed gPoE leads to better performance than the alterna-

tives, as it allows to balance the impact of each modality on the final prediction. Top: Training results, for

each method, five runs of different random seeds were performed. The shaded area represents the minimum

and maximum values, while the bold line represents the mean. For a better visualization, the results are

truncated at 20000 environment steps. Bottom: Evaluation results obtained from the second test scenario.

Conversely, the variant with the MoE mechanism failed to transfer the learned policy to unseen objects,

suggesting that the MoE mechanism may not be suitable for learning multimodal dynamic latent represen-

tation due to its modified learning objective. Finally, the PoE mechanism achieved moderate performance,

with success rates ranging between 40% and 70%. This can be attributed to the fact that the joint latent rep-

resentation obtained by the PoE mechanism tends to be dominated by the modality with the highest weight,

potentially leading to the inability to extract task-relevant features.

Nevertheless, the results demonstrate that the proposed gPoE mechanism significantly improves the

generalizability of feature representation learning, thus improving the transferability of the learned policy.

4.4.1 t-SNE Visualization

The previous analysis demonstrated the benefits of the proposed gPoE mechanism over existing methods to

fuse multimodal information in the latent space. To provide a more comprehensive analysis of the impact of

the gPoE balancing mechanism on generalization capability, t-distributed Stochastic Neighbor Embedding

(t-SNE) was used to cluster the joint multimodal latent representation of all compared methods. t-SNE is a
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(a) generalized Product-of-Experts (b) Product-of-Experts

(c) Naive (d) Mixture-of-Experts
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Figure 4.6: t-SNE visualization of the learned joint latent representations of different information fusion

methods. The clusters represent different types of electronic parts. The results show that the proposed gPoE

leads to more or less a homogeneous cluster, with not clear separation between the different types of elec-

tronic parts. In contrast, the other methods create more separated clusters, which indicates less effective

extraction of shared information between the different modalities.

method that transforms high-dimensional Euclidean distances into conditional probabilities, capturing sim-

ilarities between adjacent data points. The resulting visualization of the joint latent representation is shown

in Figure 3.7, while the visualizations of the unimodal latent representations are presented in Appendix B.3.

Let’s focus on the clusters generated by the multimodal latent representations, it can be immediately

noticed that the clusters generated by the gPoE differ significantly from those generated by the remaining

methods. The t-SNE output of the gPoE mechanism resembles a more or less single cluster without a distinct

separation of the electronic parts, indicating potential shared representations between the electronic parts. On

the contrary, the t-SNE output of the other methods shows a clear separation of the clusters. This observation

led us to conclude that the weight-balancing mechanism improves the ability to learn task-relevant features,

a critical factor in achieving generalization. Moreover, the results suggest that the gPoE mechanism is more

effective in extracting meaningful features from the multimodal latent representation, thus improving the

generalization capability of the learned policy.
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4.5 Design Ablation Study

Knowing the impact of the gPoE mechanism on the generalization capability of the MVDeepMDP, let’s

delve into the ablation study to gain a deeper understanding of design choices incorporated into the proposed

method. The ablation study involved training the MVDeepMDP model with the following modifications:

1. No Reward Prediction: The reward prediction objective Equation (4.13) was removed from the train-

ing procedure. Hence, the MVDeepMDP parameters were optimized using only the transition objec-

tive Equation (4.12).

2. No Views Objectives: The view-based objectives were removed from Equation (4.14). Consequently,

the MVDeepMDP parameters were optimized only using the objectives related to the joint latent

representation. Therefore, the update rule is as follows:

JM(Φ) = E
z
joint
t ∼qΦ(·|Xt)

[
log pΦ

(
rt

∣∣∣zjointt ,at

)]

− βDKL

(
qΦ

(
z
joint
t+1

∣∣∣Xt

) ∥∥∥ pΦ
(
z
joint
t+1

∣∣∣Zt,at
)) (4.19)

3. No gPoE Joint Transition: In the original approach, the joint dynamic latent representation z
joint
t+1

was derived by fusing the unimodal dynamic latent representations using the gPoE mechanism. In this

variation, the joint dynamic latent representation is defined by a single feed-forward neural network,

which takes the joint latent representation z
joint
t and the action at as input. As the gPoE mechanism

is not used, the transition objective Equation (4.12) is adjusted accordingly:

JDYN(Φ) =
1
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)) (4.20)

The trained policies were evaluated using the second test scenario (see Section 4.3.2). The results of the

ablation study are shown in Figure 4.7. The training process plots were generated from the training logs of

five runs with different random seeds. When analyzing the training process, it can be senn that all variants

converged between 6000 and 8000 environment steps. Therefore, based solely on the training process, it is

challenging to determine which design choice has the most significant impact on the performance of the

MVDeepMDP. However, a more insightful analysis can be derived from the evaluation results. It can be

immediately observed that the most significant performance drop occurred when a single feed-forward neu-

ral network parameterized the joint dynamic latent representation. This indicates that the gPoE mechanism

plays a crucial role in learning a task-relevant feature representation.

Furthermore, further analysis suggests that the reward prediction objective has a minor impact on the

performance of the MVDeepMDP, as the variant without the reward prediction objective achieved the clos-

est performance to the original implementation. Finally, the variant without view-based objectives achieved

slightly lower performance compared to variants without the reward prediction objective. Hence, it can be

concluded that the multimodal dynamic latent representation with the gPoE mechanism is the key compo-

nent of the MVDeepMDP design.
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Figure 4.7: Comparison of different design choices for the proposed architecture. The results show that

the most critical component is the use of the proposed gPoE to compute the joint transition distribution

p(zjointt+1 | Zt,at). Replace the gPoE with a simple feed-forward network leads to a significant drop in

performance. The results also show that the reward prediction objective only slightly improves the overall

performance. Top: Training results, for each method, five runs of different random seeds were performed.

The shaded area represents the minimum and maximum values, while the bold line represents the mean.

For a better visualization, the results are truncated at 10000 environment steps. Bottom: Evaluation results

obtained from the second test scenario.

4.6 Impact of Independently Processing State-Based Modalities

In the field of robotics, it is common for RL methods to integrate state-based modalities, such as pose

and contact wrench, and preprocess them using a single feed-forward neural network. However, due to the

disparate nature of these modalities in representing physical quantities, some features may not be effectively

captured during training. For instance, the magnitude of the wrench vector can be several orders higher than

that of the pose data, due to the difference in SI units. Haffner et al. [35] proposed the use of the symlog

function at the beginning of the neural network as a solution to this challenge. This function is designed

to scale down the magnitude of physical quantities represented by large values, such as force data, and is

defined as:

symlog(x)
.
= sign(x) ln (|x|+ 1) (4.21)
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Figure 4.8: Comparison of methods for processing state modalities of different physical quantities. In all

cases, the RL framework of MVDeepMDP was used and only the preprocessing of the state modalities was

changed. The results show that the proposed method, which uses a separate encoder for each modality, leads

to better performance than the alternatives. Top: Training results, for each method, five runs of different

random seeds were performed. The shaded area represents the minimum and maximum values, while the

bold line represents the mean. Bottom: Evaluation results obtained from the second test scenario.

The purpose of this experiment is to assess the impact of state-based modalities processing approaches

on the performance of MVDeepMDP. Therefore, the MVDeepMDP model was trained with the following

variants of state-based modalities processing:

1. Independent Processing: The original approach used in MVDeepMDP, where the state-based modal-

ities are independently processed by the corresponding feed-forward encoders.

2. Concatenated Processing: State-based modalities are concatenated and processed by a single feed-

forward encoder.

3. Symlog Processing: State-based modalities are concatenated, modified by the symlog function, and

processed by a single feed-forward encoder.

The results of the experiment are depicted in Figure 4.8. Upon analysis, it was observed that MVDeep-

MDP, trained with independently processed state-based modalities, achieved convergence in approximately

6000 training steps. In contrast, models trained with concatenated and symlog processed state-based modal-

ities required more than 10000 training steps to converge. Furthermore, the trained policies were evalu-
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ated using the second test scenario (refer to Section 4.3.2), serving as a robust performance indicator for

the learned policy. The findings revealed that concatenating the state-based modalities and passing them

through a single feed-forward encoder significantly deteriorates the performance of the MVDeepMDP. On

the other hand, applying the symlog function improved the performance of MVDeepMDP compared to the

raw concatenation approach, albeit it remained lower than the original implementation. This suggests that in-

dependent processing of state-based modalities of different physical quantities is advantageous in extracting

meaningful features, thereby improving the performance and transferability of the RL agent.
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

This thesis introduces an efficient framework for robotic industrial assembly tasks based on deep reinforce-

ment learning. At the core of this framework is the novel method called Multimodal Variational DeepMDP.

This method enables quick adaptation of the RL agent to new objects that were not encountered during

training. The proposed method was tested on a real-world use case, specifically the insertion of electronic

components. This problem provides an excellent benchmark for the proposed method, as electronic parts

vary in appearance, size, and number of leads, presenting a challenge for industrial robots.

The MVDeepMDP method has been integrated into a framework for robotic assembly tasks as intro-

duced in 3. This framework enables efficient training of an RL agent using a real robotic system. Training

is performed asynchronously, a crucial aspect for smooth training, when the agent interacts with the real-

world environment. Integration was achieved using ROS 2 middleware and Ape-X architecture. However,

direct integration of ROS 2 with the PyTorch library led to performance degradation due to the thread-calling

mechanism of ROS 2. Therefore, a robot-agent communication system was designed that, via the XML-RPC

protocol, allows to interact with the robotic system in a non-blocking manner. Additionally, the framework

includes an admittance control system, essential for industrial robotic assembly tasks, which enables safe in-

teraction with the environment by adapting to external forces and receiving commands defined in Cartesian

space. Finally, the framework introduces the environment in the context of the Markov Decision Process,

providing multimodal observation to the RL agent. This observation includes two RGB images acquired

from the tool-mounted vision system, the relative pose and twist of the end-effector, and the 6D force/torque

sensor readings, offering comprehensive information crucial for real-world robotic tasks.

In a later sections of this chapter, the proposed framework’s capability was demonstrated using the Soft

Actor-Critic algorithm. This algorithm was selected for its proven performance in robotic tasks. Further-

more, the MVDeepMDP method was developed on the basis of the SAC algorithm, making it the natural

choice for the experiments. The experiments carried out highlighted the importance of visual observation

in rapidly learning a policy capable of solving insertion tasks. The results indicated that while an agent

that relied solely on state-based observation achieved a high success rate, the agent incorporating visual

observation showed significantly faster convergence during training and greater resilience to initial pose
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perturbation. Furthermore, the performance of the RL agent was compared to traditional methods, such

as spiral and random search strategies. The results clearly demonstrated that the RL agent outperformed

traditional methods, achieving a high success rate in assembly tasks under initial pose perturbation.

The framework for industrial robotic assembly tasks is a crucial aspect of the thesis, but the primary

contribution lies in the MVDeepMDP method. This method was designed to enable the RL agent to quickly

adapt to unseen objects. This was achieved by developing a multimodal latent dynamic model that learns the

transition dynamics for each observation modality and the transition dynamics of the joint representation.

The joint latent representation is generated using the generalized Product-of-Experts. Compared to other

existing fusion methods, such as the Product-of-Experts, the gPoE is distinguished by its ability to learn the

weights of the experts responsible for controlling the relevance of each modality. A series of experiments

demonstrated that MVDeepMDP can effectively transfer trained policy to the majority of unseen objects

and can also rapidly adapt to those objects for which the initial transfer failed. The performance of the

proposed method was compared with state-of-the-art methods addressing generalization problems in the RL

domain, such as DBC or SVEA, which serve as simple yet effective baselines. Furthermore, an ablation

study was conducted to highlight the importance of each component of the MVDeepMDP method. The

detailed analysis illustrated that MVDeepMDP is capable of extracting task-relevant information from the

observation.

In summary, the findings of this thesis demonstrate the effectiveness of reinforcement learning as a valu-

able tool to address real-world challenges in the manufacturing industry. The proposed framework facilitates

the training of the RL agent within actual robotic systems, enabling seamless deployment in robotic cells

on production lines. Additionally, this research highlights the significance of multimodal observation in

achieving efficient learning in robotic assembly tasks and high success rates. Furthermore, rapid adaptation

to new objects is crucial in flexible manufacturing systems, particularly in HMLV production lines. The

MVDeepMDP method successfully meets these requirements, making it a valuable solution for use cases in

the manufacturing industry.

5.2 Future Work

The natural continuation of this research is to perform a thorough evaluation of the proposed framework

in real-world industrial environments. Implementing a pilot project in an actual manufacturing environ-

ment would provide valuable information to improve both the framework and the MVDeepMDP method.

Feedback from production lines would help identify potential bottlenecks and areas for improvement. Ad-

ditionally, a detailed analysis of the performance of the framework in other manufacturing sectors, such as

furniture or automotive industries, would be advantageous. These industries pose distinct challenges, such as

managing large objects or complex geometries, which could benefit from the proposed framework. Finally,

a future direction involves exploring the scalability of other contact-rich manipulation tasks, such as object

grasping, grinding, or soldering. These tasks differ significantly from the insertion task and require different

strategies and approaches. Therefore, extending the proposed framework to address these challenges would

offer a comprehensive solution for contact-rich manipulation tasks in the manufacturing industry.
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In terms of algorithmic development, an exciting direction for future research involves delving into the

sequential architecture of the MVDeepMDP method. By adopting a sequential approach, the method would

utilize the latent representation of the previous time step in computing the current latent representation.

This would allow the agent to capture temporal dependencies between observations and to learn a better

model of the environment dynamics. Moreover, the sequential architecture could be implemented using

recurrent neural networks like Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) cells or

by leveraging the SLAC approach [61]. The SLAC method is known for its lightweight and efficient nature,

employing a simple for loop to unroll the collected sequential data during training.

Finally, it would also be valuable to explore the effects of different observation modalities on the agent’s

performance as a potential research direction. The current setup utilizes two RGB images acquired from the

tool-mounted vision system, the relative pose and twist of the end-effector, and the wrench measurements.

However, the framework is flexible and can be easily expanded to contain additional modalities, such as

depth images, haptic feedback, or point clouds. Assessing the impact of these modalities on the agent’s

performance could involve conducting an ablation study similar to the one carried out in this thesis.
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Appendix A

Hyper-parameters

The following appendix offers a detailed overview of the hyperparameters used in the algorithms in this

dissertation. Firstly, it presents the hyperparameters of the SAC algorithm as shown in Table A.1, which

were utilized in the experiments introduced in Chapter 3. Subsequently, it provides the hyperparameters

of the MVDeepMDP algorithm as detailed in Table A.2. These hyperparameters were employed in the

experiments discussed in Chapter 4.

Table A.1: SAC algorithm hyperparameters.

Parameter name Value

Exploration steps 400

Replay buffer capacity 50000

Prioritized replay α 0.6

Prioritized replay β 0.4

Mini-batch size 128

Discount γ 0.95

Critic optimizer Adam(lr=0.0003, betas=(0.9, 0.999))

Actor optimizer Adam(lr=0.0003, betas=(0.9, 0.999))

Temperature optimizer Adam(lr=0.0003, betas=(0.5, 0.999))

Actor update frequency 2

Actor log stddev bounds [−11.5, 1.6]

Initial temperature 0.01

Target entropy −1
2dim(A)

Critic Q-function soft-update rate τQ 0.01
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Table A.2: MVDeepMDP algorithm hyperparameters.

Parameter name Value

Exploration steps 400

Replay buffer capacity 50000

Prioritized replay α 0.6

Prioritized replay β 0.4

Mini-batch size 128

Discount γ 0.95

Critic optimizer Adam(lr=0.0003, betas=(0.9, 0.999))

Actor optimizer Adam(lr=0.0003, betas=(0.9, 0.999))

Temperature optimizer Adam(lr=0.0003, betas=(0.5, 0.999))

Actor update frequency 2

Actor log stddev bounds [−11.5, 1.6]

Initial temperature 0.01

Target entropy −1
2dim(A)

Critic Q-function soft-update rate τQ 0.01

MVDeepMDP optimizer AdamW(lr=0.0003, betas=(0.9, 0.999), weight_decay=0.01)

Reward decoder stddev 0.2

Latent representation dimension 128

Transition models β coefficient 1.0
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Appendix B

Additional Results

B.1 Performance Against Conventional Methods - Remaining Parts

This section provides a comparison of the RL agent’s performance with conventional methods for the re-

maining electronic parts. The corresponding results are presented in the following tables and align with the

findings outlined in Section 3.5.5. Across the various electronic parts, the RL agent consistently achieved

a success rate close to 100% in the majority of test cases, whereas the conventional methods demonstrated

strong performance only in Test Case 1.

Table B.1: Comparison of the RL agent and the conventional methods against the initial pose disturbances.

The results are shown for the Electronic Part 2.

Success rate [%]

Test case 1 Test case 2 Test case 3 Test case 4 Test case 5 Test case 6 Test case 7

RL Agent 100 98 84 100 99 98 79

Straight down 98 0 0 61 26 0 0

Random search 75 24 12 65 26 22 4

Spiral search 85 21 7 57 27 13 2

Mean time [s]

Test case 1 Test case 2 Test case 3 Test case 4 Test case 5 Test case 6 Test case 7

RL Agent 0.81 1.32 4.02 0.87 1.51 1.57 4.80

Straight down 0.67 - - 0.88 1.08 - -

Random search 1.19 4.00 3.82 2.52 2.72 4.86 5.57

Spiral search 1.00 5.27 6.16 2.35 2.06 4.84 5.47
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Table B.2: Comparison of the RL agent and the conventional methods against the initial pose disturbances.

The results are shown for the Electronic Part 3.

Success rate [%]

Test case 1 Test case 2 Test case 3 Test case 4 Test case 5 Test case 6 Test case 7

RL Agent 100 98 84 100 99 98 79

Straight down 96 0 0 40 19 0 0

Random search 85 28 17 53 24 15 5

Spiral search 96 25 9 58 22 15 1

Mean time [s]

Test case 1 Test case 2 Test case 3 Test case 4 Test case 5 Test case 6 Test case 7

RL Agent 0.81 1.32 4.02 0.87 1.51 1.57 4.80

Straight down 0.79 - - 1.04 1.39 - -

Random search 1.13 2.58 4.16 2.58 3.17 3.99 6.11

Spiral search 1.52 3.47 3.90 3.39 3.99 5.16 6.51

Table B.3: Comparison of the RL agent and the conventional methods against the initial pose disturbances.

The results are shown for the Electronic Part 4.

Success rate [%]

Test case 1 Test case 2 Test case 3 Test case 4 Test case 5 Test case 6 Test case 7

RL Agent 100 94 57 100 92 96 56

Straight down 64 0 0 24 5 0 0

Random search 63 19 10 34 17 8 3

Spiral search 92 21 9 32 19 6 2

Mean time [s]

Test case 1 Test case 2 Test case 3 Test case 4 Test case 5 Test case 6 Test case 7

RL Agent 0.81 2.32 5.37 1.07 2.57 2.48 6.06

Straight down 1.22 - - 1.00 1.18 - -

Random search 1.41 2.61 4.19 2.88 3.19 5.77 3.54

Spiral search 1.66 3.84 4.76 2.68 2.96 4.97 8.46
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Table B.4: Comparison of the RL agent and the conventional methods against the initial pose disturbances.

The results are shown for the Electronic Part 5.

Success rate [%]

Test case 1 Test case 2 Test case 3 Test case 4 Test case 5 Test case 6 Test case 7

RL Agent 100 90 55 100 95 84 87

Straight down 90 0 0 2 0 0 0

Random search 70 20 5 57 33 16 2

Spiral search 70 23 6 56 24 15 2

Mean time [s]

Test case 1 Test case 2 Test case 3 Test case 4 Test case 5 Test case 6 Test case 7

RL Agent 0.68 2.63 6.88 0.78 2.07 4.38 2.86

Straight down 0.95 - - 1.99 - - -

Random search 0.92 3.59 3.91 2.25 2.50 2.77 2.62

Spiral search 1.13 5.11 4.13 2.73 3.10 5.51 6.88

Table B.5: Comparison of the RL agent and the conventional methods against the initial pose disturbances.

The results are shown for the Electronic Part 6.

Success rate [%]

Test case 1 Test case 2 Test case 3 Test case 4 Test case 5 Test case 6 Test case 7

RL Agent 100 99 66 100 100 100 75

Straight down 90 0 0 2 0 0 0

Random search 89 22 9 47 20 11 2

Spiral search 99 25 10 52 24 10 4

Mean time [s]

Test case 1 Test case 2 Test case 3 Test case 4 Test case 5 Test case 6 Test case 7

RL Agent 0.78 1.91 6.39 0.98 1.71 1.96 5.76

Straight down 0.95 - - 1.99 - - -

Random search 1.16 4.01 7.15 2.61 2.79 4.25 6.51

Spiral search 0.84 5.38 4.92 3.43 2.88 5.75 3.21
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Table B.6: Comparison of the RL agent and the conventional methods against the initial pose disturbances.

The results are shown for the Electronic Part 7.

Success rate [%]

Test case 1 Test case 2 Test case 3 Test case 4 Test case 5 Test case 6 Test case 7

RL Agent 100 98 71 100 97 95 68

Straight down 90 0 0 2 0 0 0

Random search 58 21 8 22 14 9 2

Spiral search 47 20 9 15 17 5 0

Mean time [s]

Test case 1 Test case 2 Test case 3 Test case 4 Test case 5 Test case 6 Test case 7

RL Agent 0.85 2.37 6.32 1.04 1.91 2.41 6.87

Straight down 0.95 - - 1.99 - - -

Random search 1.39 3.01 2.38 1.99 1.53 4.25 4.88

Spiral search 2.12 5.08 4.77 2.95 2.15 5.33 -
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B.2 First Test Scenario: Robustness - Additional Data

In order to further evaluate the robustness to background perturbation of the MVDeepMDP algorithm, an

additional experiment was conducted. In this study, the algorithms were trained using Electronic Part 2 and

PCB Layout 1 (refer to Figure 3.7a). Subsequently, the trained models were commanded to insert Electronic

Part 2 into both PCBA Layout 1 (refer to Figure 4.2) and PCB Layout 3 (refer to Figure 3.7c). In contrast to

the previous experiment discussed in Section 4.3.1, both PCBs in this experiment share the same laminate

color but have different electrical connections layout. The results are presented in Table B.7. Most of the

methods successfully handled the introduced background perturbations, with only DrQ, PAD, and SAC

failing to achieve a 100% success rate. This suggests that transferring the learned policy to a PCB with

a similar laminate color is less challenging than transferring it to a PCB with a different laminate color.

Nevertheless, this experiment further demonstrated the robustness of the MVDeepMDP algorithm.

Table B.7: Comparison of benchmark methods and MVDeepMDP to handle background perturbations. The

presented results are for the Electronic Part 2. For each method, the success rate and mean time are shown.

Most of the methods successfully handled the introduced background perturbations, with only DrQ, PAD,

and SAC failing to achieve a 100% success rate.

Success rate [%] Mean time [s]

PCBA Layout 1 PCB Layout 3 PCBA Layout 1 PCB Layout 3

SAC 6 14 8.18 7.15

DrQ 45 98 8.17 3.31

SVEA 100 100 1.80 1.73

PAD 100 5 2.14 15.62

DeepMDP 100 100 1.84 3.39

DBC 100 100 1.81 2.42

MVDeepMDP 100 100 1.85 2.69
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B.3 t-SNE Visualization of Unimodal Latent Representations

In this section, the additional t-SNE visualization of the unimodal latent representations is presented.

gPoE PoE MoE Naive

Pose

Velocity

Wrench

View 1

View 2

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7

Figure B.1: t-SNE visualization of the latent space for unimodal encoders.
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