
FIELD OF SCIENCE: ENGINEERING AND TECHNOLOGY

SCIENTIFIC DISCIPLINE: AUTOMATION, ELECTRONIC, ELECTRICAL
ENGINEERING AND SPACE TECHNOLOGIES

DOCTORAL THESIS

Applications of reinforcement learning methodologies to
autonomous driving

Author: Mateusz Orłowski

Supervisor: dr hab. inż. Paweł Skruch, prof. AGH
dr inż. Krzysztof Kogut

Completed in: Faculty of Electrical Engineering, Automatics, Computer Science and
Biomedical Engineering

Kraków, 2023

DZIEDZINA: NAUK INŻYNIERYJNO-TECHNICZNNYCH

DYSCYPLINA: AUTOMATYKA, ELEKTRONIKA, ELEKTROTECHNIKA I
TECHNOLOGIE KOSMICZNE

ROZPRAWA DOKTORSKA

Aplikacja metod uczenia przez wzmacnianie do zagadnienia
jazdy automatycznej

Autor: Mateusz Orłowski

Promotor rozprawy: dr hab. inż. Paweł Skruch, prof. AGH
Promotor pomocniczy: dr inż. Krzysztof Kogut

Praca wykonana: Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii
Biomedycznej

Kraków, 2023

Foremost, I extend my sincere appreciation to
my esteemed team colleagues—Tomasz Wrona,
Nikodem Pankiewicz, Wojciech Turlej, Paweł
Kowalczyk, and Michał Sokół — for their profes-
sionalism and the camaraderie that permeated
our collaborative efforts in implementing ma-
chine learning methodologies within the realms
of ADAS and AD functions.

I am deeply grateful to my supervisors, dr.
hab. inż. Paweł Skruch and dr. inż. Krzysztof
Kogut, whose steadfast support, unyielding trust,
and constructive feedback accompanied me
throughout the entire journey of this research
endeavour.

I would like to as well thank my employer,
Aptiv Services Poland, for allowing me to par-
ticipate in the industrial PhD programmeme and
removing any obstacles along the way.

Lastly, I extend my heartfelt thanks to my wife,
Wiktoria, whose unwavering faith has been
a constant source of strength throughout this
journey, and to my entire family and circle of
friends. This achievement stands as a testament
to the collective encouragement and inspiration
provided by those closest to me.

Abstract

The autonomous driving (AD) field is currently one of the most advanced and active frontiers in technology

development, which needs to address both perception and control problems. Today, AD cars are required to

deal with more and more complex environments and scenarios, which often require a data-driven approach

to solve. At the same time, reinforcement learning (RL) is a subfield of artificial intelligence which aims

at developing intelligent agents capable of acting in predefined environments. This work summarises the

research conducted in using reinforcement learning methodologies to control the motion of an autonomous

car. By performing a series of experiments, we were able to test how different control approaches can be used

in combination with the RL policy and what kind of road scenarios can be solved with such a methodology.

In the first experiment, we trained the agent to control the behaviour of the simulated car in a highway

environment with the use of a high-level control interface, defining the manoeuvre and the velocity set point.

Execution of this control has been in charge of deterministic, model-based methods. The agent’s goal was

to reach the lane-based goal, defined in a predefined distance in the shortest time, while adhering to traffic

rules and optimising comfort. We examine how different strategies for executing agent action impact both

functional performance and training efficiency. In the second experiment, an RL agent was trained to de-

rive the path of a vehicle aiming to park itself at a predefined spot. With straightforward reward design and

problem definition, the agent was able to park in complex parking scenarios, including parallel and perpen-

dicular parking spots. In these experiments, we also tested the use of different neural network architectures

and checked their impact on functional and computational performance. In the last series of experiments,

we applied RL to a multi-agent coordination problem, where multiple cars need to navigate complex road

scenarios, such as bottleneck or cross-road. All of the vehicles in the scene were controlled with the same RL

trained policy and was able to derive successful strategies to navigate those challenging scenarios. We were

able to show that using the reward-sharing mechanism, in which each agent was rewarded for its individual

and group performance, improves the overall performance of the group and speeds up training.

In summary, we were able to demonstrate that reinforcement learning methodology can be successfully

applied to the autonomous driving domain, although its application to the production environment requires

a careful design of the whole system. However, we are of the opinion that the presented research proves that

RL methodologies are applicable to the AD domain, and might be necessary to solve the most challenging

road scenarios.

v

Streszczenie

Pojazdy autonomiczne są obecnie jednym z najbardziej zaawansowanych i aktywnych obszarów rozwoju

technologicznego, który musi radzić sobie zarówno z problemami percepcji, jak i sterowania. Zastosowane

w nich systemy sterowania muszą radzić sobie z coraz bardziej złożonymi scenariuszami drogowymi, które

coraz częściej wymagają podejścia wykorzystującego uczenie maszynowe. Jednocześnie uczenie ze wzmoc-

nieniem (z ang. RL) to dziedzina sztucznej inteligencji, która ma na celu tworzenie inteligentnych agentów

zdolnych do działania w wcześniej zdefiniowanych środowiskach. Niniejsza praca podsumowuje badania

przeprowadzone w zakresie wykorzystania metodologii uczenia ze wzmocnieniem do sterowania ruchem

autonomicznego samochodu. Przeprowadzając serię eksperymentów, byliśmy w stanie sprawdzić, jak różne

podejścia do sterowania mogą być wykorzystane w połączeniu z polityką opartą o uczenie przez wzmacni-

anie oraz jakie rodzaje scenariuszy drogowych można rozwiązać za pomocą takiej metodyki.

W pierwszym eksperymencie przeprowadzono uczenie agenta do kontrolowania zachowania symu-

lowanego samochodu na autostradzie za pomocą wysokopoziomowego interfejsu sterowania, definiującego

manewr i prędkość zadaną. Realizacja tej akcji spoczywała na algorytmach deterministycznych. Celem

agenta było osiągnięcie docelowego pasa na zadanej odegłości w jak najkrótszym czasie, przy jednoczes-

nym przestrzeganiu przepisów ruchu i optymalizacji komfortu jazdy. Zaprezentowano, w jaki sposób różne

strategie wykonania działań agenta wpływają zarówno na funkcjonalność, jak i efektywność treningu.

W eksperymencie drugim agent został przeszkolony do określenia trasy pojazdu, mając na celu samodzielne

zaparkowanie we wcześniej zdefiniowanym miejscu parkingowym. Przy użyciu naturalnej definicji nagrody

opartej o osiągnięcie celu, agent był w stanie zaparkować w określonej pozycji w skomplikowanych sce-

nariuszach parkowania, w tym miejscach parkingowych równoległych i prostopadłych. Dokonano również

ewaluacji użycia różnych architektur sieci neuronowych i sprawdzenia ich wpływu na funkcjonalność

i wydajność obliczeniową. W ostatniej serii eksperymentów uczenie przez wzmacnianie zastosowano do

problemu koordynacji wielu agentów, gdzie kilka pojazdów musiało nawigować w skomplikowanych sce-

nariuszach drogowych, takich jak zwężenia czy skrzyżowania. Wszystkie pojazdy uczestniczące w sce-

nariuszu były sterowane tą samą polityką użytą w procesie uczenia i były w stanie opracować skuteczne

strategie sterowania w wymagających scenariuszach. Byliśmy w stanie wykazać, że korzystanie z mecha-

nizmu współdzielenia nagrody, w którym każdy agent był nagradzany za swoje indywidualne jak i grupowe

osiągnięcia, poprawia ogólną skuteczność oraz przyspiesza sam process uczenia.

Podsumowując, przeprowadzone badania wskazują, że metodologia uczenia ze wzmocnieniem może

być skutecznie zastosowana w dziedzinie jazdy autonomicznej, jednakże jej zastosowanie w środowisku

produkcyjnym wymaga starannego zaprojektowania całego systemu. Jesteśmy jednak zdania, że przedstaw-

vii

ione badania dowodzą, że metody uczenia przez wzmacnianie mogą zostać zastosowane w dziedzinie jazdy

autonomicznej i potencjalnie mogą być konieczne do rozwiązania najbardziej wymagających scenariuszy

drogowych.

Contents

List of Figures xiii

List of Abbreviations xix

Summary of Notation xxiii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Work Structure . 2

2 Background 5

2.1 Reinforcement Learning Introduction . 5

2.1.1 The Reinforcement Learning Problem . 5

2.1.2 Elements of Reinforcement Learning . 6

2.2 Reinforcement Learning Methods . 7

2.2.1 Multi-Armed Bandits . 7

2.2.2 Markov Decision Process and its Extensions . 9

2.2.3 Dynamic Programming . 12

2.2.4 Monte Carlo Methods . 13

2.2.5 Temporal-Difference Learning . 14

2.2.6 Deep Reinforcement Learning . 14

2.2.7 Value-Based Methods . 15

2.2.8 Policy-Based Methods . 15

2.2.9 Actor-Critic Methods . 16

2.2.10 Multi-Agent Reinforcement Learning . 17

2.3 Autonomous Driving . 18

2.3.1 History of Autonomous Driving . 18

2.3.2 Typical System Architecture and Components of AD System 20

2.3.3 Sensors . 21

2.3.4 Perception Data Representation . 25

2.3.5 Localization and Mapping . 27

2.3.6 Tracking and Fusion . 28

ix

2.3.7 Situation Assessment, Prediction, and Planning . 28

2.3.8 Control . 31

3 Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 33

3.1 Introduction . 33

3.2 Problem Statement . 35

3.2.1 Problem Formulation . 35

3.2.2 Assumptions and Limitations . 35

3.3 Prior Art . 36

3.4 Behavior Planning Environment Description . 37

3.4.1 TrafficAI Simulation Tool . 38

3.4.2 TrafficAIEnv . 39

3.4.3 Observation Space . 43

3.4.4 Action Space . 43

3.4.5 Reward Function . 43

3.5 Hybrid System Architecture . 46

3.5.1 Safety Envelope and Responsibility-Based Safety Framework 47

3.5.2 Deterministic Available Actions Definition . 48

3.5.3 Maneuver State Machine . 49

3.5.4 Transparent Speed Control Design . 50

3.5.5 Trajectory Generation Module . 51

3.6 Policy Optimisation . 54

3.6.1 RLLib Reinforcement Learning Library . 54

3.6.2 Training Infrastructure . 54

3.6.3 Proximal Policy Optimisation Algorithm . 55

3.6.4 Neural Network Architecture and Training Details 56

3.7 Results . 58

3.8 Discussion and Further Work . 64

4 Parking 67

4.1 Introduction . 67

4.2 Problem Formulation and Assumptions . 67

4.2.1 Problem Formulation . 67

4.2.2 Assumptions and Limitation . 68

4.3 Prior Art . 69

4.4 Parking Slot Environment . 69

4.4.1 Environment Class Structure . 70

4.4.2 Path Planning Ego Motion Model . 70

4.4.3 Obstacles and Collision Detection Mechanism . 73

4.4.4 Parking Scenarios . 74

4.5 Observation Space and Corresponding Neural Network Design 76

4.5.1 Graph Representation of the Scene . 76

4.5.2 Free Space Observation . 79

4.6 Reward Design . 80

4.7 Policy Optimisation . 81

4.7.1 Initial Phases of Training . 81

4.7.2 Curriculum to the Rescue . 81

4.8 Experiments . 84

4.8.1 Observation Space and its Processing . 84

4.8.2 Real-World Experiments . 87

4.9 Discussion and Further Work . 89

5 Multi-agent Maneuvering 93
5.1 Introduction . 93

5.2 Problem Formulation and Assumptions . 94

5.2.1 Problem Formulation . 94

5.2.2 Assumptions and Limitations . 95

5.3 Prior Art . 95

5.4 Multi-Agent Manoeuvring Environment . 97

5.4.1 Motion Modelling and Action Space . 97

5.4.2 Environment Observation . 98

5.4.3 Scenarios . 99

5.5 Policy Optimisation . 100

5.6 Results . 103

5.6.1 Egoistic Rewards Training Evaluation . 103

5.6.2 Introduction of Time Incentive and Reward Sharing 104

5.7 Discussion and Further Work . 108

6 Conclusions 111
6.1 Key Contributions and Conclusions . 111

6.2 Looking Behind and Ahead . 112

List of Figures

2.1 Agent interacting with environment scheme. 11

2.2 Breakdown of SAE levels of driving automation [1] . 19

2.3 Typical autonomous driving system architecture. 20

2.4 Example sensor coverage along with features which its supports [109] 21

2.5 Measurement of an urban scene with the use of reference Light Detection and Ranging

(LIDAR) sensor mounted on the roof of the test vehicle. 22

2.6 The Aptiv’s SRR6 sensor, which is most often mounted in the corners of the vehicles [103] . 23

2.7 Camera hardware system schematics [101] . 24

2.8 Example freespace representation [33] . 26

2.9 Example grid representation [43]. In a single frame, some cells might have unknown sta-

tuses, but as the car travels, it might update and track those cells by observing those from

different perspectives. 26

3.1 The ego (red car) goal is on the right lane and there are multiple strategies for how to get to

that lane. In the most aggressive setting (red), ego may speed up and try to squeeze in front

of the blue car, while risking missing the goal. Another option (yellow) is to maintain the

speed and try to negotiate the space with the grey car, hoping it will be not too assertive and

will let the ego car in. In the most conservative option (blue), ego may drop behind the grey

car and execute lane change there, however, this may have an impact on fast lane (right) flow. 34

3.2 The ego car (red) is driving in the correct lane but it is stuck behind a slow-moving truck.

The safe option is to stay in the correct lane and slowly continue until reaching the goal

(green trajectory). Ego may as well leave the goal lane, overtake the truck and go back to

the right lane (red trajectory). 34

3.3 Visualized TrafficAI simulation. Road structures are presented in white; cars in the form

of bounding boxes are presented in magenta. On the left, is a basic use case of highway

environment simulation. On the right, the more complex urban scenario with high-density

traffic, junction and overpass. 39

xiii

3.4 The building blocks and scheme of agent (policy) interaction with the designed environment

from its perspective. In each timestamp, based on the ego car’s perception systems, which

eventually form environment observation, the policy decides on action to execute. Action

is defined as an acceleration command, manoeuvre to execute, or analogues control signal.

This action is further interpreted and parsed by trajectory generation and control blocks.

Next, with low-level control defined for the ego, behaviour is executed within the traffic,

which is simulated or the real one. Then, the ego car’s perception systems are queried again,

resulting in a new state (observation) for the next time instance. Along with this new obser-

vation, the policy decision, and in general environment state, is evaluated and summarised

in the form of a reward signal, whose value depends on such qualities as achieved speed,

smoothness, and safety. 40

3.5 An example of an environment pipeline, executed for step function of the environment. The

green colour indicates general data and pipeline steps of the environment, while blue cor-

responds to agent-specific elements. In presented examples, agent-specific modules such as

Interpret action or Query for objects are executed for each agent by consuming the corre-

sponding agent state and general environment one, while steps such as TrafficAI step once

per the whole environment. 41

3.6 Graphics represent the general flow of information in the TrafficAI Environment in a step

function. First, the transition to the next time instance is realized by a series of steps, con-

sisting of action parsing, execution of that action in the loop in Trajectory and control sub-

pipeline and data gathering afterwards. Later, based on the updated state the new observation

is created, along with recalculated reward and an indication of episode termination. 42

3.7 The mechanism is used to define the probability distribution only over available actions. The

general state of the neural network passes through the Fully-Connected (FC) layer and it is

multiplied in a dot-product fashion with the embedding of available manoeuvres, resulting

in a vector which assigns value to each of them. After processing this vector with the soft-

max layer, the result is interpreted as a probability distribution, from which one may select

specific action accordingly to its wish (sampling, argmax). 48

3.8 Maneuvers Finite State Machine which has been used in combination with action selection

by Reinforcement Learning (RL) agent. 49

3.9 The delta speed mechanism. Agent action is interpreted in the same time as desired incre-

ment of speed and maximum acceleration level. In that way, agent output preconditions the

adaptive cruise control mechanism. Higher absolute acceleration values are associated with

more aggressive driving. 51

3.10 Blocked lane change scenario. In this concrete situation, we would like to make sure that

action distribution for slow-down, keep-speed and speed-up actions looks more-or-less as

one presented in the right side of the image. In the same time however, when the agent

decides to select given strategy, we would like to make sure that he will stick to it and do

not flicker between slow-down and speed-up actions any more. 51

3.11 Desired trajectory profiles for scenario in which car is too close to car in the front, therefore

needs to slow down and then equalize the speed at correct distance. 53

3.12 Neural Network architecture used in behaviour planning. Yellow blocks indicates inputs

to neural network. Violet elements represents learnable parameters of the Neural Network

(NN), while green blocks are deterministic, mathematical operations. Blue items represents

data embedding along the processing, while red ones indicates the output from Neural Net-

work (NN). 57

3.13 Mean reward plot of two training experiments. 59

3.14 Scenario 1: The ego car equalises its speed with the left car (Subfigure (a)) to squeeze-in in

front of it (Subfigure (b)). 60

3.15 Scenario 2: Ego car must change lane twice to the right. 61

3.16 Scenario 3: Ego car keeps left lane and high speed to overtake a truck (Subfigure (a)) to later

change lane to the right (Subfigure (b)) . 62

3.17 Scenario 4: Issue with realization of Prepare for Lane Change Right maneuver. Even thought

agent does not want to change lane to the right (it is already on correct one), it continues to

drive in wrong maneuver it until it reaches the goal. 63

3.18 The most important metrics that describe the behaviour of the agent, presented in different

traffic scenarios. 65

4.1 Environment template with three interface methods: reset, step and render 71

4.2 Graphical representation of kinematic motion model used for simulation. 72

4.3 Graphical representation of simulated movement of a imaginary rear wheel of bicycle model

from time t to time t+ 1 . 73

4.4 To check whether any polygons are in a collision, cross-check is done if any vertex of poly-

gon ABCD lies within polygon STUV , and vice-versa. To do so, for each point the cross-

product between border vectors and vectors going from the origin of the border vector to the

point under test is calculated. In the case presented here, it is done such for pairs A⃗B− A⃗S,

B⃗C − B⃗S, and so on. If the sign of all cross-products is the same it means that the point S

lies within the polygon ABCD. 74

4.5 Three families of parking scenarios. In Figure (a) represents perpendicular parking, where

the ego has to park nose-in or rear-in. Figure (b) shows the parking at an angle, used when

the road is narrow and perpendicular parking would be difficult. Lastly, in (c), the parallel

parking case is presented, which is useful in most narrow streets. Scenarios vary in detail,

such as the amount of space, the initial position of the ego vehicle, etc. 74

4.6 Sample of graph objects and their observation for graph neural network used in parking

application. 76

4.7 Architecture of graph neural network based policy. Color scheme follow the one introduced

in Figure 3.12. 78

4.8 Visualisation of freespace measurement. Ego car is marked as red rectangle, with blue

freespace rays, casted from its middle at evenly spread angles. The rays report distance

to closest obstacles (grey objects) at given azimuth. For sake of clarity, smaller number of

rays is presented in the image than in experiments. 79

4.9 Architecture of neural network consuming freespace rays as primary information about sur-

rounding obstacles. The color coding is the same as in Figure 3.12. 80

4.10 Definition of control parameter by which curriculum steers the difficulty of scenarios. 83

4.11 Reward average across trainings in a function of training time. 84

4.12 Reward average across trainings in a function of collected samples. 85

4.13 Visualisation of parking manoeuvres performed by a Freespace agent. 85

4.14 Differentiation between the example training scenario (Figure a) and the validation scenario

(Figure b). Both scenarios are constructed by four obstacles, but the validation ones are more

enclosed and less randomised. 87

4.15 Aptiv test vehicle where RL-based parking spot planner has been integrated. 89

4.16 Examples of paths found by RL-based policy in real-world data. Both yellow and grey areas

indicate obstacles, while dark blue colour represents the free space. Rectangles of different

colours, along with corresponding paths, represent multiple agents with their correspond-

ing parking spots in light blue. Arrows represent the target position, with green indicating

successful parking of agent in a given spot, and red indicating failure in doing so. 90

5.1 The bottleneck scenario simulated in a maneuvering environment, including two agents try-

ing to negotiate to drive through it. The goals of individual agents are in the same color as

the corresponding agents, while green lines represent freespace simulation. 97

5.2 The bottleneck scenario with a centrally placed bottleneck. 100

5.3 The zipper scenario with the narrowing located on the left side of the road. 100

5.4 The crossroad scenario, with multiple agents each aiming at a different end goal, which is

color-coded. 101

5.5 Graph representing neural network architecture. Color scheme follow the one introduced in

Figure 3.12. 102

5.6 Evolution of episodes for bottleneck and zipper scenarios. 103

5.7 Evolution of episode for one of the crossroad scenarios. 105

5.8 Reward mean progression for tree trained scenarios. Note: the target value of mean reward

for each of the scenario is different as its depends on the mean number of agents simulated

in the scene. 106

5.9 Average reward graph showing the progress of training. The introduced reward-sharing

mechanism slows down progress in the beginning but is able to achieve better final per-

formance. 107

5.10 Histogram of average velocities acquired in episodes. 108

5.11 Presentation of the average speed of the agents (left Figure) and goal-reaching performance

right Figure depending on the number of vehicles present in a given scenario. First, as the

number of agents grows, the average velocity decreases. What is especially interesting is

that the agent trained with a reward-sharing mechanism (green) improves average speed in

scenarios with higher traffic (when there are more than 5 agents in the scene) and lowers it

when the number of agents is smaller. Goal-achieving performance is improved by reward

sharing in all scenarios, although the baseline policy (blue) is superior in all cases. Those

results bring up the conclusion that the reward-sharing mechanism plays an important role

in multi-agent scenarios especially when the number of agents is greater. 109

List of Abbreviations

A3C Asynchronous Advantage Actor Critic . 16, 17

ACC Adaptive Cruise Control . 31, 58, 93

AD Autonomous Driving . 1, 2, 18, 21, 25, 36, 46, 95

ADAS Advanced Driver-Assistance System . 1, 21, 25, 95

AEB Autonomous Emergency Braking . 28, 29

AGC Auto Gain Control . 24

AI Artificial Intelligence . 1

CC Cruise Control . 58

CMOS Complementary Metal Oxide Semiconductor . 24

DDPG Deep Deterministic Policy Gradient . 16, 17

DNN Deep Neural Network . 14

DP Dynamic Programing . 12–14

DQN Deep Q-Learning . 37, 91, 113

DRL Deep Reinforcement Learning . 14

EKF Extended Kalman Filter . 28

FC Fully-Connected . 56, 78, 101

FMCW Frequency Modulated Continuous Wave . 23

FSM Finite State Machine . 36, 46, 49, 58, 59

GNSS Global Navigation Satellite Systems . 25

IMU Inertial Measurement Unit . 25

KF Kalman Filter . 27, 28

xix

LIDAR Light Detection and Ranging . 22, 30, 87

LLF Low-Level Fusion . 25

LQR Linear-Quadratic Regulator . 31

LRR Long Range Radar . 23

LSTM Long Short-Term Memory . 56

MARL Multi-Agent Reinforcement Learning . 96

MC Monte Carlo . 13, 14

MDP Markov Decision Process . 9, 11, 12, 14

MEMS Micro-Electromechanical System . 22

ML Machine Learning . 1, 2

MLP Multilayer Perceptron . 78

MoD Mobility-on-Demand . 1, 22

MPC Model-Predictive Control . 30, 31

NN Neural Network . 64, 78, 84, 86

PID Proportional Integral Derivative . 31

POMDP Partial Observable Markov Decision Process . 35, 68

PPO Proximal Policy Optimisation 16, 18, 55, 56, 68, 81, 89, 95, 101

ReLU Rectified Linear Unit . 56, 78

RL Reinforcement Learning . 1, 2, 5, 6, 46, 49, 50, 52, 58, 67

RSS Responsibility-Sensitive Safety . 37, 50, 52, 54

SAC Soft Actor-Critic . 17, 37

SAE Society of Automotive Engineers . 19, 20

SGD Stochastic Gradient Decent . 14

SLAM Simultaneous Localisation and Mapping . 27, 28

SRR Short Range Radar . 23

TD Temporal Difference . 14

TRPO Trust Region Policy Optimisation . 16

UKF Unscented Kalman Filter . 28

VRUs Vulnerable Road Users . 25

Summary of Notation

Capital letters are used for random variables, where the lower letters are used for concrete values of random

variables and for scalar functions.

General

.
= equality relationship that is true by definition

E [X] expectation of a random variable X

R set of real numbers

f : X → Y function f from elements of a set X to elements of set Y

argmaxa f(a) a value of a at which f(a) takes its maximal value

∈ is an element of; e.g. s ∈ S

← assignment

α, β step-size parameter; learning rate

γ discount-rate parameter

ϵ probability of taking a random action in an ϵ-greedy policy

λ

Reinforcement learning

t discrete time step

T final time step of an episode

s, s′ states

a an action

r a reward

S set of all states

A set of all actions

xxiii

R set of all rewards

At action at time t

St state at time t

Rt reward at time t

Gt return following time t

p(s′, r|s, a) probability of transition to state s′ with reward r from state s by taking action a

p(s′|s, a) probability of transition to state s′ from state s by taking action a

r(s, a) expected immediate reward from state s taking action a

r(s, a, s′) expected immediate reward on transitioning from state s to s′ by taking action a

π policy (decision-making rule)

π(a|s) probability of action a in state s under stochastic policy π

πθ policy in form of neural network parameterized by values θ

R̂t estimates of rewards-to-go

vπ(s) value of state s under policy π; expected return

v∗(s) value of state s under optimal policy

qπ(s, a) value of taking action a in state s under policy π

q∗(s, a) value of taking action a in state s under optimal policy

q∗(a) true value of taking action a - specific for multi-armed bandits problem

Q̂t(a) estimate at time t of q∗(a) - specific for multi-armed bandits problems

V̂t(s) estimate at time t of v∗(s)

Q̂, Q̂t array of estimates of qπ or q∗(s)

V̂ , V̂t array of estimates of vπ or v∗(s)

Â array of estimates advantage estimation

Nt(s) number of times state s has been visited prior to time t

l loss function, objective

θ, θk parameters of policy defined as neural network (in k-th iteration)

ϕ, ϕk parameters of value function estimation defined as neural network (in k-th iteration)

D set of experiences collected in environment

|D| size of a experience set

Motion Models and Kinematics

x, y position of a object / points in X and Y axis respectively

v longitudinal velocity of an object / host along the car axis

vx, vy velocity of an object in coordinate system aligned with host vehicle in X and Y axis

respectively

a acceleration along the object / host axis

r turn radius

d distance

ψ orientation of object / goal; yaw

δ front wheels angle in vehicle coordinate system

ω yaw rate; ω = ψ̇

s curve length

L wheelbase - distance between two axis

t discrete time step

∆t time update; time to be simulated

Chapter 1

Introduction

1.1 Motivation

The Autonomous Driving (AD) for years has been a dream of both the engineering world and the general

public. The concept of driverless cars was one of the hallmarks of a distant, undefined future. Nowadays,

automated cars are no longer a futuristic vision from science fiction movies, but aim to become a generally

accessible way of transportation. The Advanced Driver-Assistance System (ADAS) are standard equip-

ment for most car brands, while some technology companies provide more advanced transportation services

through their Mobility-on-Demand (MoD) fleets. As increasingly advanced products and services become

more and more accessible and affordable, it is easy to forget about the immense complexity of the technol-

ogy that stands behind each of such systems.

For the initial years of AD development, most of the focus has been on the perception of the outer world,

which is the foundation of the whole system. At those times, feature functions have been rather limited in

scope and capability, therefore, the methods used to realise those functions were equally straightforward.

As perception abilities grew and cars acquired access to more information sources (such as precise maps),

prospects for elaborate control functions in more difficult scenarios arose. At that moment, straightforward

methods became insufficient as planning the motion became a challenge in itself.

Planning the motion of a car is a multi-agent, closed-loop control problem, without a one-and-only

good solution. The resulting trajectory must meet a diverse set of requirements, including those related to

safety, traffic rules, comfort, and efficiency in the vastness of road scenarios. The requirements concerning

safety and traffic rules suggest the use of handwritten heuristics. The ones connected with comfort and

efficiency favour optimisation control methods, where those qualities of behaviour can be directly targeted.

Furthermore, the required adaptability to different scenarios and noisy data should be handled well with

data-driven approaches.

Artificial Intelligence (AI) and Machine Learning (ML) methods are nowadays the cornerstone of state-

of-the-art methods for dealing with perception tasks and have been successfully applied to automotive use

case. Most of those methods rely on supervised learning methodology, where the machine learning algorithm

uses labelled data sets to classify or predict specific qualities of the data. In parallel, Reinforcement Learning

(RL) concerns intelligent decision making by training agents to interact with the environment to maximise

1

1. Introduction 2

the defined reward signal. With the track record of success in popular games [76, 91, 122], only recently RL

methods started to find applications in real world systems [30, 72, 90]. As RL methodology from definition

concerns solving the closed-loop decision-making problem, its potential application to autonomous vehicle

planning motion is a natural research direction.

Understanding the current state-of-the-art in both autonomous driving and reinforcement learning, a

decision has been made to focus research on the applications of RL methodologies to the problem of motion

planning of AD cars. At the same time, one of the prior goals of the work was to ensure that the proposed

techniques and systems will have industrialisation potential and could be applied to motion planning systems

in real cars. Understanding that a purely ML system will probably not address the requirements of a safety-

critical system, attention has been paid to hybrid solutions.

1.2 Problem Statement

To properly direct the research and ensure proper planning of the experiments, a general thesis in the form

of a theorem has been defined. As the selected research area is relatively new, its shape was general and

acquired a form of high-level hypothesis, which will be examined. The thesis will be defined as follows:

Research Hypothesis. The reinforcement learning methodology is applicable to solve decision-making and

trajectory planning problems of autonomous driving vehicles. This statement will be tested and supported

by the following claims:

(i) Controlling a car with high-level control interface by a reinforcement learning agent is possible.

(ii) Introduction of deterministic rules at the time of training improves the training time and the resulting

policy.

(iii) Controlling the vehicle on a low level with the use of a direct path-planning interface by reinforcement

learning agent is possible.

(iv) Multi-agent coordination of vehicle scenarios can be solved by reinforcement learning techniques.

(v) Making the individual agent’s reward dependent on the objectives of other agents improves the overall

average performance of all agents.

To examine the main theorem and its claims, a series of experiments was conducted. Claims (i) and (ii)

are examined in Chapter 3, where a behaviour planning agent has been trained. Claim (iii) has been validated

in Chapter 4, where the problem of parking a car was considered. Claims (iv) and (v) have been evaluated in

Chapter 5, where, using reinforcement learning, the movement of multiple vehicles in urban scenarios was

coordinated by reinforcement learning policy.

1.3 Work Structure

The presented work is structured as follows. In Chapter 2 the core information about reinforcement learning

methodology and autonomous driving has been introduced. The chapters 3, 4, and 5 are the core of the thesis,

M. Orłowski Reinforcement learning in autonomous driving

1. Introduction 3

each describing the experiment conducted. Each of those is organised with a problem statement definition, a

literature review focused on a given sub-area, and a research description. Chapter 3 deals with the behaviour

planning part and controlling the movement of cars with the use of a high-level interface. Parking scenarios,

with a low-level path planning interface, have been investigated in Chapter 4. The aspect of multiple agents

trying to coordinate their movements in urban scenarios has been investigated in Chapter 5. The conclu-

sions about the research, including summarising contributions, understanding possible alternative research

directions from the past, and thoughts about future steps, are placed in Chapter 6.

M. Orłowski Reinforcement learning in autonomous driving

1. Introduction 4

M. Orłowski Reinforcement learning in autonomous driving

Chapter 2

Background

2.1 Reinforcement Learning Introduction

It seems that the most basic concept of learning, which humans are familiar with, is the idea of learning from

interaction with the environment. The process of interaction is the source of information about cause and

effect, strategies to achieve given goals, and the primary tool for gaining knowledge about the world. Even

in cases when a given domain seems to be well known, practical interaction and real-world experiments are

almost always necessary to fully master it.

In the next sections, a formalised computational approach to learning from interaction with the envi-

ronment, called reinforcement learning (RL) will be described. Furthermore, the basic nomenclature used

in this field will be introduced, and with that basic concepts the reinforcement learning methods will be

described.

2.1.1 The Reinforcement Learning Problem

Reinforcement learning problems concern deriving an agent’s policy, which tells what to do in a given

situation, to maximise a defined reward signal. Almost from the definition, those problems are closed-loop,

as the agent’s actions impact the environment state and, through that, the next input. Moreover, in contrast to

many other popular machine learning applications, the training process is not directly told which actions to

take but instead has to discover on its own what actions will result in the highest rewards by trying them out.

In the most interesting and challenging cases, actions may impact not only the immediate reward, but also

the next situation, and, through that, all subsequent rewards. Those attributes, which are inherently closed

loop, lack of direct guidance on what actions to take and where and how the effects of actions play out over

extended periods of time, are the three most characteristic features of reinforcement learning problems [129].

One of the challenges of reinforcement learning is the trade-off between exploration and exploitation.

To score high rewards, the agent must utilise its knowledge about actions selected in the past that are known

to be effective in producing rewards. However, to gain this knowledge, the agent has to try those actions out

for the first time. The agent has to exploit his knowledge and at the same time further explore to search for

better strategies. Very often, such trade-offs will have to take different forms even within a single episode -

5

2. Background 6

the agent would have to first precisely exploit its knowledge to get to a given place of the environment and

from there heavily explore uncharted territory.

Another feature of reinforcement learning is the lack of the assumption that there is one and only correct

action, but rather more and less optimal ones. Here, the reward signal plays the role of an evaluation metric,

providing much richer and more natural information for the training process. This stands in contrast with

most supervised learning methods, where training requires a definition of the correct answer in a given

situation- a label.

Another key characteristic of reinforcement learning is to take an approach that considers the problem

of a goal-directed agent interacting with an uncertain environment as a whole. All RL agents have defined

goals, can sense characteristics of their environments, and can act to influence them. It is also very often

assumed that agents have to operate despite serious uncertainty about the environment. When the perception

aspect of reinforcement learning involves supervised learning, it is done for a specific reason directly related

to the required capabilities in planning. When dealing with the planning part of reinforcement learning, the

agent’s performance, as an outcome of exact action realisation in response to the uncertain observation of the

environment, is addressed directly. Approaching the problem in an end-to-end manner does not necessarily

have to mean being responsible for all aspects of processing in the whole robot or organism. We may easily

identify successful examples of the use of RL agent as part of a larger system, being responsible for a specific

task, where the rest of the system, together with the external world, are treated as an environment.

Reinforcement learning, next to supervised learning and unsupervised learning, states the third main

subfield of machine learning research. It may be as well said that its extension of a supervised learning, for

which the reference data are constructed based on reward signal evaluation.

2.1.2 Elements of Reinforcement Learning

In a RL system, one can identify its main subelements, such as an environment, along with an optional

environment model, an agent with its policy and finally reward function with its derivative, a value function.

These elements can be found in the agent-environment interaction scheme presented in Figure 2.1.

The environment encapsulates the external world with which agents will interact. It is often represented

as the dynamics behind moving from one state to the other, taking into consideration the action selected by

the agent. The environment as well defines how its internal state is represented to an agent as an observation

and how the received actions are encoded and realised. In most applications, the agent does not have direct

knowledge of the environment, except for the experiences resulting from interaction with it. The environ-

ment may also be considered as a definition of the problem to be solved by an agent. In applications of

reinforcement learning to real-world problems, the environment should not be treated as something given

but as an element to design as well.

In some reinforcement learning systems, the environment model is introduced. Its job is to mimic the

behaviour of the real environment and made judgments about how the environment will behave or respond

to the agent’s actions. One of the ways in which this modelling may be done is to predict the next state and

the next reward, given the current state and action. The primary use of this modelling is planning task, which

is to derive any kind of strategy on action selection taking into account possible future states and outcomes

M. Orłowski Reinforcement learning in autonomous driving

2. Background 7

before they occur in reality. The class of reinforcement learning methods that use the environment model

are called model-based ones, which puts them in contrast to model-free methods, which are trained by trial

and error [129].

The entity that interacts with the environment is called the agent. The way in which agents behave at a

given moment is defined by its policy, which may be defined as the mapping between a given environment

state and the action that should be taken in that state. Learning the policy is a main task of reinforcement

learning, and having it is sufficient to define the behaviour. Policies may be defined as deterministic or

stochastic, where the probability of each action is defined.

The metric defining how well the agent is doing is defined as a reward signal. In every round of the

agent’s interaction, the environment sends to the agent a scalar value called a reward. The agent’s sole

objective is to maximise the total reward that it received in the long run [129]. The reward defines what are

the good and bad events for the agent. Based on that, an agent should modify its policy in such a way that the

resulting actions will lead to a high reward, which is associated with positive events or desired behaviour.

As the reward signal says what is good at present, the measure of goodness in the long run is defined as

a value function. The value is the cumulative reward that the agent, according to its policy, should expect

to get in the future starting from the current state. The primary motivation for defining this quantity is

encapsulating what strategy would be good in the long run, not necessarily in a short time horizon. For

example, a given state may result in low immediate reward, but it may lead to a series of high-reward states

in the future. By this, we may say that as rewards define how good it is to be in a given state in isolation, the

value function corresponds to the farsighted judgement of how good agents are doing by being in a given

state and acting in a manner specified by the policy. The value function should be treated as a derivative

of the rewards experienced with the current policy. The value function is also subject to parameterisation,

called discounting, which regulates the trade-off between immediate and future rewards. Still, the primary

objective of the agent is the accumulation of high rewards, but a good estimate of the value function should

indicate how the agent should act to receive high rewards consistently for long periods or how to get to a

high-payoff region of states. The efficient methods of estimating the value function arguably play the most

important role in almost all reinforcement learning algorithms [129].

2.2 Reinforcement Learning Methods

In this part, an overview of the methods used to define and solve reinforcement learning problems will be

presented. It is important to note that there is no accurate and all-encompassing taxonomy of reinforcement

learning methods, as modern algorithms tend to be very modular and often benefit from many different

theories. Below, basic solution classes are presented with examples of algorithms that may be associated

with those.

2.2.1 Multi-Armed Bandits

One of the distinctive features of reinforcement learning from other types of learning is the process of eval-

uating actions taken instead of giving instructions about the correct ones. This feature creates the need for

M. Orłowski Reinforcement learning in autonomous driving

2. Background 8

active exploration in the environment to gather knowledge about specific actions evaluations. The necessity

for gathering such knowledge leads to an exploration-exploitation trade-off, where agents have to balance

between exploitation of their current knowledge and search for even better actions, which may be not opti-

mal in the short term, but will pay off in the long term.

One toy reinforcement learning example is the multi-armed bandit problem. In this case, the agent is

repeatedly faced with the choice of a given number of actions. After selecting one, a numerical reward is

provided, and the agent’s objective is to maximise the total score in a given time horizon. This formulation is

analogous to a slot machine (a "one-arm bandit"), which, instead of one lever, has multiple one. Each of the

actions, corresponding to each lever, has an associated expected or mean reward, assuming that this action

will be selected. This number is often referred to as the value of that action. By denoting the selected action

at time t as at and receiving the corresponding reward signal as Rt, the value of any arbitrary action, q∗(a),

is the expected reward assuming that a is selected:

q∗(a)
.
= E[Rt|At = a] (2.1)

Having access to the true value of each action q∗(a), an optimal policy could be simply defined as

selecting the action with the highest value. This assumption, however, is not useful in practise, as access to

the true value function is not granted in most cases. Due to that, the goal is to estimate the value function,

which would be as close as possible to q∗(a), and to establish the policy on that estimation. The selection

of the action with the highest value is referred to as the greedy policy while action in this manner is the

exploitation of current knowledge. The process of selecting any other action is known as exploration, as it

enables us to improve our estimates of the corresponding value function. As exploitation is the right strategy

in the short term, in the long term, exploration may provide new knowledge, which could result in greater

total reward. The appropriate exploitation-exploration balance depends in a complex manner on the accuracy

of the current estimates, the uncertainty, and the remaining time until the end of the interaction to collect the

reward.

Methods concerning the estimation of the values of actions and using that estimation for action selection

are called action value methods. One of the most straightforward ways to do so is to average already received

rewards, which is called the sample-average method. To collect such data, the policy is defined according

to which actions will be selected. As mentioned earlier, greedy policy will exploit our current knowledge,

however, it will not provide any new information. A simple extension of that is called the epsilon-greedy

policy, where the agent behaves greedily most of the time but with given probability ϵ, it randomly selects

an action from the action space. This provides asymptotic guarantees of convergence to the optimal value

q∗(a). To account for computational efficiency, estimates could be acquired by incremental implementation.

The update rule is defined as

Q̂n+1
.
= Q̂n +

1

n
[Rn − Q̂n] (2.2)

is a common form encountered in reinforcement learning research. The difference term Rn − Q̂n ex-

presses the estimation error, where Rn is the target and Q̂n current estimate.

M. Orłowski Reinforcement learning in autonomous driving

2. Background 9

In the case of a non-stationary problem, in which the probability of rewards and their values itself for

specific actions may change over time, it makes more sense to weigh rewards acquired recently more than

the older ones. One of the most common ways to account for this is to substitute the weighting parameter 1
n

in the equation 2.2 with a constant parameter α ∈ [0,+∞). This results in Q̂n+1 being a weighted average

of all past rewards and an initial estimate Q̂1:

Q̂n+1
.
= Q̂n + α[Rn − Q̂n]

= αRn + (1− α)Q̂n

= αRn + (1− α)[αRn−1 + (1− α)Q̂n−1]

= ...

= (1− α)nQ̂1 +
∑
i=1

nα(1− α)n−iRi.

(2.3)

There are numerous possible extensions of basic action-value function methods. Optimistic Initial

Value [128] initialises the estimates of values to high values, which would not even be encountered. This

methodology improves exploration in the initial stages of learning, since actions that have not been tested

yet have greater value than those already sampled. The Upper-Confidence-Bound [6] action selection mech-

anism, along with building up an action value estimate Q̂ measures both its uncertainty and its variance.

Based on that actions with lower certainty with respect to their value are promoted to be selected more

often.

2.2.2 Markov Decision Process and its Extensions

Reinforcement learning problems are most often formally modelled as Markov Decision Process (MDP),

or its derivatives. As in multi-armed bandits, this formulation also involves evaluative feedback, but in

addition provides the context in which actions should be selected (different actions would be suitable in

a different state). This makes MDPs a formalisation of sequential decision-making, where current actions

have an impact on immediate rewards and following states and rewards. Because of that, MDPs introduce

the concept of delayed reward, which means that the feedback on our choice of action may not be immediate

and there is a need for a trade-off between immediate and delayed rewards.

Compliant with the elements introduced in Section 2.1.2, MDP is framing the problem of learning from

interaction. The agent (with its policy) is a decision maker and is being trained along the process. The entity

with which it interacts is the environment, which encapsulates everything outside the agent. As the MDP

formulation is flexible and abstract, the boundary between the agent and the environment does not have to

represent the physical boundary between the robot or animal and the environment. In practise, this boundary

is often designed within the actor itself. For example, the actuators of a given robot are assumed to be part

of the environment, while the agent actions represent some high-level control of those.

The definition of what we expect from the agent should be communicated to the system in the form of

a reward function. As an example, the straightforward way to design a reward for a chess game is to assign

a +1 reward for winning, -1 for losing, and 0 for a draw. When designing the reward signal, it is crucial to

define precisely what the agent should do. The reward signal should take into account any indication of how

M. Orłowski Reinforcement learning in autonomous driving

2. Background 10

the agent should achieve its goals. If it would impart the notion of subgoals (like gaining space in chess), it

is quite common that during training agents will "game" the system and find a way to achieve those subgoals

at the cost of failing to get to the final goal.

The agent’s goal is to maximise the cumulative rewards it receives, which is called expected return. In

the simplest case, this can be defined as the sum of rewards received after selected timestamp t, as

Gt
.
= Rt+1 +Rt+2 +Rt+3 + ...+RT , (2.4)

where T is the final timestamp. This formulation is useful in cases where there is a natural notion of

the end of an episode, where the interaction should stop. The end of the interaction occurs in the so-called

terminal states, which can be associated with both positive outcomes, such as winning the game or arriving

at the destination, and negative ones, such as losing the game. After the terminal state, the environment is

expected to be reset to a given initial, starting position, which does not depend on the previous terminal

state. Settings that can be naturally broken down into subsequences, called episodes, and the setup referred

to as episodic tasks.

In many cases, however, the interaction of agent and environment cannot be naturally broken into

episodes and is better characterised as a continual process without a specific end. Examples of such cases

could be ongoing control processes or cases in which an agent has a long life span. These settings are termed

continuation tasks. In such cases, the definition of reward provided in Equation (2.4) is no longer useful, as

it may result in infinite reward due to an unbounded time horizon. An additional element required in such a

setting is called the discount. The discounted return at each time t can be defined as

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=t

γkRt+k+1, (2.5)

with discount rate parameter, γ ∈ [0, 1].

With such a formulation, the present value of future rewards is assessed using a discount rate. This

parameter is used to stabilise the learning and indicate how much an agent should care about the future,

assuming some uncertainty of it.

From a formal perspective, the Markov Decision Process is defined by a tuple (S,A,p, r, γ). S and A
represent state and action spaces, respectively, followed by p : S × A → S, which denotes the transition

probability from any states s ∈ S and given action a ∈ A to any other state s′ ∈ S. In case of the

Finite Markov Decision Process, the set of states, actions, and rewards has a finite number of elements.

The r : S × A × S → R ⊂ R represents the reward function that determines the immediate reward

received by the agent while performing the transition described above. The gamma parameter γ ∈ [0; 1] is

the discount factor responsible for modelling the trade-off between current and future rewards. To comply

with the Markov property, the future state (st+1) is conditionally independent of the past (s0:t−1, a0:t−1)

given the present (st, at), or equivalently, the present state st and the action at contain all the information

that affects the dynamics of environments p and the reward signal r while transiting to st+1.

The agent’s interaction with the environment may be described in the following manner. In each time

step t, based on the state of the system s ∈ S, the agent takes an action a ∈ A. Subsequently, the environment

transfers to the next state s′ ∈ S, according to the probability of state transition p(·|s, a), which is most often

M. Orłowski Reinforcement learning in autonomous driving

2. Background 11

Figure 2.1: Agent interacting with environment scheme.

unknown, while providing the agent with reward r ∈ R. The goal of an agent is to find a policy π : S → A,

so that the generated action distribution a ∼ π(·|s) will maximise the expected return

G
.
= E

[∞∑
t=0

γtRt|at ∼ π(·|st), st+1 ∼ p(·|st, at), s0

]
. (2.6)

In the following, the action-value function qπ and the value function vπ for a given policy π can be

defined. The action value function is an extension of the action value function presented in the multi-armed

bandits case (see Section 2.2.1), which instead of estimating how good it is to take a given action (q : A →
R), has to account also for the context in which this action has been selected (q : S × A → R). The value

function (vπ : S → R) represents the potential of a given state, without considering the concrete action

selected from that state. They are, for any state s ∈ S and action a ∈ A, respectively, defined as

qπ(s, a)
.
= Eπ [Gt|St = s,At = a] = Eπ

[∞∑
k=0

γkRt+k+1|St = s,At = a)

]
, (2.7)

vπ(s)
.
= Eπ [Gt|St = s] = Eπ

[∞∑
k=0

γkRt+k+1|St = s)

]
. (2.8)

Both of these functions represent the discounted accumulated future reward starting from St, At = (s, a)

and St = s respectively for given policy π, however, with such a difference, that for the Q-function the first

action may be chosen arbitrarily while in the value function all actions are sampled from current policy π.

The concept of MDP can also be extended to cases in which the agent does not have full access

to the environmental state. In such a setting, called the Partially Observable Markov Decision Process

(POMDP) [80], the agent has access only to the observation, which is the subset of state by which the envi-

ronment’s dynamics and rewards are governed. Although this characteristic of the environment increases the

M. Orłowski Reinforcement learning in autonomous driving

2. Background 12

difficulty of the problem and there are specific methods that try to tackle this problem directly [50, 87, 117],

most of the standard methods used in reinforcement learning can be applied to such cases with success.

2.2.3 Dynamic Programming

The Dynamic Programing (DP) methods, firstly introduced in [13], are the algorithms that can be used to

learn optimal policies having access to a perfect model of the environment, which is represented in a form of

MDP. Because of this requirement and their great computational expense, those methods have limited utility

for bigger problems. The basic concepts of them have been, however, used as a base for other methods, which

often attempt to achieve the same results as dynamic programming methods, but with fewer computations

and with limited knowledge about the environment.

The core idea behind dynamic programming is to solve complex problems by breaking them into sub-

problems, solving them, and then combining solutions to those to solve the original task. In the case of the

Markov Decision Process, usage of the Bellman equation brings recursive decomposition to the problem, as

the value function is capable of storing and reusing knowledge, which allows using DP concepts.

Dynamic programming methods usually assume that the environment is finite MDP. Although concepts

of DP can be applied to continuous state and actions spaces, acquiring exact solutions is only possible in

special cases. Common practise is to discretise the state and action spaces and apply finite MDP dynamic

programming algorithms. DP methods as well assume that they have access to the environment’s dynamics

function p and the reward function r.

The standard DP algorithm applied to RL problems is composed of a few elements and stages. The first

step is to evaluate the policy. At this stage, the evaluation of the given policy π is done by estimating the

corresponding state-value function vπ.

At each iteration k + 1, for each state s ∈ S , the estimation of the state value function vk+1(s) is

updated based on the known dynamics of the environment p and the previous estimate of vk(s′), where s′ is

a successor state of s. This update is based on the application of the Bellman equation

vk+1(s) =
∑
a∈A

π(a|s)
∑

s′∈S,r∈R
p(s′, r|s, a)

(
r + γvk(s

′)
)
. (2.9)

Evaluating policy π gives us a way to guide our policy improvement process. Having current policy π,

the step of policy improvement is based on checking whether in a given state s, it is better to select action

a ̸= π(s) and then follow π or follow π all the time. If the former is true, then the improved policy π′ would

be exactly the same as the old policy π, instead of the action suggested in the state s. The new suggested

action, a can be determined by acting greedily with respect to vπ, which is

a = argmax
a

 ∑
s′∈S,r∈R

p(s′|s, a)
(
r + γvk(s

′)
) . (2.10)

Having the two elements in place, the policy iteration can be defined, which alternately evaluates the

policy and improves it. Because finite MDP has a finite number of states, this process converges to an

optimal value and a policy function in a finite number of steps.

M. Orłowski Reinforcement learning in autonomous driving

2. Background 13

To address one of the drawbacks of policy iteration, which is the necessity to run a policy evaluation at

each iteration, the policy evaluation can be truncated in several ways. A special case is stopping the policy

evaluation phase just after a single update of each state, which results in an algorithm called value iteration.

In that case, a simple update rule can be defined as

vk+1(s)
.
= max

a

∑
s′,r

p(s′, r|s, a)
(
ras + γvk(s

′)
)

(2.11)

Another important advancement to DP methods is its asynchronous version, which instead of running

operations over the entire state set, can update them in any arbitrary order. This, as well, brings flexibility to

a number of applied updates to specific states with reference to others.

An extensive review of dynamic programming methods can be found in many texts, such as the most

recent work by Bertsekas [15, 16].

2.2.4 Monte Carlo Methods

Monte Carlo (MC) methods have been referenced from the 1940s when physicists working on the atom

bomb were trying to understand its complex physical phenomena in a form of a game of chance. Coverage

of those methods in the problem, as well as in a more general sense, can be found in [54, 106].

MC methods learn directly from episodes of experiences and are model-free, thus they do not need for a

dynamics model of the environment. MC methods learn from complete episodes without bootstrapping and

use the most straightforward idea of estimating a value as the mean of returns. One caveat of MC methods is

that they can only be applied to episodic tasks, thus all episodes must terminate. Unlike the DP methods, they

rely on sampling actions rather than evaluating all actions at once. Because of that, it is useful to estimate

action values instead of state values. As a single state may occur multiple times during the episode, two

distinct strategies have been developed to address that. In first-visit MC, the value of state s is estimated by

averaging all returns after the first visit to s, while in every-visit MC the returns are averaged after all visits

to s [123].

The Monte Carlo control algorithm follows a generalised policy iteration scheme [129], in which we

alternately run an evaluation to estimate the action value function and policy improvement. The evaluation

phase uses the empirical mean return, which is the total discounted reward, instead of the expected return,

as in DP methods. The update rule in each state st and return Gt for value function estimation may be

represented as

N(st)← N(st) + 1, (2.12)

V̂ (st)← V̂ (st) +
1

N(st)

[
Gt − V̂ (st)

]
. (2.13)

Later, policy improvement relies on building a greedy policy with respect to current estimation of action

value

π = argmax
a

q(s, a). (2.14)

M. Orłowski Reinforcement learning in autonomous driving

2. Background 14

To build a reliable estimate of q(s, a), we have to ensure that we will continue exploration. Here, the

division is made into on-policy methods, which use a single policy for evaluation and exploration, and off-

policy methods, where behaviour policy is used to explore and update the target policy, which is supposed

to behave optimally [129].

2.2.5 Temporal-Difference Learning

Temporal Difference (TD) learning is the combination of DP and MC ideas. TD methods, same as the MC

ones, learn directly from episodes of experiences and do not require knowledge of environment dynamics. In

contrast to MC methods and DP methods, however, they learn from incomplete episodes by bootstrapping,

which is updating one estimate based on the other. Without the necessity of observing complete episodes,

in addition to episodic tasks, TD methods can also be applied to continuing tasks (see Section 2.2.2 for an

explanation).

TD methods, such as DP and MDP ones, with minor differences, follow the generalised policy iteration

scheme [129]. Most significant differences are present in the execution of policy evaluation, or prediction

problems, where the value function vπ is estimated. MDP methods have to wait until the end of the episode,

where the return Gt at time t is known, and use that value as a target in value estimation. In contrast, TD

methods have to wait only for the next time stamp t + 1 and form a target from its current estimate of the

value function. The simplest update rule for the TD methods can be represented as

V̂ (st)← V̂ (st) + α
[
Rt+1 + γV̂ (st+1)− V̂ (st))

]
, (2.15)

where Rt+1 + γV̂ (st+1) is the target, and α parameter is step-size parameter. The algorithm using this kind

of update rule is called TD(0) or one-step TD, introduced in [131].

TD, DP and MC methods can be combined and blended in multiple ways. An example of the combina-

tion of TD and MC ideas is n-step bootstrapping, which in short entails spanning the bootstrapping process

across multiple timestamps. The approach is seamlessly unified with them is the TD(λ) algorithm, which

introduced the idea of eligibility traces and adds the mechanism for weighting for different n-step hori-

zons. The foundation for these ideas has been introduced [151] while important details regarding practical

implementations have been studied in [27, 116, 143].

2.2.6 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is one of the most active areas of research in reinforcement learning.

DRL methods utilise artificial neural networks (ANN) as a nonlinear function approximation. In most cases,

the methods use Deep Neural Network (DNN), which is composed of many hidden layers, to allow automatic

feature extraction. Those networks are most often trained with the use of the back-propagation algorithm,

which relies on Stochastic Gradient Decent (SGD) or its variations.

Deep neural networks are used to approximate different entities in the reinforcement learning process.

The first application of the deep learning model which successfully learns control policies by approximating

the action value function based on raw high-dimensional sensory input [76, 77]. The successful use of ANN

as a policy approximation, sometimes in parallel with the value function approximation (see Section 2.2.9 for

M. Orłowski Reinforcement learning in autonomous driving

2. Background 15

actor-critic methods), can be found in [44, 75, 114, 115]. In [112, 160], in addition to the approximation of

the policy and value, DNNs were also used for the semantic representation of the state and the approximation

of the dynamics of the simulation environment of the representation.

2.2.7 Value-Based Methods

Value-based methods focus on finding a good estimate of the state action value function qπ(s, a) or the state

value function vπ(s). Achieving this, the approximate optimal policy can be defined as taking greedy actions

according to q-function estimates.

One of the first and popular value-based algorithms introduced was Q-learning [151] designed for finite

MDP, where both the state space S and the action space A are discrete. The use of the neural network to

approximate Q-function unlocked the possibility of operating in continuing state spaces and has resulted

in the surpassing of humans in some applications [77]. To ensure exploration, the DQN algorithm uses

the epsilon-greed policy, where the epsilon parameter has been decaying during training. As DQN is an

off-policy algorithm, it reuses past experiences during training by storing them in experience-replay buffer,

from which they are later randomly sampled in the form of mini-batches in training.

Numerous advancements have been made to the baseline DQN algorithm. To reduce the effect of the

max operation during estimation of value for a future state, [142] decoupled the Q-network used for the

selection of bootstrapped targets and actions in the evaluation. In [149], tailored neural network architecture

was used, where two streams of processing have been merged within the head layer by a special aggrega-

tion process, allowing the representation of the state value V̂ and the so-called advantages Â that should

be summarised with the estimates of the value of action Q̂. As in original DQN experiences that have been

sampled uniformly, [111] introduced the concept of Prioritised Experience Replay, which samples more of-

ten transitions from which there is more to learn. The priority of sampling given transition is proportional to

the last encountered TD-error. The concept of learning reward distributions instead of expected return has

been proposed in [12]. To address the limitations of uncoordinated exploration using epsilon-greed policies,

[38] proposed the introduction of the linear noisy layer to combined deterministic and noisy streams, al-

lowing for state-conditional exploration. The above advancements are not mutually exclusive and have been

successfully combined in [47]. For goal-based environments with sparse reward, an interesting add-on has

been presented in [3]. The Hindsight Experience Replay method adds mocked episodes to replay buffer,

where states at which agent actually arrived are marked as goal state. This process introduces positive rein-

forcement, especially beneficial in situations where the probability of getting to the goal by random policy

is low.

2.2.8 Policy-Based Methods

In the case of value-based methods, the main attention has been paid to estimation of the value or action-

value function, based on which the policy was defined (like ϵ-greedy). On the contrary, policy-based methods

aim to directly parameterize the policy πθ.

The advantages of policy-based methods include better convergence properties and being more effective

in high-dimensional and continuous action spaces. Additionally, the policy-based algorithms may learn

M. Orłowski Reinforcement learning in autonomous driving

2. Background 16

stochastic policies which may be beneficial in some environments. On the other hand, those methods tend to

stick to local optimum and evaluation of a policy is typically inefficient and associated with a high variance.

The simplest implementation of policy gradient methods is the REINFORCE algorithm, also known as

the Monte Carlo Policy Gradient [155]. The algorithm works in a series of gradient ascents based on the

estimated return from the sampled experience trajectory. The Vanilla Policy Gradient method, in which ba-

sic ideas have been drawn and explained in [113, 130], resembles the REINFORCE algorithm, however, it

performs gradient ascents once over multiple episodes by averaging returns, expressed as advantages. The

Trust Region Policy Optimisation (TRPO) [114] aims to take the biggest possible step to improve perfor-

mance while making sure that the new and old policies are not too far away from each other. This distance

is expressed in the form of KL-divergence, which may be understood as a distance measure between two

probability distributions. The same principle of stepping as far as possible without decreasing performance

has been tackled in the Proximal Policy Optimisation (PPO) algorithm [115]. Instead of using the complex

second-order method as TRPO, PPO uses the first-order method along with a few tricks to keep the policy

close to the previous one. PPO is often implemented in two variants. PPO-Penalty uses KL-Divergence to

penalise the objective function instead of making it a hard constraint. PPO-Clip version does not use KL-

Divergence but instead uses specialised clipping in the objective function to keep new and old policies close

to each other.

2.2.9 Actor-Critic Methods

One of the biggest issues in policy-gradient is the high variability of action probabilities and cumulative

reward. This causes high variance (noisy gradients), which may destabilise learning and skew the policy

distribution into a non-optimal one. One of the ways to reduce this negative effect is by introducing a

baseline, which makes the gradient calculation less prone to variability mentioned above.

Actor-critic methods try to address this issue by approximating a better baseline and are a hybrid of

policy-based and value-based methods. In this setup, the actor plays the role of policy and maps the current

state to action. The critic aims at evaluating the agent’s actions, in most cases by approximating the value

function of the current policy.

Policy-based methods (Section 2.2.8), such as TRPO [114] or PPO [115], can also be extended to ap-

proximate the value function and improve the estimation of advantages. In [75], Asynchronous Advantage

Actor Critic (A3C) was introduced, which used a mix of n-step returns. The training has been scaled up to

multiple workers which gather experience in parallel, and based on them updates the global network in an

asynchronous manner. The synchronous version of this algorithm, A2C, works in iterations and updates the

policy and value after collecting the experience batch from all actors. An combination of on-policy and off-

policy updates has been proposed in ACER [150], utilising the concept of the retrace algorithm [85]. In [66],

the Deep Deterministic Policy Gradient (DDPG) method has been introduced, which combined ideas from

DQN and the Deterministic Policy Gradient and was successfully applied to continue problems off-policy.

The policy gradient is assumed to be equal to the estimate gradient of the value function. To address explo-

ration, additive and correlated noise in the form of the Ornstein-Uhlenbeck process [139] has been added to

deterministic actions. The Twin Delayed DDPG [41] improves the baseline DDPG with clipped double Q

M. Orłowski Reinforcement learning in autonomous driving

2. Background 17

learning, less frequent policy updates than the Q function, and smoothing of the target policy. As an exten-

sion that aims to improve the efficiency of DDPG, D4PG [9] introduced distributional learning [12], n-step

returns as in A3C and multiple parallel actors gathering experience to prioritised experience replay. Soft

Actor-Critic (SAC) [44, 45], in contrast to DDPG, employs a stochastic policy, and with the use of entropy

regularisation done along value estimation, automated the exploration and made it state dependent.

2.2.10 Multi-Agent Reinforcement Learning

Driving, in most cases, involves dealing with other road users. Aligning our actions with the actions of others

is presumably the fundamental problem of controlling a car and one of the main challenges of automated

driving.

In Reinforcement Learning, the multi-agent aspect of the environment introduces inherent complexity

to the problem of finding an optimal policy for an agent. This is true, especially in settings in which other

agents also undergo training processes. This makes the environment (from the perspective of a single agent)

nonstationary during the learning phase, which is a straightforward violation of Markov’s property. Because

of that, the literature introduced the Markov Game (see e.g. [145]), which is the extension of the Markov

Decision Process to a multi-agent use case.

Looking at general objectives and models of agents’ interaction, environments may be divided into

subcategories representing underlying multi-agent problems. In a competitive setting, the gain of each agent

goes along with the loss of another agent or agents. This formulation goes along with the definition of the

zero-sum game, in which experience gain and loss are equivalent. Those settings are easier to solve, as the

rules of the game provide a much easier indication of better and worse policies due to the clear definition of

winner and loser. Examples of such environments could be predator-pray settings or the game of chess [122].

The collaborative model of agents’ interactions represents situations in which all agents in the environ-

ment act together to accomplish a single, common task and maximise a joint objective. This often calls for

strict cooperation between agents, as the task cannot be accomplished by a single agent alone, while perfor-

mance is always measured from a team’s perspective. Examples of such environments could be warehouse

environments with robots delivering goods [25] or coordinating a railway traffic infrastructure [79].

Most real-world problems represent the cooperative model, which is a middle ground between compet-

itive and collaborative dynamics. In this setting, agents aim to work with others to achieve their own goals,

parts of which might also be shared. These involve settings present in all team games, where agents need

to cooperate with team members to successfully compete with the enemy team (such as football [60] or the

real-time strategy game Starcraft II [108]). Another option, however, valid for driving task, is the mixed

setting in which agents need to cooperate and compete with other agents at the same time. In such a situa-

tion, the agent must care for his egocentric objectives and goals, but also consider the objectives and goals

of other road users. Another example of such an environment could be a Diplomacy game, where agents

compete, cooperate, negotiate, and communicate with the aim of owning the majority of the territory on the

map [59].

Numerous reinforcement learning methods have been already presented for a broad variety of multi-

agent problems. Optimising agent’s policies with the use of machine learning using communication chan-

M. Orłowski Reinforcement learning in autonomous driving

2. Background 18

nels between agents has been investigated in [83, 127]. In [91], an extensively scaled version of the PPO

algorithm has been used to play a multi-character strategy game, called Dota 2. OpenAI Five introduced

a hyperparameter called team spirit, which is responsible for weighting individual characters’ rewards ver-

sus the average rewards of a team member. Agents were trained by self-play with a pool of old versions

of themselves, assuring always appropriate difficulty level of a game. No additional mechanisms, except

for the massive training scale, have been used to address the multi-agent aspects of an opponent. A trained

set of five neural networks presented superhuman abilities in competition with professional Dota 2 players,

showing cooperation skills among team members. The same training approach has been used in [7], where

two teams competed in the hide-and-seek game. The environment has been designed as a set of scenarios

in which different objects could be used as cover by hiders and by seekers to reach the hiders team. The

main phenomena of training were the emergence of a series of strategies and counter-strategies along with

training by both teams, creating complex tasks curriculum from relatively simple game dynamics. A method

utilising the actor-critic approach, in which the critic has access to all agent’s observations during training,

has been proposed in [69]. As the actor network is consuming only local observations data, the method did

not require any communication between agents. The method has proven to work well for both cooperative

and competitive interaction models. An interesting observation has been made in [20], where the issue of

cooperation with the suboptimal (or just not aligned) human agent was highlighted. The authors showed

that in cooperative environments, where agents trained through self-play are paired with human agents, per-

formance is significantly worse. The authors also introduced the concept of adapting to human gameplay,

which results in better coordination with humans and more robust policies.

2.3 Autonomous Driving

2.3.1 History of Autonomous Driving

The work on self-driving cars and AD has been carried out since 1939, with the first promising experiments

taking place in the 1950s and since then research has continued. The first truly self-driving and autonomous

vehicles was created by Carnegie Mellon University’s Navlab and ALV projects in 1984 [55], followed by

the Eureka PROMETHEUS Project, which was a joint effort of Mercedes Benz and Bundeswehr University

in Munich in 1987. Since those two events, multiple automotive companies and research organisations have

worked on autonomous driving technology, often resulting in functional prototypes. One of the important

milestones in AV development was the DARPA challenges. The first two events concerned navigation in

a desert environment [132, 136, 140], while the third, called the DARPA Urban Challenge, was held in

a closed urban-like area with a focus on multi-vehicle coordination [40, 81, 141]. These events gathered

many people who today are leading the development of autonomous driving technology. In 2010, the major

automotive companies began to invest heavily in AD research and development. Companies such as Waymo

(a subsidiary of Google), Tesla, and Uber along with traditional automakers such as Mercedes-Benz, BMW,

and GM became actively involved in autonomous driving projects. Highlighting some of the important

milestones, in 2013 Mercedes-Benz drove the Bertha Benz memorial route autonomously [171], while in

M. Orłowski Reinforcement learning in autonomous driving

2. Background 19

SAE J3016TM LEVELS OF DRIVING AUTOMATIONTM

DRAFT- Stand alone

•	lane centering

	 OR

•	adaptive cruise
control

•	local driverless
taxi

•	pedals/
steering
wheel may or
may not be
installed

•	lane centering

		 AND

•	adaptive cruise
control at the
same time

•	same as
level 4,
but feature
can drive
everywhere
in all
conditions

•	automatic
emergency
braking

•	blind spot
warning

•	lane departure
warning

•	traffic jam
chauffeur

You are driving whenever these driver support features
are engaged – even if your feet are off the pedals and

you are not steering

You are not driving when these automated driving
features are engaged – even if you are seated in

“the driver’s seat”

These automated driving features
will not require you to take

over driving

You must constantly supervise these support features;
you must steer, brake or accelerate as needed to

maintain safety

What does the
human in the
driver’s seat
have to do?

Example
Features

When the feature
requests,

you must drive

These are automated driving features
These features

provide
steering

OR brake/
acceleration
support to
the driver

These features
provide
steering

AND brake/
acceleration
support to
the driver

These features can drive the vehicle
under limited conditions and will

not operate unless all required
conditions are met

This feature
can drive the
vehicle under
all conditions

These features
are limited

to providing
warnings and
momentary
assistance

These are driver support features

What do these
features do?

SAE
 LEVEL 0TM

SAE
 LEVEL 1TM

SAE
 LEVEL 2TM

SAE
 LEVEL 3TM

SAE
 LEVEL 4TM

SAE
 LEVEL 5TM

Copyright © 2021 SAE International.

Copyright © 2021 SAE International. The summary table may be freely copied and distributed AS-IS provided that SAE International is acknowledged as the source of the content.

Learn more here: sae.org/standards/content/j3016_202104

Figure 2.2: Breakdown of SAE levels of driving automation [1]

2015 the automotive supplier Delphi Automotive PLC (not Aptiv) completed the longest automated drive in

North America, travelling coast to coast from San Fransisco to New York [31].

One of the key drivers of autonomous driving progress has been advances in sensors and perception.

Sensors such as LIDAR, radar, and cameras, currently are a crucial part of the AD stack, providing a 360-

degree perception of the car’s surroundings. To accompany that, progress made in the field of machine

learning and artificial intelligence allowed for processing and interpreting the raw sensor data, enabling

automatic detection of road structure, objects on the road, and other key elements important from the AD

perspective.

As autonomous driving progressed, governments and regulatory bodies began to address the safety and

legal aspects of it. In some countries, including the United States, China, and Germany, guidelines and

bills specific to autonomous vehicles have been introduced. Additionally, international organisations such

as Society of Automotive Engineers (SAE) defined the standardisation and taxonomy of autonomy levels to

classify the capabilities and responsibilities of a given self-driving system [1] (see Figure 2.2 for a detailed

explanation of each level).

Over the years of development, two distinctive paths toward fully autonomous driving have been es-

tablished. The first one, favoured by technology companies, is coupled with a newly introduced transporta-

M. Orłowski Reinforcement learning in autonomous driving

2. Background 20

Figure 2.3: Typical autonomous driving system architecture.

tion concept, called Mobility on Demand (MoD), which provides accessible transportation services on an

as-needed basis. The heavy dependence on digital platforms, shared mobility, and integration and inter-

operability of various transport modes should result in efficient use of resources, reduced congestion, and

improved user experience. With relaxed costs requirements and smaller scale with better control over the

fleet, more advanced approaches might be tested, from the hardware and data perspective. Currently, Al-

phabet’s autonomous driving division, Waymo, has one of the largest autonomous driving fleets, currently

reaching around 700 vehicles and providing its ride-hailing service in three locations in the United States.

Other technology companies, such as Motional and Cruise, are conducting similar tests in some of the largest

cities [29, 84].

In the second, more bottom-up approach, vehicle manufacturers are steadily growing the autonomous

capabilities of cars from their offerings, prioritising more cost-efficient and scalable solutions. Development

of feature functions is also partly driven by regulatory bodies, including the Euro NCAP organisation, which

enforces the existence of some active safety features or assesses vehicle safety based on the performance

of those. The current state-of-the-art includes the first successful realisations of the SAE Level 3 systems.

In 2020 Honda introduced to Japan the first L3 system, called Sensing Elite, in a limited number of cars

available for lease, which allows the driver to not pay attention to the surrounding under certain conditions of

traffic jams on the highway [48]. Mercedes introduced a similar L3 highway traffic jam system to Germany

in 2022, with plans to spread it to other countries [37]. At the same time, manufacturers are also heavily

invested in the development of so-called L2+ systems, which expand the capabilities of the AD system while

keeping the driver responsible and in the loop.

2.3.2 Typical System Architecture and Components of AD System

Over the decades, a large number of different architectures have been proposed to tackle the problem of

autonomous driving. Without a one-and-only right way to define the system, some components and concepts

reappear in almost all proposed solutions.

M. Orłowski Reinforcement learning in autonomous driving

2. Background 21

Figure 2.4: Example sensor coverage along with features which its supports [109]

In Figure 2.3, a high-level version of the typical system architecture of the autonomous driving system is

presented. First of all, the car must collect information about the surroundings. To do so, numerous different

types of sensors are used. Car might also use the data, like a map, saved on-board or accessible online. All

this information is used in different perception modules, allowing one to detect different kinds of surround-

ing elements, presenting them in different forms. The process of perception almost always includes tracking

and data fusion between different sources, which first and foremost allows for improvement in detection

performance. With a good representation of the environment around the car, planning takes place, including

understanding where to drive (route planning), what kind of situation we are in (situation assessment), what

other traffic participants will do (prediction) and how to act accordingly (behaviour and trajectory planning).

With defined action, most often defined in a form of trajectory or set of reference set points, control blocks

are responsible to translate it to actuators input format, which results in ability to regulate movement of the

car.

In Sections 2.3.3 to 2.3.8, more details about all these blocks are provided, with the most typical methods

used currently in both research and production environments.

2.3.3 Sensors

To realise any ADAS or AD feature, the first and foremost car has to perceive its surroundings and under-

stand the context in which it is in. In this regard, the capabilities of the system are strongly connected with

the car’s functional capabilities in the end. In almost all cases, except for minor research activities [158],

perception is treated as a separate task with separate defined objectives. With a world model created on such

a base, the features functions of the given AD system operate. Figure 2.4 presents an example of the sensor

coverage of the high-end setup, along with potential feature functions supported by each sensor unit.

M. Orłowski Reinforcement learning in autonomous driving

2. Background 22

Figure 2.5: Measurement of an urban scene with the use of reference LIDAR sensor mounted on the roof of

the test vehicle.

Lidar

The sensor that provides the most direct and one of the richest representations of the environment of the

vehicle is the Light Detection and Ranging (LIDAR) sensor. The LIDAR principle of operation consists of

determining the ranges by targeting objects or surfaces with a laser beam and measuring the time of flight

of that beam to an object and back. LIDAR sensors provide a 3D detection map which can be later used to

perceive the world in the form of a semantic segmentation map or entity detection in vector form.

Different types of LIDARs have been proposed. The most distinguishable one is the mechanical type, in

which a rotating mirror is used to direct the laser beam in multiple directions. With Micro-Electromechanical

System (MEMS) setup, micro mirrors placed directly on a chip are controlled by electromagnetic force. The

Flash LIDARs diffuses the laser beam to cover the entire scene at once and then detects the reflected beam

using a 2D detector array.

The main advantages of the LIDAR sensor include high precision and resolution, direct 3D position

measurement, and a large field of view with a relatively wide range. One of the severe disadvantages is

the lack of resilience to weather conditions, especially heavy rain. Additionally, due to the complicated

mechanical construction, LIDAR sensors are still considered a costly solution compared to other kinds of

sensors, therefore, their application is limited to commercial MoD services and high-end vehicles.

Radar

The other sensor that found its usage in the automotive domain is the radar. This well-known technology

relies on sending and receiving electromagnetic waves, which on the way are reflected from obstacles.

Through this process, obstacles can be detected and located in the sensor field of view. Additionally, one of

M. Orłowski Reinforcement learning in autonomous driving

2. Background 23

Figure 2.6: The Aptiv’s SRR6 sensor, which is most often mounted in the corners of the vehicles [103]

the biggest advantages of automotive radar sensors is the ability to directly measure radial velocity, often

called the range rate. An image of a typical radar sensor is presented in Figure 2.6.

In the automotive setting, the most commonly used radars are the Frequency Modulated Continuous

Wave (FMCW) ones, with a frequency band in the range between 76 and 81 GHz. There are also multiple

types of radar depending on the use case, starting from Short Range Radar (SRR) with a large field of view,

high resolution, and relatively short range (up to 70 metres) to Long Range Radar (LRR) with a narrow

field of view but a maximum detection range, even up to 250 metres. The next step in radar evolution is the

introduction of imaging radar technology, which, except for the standard measurement of range, direction,

and relative velocity, also provides vertical information and generally presents significantly better resolution.

This results in a 4D view of the world, allowing one to determine the over- and under-drivability of obstacles,

better detection of road contours, and building more contextual information about the environment.

The pros of the radar sensor include being more robust to weather conditions, long-range detection,

direct measurement of position and relative velocity, and straightforward integration with a relatively small

cost per unit. With regard to the cons, the processing of radar signals is rather complex for both angle

measurement and object classification.

Camera

Human drivers first and foremost use their vision to perceive the environment around the car and assess the

situation. As all the road infrastructure is represented graphically, including traffic signs, traffic lights, and

road markings, the use of vision systems is a necessity.

M. Orłowski Reinforcement learning in autonomous driving

2. Background 24

Figure 2.7: Camera hardware system schematics [101]

The typical camera sensor schematics are presented in Figure 2.7. First, the lens system forms and

projects the image onto the image sensor, which converts visual data to electrical signals, with Complemen-

tary Metal Oxide Semiconductor (CMOS) technology being the most popular solution. Later, after Auto

Gain Control (AGC) adjusts the brightness of the image, an analogue-to-digital converter translates the con-

tinuous electrical voltage into a discrete form, which heads to an image signal processor, responsible for

basic operations such as demosaicing, noise reduction, white balancing, and others. Several control opera-

tions, including exposure adjustment and auto focus, are also executed along the way.

Although cameras produce rich visual information, are cost-effective, and provide high resolution, cap-

tured raw images can not be directly used in further processing and require extensive and elaborate process-

ing to extract semantic information. This includes depth perception challenges in which perception must rely

on visual cues, such as object size, perspective, context, or motion parallax, to locate and classify objects.

Fortunately, the rapid development and progress in the fields of machine learning and artificial intelligence

enabled the realisation of those tasks in real-time onboard vehicles, immensely increasing the performance

of depth estimation and object detection. Nevertheless, vision systems are subject to limited perception range

and are vulnerable to adverse weather and lighting conditions.

Initially, camera systems were used mostly in forward vision applications and as an aid to a driver

during reversal. Currently, its utilisation has increased significantly. To provide a better field of view in

front of the car, some manufacturers have used systems with multiple cameras, each with different focal

lengths. Recently, single-camera front-view systems with increased resolution have been put into production.

Stereovision cameras are used as well as a front-vision system, however, mono-camera systems do dominate

the market. In high-end variants, cameras have been mounted as well near pillars and in the rear, allowing

to observe cross traffic and cover intersection scenarios. In parking applications, 360-degree camera setups

based on fish-eye cameras allow for representing the closest car surroundings from a birds-eye perspective,

which can be used both by the driver directly or by automatic parking feature. Vision systems have also

found their place within the vehicle. Driver and cabin monitoring systems are becoming a requirement,

allowing the detection of seat occupancy, seatbelt fastening status, or driver state and alertness level. Gesture

recognition systems are also used as an alternative to control cars’ onboard systems.

Ultrasonic

The ultrasonic sensors are widely used as cost-effective solutions for parking aid, maneuvering assistance,

and low-speed emergency braking. They operate by producing the sound wave and listening for the echo

M. Orłowski Reinforcement learning in autonomous driving

2. Background 25

reflected from potential obstacles in the detection cone. The sound wave is created with the use of a piezo-

electric transducer, which converts electrical current to mechanical wave, and is later perceived with the use

of the same effect. The time between sending and receiving the sound pulse is proportional to the distance to

the obstacle. The effective range of detection starts at a few centimetres and ends at several metres. The ad-

vantages of ultrasonic sensors are their low cost, allowing for the placement of multiple sensors around the

vehicle, and relatively good resolution in close range. Disadvantages include short detection range, limiting

the use of such sensors only to low-speed maneuvering, and ambiguity of azimuth of the reflected object.

Others

Other sensor types are also in use in AD and ADAS use cases. The Inertial Measurement Unit (IMU)

sensors, consisting of accelerometers and gyroscopes, measure vehicle linear and rotational movements,

allowing them to provide more precise information about vehicle position, orientation, and motion. For a

similar purpose, wheel speed sensors measure the rotational speed of each wheel, allowing them to detect

a potential slippage and estimate the host’s vehicle dynamics. To be able to localise, Global Navigation

Satellite Systems (GNSS) sensors are used to receive the signals from satellites, allowing them to determine

the vehicle’s position and velocity. In earlier days of ADAS system development, simple laser sensors, with

only a few laser beams, were used in ACC systems for distance measurement to cars in front of the ego

vehicle. In premium segments, infrared sensors are used to detect Vulnerable Road Users (VRUs) under

night conditions. There is also a wide range of other sensors used in today’s vehicles as well, but their

impact on ADAS and AD systems are neglectable.

2.3.4 Perception Data Representation

As sensors collect the raw data stream, these data have to be processed to a usable format from a functional

perspective. Such processing of the data streams might be done for a single sensor, or by fusing multiple

sensors’ outputs, potentially coming from different domains. This could also be done at the low level, in the

so-called Low-Level Fusion (LLF). The way how processing is done varies from sensor to sensor, however,

a trend in using machine learning methodologies is visible in all domains.

Pre-processed data are represented in multiple forms, useful for different kinds of application. Objects,

including cars and VRUs, are most often represented in the form of a list of data structures, including object

position, dynamic state, class, and other features (such as blinker status for a car).

Road, including information about lane markers, road edges, and barriers, is often directly related to

traffic signs and traffic light information, allowing to gather all road and legal-related data in a single place.

The shape of the road is most often modelled as polynomials, however other kinds of curve formats, like

splines, are also in use. In more advanced systems, where crossroads are also modelled, specific lane seg-

ments are interconnected with each other in a graph manner. A good example of road data representation,

mainly used for simulation purposes, is the OpenDrive standard [5].

Such representations of objects and road data allow us to easily implement rule-based systems and

interconnect the information with each other, defining, for example, lane assignment for a car or providing

the status of a correct traffic light for an ego vehicle.

M. Orłowski Reinforcement learning in autonomous driving

2. Background 26

Figure 2.8: Example freespace representation [33]

Figure 2.9: Example grid representation [43]. In a single frame, some cells might have unknown statuses,

but as the car travels, it might update and track those cells by observing those from different perspectives.

At the same time, the representation of complex road structures, where lanes are not clearly defined,

aligning objects’ positions accordingly might be difficult with such data representation. Scenarios in which

more free-form planning is required, including unstructured intersections, parking lots, or narrow road pas-

sages, often require more flexible representation of the environment. This depiction includes freespace,

where the driving area is detected from the perspective of the ego car in a line-of-sight manner (see Figure

2.8). Another way of representation is the grid (Figure 2.9), defined as a cell map, where each of them can be

classified as being in one of the listed states. Such a representation enables easier tracking and might provide

more information about the occluded areas in a given moment, but requires much more computation power

to process. Both two- and three-dimensional grids are used, with the latter having the benefit of representing

hilly road sections or discriminating between the overdriveable and non-overdrivable areas. Grids as well

might include only static context or include as well dynamic object representation within.

In the end, different data representations are often used within a single software stack, allowing the use

of different interfaces for different features or scenarios and increasing the robustness of the system.

M. Orłowski Reinforcement learning in autonomous driving

2. Background 27

2.3.5 Localization and Mapping

While driving, humans often rely on their past experiences and memories to recognise patterns of reappear-

ing infrastructure to predict how to navigate complex intersections and act efficiently based on imperfect

information. As these abilities are natural to human intelligence, they are hard to realise in a digital system,

which is safety critical.

One of the concerns focuses on the locality of perception around the car, which results in a lack of

precise information on how the road looks beyond the sensor’s field of view. It is possible to define the

policy that detects and understands all the splits, merges, and other, often occluded features of the road. It

seems however much more straightforward to harvest the data in the form of the map and base the decision-

making on that source as well, and do not require reasoning from vague and incomplete information.

To effectively use the map, the car must localise itself within it with a given precision. Global Navi-

gation Satellite Systems (GNSS), including the most recognisable Global Positioning System (GPS), use

the constellation of satellites to provide positioning information. Positioning accuracy is subject to noise,

which originates from time measurement errors, different wave propagation velocities through space, signal

multipath effect, and imprecision in satellite position measurements. As the precision of the standard GPS,

which fluctuates around a few metres, is enough for navigation and routing tasks, it is not enough for precise

localisation within the lane. To alleviate some of the noise, the concept of differential GPS (DGPS) has

been introduced. The DGPS introduces a stationary reference station, placed in a precisely measured loca-

tion, which determines and sends the differential corrections to another, moveable, receiver, which could

be a car. This methodology allows an increase in the accuracy from a few metres to 0.5 - 2 metres. The

Real-Time Kinematic measurements (RTK) are currently the most accurate method which can be obtained

in real time, which extends the DGPS concept by focussing on the satellite signal’s carrier wave, allowing

to reduce the position estimation error to centimetres. Furthermore, all of the above methods can use inertial

navigation systems based on odometry, allowing one to estimate position changes based on measurements

of its dynamic state and tracking methodology, such as Kalman Filter (KF) [53].

Current autonomous driving research uses different types of maps, each with its own pros and cons.

Research carried out in geofenced areas often relies on high definition maps (HD-Maps), which the first

concept was introduced by Mercedes-Benz [171]. Most often defined with the use of high-precision lidar

and camera sensors, they contain very detailed information about static objects such as lane geometries,

buildings, traffic signs, and lights along with their properties. Map details allow not only to navigate but also

to localise based on the matching of perceived features with those in the map. HD-Maps, however, require

expensive equipment to be collected, which impacts their update abilities and scalability potential.

The Simultaneous Localisation and Mapping (SLAM) methodologies combine map creation with local-

isation tasks [86, 165]. A promising approach that uses this concept with crowd-sourced information has

been proposed by the automotive supplier MobilEye. The Road Experience Management (REM) [78] sys-

tem utilises vision as a primary source of data and benefits from the use of the fleet of end-users’ cars, which

provides a processed (therefore light) representation of the road. Later, data is aggregated and sent back

to users’ vehicles in the form of a map, allowing them to enable more features and provide high-precision

localisation.

M. Orłowski Reinforcement learning in autonomous driving

2. Background 28

2.3.6 Tracking and Fusion

Perceiving the scene is connected with the inherent noise in detection and is prone to occlusions, often of

different kinds for different sensor domains. The standard approach to improving the quality of the estimate

focuses on the tracking and fusion of data. Tracking is defined as using a series of readings from a single

sensor source, while fusion uses multiple sources. In addition to improving the state estimation quality of

measurements, tracking allows one to acquire signals which are not directly measured (like the speed of

a vehicle detected by a vision system). What is more, tracking and fusion allow one to provide quality

of estimation, which might be used to filter out false positive activations of the system (like Autonomous

Emergency Braking (AEB) system braking in front of ghost object) and might "hold up" the object detection

even if it is no longer in sensors field-of-view.

Tracking and fusion systems are used in most perception tasks, from object detection to traffic signs.

Most obvious example is detection of other vehicles in the scene by given sensor or set of sensors, followed

by tracking or fusion algorithm allowing us to estimate state of detected object and provide theirs coher-

ent representation. Both tracking and fusion are very often quite similar to each other with respect to the

mathematical concepts on which they stand. The most common approach to tracking a system with linear

dynamics and Gaussian noise is KF [53]. For systems with a nonlinear dynamic or observation model, ex-

tensions of standard KF have been introduced, such as Extended Kalman Filter (EKF) [2] and Unscented

Kalman Filter (UKF) [52]. All of these variants are divided into two steps: the prediction step, where the

state and its uncertainty of a given object are updated to a given time moment, and the update step, where

new measurements are incorporated into the estimation. Additional steps which needs to be covered as well

is object to measurement association, allowing to pick measurement to update correct tracked object or

object management, controlling when and how objects are being created and removed. Recently, machine

learning-based tracking methods have also started to play an important role in object tracking [104, 156].

The localisation task also is subject to data fusion and tracking. The baseline position on the location

of the vehicle is taken from the GNSS system, which is later supported by consideration of motion model

measurements and perception-based localisation, including lidar or vision data sources. Perception-based

methods are relaying on identification of characteristic points in the environment and localising the car with

respect to them with the use of a map. Due to the strong multimodal, non-Gaussian probability distribution

of estimated position, they often use particle filter concepts [4]. The main principle of operation relies on

spawning a large number of particles, each representing a virtual car placed on a predefined map. Later, each

particle is moved accordingly to the real movement of the vehicle, and the rightness of the particle position

is estimated based on the similarity between the simulated sensor reading and a real one. The weights of the

particles, corresponding to the rightness of their position, is used to estimate final position estimation of the

filter. Those approaches are incorporated into the SLAM techniques, introduced in Section 2.3.5.

2.3.7 Situation Assessment, Prediction, and Planning

When knowing what surrounds the ego vehicle and where it is located, the system has to make decisions

about what to do. The general term used to describe this part of the system is often referred to as trajec-

tory planning, but encapsulates much more than only planning a trajectory as such. There are numerous

M. Orłowski Reinforcement learning in autonomous driving

2. Background 29

approaches and configurations which are in use currently. Additionally, each of the elements of planning

system are highly interconnected to each other, mostly due to closed-loop nature of the system, therefore

the architectures are not feedforward in its kind. Most of solutions, however, include blocks realising the

function of situation assessment, prediction, behaviour, and trajectory planning.

Prediction and Situation Assessment

To add contextual and functional information to the perception of the ego environment, a situation assess-

ment is performed. An important part of this assessment is the prediction of behaviour and trajectory, which

aims to predict future movements of all other road participants beyond their kinematic state. To do so, pre-

diction methods utilise the context information, including other road users participants, road structure, local

traffic rules and customs, or even time of a day. The ideal result is a multimodal set of prediction which is

dependent on each other, often with equally strong dependence on our own planned actions. With that in

mind, in planning the behaviour or trajectory, algorithms aim at finding a solution to multi-agent, closed-

loop problem where prediction of other road users and our planned movements fits together and fulfils set

of constrains.

There are multiple types of prediction methods, ranging from model-based to data-driven ones. The

simplest solutions relay on the current kinematic state of tracked object, and extrapolating its movement to

the future. However, such a prediction might be valid only in a limited time frame and in scenarios that do

not involve abrupt changes in movement. Model-based approaches usually define common behaviours of

the vehicle, like going straight or turning right on the intersection, changing lane, or speeding or slowing

down, and trying to identify them in current object behaviour. The authors of [61] provided an extensive

survey on prediction and situation assessment methods.

The approaches which currently gain a lot of attention are the data-driven ones based on neural network

predictors. Most often, they encode the scene in predefined format (for example, a semantic segmentation

map) and try to predict the set of most probable trajectories for each of the objects [19, 32, 100, 110].

The situation assessment is highly interlinked with the prediction task itself as it tries to grasp contextual

information about the scenarios in which the ego car is in. It is most often realised as a set of heuristics,

which tries to detect if a given scenario is nominal or dangerous, or what is the resulting priority on the

intersection. The identification of such traits is later used in nominal trajectory planning, and might be

treated as indications of potential firing safety systems, such as AEB.

Behavior Planning

Behaviour planning term is most often referred to the planning of vehicle movement using a high-level

command language, which is later translated or implemented in the form of trajectories. Such planned

behaviours may involve manoeuvre-based planning, where the actions relate to commanding lane change,

lane following, or turning on an intersection, or be setpoint-based directions, indicating the reference speed

or amount of bias within the current lane. In most of the cases, the behaviour planning block is not directly

responsible for ensuring safety and relays on safe realisation of its output by path and trajectory planning

module.

M. Orłowski Reinforcement learning in autonomous driving

2. Background 30

As high-level definition of behaviour is convenient, in the same time it is limiting in intended ego be-

haviour representations. Implementation of a functional bottleneck in the form of high-level behaviour plan-

ner is sometimes omitted in approaches which can directly plan trajectory itself.

An extended review of behaviour planning methods might be found as an introduction to Chapter 3, in

Section 3.3, which aimed to put in context the reinforcement learning behaviour planning module introduced

there.

Path and Trajectory Planning

The path and trajectory planning modules aim at generating geometrical shapes which the ego should follow.

The path can be interpreted as a line to follow with any dynamic profile, defined primary with the use of static

context. In situations where dynamic context is not existing, like isolated parking manoeuvre or maneuvering

in a closed area, the path is a reasonable way of expressing car behaviour (see Chapter 4 for an example

of utilisation of the path interface). In case of dynamic objects presence in the scene, a path might still be

planned to define the reference line to follow. The plan expressed as a path must be followed by a definition

of dynamic movement, defining a concrete velocity profile along it. In cases of heavy interactiveness with

traffic, such as urban driving, path planning starts to lose applicability, as it cannot model those interactions

well. Path can be well described as a set of points or as a parametric curve.

The trajectory is a function of time, which precisely defines the reference position in each moment,

and by this velocity and acceleration profiles, it might therefore be directly used as a control reference. As

it defines the movement of the ego vehicle to the full extent, it can be used in dynamic environments to

model interactions with other vehicles. Due to this, trajectory planning is the method of choice for most

autonomous driving methods.

There are numerous methods of planning path and trajectories for autonomous driving use, while most

of the methods tries to optimise a cost function while adhering to defined constrains. In [154] a sampling

method has been proposed that focuses on defining the initial and end state of the vehicle and fitting the

optimal jerk polynomial to it. In Mercedes research [170], authors derived trajectories with local, contin-

ues approach which minimises objective dependent on safety, comfort and usefulness while passing set of

constrains including vehicle kinematics and dynamics as well as static and dynamic elements of the scene.

In [68], Model-Predictive Control (MPC)-based system which automatically decides on the modes of ma-

noeuvres has been presented. In [138], we proposed a method for planning a trajectory that expanded the

potential for the execution of emergency manoeuvres.

Currently, trajectory generation research is dominated by AI-based solutions, which tightly ties it to

prediction methods. An end-to-end solution, accepting raw LIDAR data and HD map and providing object

detection with their predictions as well as cost volume defining the goodness of each position to reach the

planning horizon, has been described in [164]. A prediction-based scalable system that allows car dynamics

to be incorporated has been presented in [107].

More detailed reviews of motion planning methods can be found in [28, 42, 163]. Reviews of the litera-

ture related to these topics are also included in Sections 3.3, 4.3, and 5.3.

M. Orłowski Reinforcement learning in autonomous driving

2. Background 31

2.3.8 Control

The trajectory, which is the most frequently result of the trajectory planning module described above, has

to finally be performed by the car actuators. Often, the reference trajectory is already generalised in control

parameters space, therefore it is realisable from a car kinematic perspective, but this is not always the case.

Such systems most often generate control trajectories from a reference path or a trajectory based on MPC

approaches [162]. The use of a mathematical model of a car and a prediction engine enables the generation

of trajectories with many control options and potential constraints. The additional benefit of defining control

trajectories includes straightforward handling of potential delays in the system.

In the more basic systems, such as entry-level Adaptive Cruise Control (ACC) features, where the tra-

jectory is not planned and the system operates directly on brakes and throttle signals, simple and adequate

controllers are used. The most common include the Proportional Integral Derivative (PID) controller and

Linear-Quadratic Regulator (LQR), with their derivatives [39]. Still, a lot of customisation is made specifi-

cally for the automotive use case, allowing for better behaviour of the final system. As an example of such

adaptation, during vehicle cut-in in front of the ACC-regulated car controlled by PID regulator, the integral

part of it is often reset to accommodate faster response to a nonlinear change in the system input.

M. Orłowski Reinforcement learning in autonomous driving

2. Background 32

M. Orłowski Reinforcement learning in autonomous driving

Chapter 3

Goal-based Behaviour Planning With
Manoeuvre and Desired Speed Control

3.1 Introduction

One of the challenges of automated driving capability is successful navigation from point A to point B. The

system is most often provided with a navigation, which, based on localisation information, provides a list

of instructions to follow the selected route. These instructions can be represented as lane-based goals and

in most cases are associated with decision points such as splits or intersections. Those lane-based goals are

defined to indicate on which lanes we should position ourselves in a given distance, and which additional

information about the desired kind of manoeuvres to be executed, in cases where multiple manoeuvres can

be performed from a given lane (like driving straight or taking a right turn). In the end, following the route,

the car should perform such manoeuvres to end up in the correct lanes at specific locations.

One of the most straightforward policies to follow such a route is to perform accordingly left and right

lane change manoeuvres until we will arrive at the correct lane and to stay on it until we will pass defined

goal and move to the next one. However, such a policy might not be sufficient in real-life scenarios. As an

example, road policies in many countries indicate that cars should stay in the right lane whenever possible.

Furthermore, lane navigation decisions should be made in the context of current traffic, which might not

allow performing specific lane change manoeuvres at a given time (Figure 3.1) or may cause a situation

where leaving the desired lane from the perspective of the route is a reasonable option (Figure 3.2).

As the driving setting is inherently closed-loop and involves many unobserved states, like the level of ag-

gressiveness of a given driver or their own goals, the correct decision in a lot of cases is not straightforward.

The optimal policy might drastically change even with small perturbations of the same scenario, as well as

is defined based on the current objective, which should represent a balance between comfort, safety, and

effectiveness. Due to the plurality of possible scenarios, the obvious tendency is to use data-driven methods,

such as machine learning. The closed-loop property of the system suggests the use of the reinforcement

learning methodology. At the same time, the rule-based approach brings many benefits and might rule out a

lot of decisions for free (like not changing the lane to a non-existent one).

33

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 34

Figure 3.1: The ego (red car) goal is on the right lane and there are multiple strategies for how to get to that

lane. In the most aggressive setting (red), ego may speed up and try to squeeze in front of the blue car, while

risking missing the goal. Another option (yellow) is to maintain the speed and try to negotiate the space with

the grey car, hoping it will be not too assertive and will let the ego car in. In the most conservative option

(blue), ego may drop behind the grey car and execute lane change there, however, this may have an impact

on fast lane (right) flow.

Figure 3.2: The ego car (red) is driving in the correct lane but it is stuck behind a slow-moving truck. The

safe option is to stay in the correct lane and slowly continue until reaching the goal (green trajectory). Ego

may as well leave the goal lane, overtake the truck and go back to the right lane (red trajectory).

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 35

Because of that, a highway navigation problem will be presented with the proposed hybrid system, which

will incorporate both a reinforcement learning-based policy and a rule-based system for meeting constraints

and trajectory planning.

3.2 Problem Statement

3.2.1 Problem Formulation

In this chapter, a reinforcement learning methodology was applied to produce a policy controlling a car

using a high-level interface. The policy, being part of the control system of the modelled ego vehicle, will

interact with the design environment, which will model the problem of reaching lane-based goal in multi-

lane highway scenarios.

The problem will be represented as Partial Observable Markov Decision Process (POMDP), however,

the partial observability issue will not be addressed in a specific way. Each episode starts with spawning an

ego car controlled with the RL policy on the highway with other vehicles on it. The scenario, which consists

of predefined traffic congestion, number of lanes, and lane-based goal (located on a specific lane at a given

distance in front of the ego), is randomly selected. To generate action, RL policy uses observation of the

environment, consisting of ego’s internal state, desired goal encoding, state of surrounding objects and road

structure information. The policy is responsible for defining the action in the form of the car behaviour,

which consists of discrete manoeuvre type and setpoint of velocity. Rest of the car control algorithm is

within the simulated environment.

The crucial part of the environment is the traffic simulation engine itself, but the environment also

includes methods for the interpretation of actions and the creation of observations. In the first step, the

defined action is interpreted and realised with the use of the trajectory generation module. Depending on

the setup, this action is interpreted in different ways, which is a subject of evaluation in the research. The

common element in all setups is moving the ego vehicle accordingly to a defined trajectory coupled with

simulation of movement of other road users, which are controlled in a closed-loop manner. In the end, the

resulting state of the whole simulation is represented in the form of observation of the environment.

The terminal states of the simulation include reaching the desired goal or missing it, being involved

in a collision, or leaving the boundaries of the road. A reward signal is composed with elements promot-

ing reaching the goal as fast as possible, while maximising the comfort of drive described in a form of

acceleration magnitude and avoiding undesirable terminal states.

A set of experiments has been conducted that allowed the verification of positive and negative aspects of

the introduced mechanisms. For being specific, the agent have been trained with and without the proposed

deterministic mechanisms, and the effects of introducing the deterministic constraints after the training

without them were examined.

3.2.2 Assumptions and Limitations

In the research conducted, the problem has been simplified by making the following assumptions, which

could be limiting when trying to deploy the proposed methods in real-world applications.

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 36

• Trajectory planning was realised in two axes separately (first for longitudinal axis and later based

on that in lateral one), modelling car as a point (its centre) with specific distance limits representing

car dimensions. This was a reasonable assumption in scenarios where movement is dominated by

longitudinal part and ego car stays within safe limits of dynamic movement. However, in case of slow

moving scenarios the kinematic relationship between orientation and ego movement would need to be

handled with the use of more complex motion model.

• For trajectory planning, simple prediction based on the extrapolation of the dynamic state of each

object was used. This way of performing the prediction is only valid in short-term horizons or in very

stable scenes. Other, more complex methods might be used to address this fact, although a decision

has been made not to explore this dimension in the research.

• The simulation of highway scenarios only included a straight segment of the road. It can be argued,

however, that by representing the road in the Frenet coordinate system this limitation is negligible for

experiment, as even a curve-shaped road would be presented in the same way.

• By simulating the highway environment, some of the existing traffic rules have been represented.

There is, however, a significant amount of rules which have not been expressed in training setup,

where a lot of them vary depending on specific country. Making sure the agent fulfils all of them

accordingly is significant development and legislative effort.

• The policy has access to perfect information about the state of all road users and infrastructure, which

is an unrealistic assumption in the case of real-world sensors, which are associated with noise. The

issue of modelling perception errors and being robust in case of their existence needs to be addressed

prior to moving the solution to a production environment.

3.3 Prior Art

The concept of behaviour planning was originally drawn from research conducted during the DARPA Urban

Challenge and was the result of the definition of the standard AD architecture, which has been mentioned

in Section 2.3.2. During this research, to narrow the search space for optimal trajectory due to limited

computation power and to straightforwardly accommodate traffic rules, the need to control the car at high

level arised.

Initially, behaviour planning models used the concept of Finite State Machine (FSM), which has been

constructed with a set of states relating to specific modes of driving, between which the algorithm can transit

based on a list of conditions [146]. For example, in [35, 81] FSM have been used to control modes in which

car is present. The application of FSM in real world scenarios has been shown in [171]. In practise, however,

the FSM approach turns out to be unsuitable for the generation of doe behaviour due to poor explainability

in complex scenarios, maintainability in case of a need to refine existing behaviour, and scalability to cover

a plethora of cases. Behaviour-based systems work by decoupling the decision process into atomic tasks

and formulated behaviour in a bottom-up approach. Examples of this include subsumption architectures

[18], voting systems [105] or activation networks [71]. In [96], a hierarchical behaviour-based architecture

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 37

has been presented to make tactical and strategic decisions, which allows for a combination of different

techniques for different levels or scenarios.

The application of reinforcement learning methodology to behaviour planning has initially been studied

in the field. In [94], we conducted initial research on behaviour planning, where we used DQN and SAC

algorithms to control the car according to Responsibility-Sensitive Safety (RSS) formulations in a similar set

of scenarios. Additionally, in the article, we provide a comparison to naively trained low-level control with

the use of the SAC training algorithm. Similar research has been conducted in [88], where the authors added

simple rules that later override the decisions of the RL agent if necessary. In [74], the behaviour planning

agent was trained in a two-lane setting with the Deep Q-Learning (DQN) algorithm to maximise speed

and avoid collisions. In a series of articles, the company MobilEye has evaluated the use of reinforcement

learning in the semantic control interface, where the agents’ actions were carried out according to the state of

other road users [118, 119]. During that work, safety rules have been formulated and are currently followed

with legislative efforts. In [98], the potential promises and challenges of applying reinforcement learning to

automated vehicle motion planning have been summarised.

It is also important to note that with recent growth in computation power and popularisation of data-

driven methods, the behaviour planning function is often heavily minimised in scope, as planning occurs

as a single step with the use of simultaneous prediction and planning methods [19, 100]. In that case, the

behaviour definition often defines the constraints or goals for planning.

Review of other behavior planning methods, which found its application in autonomous driving, has

been provided as well in [42, 163].

3.4 Behavior Planning Environment Description

As described in Section 2.1, the reinforcement learning process is formulated as the interaction of the agent

with the environment to find a policy that maximises the discounted accumulated reward. From the per-

spective of the search for optimal policy or training algorithm development, the environment is treated as

a constant benchmark used for evaluation. This is an analogy to training data sets used for the evaluation

of supervised learning algorithms and models. Nevertheless, when the objective is the application of rein-

forcement learning methods to an existing real-world problem, such as automated driving, the design of the

environment itself presumably becomes the most extensive research and development area. In the context

of presented application, such a design would include a form of perception of the outer world and creating

its observation, a way of interpreting of agent’s action, the definition of traffic, covered scenarios during the

training, additional, non-trainable elements of the policy, and finally definition of the reward signal. These

design choices would have implications on the properties of the environment, such as its transparency, safety

assurance, required information availability, and controllability of the car, which will have a direct impact

on training efficiency and overall functionality-wise performance of the policy.

In the following sections, the most important elements of the environment are presented and described.

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 38

3.4.1 TrafficAI Simulation Tool

To train the reinforcement learning agent, an appropriate traffic simulation tool must be selected. During the

preparation for the research, a list of requirements which such software should fulfil was prepared.

• Simulation shall allow for full control over it, allowing one to control it via the Python language

interface, including scene initialisation, stepping through simulation, and controlling car behaviour.

• Software must allow closed-loop simulation with behaviour models of other road users.

• The software shall be available with a beneficial licencing model, allowing one to run simulation in

multiple instances at once.

• The solution must be lightweight and fast, which would allow to run it on a single CPU without usage

of GPU.

• Simulation shall be able to generate randomised scenarios, prescribed in a high-level manner.

• Simulation shall be able to read in map data, or generate it randomly.

• Simulation shall be able to simulate reading from different virtual sensors located in a car.

• Basic visualisation of the simulation state must be available.

Based on the research, the simulation engine that was selected as a base was TrafficAI [135]. The tool

was originally developed by the Simteract company and was adopted by the same supplier to meet all of the

listed requirements as a joint effort of Simteract and Aptiv.

TrafficAI is a multi-agent, closed-loop simulation of the traffic environment, both for the highway and

urban scenarios. With respect to the static environment, the simulation includes a multiple-lane road simu-

lation with features such as junctions, merges, or splits, along with traffic signs, traffic lights, or pedestrian

crossings. Such road structures may be created both manually by prescribing a parametrizable configuration

file or may be based on real-world map sources, such as OpenDrive or Open Street Map. When it comes to

the dynamic part, multiple users of different types, such as cars or trucks, can be simulated.

Controlling of an agent may be realised by direct state setting, using kinematic model simulation, or with

the use of a dynamic model of a car. Agent control may be delegated as well to the simulation engine. In such

a case, a parametrizable behaviour model is used to decide on agents’ actions. By such a parameterisation,

different driver types, such as aggressive or rookie, can be defined.

The tool also allows for defining a basic portfolio of simulated sensors, which handles both field-of-

view limitations and occlusions. By placing the sensors in specific locations in the car, we may represent

the target car set-up that we are trying to recreate. Later, while using simulation, users may query-specific

sensor stream or sensor portfolio about specific objects (other road users) detected by it.

During the co-development of TrafficAI, an idea of the high-level scenario has been introduced, which

allows defining the properties of both road infrastructure and traffic in parametric form. With the use of

this, users may define features such as a sequence of road structure elements, the density of traffic per each

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 39

Figure 3.3: Visualized TrafficAI simulation. Road structures are presented in white; cars in the form of

bounding boxes are presented in magenta. On the left, is a basic use case of highway environment simulation.

On the right, the more complex urban scenario with high-density traffic, junction and overpass.

road or lane, a portfolio of driver types along with their navigation goals. On the basis of that, variations of

on-road scenarios can be automatically generated, still allowing for the closed-loop behaviour of other road

users.

The tool also allows for basic visualisation, representing cars as bounding boxes and drawing a road in

the form of lines.

The main contributing changes to the simulation involved better support of reinforcement learning appli-

cation needs and closing the gap to automotive-grade simulation tools. The list of changes included an option

to add artificial sensors, a new definition of scenarios (also known as the High-Level Scenario), adding a

dynamic model for agents’ movement simulation, lightweight visualisation, and scenario replay features.

With these adaptations, the TrafficAI simulation tool has become a solid training and testing ground for the

application and has gained the potential to be used as well as a general tool for the development of automated

driving features.

Having all the elements listed above, the user may step through the simulation. In each step, the sim-

ulation is queried about the road and traffic features around the ego vehicle, which may come from both

reference data and sensor models. On the basis of that, the decision may be made on how we would like

to act in response to it. This process emulates the behaviour of the onboard system in a car with ADAS or

automated driving capabilities. For the presented use case, simulation is used as a part of the reinforcement

learning environment, with specific additions around it, explained in detail in further sections.

3.4.2 TrafficAIEnv

With TrafficAI simulation as the core of the test environment, a general reinforcement learning environment,

TrafficAIEnv, has been created [92]. It wrapped the simulation and adds to it specific dynamics. A very high-

level overview of it is presented in Figure 3.4. TrafficAI implements both standards, open source OpenAI

Gym Environment [17] interface, and it may be extended to a multi-agent setting, supporting the RLlib [65]

interface version of such environment. In both settings, the two most important functionalities are reset and

step methods. The first one is called always at the beginning of an episode, and it is responsible for setting up

a whole new episode, which is supposed to be simulated, ending up with returning initial observation for the

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 40

Figure 3.4: The building blocks and scheme of agent (policy) interaction with the designed environment

from its perspective. In each timestamp, based on the ego car’s perception systems, which eventually form

environment observation, the policy decides on action to execute. Action is defined as an acceleration com-

mand, manoeuvre to execute, or analogues control signal. This action is further interpreted and parsed by

trajectory generation and control blocks. Next, with low-level control defined for the ego, behaviour is ex-

ecuted within the traffic, which is simulated or the real one. Then, the ego car’s perception systems are

queried again, resulting in a new state (observation) for the next time instance. Along with this new obser-

vation, the policy decision, and in general environment state, is evaluated and summarised in the form of a

reward signal, whose value depends on such qualities as achieved speed, smoothness, and safety.

agent. The step method is responsible for interpreting the consumed agent’s action and moving the whole

environment to the next time instance, while producing the next observation, reward signal, and indication

if the current episode has terminated.

Because during the project many different settings would and should be tested, the elements of the

internal environment have been designed to be very general and configurable. To support this requirement, a

concept of pipelines operating in states has been introduced and implemented. The initial idea came from [7],

however, it has been refined and extended.

Each agent, which is supposed to be controlled by a reinforcement learning algorithm, has a state, which

is a dictionary gathering such information as current position, goal, perceived road, and other road users from

its perspective, etc. For general information about the environment, such as the simulation handle or update

time, the special placeholder is reserved as another artificial agent. On the basis of that, different pipelines are

defined, which are the sequences of function calls. Those calls may be characterised as environmental ones,

which are supposed to modify the general state of the environment, and agent-specific ones, which update

the state of a specific agent. An example of the first type is simulation update, which happens once for all

agents, while queering observation for a given agent is an instance of an agent-specific one. Depending on

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 41

Figure 3.5: An example of an environment pipeline, executed for step function of the environment. The green

colour indicates general data and pipeline steps of the environment, while blue corresponds to agent-specific

elements. In presented examples, agent-specific modules such as Interpret action or Query for objects are

executed for each agent by consuming the corresponding agent state and general environment one, while

steps such as TrafficAI step once per the whole environment.

the type, each function call accepts a set of parameters required by it and updates other elements of the state.

The calls are then executed in sequence for each agent or environment.

Based on pipeline concepts different processes happening within the environment are realised, such as

initialisation, step function, observation creation, or visualisation. By different definitions of such processes,

different concepts for observation shapes, action interpretations or internal agent dynamics may be tested.

The reward calculation process is handled in a slightly different manner, to allow for the easy accumulation

of rewards of a specific agent and cross-agent operations, like depending on one agent’s rewards on another

agent’s performance.

In addition, the environments have been wrapped to simulate multiple different scenarios. By that,

multiple-variable-difficulty functional setups can be simulated. Additionally, the curriculum learning [126]

approach can be realised, gradually increasing the difficulty of the environment by changing the distribution

of different scenarios.

The general flow of information within the environment is presented in Figure 3.6. This scheme and its

realisation vary depending on the concrete setup, but is general enough to present dynamics and steps exe-

cuted within the environment. Specific observation and reward mechanisms are presented in the following

sections, which correspond to concrete functional setups.

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 42

Figure 3.6: Graphics represent the general flow of information in the TrafficAI Environment in a step func-

tion. First, the transition to the next time instance is realized by a series of steps, consisting of action parsing,

execution of that action in the loop in Trajectory and control sub-pipeline and data gathering afterwards.

Later, based on the updated state the new observation is created, along with recalculated reward and an in-

dication of episode termination.

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 43

3.4.3 Observation Space

To be able to run the NN-based policy, the state of the environment must be encoded in the appropriate for-

mat. Its structure is presented in Table 3.1. All values were normalised to the range < 0, 1 > or < −1, 1 >
or were a set of discrete values. Firstly, the state of the ego vehicle itself was encoded, summarising its

dynamic state, history of executed manoeuvres, and providing information about the availability of lane

change. Secondly, the goals state have been parsed. In the test scenarios presented in this work, only situa-

tions with a single goal in a single lane have been tested. The state of each goal consists of distance to it and

indication which lanes are the target ones (which enables the option to have more than one possible lane to

reach). Next, the state of dynamic objects around the ego car has been encoded. Each encoding consisted of

the indication of the validity of the given object, its relative position and dynamic state, its dimensions, and

the discrete position indication, including its lane, being in front or in the back, and the order with respect

to other objects. The last information was the status of the object blinker. The road was represented in a

form of a list of lanes states, each including information about its relative position to the vehicle, when it

opens and closes and about availability of its adjacent lanes. This information was important in cases where

scenarios with lanes openings and closings were simulated. Lane information was indicated in the available

manoeuvre mask, which was used later in the action selection mechanism.

The proposed observation space was used in all experiments, although in some parts of it was not ef-

fectively used in specific scenarios (like the ones without opening and closing lanes). the model, however,

was used in the general version, while understanding that some of its input might not be used in a narrowed

scenario portfolio.

3.4.4 Action Space

As already mentioned in introduction, the RL-policy was assigned the role of behaviour planner. In the

case, the behaviour was defined as the manoeuvre to execute along with the velocity set point. The action

space for the experiments has been designed as a multi-discrete head, therefore the network was providing

independent probability distributions for manoeuvre and velocity parts. The details of the action space are

presented in Table 3.2.

3.4.5 Reward Function

Reward function designed had to be composed of few specific components responsible for different qualities

of the desired behaviour. The final reward r has been calculated as the sum of the weighted components ci
according to Equation 3.1. The specific components of the rewards have been listed in Table 3.3.

r(s, a, s′) =
∑

i=0,1,...,N

ci (3.1)

The base component of the reward function is the execution of the speed limit, which provides an

incentive to get to the goal lane as fast as possible with respect to the speed limit. Rest of the components by

their purely negative effect on the return are used to shape ego behaviour and limit undesirable situations.

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 44

Table 3.1 Observation space used for behavior planning scenarios.

Values Space Range Description

ego [10] State of the ego vehicle

d < −1, 1 > Lateral position in the Frenet coordinate system

vs < 0, 1 > Longitudinal velocity in the Frenet coordinate system

vlimit
s < 0, 1 > Absolute velocity saturation with respect to speed limit

vd < −1, 1 > Lateral velocity in the Frenet coordinate system

as < −1, 1 > Longitudinal acceleration in the Frenet coordinate system

ad < −1, 1 > Lateral acceleration in the Frenet coordinate system

θ < −1, 1 > Orientation in the Frenet coordinate system

m {0, 1, ..., 5} Encoding of the last manoeuvre executed by the ego

lleft {0, 1} Left lane change available

lright {0, 1} Right lane change available

goals [2, 8] Vector of goals on the road

goal [8] Goal description

sg [1] < 0, 1 > Distance to the goal

eg [7] {0, 1} Lane goals vector

objects [10, 14] List of states of objects around the ego

object [14] State of a single object

ek {0, 1} Indication if the k-th object is valid

sk < −1, 1 > Longitudinal position of the k-th object in the Frenet coordinate system

dk < −1, 1 > Lateral position of k-th object in the Frenet coordinate system

wk < 0, 1 > Width of the k-th object

lk < 0, 1 > Length of the k-th object

vsk < 0, 1 > Longitudinal velocity of the k-th object in the Frenet coordinate system

vdk < 0, 1 > Lateral velocity of the k-th object in the Frenet coordinate system

ask < −1, 1 > Longitudinal acceleration of the k-th object in the Frenet coordinate system

adk < −1, 1 > Lateral acceleration of the k-th object in the Frenet coordinate system

θk < −1, 1 > Orientation of the k-th object in the Frenet coordinate system

lrelk {0, 1, ..., 9} Relative id of the lane on which k-th object is

pk {0, 1} Indication if the k-th object is in front or in the back from ego

ok {0, 1, ..., 9} Indication at which position k-th object is (is it first, second, etc.)

bk {0, 1, 2} Encoding of the blinker status of k-th object: off, left or right

lanes [7, 8] Lanes description

lane [8] Description of a single lane

ei {0, 1} Indication if i-th lane is valid

lreli {0, 1, ..., 6} Relative position of i-th lane

oini < −1, 1 > Information about when the i-th lane opens relative to the ego position

cini < −1, 1 > Information about when the i-th lane is closing relative to ego position

aleft,ini < −1, 1 > Indication in which distance left lane w.r.t. i-th lane will be available from it

aleft,toi < −1, 1 > Indication to which distance left lane w.r.t. i-th lane will be available from it

aright,ini < −1, 1 > Indication in which distance right lane w.r.t. i-th lane will be available from it

aright,toi < −1, 1 > Indication to which distance right lane w.r.t. i-th lane will be available from it

maneuvers [6] {0, 1} Mask vector of available maneuvers

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 45

Table 3.2 Action space used in behavior planning scenarios. Both maneuver and velocity represent

probability distributions over discrete set of actions.

Action Space Description

maneuver [6] State of the ego vehicle

FOLLOW_LANE Stay within current lane

PREPARE_FOR_LANE_CHANGE_LEFT Turn on left indicator and execute the follow-lane manoeuvre

PREPARE_FOR_LANE_CHANGE_RIGHT Turn on right indicator and execute follow-lane manoeuvre

LANE_CHANGE_LEFT Execute lane change to the left lane

LANE_CHANGE_RIGHT Execute lane change to the right lane

ABORT_LANE_CHANGE Go back to the origin lane during lane change and prepare for lane change

velocity [7] Vector of velocity deltas

-3

Delta velocities added to the current ego speed to derive a new velocity setpoint

-2

-1

0

1

2

3

Table 3.3 Reward components used in behaviour planning experiments.

Component (c) Range Description

speed limit execution < 0, 1 > Average speed with respect to the speed limit, provided that the agent successfully

arrives at the goal. When the agent misses the goal, the reward is set to 0.

negative acceleration < −0.054, 0 > Negative reward for acquiring negative acceleration (braking). Value provided in

each step, saturated at -3m/s2

maneuver execution < −0.01, 0.0 >

A negative reward provided when the agent changes the manoeuvre, otherwise zero.

They are used to minimise instances of lane change manoeuvres.

Values for specific maneuvers:

- Follow Lane: 0.0

- Prepare for Lane Change: −0.0001
- Lane Change: −0.0001
- Abort Lane Change: −0.01

emergency manoeuvre < −0.01, 0.0 > Negative reward for emergency manoeuvre execution. Equal to −0.01 at each step

when an emergency brake must be applied, therefore, more important in the need

for severe brake, otherwise 0.

terminal states < −1.0, 0.0 > Negative reward of−1.0 for one of the terminal states ending the episode, including

collision or getting out of the road by invalid manoeuvre. Otherwise, 0.

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 46

This includes limiting braking, the number of manoeuvre changes, the need to execute an emergency braking

manoeuvre, and ending up in any undesirable terminal states.

The reward function has been kept in the same form for all experiments, but due to the changes in-

troduced in the action selection mechanism, trajectory generation mode or manoeuvres FSM some of its

components were inactive or much less impactful.

3.5 Hybrid System Architecture

As already noticed in Section 3.1, there are obvious benefits of using deterministic, rule-based methods as

well as AI-based methods in behaviour planning. Unfortunately, combining these two approaches is not

trivial. The difficulty arises in fact because the agent has to train itself in a closed-loop system, which might

be heavily impacted by those deterministic rules. This stands contrary to system design where each block

has a specific task to execute which is well defined and independent except for interface reliance.

Imagine a well-known feature function of adaptive cruise control, where the speed of the car is regulated

based on user input but at the same time might be decreased in case of a slower moving vehicle in front of the

ego car. In such a system, two distinctive parts can be defined: one is responsible for the velocity set point,

which is the desired speed of travelling, and one aiming at keeping that reference unless objects in front of

the ego car does not enforce its limitation. The first part might take into consideration the driver preferences,

consecutive speed limits, or comfortable, maximum velocities in curves. The second part interprets the

derived set point velocity as an desire, and by understanding the dynamics of the car tries to keep it, while

in the same time is responsible for limiting the ego speed to keep safe distance to objects in front.

In case of a rule-based system, the first part does not really care if its speed limit is reached by the

second part. Although, if we would like to model the first part of the system as RL agent, returned action

in the form of velocity setpoint should be executed in predefined way. In the other case, the agent starts to

lose understanding of how given actions impact its state and are realised. From the RL agent’s perspective,

driving behind some slow-moving vehicle and returning any velocity setpoint above current speed has no real

effect on the car’s behaviour, as it is limited by the ACC part of the system. Of course, the machine learning

process will try to deal with that uncertainty, but in the same time the noisiness and lack of transparency

introduced by such system design seriously hinders the already challenging optimisation process.

Such system design choices are not only visible in velocity control, but have its own form in manoeuvre

selection or defining the acceleration profile. In following sections, we will go through proposed methods

and design choices which aims at keeping the environment as transparent as possible but which preserve the

ability to inject rules into the system and ensure compliance with them. The hybrid system will be designed,

according to the common AD system architecture presented as part of Figure 2.3. The RL-based module will

be made responsible for behaviour planning and define the manoeuvre to execute and the velocity at which

the car should travel. The deterministic methods will be used both prior to call to AI module and afterwards,

and will pre-define the possible actions, ensure safety of planning, and execute RL-defined behaviour.

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 47

3.5.1 Safety Envelope and Responsibility-Based Safety Framework

One of the main roles of the deterministic part is to define the rules-based constraints for the policy. Some

of the driving rules or traffic laws can be defined straightforwardly and might be assumed ultimate, with

the exception of eventual perception errors and safety-critical scenarios. Under nominal driving conditions

and with reasonably good performance perception, crossing a solid line or running a red light should never

happen and should be excluded from action space.

Having that in mind, the rules that apply to simulated scenarios have been listed, which are applicable

to the highway driving conditions:

R1. Do not change lane to non-existing one

R2. Do not cross solid line

R3. Do not cross the speed limit

R4. Do not change the lane when it is unsafe

R5. Do not change lane to one which is ending

R6. Do not drive to close to the car in front

Some of those rules (the first three) are rather straightforward and clear, but the rest needs to be more

precisely defined to determine exactly what should be the minimum safe distance to the car in front. To

do so, basic formulations from Responsibility-Sensitive Safety (RSS) [118] have been used, which is the

mathematical model for the definition of safety constraints.

The RSS framework embeds the understanding that ultimate safety is impossible to achieve and the

main focus point should be avoiding causing collisions. Following that, clear rules have to be established

to assign guilt (i.e., responsibility) for each event on road and make sure that the ego car will never be the

responsible agent. The RSS is introducing a set of five parameterizable rules based on common sense and

practise, allowing one to define what it means to drive safely. In the event of braking any of those rules, the

ego vehicle would be obligated to perform the emergency manoeuvre, which is a possible "way out" from

a dangerous situation. The framework is built and parameterized on the notion of the reasonable worst-case

scenario of what might happen on the road, rather than statistical analysis. The framework does not pay

special attention to possible perception errors in the system, which should be taken care of in a separate

manner.

In case of highway use, the first rule was used primarily, which defines the safe distance to be kept to the

car in front. The commonly known "Two Second Rule" is substituted with precise mathematical formulation,

taking into consideration the observed as well as assumed kinematic properties of the cars. Equation

dmin = vrρ+
1

2
amax,accelρ

2 +
(vr + ρamax,accel)

2

2amin,brake
−

vf
2

2amax,brake
(3.2)

shows the calculation of the minimum safe distance to the leading vehicle, where vr is the relative speed,

ρ is a response time, amax,accel is the maximum acceleration which can be applied during reaction time by

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 48

Figure 3.7: The mechanism is used to define the probability distribution only over available actions. The

general state of the neural network passes through the Fully-Connected (FC) layer and it is multiplied in a

dot-product fashion with the embedding of available manoeuvres, resulting in a vector which assigns value

to each of them. After processing this vector with the softmax layer, the result is interpreted as a probability

distribution, from which one may select specific action accordingly to its wish (sampling, argmax).

the ego while amin,brake and amax,brake are, respectively, the minimum braking deceleration which must

be applied as an emergency braking and the maximum braking deceleration which we can expect from a

leading car.

Rule number two, which defines the minimum lateral distance along with the lateral emergency braking,

has been used when other vehicle movement should trigger an automatic lane change manoeuvre.

The rules mentioned above have been used to define the constraints for Adaptive Cruise Control min-

imum distance keeping, as well as when it is safe to perform an automatic lane change in the presence of

other vehicles in the target lane. In the next subsection, a description of how those rule-based constraints

can be injected into the neural network and utilised in the overall system is provided.

3.5.2 Deterministic Available Actions Definition

Having the constraints defined, one has to decide how to utilise them in the system. As already described

in Section 3.5, simply downselecting the actions from the NN-based policy afterwards is problematic, as it

introduces inconsistency in selected agent’s action and its execution, resulting in noise and high variance

in the gradient. That problem will be primarily visible during the training, less during the evaluation phase,

unless the policy is recurrent or uses the actions history at the output.

To address this, in [95] the concept of constraining the output of the policy neural network to only

predefined actions was proposed. The general idea of a specific mechanism of the NN architecture has been

taken from [91], where the linear projector over the available actions has been used in the action head.

In the original paper, this mechanism was used to limit the number of actions to choose from to suppress

an extensive and pointless exploration of the action space. In this case, however, instead of heuristics, the

deterministic rules defined and introduced in Section 3.5.1 have been used. With that approach, there was

no need to define another reward component for selecting an unavailable action, which as a result does not

put stress on gradient calculation. The mechanism introduced in NN is presented in Figure 3.7.

One of the identified issues of taking such an approach is generalisation. Imagine a state sl in which

the actions of specific agents are limited by deterministic rules and the state snl being very closely related

to sl, but in which all actions are available. Since in sl the agent cannot select forbidden actions, state snl
cannot benefit from this knowledge because the gradient is never backpropagated in those cases. Putting this

in plain English, since an agent cannot make bad decisions, it does not learn from them, so it cannot devalue

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 49

Figure 3.8: Maneuvers Finite State Machine which has been used in combination with action selection by

RL agent.

the available decisions similar to forbidden ones. This issue becomes even more problematic in the case of

velocity control, which will be described in the following section.

3.5.3 Maneuver State Machine

Understanding that the execution of selected manoeuvres on the road must be ordered and structured, an

additional module for manoeuvre planning that has been based on FSM concept has been introduced. The

basic structure of manoeuvre FSM was used to dictate what kind of manoeuvre can be executed based on the

previous state, to introduce time-based requirements (for example, how long car should keep lane after a lane

change) and to easier control lane change execution. The responsibility of performing transitions to specific

states has been assigned to the RL agent, with the exception of situations where only one action could be

selected. Mechanism of FSM and RL action have been combined accordingly to the method presented in

Section 3.5.2. The FSM has been reporting the current state (manoeuvre) and what kind of manoeuvres

are available from it. This information was provided to the neural network in the form of a mask vector,

which narrowed the possible actions to select. With standard sampling mechanism concrete action has been

selected from narrowed action distribution, and used in another step to make a transition to another state. At

the same time, the selected manoeuvre was to conditioning the trajectory planning module to generate the

appropriate path.

The structure of FSM used in the proposed approach is presented in Figure 3.8. Six distinctive manoeu-

vres (states) have been defined, consisting of following the path, preparing for a lane change (left and right),

lane change itself (left and right), and aborting a lane change. Arrows represent potential transitions between

manoeuvres. Additionally, transition availability has been as well masked with the use of current context,

which included such rules as

• The existence of the target lane was necessary to allow preparation for the lane change and manoeu-

vres of the lane change itself to a given side. In the situation in which the ego car was travelling on

the edge of the road, the lane change manoeuvres that would put him outside it were masked out.

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 50

• After entering some manoeuvres, timing requirements was introduced which did not allowed one

to exit given state before predefined time. For example, after going back to the lane following the

manoeuvre, the agent was forced to stay in this state for at least one second. This allowed to stabilise

the car behaviour.

• Lane change manoeuvres were masked out if they were not safe to perform due to traffic. The RSS

distance rules were used to check if entering the lane agent will not cause a hazardous situation and if

it was the case, the lane change manoeuvre has been forbidden.

The introduced concept of manoeuvres supervision allows one to better understand the meaning of

specific actions for the RL process. Without such a mechanism, the execution of different actions might

result in a similar end behaviour of the ego vehicle and might be misleading (imagine a case where the agent

selects a change in the right lane during execution of the change in the left lane). It allows as well to more

clearly execute manoeuvres with deterministic approach later.

3.5.4 Transparent Speed Control Design

Controlling the speed of a car in combination with any other mechanism of such steering (such as the ACC

control introduced in 3.5.5) raises quite a lot of obstacles to the transparency of the control.

The most straightforward idea is to control the velocity setpoint going into the ACC trajectory generation

controller. To ensure generality, the target speed has been provided with reference to the speed limit in

discrete form. Although the end behaviour of the agent was correct, allowing one to navigate effectively

through the lanes, the action was changing quite a lot and was unstable. The reason for that was lack of

transparency, as all "slow-down action" was executed in the same way. As an example, in case the car drives

50 m/s, providing a new set point of 30 m/s or 20 m/s results in the same severe deceleration.

To address that, the concept of delta speed control has been introduced. With that, the agent is tasked

with providing acceleration-like command which is combined with the desired speed limit. The output then

is added to the current ego speed and is treated as a setpoint. Additionally, different maximum acceleration

levels are associated with those actions. Due to that, all actions are meaningfully different and might be

associated with the desired aggressiveness level. Moreover, the same mechanism considering availability

of the actions was used to pre-select only available delta speeds, utilising information about current speed

limits and possible executions of emergency manoeuvres. Figure 3.9 presents how the mechanism works.

During the evaluations, the problem of multimodality of the speed distribution has been discovered.

To effectively address cases with multiple, equally good actions (see Figure 3.10), the obvious choice is

the discrete action space. Here, however, the problem of continuity of the strategy arises. As we would

like to represent the multimodality of action distribution in a given scene, we would also like to make

sure that we will select one of those strategies and stick to it to see the effects of that decision. Situations

where the agent jumps from speed-up to slow-down actions, resulting in roughly the same speed and a quite

uncomfortable driving experience, should be avoided. In such a case, working with policy-based methods,

returning the probability distribution over actions, is problematic in the case if sampling is enabled. When

sampling is disabled and the agent uses the argmax action instead, a non-natural behaviour and suboptimal

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 51

Figure 3.9: The delta speed mechanism. Agent action is interpreted in the same time as desired increment of

speed and maximum acceleration level. In that way, agent output preconditions the adaptive cruise control

mechanism. Higher absolute acceleration values are associated with more aggressive driving.

Figure 3.10: Blocked lane change scenario. In this concrete situation, we would like to make sure that action

distribution for slow-down, keep-speed and speed-up actions looks more-or-less as one presented in the right

side of the image. In the same time however, when the agent decides to select given strategy, we would like

to make sure that he will stick to it and do not flicker between slow-down and speed-up actions any more.

performance were observed. The desired property of the system suggests using value-based methods, like

DQN, in which the algorithm is not directly optimising the action distribution but the corresponding value-

function approximations. This approach detaches the action selection mechanism and exploration from the

learning objective itself, which is why switching off exploration at the evaluation time does not impact the

policy performance.

3.5.5 Trajectory Generation Module

After defining the behaviour of a car, the model-based algorithm for trajectory planning was used. As a

trajectory generation concept, an idea based on pairwise const-jerk velocity cruise algorithm was used. The

solution has been inspired by the work done in [154], where two six-order polynomials have been used to

plan the motion independently on two separate longitudinal and lateral axes. In the presented case, motion

has been planed in the form of a sequence of polynomials, representing the velocity profiles of longitudinal

and lateral movement in the Frenet Coordinate System.

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 52

The high-level description of the trajectory generation block has been provided as Algorithm 1. Primary

input to the trajectory planning algorithm is the target state of the ego vehicle, including its required position,

velocity, and acceleration in both axes. Deriving this target state is shared responsibility of RL-agent, which

provides velocity setpoint and manoeuvre to execute and set of heuristics, which selects appropriate vehicles

to regulate on according to given manoeuvre, by calculating safe positions behind them. Future targets

(such as desired position and speed after speed equalisation) are acquired with assumptions of kinematic

extrapolation of movements of other objects, which is used to predict their future states. If no target vehicles

are significant from planning perspective, the target state does not include positional requirement and focuses

purely on keeping appropriate velocity. In case of some manoeuvres, like lane change, ego might need to

check regulation on two different target states: in the cars in front in current and target lane. In such a

case, the algorithm selects a more conservative velocity profile (one which minimises the velocity value).

In all cases, constant jerk is used to generate acceleration profiles, which of course results in velocity and

positional trajectories.

After defining the target state or set of them, the process of trajectory generation begins. Depending on

the situation, this generation is divided into multiple steps. In the most general case, the ego needs to plan

two phases of speed change. As an example, consider a situation in which the ego car drives too close to

the vehicle in front, while the agent target speed is still higher than the speed of the vehicle in front (see

Figure 3.11). This case might happen during severe braking of the front car or a cut-in scenario. First, the ego

needs to slow down below the speed of the vehicle in front, increasing the distance to it. To do so, the first

phase is planned to acquire "dropping speed". In the next step, ego plans the last phase of manoeuvre where

it speeds up to equalise the speed with the target. By understanding how much distance will be covered in the

last phase, the algorithm can establish when the manoeuvre should start. The last step is to plan the cruising

phase, the length of which depends on how far the ego car should drop behind the target in front. When

checking the distances covered in the first and last phases, the duration of the cruising phase is established.

Durations of all specific phases of planning are derived with use of straightforward analytic equations of

motion, allowing one to calculate the time of each specific manoeuvre. Polynomials are used to plan each

segment of the trajectory, with assurance that the dynamic states at the ends of those segments are equalised.

In a similar fashion other manoeuvres are planned, although they might be composed only from subset

of described above phases depending on objects existence, the intention regarding speed setpoint, the cur-

rent speed and phase of manoeuvre. It is important to note that trajectory planning algorithms details are

straightforward but cumbersome, therefore, algorithm is presented only in high-level.

The trajectory is planned for the time needed to reach the target state, and could be prolonged if it is

shorter than the planning horizon. For the designed system, the behaviour planning block was called every

0.5 seconds. The trajectory planning block has been called each 0.25 seconds and therefore executed the

same behaviour twice. Motion simulation has been done with 0.05 seconds interval, and with the same

interval the trajectory to set ego state has been sampled accordingly.

Furthermore, according to RSS rules [118], an emergency manoeuvre has been defined as the application

of heavy braking. This was triggered when the ego car violated the safety distance in front of us, defined by

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 53

Figure 3.11: Desired trajectory profiles for scenario in which car is too close to car in the front, therefore

needs to slow down and then equalize the speed at correct distance.

Algorithm 1 Pairwise Const-Jerk Velocity Cruise Algorithm
Initialize the rl-policy π

Call the policy π to acquire desired maneuver mπ and velocity setpoint vπ
Select set of target vehicles {o1, o2, ..., ok} which an ego car need to regulate on depending on the ma-

neuver mπ

if target vehicles are present then ▷ Continue in Adaptive Cruise Control mode

for each valid object oi do
Calculate desired position sid and desired velocity vid for on each of object oi

Plan trajectories with end state sid and vid
end for
Create trajectory elements which minimizes the position value across valid time range

else ▷ Continue in Cruise Control mode

Mark policy velocity setpoint vπ to desired velocity vd
Plan trajectory with end state vd without constrains on concrete position

end if

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 54

using RSS rule one. This situation is termed a safety violation, and measures the frequency with which the

agent ends up in this state.

3.6 Policy Optimisation

3.6.1 RLLib Reinforcement Learning Library

As the research was focused on reinforcement learning methodology, appropriate software was required that

implemented the specific algorithms. To focus the attention on research scope, connected with application of

autonomous driving, the decision has been made to use a third-party library, which implemented the desired

algorithms in a scalable way.

The library that has been chosen was RLLib [65], which has been built on the Ray framework [153].

As a base, the tool introduced the efficient and scalable concept for distributing computing across different

processes and nodes, which have to communicate with each other. This stays in contrast to more common

applications, in which big jobs consist of many smaller tasks which can be executed in parallel more or less

independently.

RLLib package implements many different reinforcement learning algorithms which are optimised from

the point of view of performance. It allows for easy scaling-up of experiments to thousands of workers.

RLLib supports the most common deep learning frameworks, which are PyTorch [99] and Tensorflow [73].

It also allows for hyperparameters tuning sessions with the use of its package Tune.

RLLib Trainers classes define and coordinate distributed workflows, consisting of running rollouts, re-

sponsible for experience collection, and optimisers, aiming at improving the policy. The policies define how

an agent acts in an environment, supporting different cases such as single-agent gym-like environments, vec-

torised environments, and multi-agent environments. The policy evaluation part, running in rollout workers,

is responsible for collecting experiences and implementing the agent-environment interaction loops. Those

experiences are represented in the form of batch samples that encode one or more fragments of trajectories.

The interaction between the elements mentioned is defined in the form of execution plans, which prescribe

the sequence of steps that must be executed sequentially in the training process or in parallel by many

experience collecting actors.

3.6.2 Training Infrastructure

To efficiently run the experiments, specific computational resources were required. For that purpose, an on-

premise cluster of computers has been used, including nodes with CPU and GPU units. The cluster was

constructed with about 380 CPUs and up to 15 GPUs of different class. The cluster is managed with the

SLURM workload manager [124]. Each training starts with defining the resources, including the number

of CPUs, GPUs, and RAM memory requirements. Later phase is managed by RLLib and Ray framework

itself, and coordinates tasks from a single job, executed potentially on different nodes.

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 55

3.6.3 Proximal Policy Optimisation Algorithm

The algorithm used in the described experiments was PPO [115], which is part of the policy gradient algo-

rithms. PPO is an on-policy algorithm and can be used for environments with continuous and discrete action

spaces. The core idea behind the implementation of the PPO algorithm answering the question of how big

steps can be made in policy improvement while not going too far and collapsing performance.

PPO can be defined in two main variants: PPO-Penalty and PPO-Clip. The PPO-Penalty solves the

KL-constrained by approximation similarly to TRPO [114], however, instead of using it as hard constrain,

penalises for the KL-divergence in the objective function, while adjusting the penalty coefficient during the

training automatically. The PPO-Clip variant does not utilise the concept of KL-divergence term and does

not have constraints, but instead relies on the specific clipping mechanism within the objective function to

eliminate any reasons for a new policy to get too far away from the old one.

The PPO-Clip version updates the policy parameters θ via

θk+1 = argmax
θ

Es,a πθk
[l(s, a, θk, θ)] , (3.3)

which is typically done by taking multiple steps, often in a mini-batch manner. By defining the proba-

bility ratio between the new and the old policy as

ρ(θ) =
πθ(a|s)
πθk(a|s)

, (3.4)

we can define the l objective as

l(s, a, θk, θ) = min [ρt(θ)A
πθk (s, a), clip (ρt(θ), 1− ϵ, 1 + ϵ)Aπθk (s, a)] . (3.5)

The first term inside the min function is a surrogate objective familiar to the TRPO algorithm. The

second one modifies this objective by clipping the probability ratio to the [1− ϵ, 1 + ϵ] range, which makes

sure that update of policy’s parameters will not be too large. The clip function is defined as

clip (x, xmin, xmax) = max(min(x, xmax), xmin). (3.6)

Then, the minimum of those two terms results in a lower bound on the unclipped surrogate objective.

For the PPO-Penalty variant, the objective includes the term penalizing from going away from the orig-

inal policy

l(s, a, θk, θ) = rt(θ)A
πθk (s, a)− βKL [πθk(·|s), πθ(·|s)] . (3.7)

The β parameters are automatically adjusted during the course of training in a straightforward com-

parison to some target KL divergence. On the basis of experiments, however, the PPO-Clip variant yields

better results. For advantage, any method for its estimation can be used, but most commonly, value function

estimation is utilised for that purpose.

The pseudocode of PPO with clip variant of objective is presented in the following scheme.

PPO uses and optimises stochastic policy in an on-policy way, thus exploration is embedded within the

optimised policy, and exploitation-exploration trade-off depends on initial conditions and training procedure.

In most cases, the policy becomes less random during training, so it is more likely that it will stuck in local

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 56

Algorithm 2 PPO-Clip

Get initial policy parameters θ and value function parameters ϕ

θ0 ← θ

ϕ0 ← ϕ

for iteration i = 1, 2, ... do
for actor a = 1, 2, ..., N do

Collect set of experiences Di = τk by running πθi in environment for T timestamps

Compute rewards-to-go R̂t

Compute advantages estimates Â1, Â2, ..., ÂT , using value function estimate vϕ
end for
Update the policy πθ by maximizing the surrogate loss value:

θi+1 ← argmaxθ
1

|Di|NT

∑
τ∈Di

∑T
t=0 l(st, at, θk, θ)

Run regression on mean-squared error for value function:

ϕk+1 ← argminϕ
1

|Di|NT

∑
τ∈Di

∑T
t=0

(
Vϕ(st)− R̂t

)2

end for

optima as training progresses. On the other hand, stability of optimisation is often also a source of consistent

improvement of optimisation objectives, with rare moments of performance drop.

3.6.4 Neural Network Architecture and Training Details

The neural network architecture that has been used for the agent policy is presented in Figure 3.12 and was

based on the architecture of [91]. Processing starts from the ego-related and goal observation. Later, data

describing each individual object and lane are processed by a corresponding block, mostly composed of

Fully-Connected (FC) layers. The challenge of changeable number of objects and lanes across the scenes

was solved by a max-pooling operation performed after the Rectified Linear Unit (ReLU) activation func-

tion. With that design, invalid objects, padded with zeros, were excluded from further processing. Categor-

ical data types, such as the last executed manoeuvre or blinker status, are introduced into the processing

through embeddings. The output of each individual block is then concatenated and pushed through the Long

Short-Term Memory (LSTM) unit. As the final stage of the calculation, the action head provides separate

action distributions for manoeuvre and velocity actions. Additionally, the mechanism introduced in Section

3.5.2 is present at the bottom of the architecture, both for the manoeuvre and velocity action heads.

For training, the PPO algorithm has been employed with parameters which are listed in Table 3.4. Train-

ings have been conducted in the local cluster and have been run with 90 rollout workers and a single trainer

process with a GPU unit. Decisions to stop training were made when performance, expressed as mean re-

ward, had stopped changing.

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 57

Figure 3.12: Neural Network architecture used in behaviour planning. Yellow blocks indicates inputs to

neural network. Violet elements represents learnable parameters of the Neural Network (NN), while green

blocks are deterministic, mathematical operations. Blue items represents data embedding along the process-

ing, while red ones indicates the output from Neural Network (NN).

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 58

Table 3.4 Parameters of PPO algorithm used in behavior planning experiments.

Parameter Value

train batch size 300,000

number of sgd iterations 5

discount parameter γ 0.995

GAE parameter λ 0.95

kl coefficient β 0.0

clipping parameter ϵ 0.2

gradient clipping 3.0

learning rate 5× 10−5

Table 3.5 Scenario distribution in the environment used both for training and evaluation of behaviour

planner agents.

Scenario No Traffic Light Traffic Medium Traffic Heavy Traffic

scenario percentage [%] 10% 20% 40% 30%

congestion - time interval between new car spawning [s] - 8 - 12 s 1 - 8 s 1 - 2 s

3.7 Results

To evaluate the mechanisms introduced, the agent responsible for behaviour generation was trained in two

sets of conditions:

• FSM ACC On in which the FSM to control the execution of manoeuvres and suppress the selection

of forbidden ones was used and with the ACC control on, which adapted the ego’s speed in case of

slower driving car in front.

• FSM ACC Off where the agent could freely select manoeuvres and the ACC control was off, therefore

RL agent defines the set velocity for standard Cruise Control (CC).

In both sets of conditions, the reward function was defined in the same way and the emergency manoeu-

vre triggering was active. Both trainings were carried out in the same environments, where a straight road

segment with a different number of lanes was simulated. In each episode, the goal lane has been generated

at a distance between 100 and 1000 metres. Four scenarios with traffic alteration have been simulated, gen-

erated by providing the time range between the spawning of new agents at each lane origin (see Table 3.5

for more details).

Evaluation has been done in original setups, on randomly generated 500 scenarios. Evaluation in one

additional setting was made as well:

• FSM ACC Off in FSM ACC On Setup where policy trained in FSM ACC Off setup was evaluated

with settings from FSM ACC On configuration.

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 59

Figure 3.13: Mean reward plot of two training experiments.

By this evaluation, the check if mentioned mechanisms can be introduced after the training, and therefore

filter unwanted actions from happening afterwards was performed.

In Figure 3.13 the mean reward scores (the average reward obtained by the agent along the training

epochs) for two performed trainings are presented. Looking at the values of the reward function alone, the

FSM ACC Off training ended with better performance.

In Figures 3.14, 3.15, 3.16, and 3.17, examples of evaluations of the FSM ACC On agent have been

presented. At the top, the green arrow indicates the target lane with a green rectangle showing the current

position of the vehicle with the distance to the goal (similar to how most common navigation systems work).

A set of metrics is displayed on the left side, with indication of ego current action (ego / action:) or currently

allowed manoeuvres (allowed manoeuvres:).

To gain more insight into agent behaviour and performance differences, Table 3.6 presents numerical

metrics that describe the agents’ behaviour in the three experiments mentioned above.

By careful analysis, the following conclusions might be drawn. From a goal-setting perspective, the FSM

ACC On agent showed the best performance. It has also caused the least number of collisions. FSM ACC

Off agent, which had more direct control over the agent speed, minimised the mean absolute acceleration

and at the same time presented a slightly better mean velocity. The lower reward mean scores acquired by

the FSM ACC On agent caused by the enforced FSM manoeuvre mechanism, which resulted in a higher

penalty on manoeuvre execution. One also argue that the FSM mechanism improves the efficiency of lane

change manoeuvres and stabilised the action selection process. A smaller amount of manoeuvre changes

and less time spent in lane change, along with a higher probability of reaching the goal, support this claim.

Applying the mechanism after training, as in the FSM ACC Off in FSM ACC On experiment, has

a negative effect on performance in most metrics. Therefore, one may argue that the introduction of the

proposed deterministic mechanism during training improves general performance, although it must be done

with care and the potential redesign of the reward functions.

Based on the metrics, potential problems have also been identified, which was most visible in the FSM

ACC Off experiment. Looking at the manoeuvre distribution and visually reviewing agent performance, the

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 60

(a)

(b)

Figure 3.14: Scenario 1: The ego car equalises its speed with the left car (Subfigure (a)) to squeeze-in in

front of it (Subfigure (b)).

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 61

(a)

(b)

Figure 3.15: Scenario 2: Ego car must change lane twice to the right.

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 62

(a)

(b)

Figure 3.16: Scenario 3: Ego car keeps left lane and high speed to overtake a truck (Subfigure (a)) to later

change lane to the right (Subfigure (b))

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 63

Figure 3.17: Scenario 4: Issue with realization of Prepare for Lane Change Right maneuver. Even thought

agent does not want to change lane to the right (it is already on correct one), it continues to drive in wrong

maneuver it until it reaches the goal.

Table 3.6 KPIs calculated for three experiments with a behavior planner agent.

Experiment Name FSM ACC On FSM ACC Off FSM ACC Off in FSM ACC On

goal reached [%] 99.2 98.6 97.8

goal missed [%] 0.4 0.6 1.0

collision [%] 0.4 0.8 1.2

outside of road [%] 0.0 0.0 0.0

safety violation [%] 1.12 1.59 0.85
velocity mean [m/s] 27.21 27.72 26.03

velocity std [m/s] 4.55 3.435 4.58

acceleration mean [m/s2] 1.33 0.957 1.3

acceleration std [m/s2] 1.57 1.23 1.56

manoeuvre change count 2.16 4.02 1.82

follow lane [%] 58.7 24.5 59.6

prepare for lane change left [%] 12.1 1.8 4.33

prepare for lane change right [%] 25.0 63.4 33.2

lane change left [%] 2.34 4.74 1.60

lane change right [%] 1.81 5.6 1.04

abort lane change [%] 0.05 0.0 0.2

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 64

conclusion that the agent was often stuck in preparation for the lane change right manoeuvre was made,

although still with the intention of just following the lane. The reason was that there were no functional

differences in the execution of preparation for lane change and follow lane manoeuvres. As this is not the

problem from end behaviour, it is raising issues from integration and explainability perspective.

In Figure 3.18 two basic metrics, average speed and goal achievement, are presented, in different traffic

scenarios. With this, one may argue that the heavier the traffic, the more deterministic rules had a stronger

negative impact on the average speed, most probably caused by the lack of lane change rules enforced by

the FSM formulation. It may be also stated that applying the rules afterward (FSM ACC Off eval in FSM

ACC On setting) significantly reduces capabilities of the system in most congested scenarios.

3.8 Discussion and Further Work

Analysis of results shows that reinforcement learning is capable of controlling agents with a high-level

interface. Additionally, it was shown that the introduction of a deterministic mechanism at the time of

training works better than introducing them afterward. Assuming that deterministic rules are required in the

end, a recommendation of carefully introducing them during the training can be made.

One of the conclusions from the executed trainings and visual evaluation of the agent behaviour was the

problem of fine-tuning the rewards. The more complex the reward function, the harder it was to control the

agent behaviour by its changes. Methods which aims at estimating reward function with the use of other

neural-network models, for instance supporting those actions which resemble previously seen behaviours,

are attractive research direction and might help in defining the target behaviour system designer expects.

Furthermore, it is recommended to build smaller modules with embedded Neural Network (NN) models is

recommended, in which the desired behaviour can be defined more clearly.

The problem of merging experience-driven behaviour with traffic rules should still be treated as open.

Although in the research presented an effort was made to integrate some of the traffic rules within the system,

real-world scenarios will require a much more complex and elaborate set of rules, which will pose new

challenges during integration of those with planning algorithms. Recent development efforts from MobilEye

and Tesla, where planning was done at the level of deciding interactions between road users, seems to be a

preferred way to solve these issues.

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 65

(a)

(b)

Figure 3.18: The most important metrics that describe the behaviour of the agent, presented in different

traffic scenarios.

M. Orłowski Reinforcement learning in autonomous driving

3. Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control 66

M. Orłowski Reinforcement learning in autonomous driving

Chapter 4

Parking

4.1 Introduction

Another essential element in the desired portfolio of automated driving skills is parking a car. As each

journey starts and finishes with such a manoeuvre, it is desirable to perform it without a driver’s involvement,

especially as many drivers struggle with more complex manoeuvres and tight parking spaces.

Manoeuvring in a parking environment is quite different from driving on a highway. First, it involves

much more free-movement planning, which is less constrained by arbitrary rules or a portfolio of manoeu-

vres to execute. This means that there are fewer constraints that the agent should (or must) follow, giving him

more freedom in planning. This results in a more clearly defined reward function, which does not have to be

described as a composition of many objectives. Secondly, car movement is much more driven by its kine-

matics, and its precise dimensions play an essential role in manoeuvring in tight spaces. Next, assuming that

no other actors are present in the scene (or their presence is handled outside of parking module), the envi-

ronment dynamics depends purely on agent movement and scene perception, making it more accordant with

Markov property. Finally, parking involves low-speed manoeuvring, resulting in less severe consequences

of eventual error. This plays an important factor in legislation and the easier path to commercialising given

solutions.

Taking all of the above features into account, it seems that reinforcement learning methods are a good fit

for parking scenarios. With a much clearer objective, a less complex environment with fewer deterministic

rules to follow, and more combinatorial planning, it looks like RL-based algorithms might result in better

performance and less computation power than standard methods.

4.2 Problem Formulation and Assumptions

4.2.1 Problem Formulation

The focus of the following experiments is to derive the control policy (resulting in a path) for the parking

slot planning problem, including three scenarios: perpendicular parking, parking at an angle and parallel

parking. The trained RL policy will be used to acquire the path based on iterative neural network inference.

67

4. Parking 68

The problem is framed as POMDP, although in the training process the partial observability feature is

not addressed in any specific way. At the start of each episode, the environment will generate an instance

of scenario, including the initial position of the ego vehicle, the details of the goal, and the set of obstacles.

The process of scenario generation is controlled by environment configuration, which might change during

training to present the agent with scenarios of different difficulty. The agent is identified with the ego vehicle.

The agent policy, based on observation of the ego’s relative position to the goal and obstacles, will derive

action, which includes movement and turn angle. In response, the environment will simulate the movement

of the ego car, check for any potential collisions with obstacles, and verify if the goal position has been

reached. From there, the environment is able to provide a new set of observations for the agent. By the

iterative process of action selection and environment simulation, the path is created, which, in positive case,

leads to the goal position. The event of collision, goal reaching, or exceeding the maximum number of

simulation steps results in episode termination. The agent is rewarded in the sparse manner at the end of an

episode, with positive reinforcement for goal reaching and zero otherwise. By reward design, the agent is

also encouraged to minimise the number of direction changes.

PPO algorithm will be used to train the policy. Comparison of two distinct neural network architectures

that define the agent policy by comparing its functional performance, robustness, and execution times will

be made. Additionally, an evaluation of the proposed solution will be presented based on real world data.

4.2.2 Assumptions and Limitation

During parking experiments, the following limitations have been accepted and specific assumptions have

been made, listed below:

• Vehicle movement will be simulated with planar kinematic model. It might be argued that there is

no need to simulate dynamic part, as the path planning problem should not be concerned with that

aspect by operating in very limited dynamic constraints. Dynamic aspects can be addressed later in

the control process.

• Both the ego vehicle and obstacles are represented in a form of polygons, which might potentially

limit the way of representation of the scene. One may argue, however, that most of the scenarios

might be well modelled with polygon representation, therefore this limitation should not be seen as

severe obstacle in application trials.

• Perfect knowledge about the environment is assumed within the constraints of defined observation in-

terface, without noise modelling in a space of observation creation or motion execution. This may limit

potential transfer to real-world applications, however resulting solution should be efficient enough to

be able to re-plan the path during maneuver execution, therefore adjust in case of discovered percep-

tion issue later.

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 69

4.3 Prior Art

Planning a motion for the autonomous vehicle during parking manoeuvres in a much less structured envi-

ronment than highway scenarios requires the use of targeted methods. One of the first successful implemen-

tations of autonomous driving systems operating in urban and parking domains was presented during the

2007 DARPA challenge. In one of them, a variant of the A* algorithm and non-linear numeric optimisation

have been combined in a two-phase planning algorithm [35]. A similar hierarchical approach with the use of

optimisation-based collision avoidance has been described in [167]. Another hierarchical system, consisting

of an imaginative model for anticipating results before parking, an improved rapid-exploring random tree

(RTT) for planning a trajectory and a path smoothing module, has been introduced in [36]. An extended ver-

sion of the RTT mechanism, the bidirectional rapidly-exploring random trees, aiming at improving the con-

sistency and quality of the generated path coupled with the parking-orientated model predictive controller

is described in [51]. In [21], the authors introduced a method called Orientation-Aware Space Exploration

Guided Heuristic Search, allowing to gather knowledge about driving direction, which might be later used

as a heuristic in the search phase of planning manoeuvres. The authors of [120] introduce the system for

coordinated parking of vehicle fleets, consisting of centralised spot allocation and path planning executed

by a so-called coordinator and decentralised collision avoidance performed by each vehicle. A distributed

system for valet parking in multi-story parking connected with charging the vehicle phase has been summa-

rized in [58]. The practical application of visual SLAM has been presented in [137] which has been used for

the trained parking application, allowing a car to park itself in known, frequently visited locations. In [121],

the neural network methodology has been used to predict the intent and movement of other road users in a

parking lot, which could be crucial to planning the movement of the ego itself.

Reinforcement learning methodologies have also been successfully used in parking domains. An end-to-

end solution, where reinforcement learning agents directly controlled the angle of the steering wheel along

with the model-based tracking of the parking slot has been described in [166]. In [11], the deep deterministic

policy gradient algorithm has been used to train a reverse parking manoeuvre. In [125], the successful

application of the DDPG training algorithm for parking vehicles in tree scenarios (parallel, perpendicular,

and at an angle) has been presented. The use of a multi-agent training algorithm for the problem of online

parking assignment, operating with both connected and non-connected cars, has been proposed in [168].

4.4 Parking Slot Environment

For the training of agents in a parking environment, a parking simulation has been implemented in the

Python programming language. The main elements of it involved an ego car whose movement could be con-

trolled by defined action, a set of obstacles, each represented as a polygon, and the goal, defined as desired

position and orientation. On the basis of that, the mechanisms defining the dynamic relationships were im-

plemented, including car movement simulation, collision detection, and reaching the goal by ego. In the end,

the rendering option was added allowing for visual inspection of the given scenario and the performance of

the ego car. Having such simulation in place, specific functionalities for reinforcement learning methodol-

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 70

ogy were added, such as observation creation mechanism, reward definition, and termination check. The

elements listed above are described in greater detail below.

4.4.1 Environment Class Structure

To ease further experiments definition and benefit from learning lessons while implementing the TrafficAI

environment (Section 3.4.2), the decision has been made to simplify its general design. As design dependent

on pipelines is proven to be very customisable and scalable, it turned out to be hard to debug and test. At first

glance, it was often not clear which elements of the pipeline change which parts of states and the overflow

of information was not well presented. To improve this, parking experiments used the general environment

class, which was the composition of other predefined modules, however, which could be shared among

different experiments.

The new definition of the environment already assumed the possibility of simulation of multiple agents

at once. To start with, each environment has to define the State in the form of the data class, with predefined

slots for general and agent-specific data, both for active and terminated agents. General State introduced

as well placeholders for common data, such as agent id, done flag and action. To initialise the state, the

class Scenario was introduced to define the given configuration, which should deterministically define a

given variation of a use case. With that, all interaction between each agent would have to be defined in the

EnvDynamics class, in the form of a step function. Here, all changes and evolution of the state have been

implemented. This class is also responsible for initialising state based on scenario, raw action decoding, and

checking the terminal condition of each agent. To define the way of representing the State to the agent user

had to implement class Observer, parsing State to vector representation consumable by neural network along

with observation space definition. The Critic part was responsible for calculating the reward function based

on State, while the Viewer task was rendering the current scene. With this design, all relations between

elements of Environment were clear, and the code was quite reusable. It allowed freedom of definition,

which was often necessary to implement specific mechanisms.

Based on the general template, the ParkingSlotEnv has been created, implementing all elements accord-

ingly to the parking use case. Specific elements of that environment are described in the following sections.

4.4.2 Path Planning Ego Motion Model

Planning parking manoeuvres can be performed with the use of different interfaces and motion models.

One of the most common motion models used in many robotic applications is the bicycle model [102],

where the state is defined as position, velocity and optionally higher-order derivatives like acceleration. The

control interface most commonly includes acceleration and steering angle. In the parking use case, however,

the eventual interaction with other movable objects is often handled externally, while manoeuvres can be

executed with different velocity profiles. Because of that, tracking the dynamic state (such as velocity) is not

especially necessary at the level of planning parking manoeuvres. Planning a path (list of reference points),

coherent with the kinematic model constraints, should be the goal of planning, allowing further modules to

plan specific execution of it in time.

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 71

Figure 4.1: Environment template with three interface methods: reset, step and render

Having understood this, a decision has been made that in the case of this experiment, the parking mod-

ule will output the path. Its shape will be the result of a series of interactions between the agent and the

environment, which, in other words, would be the trajectory of actions taken during a single episode. As

the scene did not include any other moving objects, the problem might be treated as one where the dynamic

function is known, which allows for precise and repeatable simulation of environment dynamics. At each

step, the agent is asked to select the action from the discrete space, where each action is a combination of a

specific wheel angle and a travel distance. Then, the simulation of the movement of the ego is executed and

the agent based on the observation (described in Section 4.5) could select the next action.

The motion model used for the simulation uses a control vector consisting of a turn angle value and

distance to travel. The model has been based on the formulation of the bicycle model [70], while detailed

equations of motion have been derived based on geometric analysis.

The model of a car is presented in Figure 4.2. First, based on the wheelbase of the car L and the angle

of rotation of the wheels δ one may derive the turn radius r, which is equal to

r = L tan (90◦ − δ) = L

tan δ
. (4.1)

When the turn radius has been established, by using the formula for the arc length,

s = r∆ψ, (4.2)

the delta in the orientation of the car ∆ψ can be calculated as

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 72

Figure 4.2: Graphical representation of kinematic motion model used for simulation.

∆ψ =
s

r
=
st tan δt

L
. (4.3)

and use it in the final motion equation (4.8).

The movement of the car on the X and Y axes is based on translation by the vector p⃗. The angle of the

vector can be derived as the average orientation angle ψavg

ψavg =
ψt + ψt+1

2
= ψt +

∆ψ

2
= ψ +

st tan δt
2L

, (4.4)

while its length can be derived by analysing the geometric relationship in an isosceles triangle (see

Figure 4.3 for reference).

|p⃗| = 2L

tan δt
sin

(
st tan δt

2L

)
(4.5)

Finally, a set of equations that describe the car motion can be represented as

xt+1 = xt + |p⃗| cosψavg = xt +
2L

tan δt
sin

(
st tan δt

2L

)
cos

(
ψ +

st tan δt
2L

)
(4.6)

yt+1 = xt + |p⃗| sinψavg = yt +
2L

tan δt
sin

(
st tan δt

2L

)
sin

(
ψ +

st tan δt
2L

)
(4.7)

ψt+1 = ψt +
st tan δt

L
(4.8)

with control variables, including distance s to move along the curve and wheels’ angle δ. The system

is also parameterized by car dimensions and state variables, where x and y are ego positions in the two-

dimensional plane, ψ is its orientation, and L is a wheelbase. The distance st could be both positive and

negative, depending on the direction of movement. The motion model takes a simplified form when the turn

angle δ equals 0 (the car is moving straight).

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 73

Figure 4.3: Graphical representation of simulated movement of a imaginary rear wheel of bicycle model

from time t to time t+ 1

With this model in mind, the action space has been designed as cross-product of movements provided

in metres and wheel angles provided in degrees:

A = As ×Aδ, (4.9)

where

As = {−1.0,−0.25, 0.25, 1.0} , (4.10)

Aδ = {−28,−24, ..., 24, 28} . (4.11)

4.4.3 Obstacles and Collision Detection Mechanism

To define the parking scenario, except for the ego itself and the goal, obstacles are added to create a natural

representation of a parking lot. Obstacles should represent both parked cars and elements of infrastructure,

such as kerbs or barriers. They are defined as polygons with a potentially unlimited number of vertices.

Then, the collision detection mechanism has been implemented. The ego was represented as a polygon

with vertices defined as its four corners. The general idea of this module was to cross-check if any vertex

of the first polygon lies within the second polygon, and vice versa. To check if a given point lies within

the polygon, the cross-product between each vector defining the border of the polygon and a vector going

from each vertex of the polygon to the point under test has been calculated. In case when all resulting cross-

products have the same sign, the point lies within the polygon. A graphical representation of the method is

presented in Figure 4.4.

The described method has some limitations, including the requirement that the obstacles (polygons) have

to be convex. Another one is the potential failure of collision detection in cases where no points of polygons

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 74

Figure 4.4: To check whether any polygons are in a collision, cross-check is done if any vertex of polygon

ABCD lies within polygon STUV , and vice-versa. To do so, for each point the cross-product between

border vectors and vectors going from the origin of the border vector to the point under test is calculated.

In the case presented here, it is done such for pairs A⃗B − A⃗S, B⃗C − B⃗S, and so on. If the sign of all

cross-products is the same it means that the point S lies within the polygon ABCD.

(a) (b) (c)

Figure 4.5: Three families of parking scenarios. In Figure (a) represents perpendicular parking, where the

ego has to park nose-in or rear-in. Figure (b) shows the parking at an angle, used when the road is narrow

and perpendicular parking would be difficult. Lastly, in (c), the parallel parking case is presented, which is

useful in most narrow streets. Scenarios vary in detail, such as the amount of space, the initial position of

the ego vehicle, etc.

lie within the other one, but still its borders cross, which might happen in cases of "very pointy" polygons.

However, those limitations, keeping in mind the simulated scenarios and a rather small ego’s move distance,

do not have a negative effect on function and training itself. Additionally, to further improve the safety of

collision detection, the middle points of each obstacle have been added to cross-check the procedure.

4.4.4 Parking Scenarios

Having basic structures ready, the scenario can be defined which in the case of the formulation of the parking

problem is a variation of the situation (functional use case) that the agent has to solve during the episode.

The scenario has been encoded with a set of parameters, listed in Table 4.1.

This definition has been used to represent all three families of use cases: perpendicular parking, parking

at an angle, and parallel parking, presented in Figure 4.13.

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 75

Table 4.1 Structure of scenario class, based on which episodes in parking environment are created.

Values Description

Initial position initial position of Ego car

x0 initial position on the x axis

y0 initial position on the y axis

ψ0 initial orientation

Car parameters parameters of the ego vehicle used for simulation of kinematic motion

L wheelbase; distance between two axles

width width of ego vehicle

length length of ego vehicle

δmax absolute maximum angle of the front wheels

axle to front distance from rear axle to front of the vehicle

axle to rear distance from the rear to rear axle

Goal goal description

xg goal position on the x axis

yg goal position on the y axis

ψg goal orientation

position tolerance positional tolerance between the goal orientation and ego orientation to reach the goal

orientation tolerance orientation tolerance between goal orientation and ego orientation to reach the goal

Obstacles list of obstacles present in the scene, each represented as a list of points creating them

Points list of points defining each obstacle

xj position of j-th obstacle point in x axes

yj position of j-th obstacle point in y axes

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 76

Figure 4.6: Sample of graph objects and their observation for graph neural network used in parking applica-

tion.

4.5 Observation Space and Corresponding Neural Network Design

During the experiments with the parking environment, multiple ways of presenting the scene to the agent

and the results of different network designs were tested. Initial, simplistic experiments with encoding the

goal and specific points of obstacles defining the parking spot in a form of a flat vector with standard fully-

connected layers failed. The most probable reason for that was the imposed ordering of points and because

of the lack of generalisation while the agent was moving through the scene.

In the end, reasonable performance of the agent with two designs was achieved. The first one has been

encoding the obstacles present in the scene as graphs, where later the Graph Neural Network has been

utilised to process this input. The second one utilised the idea of LIDAR-like observation, where multiple

rays go from the ego to the first encountered obstacles, measuring free space. Both approaches are described

in detail below.

4.5.1 Graph Representation of the Scene

Most of the elements within the parking environment have been defined as polygons or might be interpreted

as ones (like the shape of the ego). Because of that, the natural approach would be to observe those ele-

ments in their original form. However, this requires the use of the specific network architecture, allowing a

generalised way of processing, independent of input ordering and the number of points to process.

As a result of selecting a Graph Neural Network as agent architecture, observation space has to be

designed specifically for this design choice. Figure 4.6 presents a sample encoding of the objects, while

Table 4.2 presents the structure of observation used in this experiment. First, all nodes of polygons in the

scene are encoded as a long list of points with specific qualities such as type and position. The cluster vector

indicates which nodes belong to which cluster, while the edges inform about interconnections between the

nodes. Finally, the mask vector indicates the valid clusters, which are later processed with a multi-head

attention mechanism.

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 77

Table 4.2 Structure of parking observation when using graph neural network.

Values Space Range Description

context contextual information about the goal and the ego vehicle

ψsin
g < −1, 1 > sinus value of the orientation of the goal in VCS

ψcos
g < −1, 1 > cosine value of the orientation of the goal in VCS

xg < −1, 1 > relative x position of the goal in VCS

yg < −1, 1 > relative x position of the goal in VCS

nodes [24, 3] list of nodes descriptions

node [3] single node description

xk < −1, 1 > x position of the k-th node in VCS

yk < −1, 1 > y position of the k-th node in VCS

tk {1, 2, 3} type of nodes

edges indexes [24, 2] list of pairs of indexes indicating connection between nodes

edge indexes [2] single pair of indexes

start idx {1, 2, ..., 24} index of the start node for the edge

end idx {1, 2, ..., 24} index of the end node for edge

clusters [24] association of nodes with the clusters

ck {1, 2, ..., 6} cluster id of k-th node

mask [6]

vi {0, 1} validity of i-th cluster

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 78

Figure 4.7: Architecture of graph neural network based policy. Color scheme follow the one introduced in

Figure 3.12.

Based on such a prepared observation, an architecture based on graph NN was applied (Figure 4.7).

First, the ego data along with the description of the goal is embedded as the first token, with the use of a

single FC layer with ReLU activation function. Tokens describing obstacles are embedded with Multilayer

Perceptron (MLP) and graph-based processing, which concatenates embeddings of points according to edge

indexes in a loop (in case of neural network architecture used within 3 iterations), allowing to encode longer

sequences of polygon vertexes with each iteration. Later, with the use of max scatter operation, embeddings

are squeezed to corresponding obstacles embedding with the use of cluster indexing. Next, all entities (ego

and obstacles) are processed with masked multi-head attention, allowing to mask of not valid obstacles.

Based on the embedding of the ego after processing through the attention mechanism, the action distribution

and the value estimation are calculated by the FC layers.

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 79

Table 4.3 Freespace observation. All values are normalized.

Values Space Range Description

context [4] contextual information about the goal and the ego vehicle

ψsin
g < −1, 1 > sinus value of the orientation of the goal in VCS

ψcos
g < −1, 1 > cosine value of the orientation of the goal in VCS

xg < −1, 1 > relative x position of the goal in VCS

yg < −1, 1 > relative x position of the goal in VCS

freespace [50] freespace described as a set of distance measurements around the car

di < 0, 1 > freespace at i-th azimuth to closest obstacle or other agent; saturated at 50 meters

Figure 4.8: Visualisation of freespace measurement. Ego car is marked as red rectangle, with blue freespace

rays, casted from its middle at evenly spread angles. The rays report distance to closest obstacles (grey

objects) at given azimuth. For sake of clarity, smaller number of rays is presented in the image than in

experiments.

4.5.2 Free Space Observation

As parking involves manoeuvring closely to obstacles, the sense of free space around the car is important

information while planning the motion. As graph neural networks are good at representing general informa-

tion, such information might be provided to an agent in a simpler form.

Taking inspiration from [7], LIDAR-like distance measurements were used, originating from the centre

of the rear axis with the spread of angles around the car. The measured distance is saturated to a predefined

value (see Figure 4.8 for a graphical representation of the measurement). In the experiments, 50 evenly

spread rays around the car were used. Additionally, information about the goal’s position and orientation (in

the form of sine and cosine of angle difference) relative to the ego was provided.

Based on that, a straightforward neural network architecture has been proposed, mainly with the aim of

high throughput and sample efficiency during training, presented in Figure 4.9. The architecture included

basic, one-layer circular convolutional (Conv) processing of the ray measurement. Later, the output from

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 80

Figure 4.9: Architecture of neural network consuming freespace rays as primary information about sur-

rounding obstacles. The color coding is the same as in Figure 3.12.

convolution is concatenated with context information about the goal, and processed with a multi-layer fully-

connected block. In the end, action distribution and value function are calculated respectively.

4.6 Reward Design

Parking a car is clearly an episodic use case, as reaching the destination spot is a straightforward definition

of termination. In the parking spot configuration, the decision has been made to use purely sparse rewards.

Most of the time, the reward was defined in the same way, except for some experiments in the initial training

phases. The agent has been receiving a +1 reward when reaching the goal and 0 otherwise. To minimise

the count of direction changes, each such event has been punished with a -0.1 reward and added to the final

reward, but only after successfully reaching the goal. In this case, the reward has been set to a minimum of

0.3, to ensure an indication of reaching the goal, even in the case of multiple direction changes along the

way. The reward function has been presented in equation 4.12, with ndir standing for the number of direction

changes.

r(s, a, s′) =

max
(
1− 0.1× ndir, 0.3

)
, if goal is reached

0, otherwise
(4.12)

Initial experiments have shown that initial training phases often suffered from weak positive reinforce-

ment. The successful start of the training procedure was based on the correspondence of the magnitude of

the reward for success, the discount factor γ, and the qualities of the scenarios, defining the number of suc-

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 81

cessful episodes with the random policy in the early stage. The conclusion was made that reward shaping in

the early phases of training may ease this initial struggle. The tried changes, as well as other ways of dealing

with early training, have been presented in Sections 4.7.1 and 4.7.2.

4.7 Policy Optimisation

For training, most of the experiments used the PPO algorithm [115].

The successful application of reinforcement learning methodologies to listed environments was not

straightforward and required a bit of work and customisation. Most of them dealt with the initial phases

of training and the ability to back-propagate positive, sparse rewards for early-stage random policy.

4.7.1 Initial Phases of Training

In the early stages of training, with randomly initialised weights of the policy, agents were rarely able

to reach the target position successfully, resulting in weak positive reinforcement. With the initial reward

definition, the collision of the agent has been associated with a negative reward of -1, which dominated the

episodes with an untrained policy. One way of overcoming this issue was to eliminate negative reward (-1)

in case of collision. With this design, the agent was only rewarded in non-zero manner for arriving at the

goal position, which did not discourage further exploration.

Another way that has been tried and worked well was by crafting scenarios to increase the probability

of reaching the goal successfully, even with a random policy. That was achieved by moving the agent closer

to the goal, relaxing goals’ tolerances, and at the same time moving obstacles away.

The last way of dealing with the initial phases of training, which played as well the role of continuous

difficulty increase accordingly to agent performance, was the introduction of curriculum, described in the

next section.

4.7.2 Curriculum to the Rescue

As humans learn a new skill, one of the efficient training methodologies is to start with a relatively easy task

and then gradually increase its difficulty, with a rate adequate to the student’s current competency. With such

an approach, a student is always challenged with tasks at the edge of his capability, allowing him to perform

relatively well based on his current skill set and at the same time learn something new. As it turns out, an

analogous approach, called curriculum learning, is similarly effective in artificial neural network training,

resulting in faster convergence or in some cases even enabling it.

A good overview of older curriculum methods has been presented in [14], while [89] surveyed curricu-

lum methods designed specifically for reinforcement learning domains. The implemented solution used in

this research resembles most of the solutions presented in [10, 148].

In experiments, the approach of a teacher-guided curriculum was followed. The student, associated with

the parking agent, is presented with tasks coming from the scenario generator. The curriculum is realised

by controlling the scenario generator to produce tasks at the appropriate level of difficulty. Algorithm 3

represents the methodology to control the difficulty of scenarios.

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 82

Algorithm 3 Parking curriculum
Get initial scenarios generators configurations c

c0 ← c

Set scenario difficulty update value ∆c

Set minimum performance to update difficulty rmin

Set threshold value for not decreasing difficulty ϵ

for iteration i = 1, 2, ... do
Collect set of experiences Di with scenario generations configuration ci
Optimize the policy π by running PPO algorithm

for scenario s = 1, 2, ...,K do
Select experiences Ds

i which correspond to scenario s

Calculate mean µr,si and standard deviation σr,si of rewards for Ds
i

if σr,si < σmax then ▷ Achieved stable performance

if µr,si >= µr,si−1 & µr,si >= rmin then ▷ Achieved better performance

Increase difficulty of scenario s:

csi+1 ← csi +∆cs

else if µr,si >= µr,si−1 − ϵ then ▷ Achieved worse performance, but within margin

Proceed with the same difficulty

csi+1 ← csi

else ▷ Achieved worse performance

Decrease difficulty of scenario s:

csi+1 ← csi −∆cs

end if
else ▷ Achieved unstable performance

Decrease difficulty of scenario s:

csi+1 ← csi −∆cs

end if
end for

end for

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 83

Figure 4.10: Definition of control parameter by which curriculum steers the difficulty of scenarios.

Table 4.4 Configuration of curriculum algorithm for parking use cases.

Parallel Perpendicular At Angle

difficulty easiest update hardest easiest update hardest easiest update hardest

positional tolerance [m] 2 ± 0.1 0.25 2 ± 0.1 0.25 2.0 ± 0.1 0.25

angular tolerance [deg] 36 ± 5 3 36 ± 5 3 36 ± 5 3

gap size [m] 5 ± 0.1 0.75 5 ± 0.1 0.5 5 ± 0.1 5

access road width [m] 5 ± 0.1 1 5 ± 0.1 1.5 5 ± 0.1 1

barrier distance [m] 2 ± 0.1 0.2 2 ± 0.1 0.2 2 ± 0.1 0.2

The difficulty of parking scenarios is controlled by parameters such as the gap size, barrier distance,

the width of the access alley, and the positional and angular tolerance of goals (see Figure 4.10). These

parameters are changed adequately (within predefined ranges) to increase or decrease the difficulty by a

constant defined for each control parameter separately (e.g. reducing gap size increases the difficulty).

A signal to increase difficulty is sent when the average performance of the agent, based on its return, has

increased by a given margin with respect to the previous iteration and is stable (returned across episodes have

a low standard deviation). Additionally, the minimum mean reward requirement was added to increase diffi-

culty. To eliminate constant increasing and decreasing difficulty, a hysteresis was added in which difficulty

is kept at the same level. If the performance drops by a given margin or becomes unstable, the difficulty

decreases. This methodology is executed separately, with different parameters, for each parking scenario

(parallel, at angle, and perpendicular). Details of the update procedures are presented in Table 4.4.

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 84

Figure 4.11: Reward average across trainings in a function of training time.

The use of curriculum learning dealt well with the initial training phases and was able to conduct training

that in the end resulted in the well-performing agents in a target set of parking scenarios. The results of its

application will be shown in 4.8.

4.8 Experiments

4.8.1 Observation Space and its Processing

As the reward in the case of both policy definitions was defined in the same way, the performance of the

agents might be compared at high level by looking at the reward graph resulting from trainings. First of all,

both models acquired in the end comparable reward scores. Looking at the reward graphs as a function of

training time (see Figure 4.11), after good start of freespace system graph one gains advantage in the phase

when curriculum process started to increase the difficulty of scenarios, and kept that advantage until the

very end. Drawing the reward scores as a function of the simulation steps collected (Figure 4.12), a huge

difference can be observed in the sense of the sample efficiency in favour of the graph model. It seems then

that graph-based agent might build better discrimination of the scenarios from the start of the training, while

freespace has to relay on detailed cues in observation. On the basis of that argument, an argument might be

made that the training freespace model is much harder in the sense of sample efficiency with respect to the

graph model, although comparable in terms of the wall clock.

In Figure 4.13 example parking scenarios are presented. Dots specing indicates consecutive vehicle

positions and enables to judge when agent was using big movement of 1 meter and when a smaller one of

0.25 meters.

To follow up on the topic of models inference and training performance, time execution measurements

of both models have been performed, and summarised them in Table 4.5. Based on the acquired measure-

ment, the inference time of Graph NN is twice the time slower than Freespace NN. The faster execution of

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 85

Figure 4.12: Reward average across trainings in a function of collected samples.

(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Visualisation of parking manoeuvres performed by a Freespace agent.

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 86

Table 4.5 Inference and training iteration times for models used in parking experiments. Training iteration

involved gathering 100’000 samples across 16 CPU cores and running 10 PPO optimization rounds on

GPU. Machine details: CPU: 12th Gen Intel® Core™ i7-12800H × 20, GPU: NVIDIA RTX A1000,

Python: 3.8, Pytorch: 1.11, Ray: 2.3.1.

Graph Net Freespace Net

Inference time for single sample - average 2.22 ms 1.021 ms

Inference time for single sample - standard deviation 0.652 ms 0.446 ms

Training iteration - average 115.3 s 12.7 s

Training iteration - standard deviation 2.19 s 0.41 s

Freespace NN is even more visible when comparing training iteration times, where Graph NN is approxi-

mately 10 times slower, indicating a slow training process of graph-based neural networks. All experiments

were performed with Python-based Pytorch models, which have not been optimised by any means. The

inference times for single samples have been measured while inferring model on a CPU, while training

iteration times involved rollout collection on a CPUs and optimisation on a GPU. Experiments setup, in

addition to models, differ only in the way in which observation is created.

To better understand performance differences, an analysis of the most important qualities of the planned

path for each system was performed. The summary of this analysis can be found in Table 4.6. The outcome

of the performance analysis was in line with the mean scores of the acquired reward, proving that the

graph neural network-based system performed slightly better than the freespace one. Overall results show

as well that graph-based system has generated smaller amount of collisions, which might suggest that this

way of processing information about obstacles provides better information in close vicinity to the agent. One

advantage of the graph formulation, which originates from the definition of observation creation mechanism,

is providing more context in scenarios where obstruction plays a role. In terms of the number of steps and

the generated path length, the graph-based system performed better again. This metric suggests that graph-

based agent might have better understanding of the scene through the whole episode, while its freespace

version knowledge depends more on current perspective, and thus it has to spend more time to drive around

the scene. One metric in which the free-space system gained advantage was the average direction change

count, which has been part of the reward signal formulation.

Looking at the analysis per scenario, the biggest difference has been visible in the parallel use case,

in which the graph version acquired superior performance in terms of all measures. Looking at the mean

performance, parallel parking was the most difficult parking scenario. The freespace model worked better for

perpendicular parking. Surprisingly, the lowest performance for both models has been acquired in parking

at angle scenarios, which in theory should be the easiest ones in the set.

Robustness analysis by running the policy in evaluation scenarios was also performed. A data set with

scenarios that were aligned with the training use cases from a functional perspective has been prepared,

but where obstacles were differently shaped (in general, the obstacles were larger and less randomised; see

Figure 4.14 for comparison). Then an analogue performance analysis as previously was performed, which

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 87

Table 4.6 KPIs measures for parking agents trained with two kinds of neural network - Graph neural

network and Freespace neural network, calculated for three kind of scenarios.

All scenarios Parallel Perpendicular At Angle

Graph Freespace Graph Freespace Graph Freespace Graph Freespace

samples number 5000 5000 1648 1680 1717 1683 1635 1637

goal reached [%] 98.46 98.26 99.27 98.3 98.19 98.57 97.92 97.86

in collision [%] 1.44 2.1 0.73 1.67 1.63 1.42 1.96 3.23

average path length [m] 14.24 14.53 14.88 15.45 14.43 14.26 13.4 13.71

average episode length 16.6 17.33 17.2 18.93 16.85 16.89 15.7 16.13

average direction changes 1.5 1.42 1.11 1.17 1.66 1.55 1.73 1.54

(a) (b)

Figure 4.14: Differentiation between the example training scenario (Figure a) and the validation scenario

(Figure b). Both scenarios are constructed by four obstacles, but the validation ones are more enclosed and

less randomised.

might be found in Table 4.7. Although the performance has drooped significantly in the case of both models,

the free space version has been much more robust than the graph model, where the performance of reaching

the goal dropped to around 30%. Those results suggest that the shape of the obstacles, even if it do not play

any role in the functional aspect of the problem, might have an effect on agent performance. As the the

observation difference in freespace net is smaller than in the case of graph model, the primer is more robust

to such disturbances in scenario definition. These results underscore the necessity of heavy randomisation

of training scenarios to acquire good performance.

4.8.2 Real-World Experiments

Having well performing module of parking slot planner, the decision has been made to integrate it inside

one of Aptiv’s test cars (Figure 4.15). For this purpose, the development 2019 BMW 7-series with integrated

sensor suite, including front and corner radars, front vision camera, and roof LIDAR sensor was used. The

test car was also equipped with an industrial-class computer, allowing custom algorithms to be run and

monitors to present the algorithm output. The aim was to run an RL-based parking slot planner, which

consisted of both the environment part and policy itself in an open loop, and visualise live the results.

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 88

Table 4.7 Performance of both models in case of validation scenarios.

Graph Freespace

samples number 810 810

goal reached [%] 30.12 74.45
in collision [%] 68.89 25.30
average path length [m] 20.6 15.99
average episode length 23.24 19.23
average direction changes 5.41 1.74

Python-code prototypes of the function and, for the sake of time optimisation, the freespace version of the

policy.

The setup of the car and its abilities differ slightly from how the problem definition in the simulation,

therefore the setup and add some functionalities required to be adopted, which are described in a high-level

below:

• The car’s surroundings has been represented in the form of a 200 by 200 grid, representing the area of

20 metres by 20 metres, with each cell being occupied or free. Because of that, the freespace model

was used, as it was easier to encode the observation for that network.

• To create free space observation for the policy network, the ray casting algorithm has been employed,

allowing one to derive the distance to the first obstacle in the ray’s path.

• As an additional precaution, a mechanism was added that prevented the agent from pulling out of the

grid. This was achieved by constraining both free-space observation detection by a grid border and

detection collisions when the car wanted to drive out of the defined area.

• Collision detection has been performed by checking if any occupied cell lies within the rectangular

shape of the ego. If that was the case, a collision has been reported.

• To define the scenario, potential parking spots in each of the grid measurements needed to be found.

To do so, a simple algorithm has been implemented that analyses the free space on the left and right

of the longitudinal axes of the car. The algorithm was designed to detect parallel and perpendicular

parking spots, the former having precedence.

The initial evaluation of the simulation-trained policy showed weak performance in the in finding paths

to detected parking spots. This problem was most likely analogous to one observed in the validation set of

scenarios, where the nature of the observation has been changed. These issues could be addressed by further

randomisation of scenarios. In this case, however, to address this, the policy has been retrained (policy

weights have been initiated by those trained in pure simulation) on data collected during test drives. During

recording session, car collected series of sensors readings and, resulting from them, grid representation of

the car’s surroundings. In each of the grid frames, a parking spot finder algorithm was run. The grid frame

with parking spots was then treated as a scenario definition.

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 89

Figure 4.15: Aptiv test vehicle where RL-based parking spot planner has been integrated.

The PPO algorithm in multi-agent setup was used, spawning as many simulated vehicles as detected

spots, each with its own goal. Each simulated agent has been invisible to the others. Subsequently, a standard

interaction between agents and the environment was performed, which resulted in multiple rollouts from

each simulated vehicle.

The same methodology has been used during evaluation of the module in the vehicle, therefore algorithm

was able to plan the path to multiple parking spots in each iteration. To save time, inference of the policy

has been done in batch manner, allowing one to define the action in a single pass through network for

all active agents. The output of the RL-based parking spot planner can be seen in Figure 4.16. In most

cases, the agent is able to successfully park in the designated position. The proposed training mechanism

allowed one to adapt the policy to real-world scenarios. Additionally, with relatively small computation time

requirement, the proposed solution allows planning paths to different parking spots in real time, potentially

providing great value to the end customer. This includes planning manoeuvres in real-time as the car moves

or checking the possibility to park in detected parking spots just by planning a path.

4.9 Discussion and Further Work

Conducted research and experiments suggest big potential in application of reinforcement learning method-

ology to the use case of parking spaces. Both in terms of functional and computation performance, the

presented method provides a window of applicability to a real-time system. The experiments performed

present the strengths and weaknesses of both observation mechanisms with the resulting neural network

architectures. In case of optimising for execution time, the freespace version of the policy should be treated

as candidate to choose. In case of more complex scenarios, especially if one would like to encode more

complicated shapes and consider potentially occluded objects, a graph-based network is a viable option.

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 90

(a) (b)

(c) (d)

Figure 4.16: Examples of paths found by RL-based policy in real-world data. Both yellow and grey areas

indicate obstacles, while dark blue colour represents the free space. Rectangles of different colours, along

with corresponding paths, represent multiple agents with their corresponding parking spots in light blue.

Arrows represent the target position, with green indicating successful parking of agent in a given spot, and

red indicating failure in doing so.

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 91

Further research allowing to combine both options seems to be as well a promising way of evolving the

parking system.

The test performed on real data in a test car further supports the claim of a high applicability potential

of the presented solution to the parking problem. In particular, the low computation cost requirements can

enrich autonomous parking applications allowing parking manoeuvres to be planned in real time during the

drive.

Presented research can also be followed up in more ways. First, more attention could be paid to sim-

ulating more realistic and complex parking scenarios, which would provide more variability in the static

context definition. This process would allow the agent to be more robust to real-world scenarios and to use

free space in an even more creative way. Another direction is investigating ways how the resulting RL-based

policy could be integrated in more classical system and become a part of hybrid solution, which surely could

bring benefits in the manner of action selection mechanism and reproducibility of paths. On the path to pro-

ductionalization another challenge arises, including taking into consideration changeable car dimensions or

potential sensor noise. To support the hybrid approach, the usage of other reinforcement learning algorithms

like DQN or Monte Carlo tree search algorithms [122] might be helpful in approximating the true value or

action distribution for the parking problem. Redesigning the reward function will help in generating desir-

able shapes paths, where its specific aspects like length or curvature could be addressed directly. Expanding

the scope of planning from the slot parking manoeuvre itself to the parking lot is also an attractive research

direction. Regarding test car deployment, introducing a closed-loop control mechanism, allowing to realise

the proposed path, would further enhance the research. With this capability in place, the RL agent could be

trained to generate more robust paths when faced with a potentially changeable perception of the driving

environment, as the car would be in motion.

In Chapter 5 the training and testing environment was also extended to a multi-agent setup, in which the

interaction between road users and how the reward function impacts the resulting policy was studied.

M. Orłowski Reinforcement learning in autonomous driving

4. Parking 92

M. Orłowski Reinforcement learning in autonomous driving

Chapter 5

Multi-agent Maneuvering

5.1 Introduction

Driving a car is inextricably linked to cooperation with other road users. In a lot of cases, those interactions

are codified by traffic rules providing clear right-of-way definitions or are more one-way and might be

seen as responding to other road users’ behaviour (imagine a typical ACC scenario, when the following car

responds to lead car velocity profile and has little or none impact on lead car behaviour). Still, there are

situations where uncodified cooperation between road users is a necessity to effectively solve given road

scenarios. Such situations may involve a lack of clearly defined right-of-way, scenarios in which following

the rules is not enough, or where blindly following them yield suboptimal solutions. Such examples, in

which all agents have to come up with their own strategy consistent with strategies of other road users,

are often easily solved by human drivers but hard to codify by handwritten rules. When such alignment is

not found, either some subset of road users will have trouble with achieving their own goals (busy road

with priority where nobody is letting merging cars in), or all agents’ performance will be jeopardised (cars

driving in separate directions blocked in a bottleneck when either none or both of the agents aims at passing

this section first).

At the same time, the reinforcement learning methodology provides the tools to tackle multi-agent se-

tups, with the record of solving complex problems [7, 60, 91, 122].

In this part, multi-agent reinforcement learning methods was in focus and have been applied to chal-

lenging on-road scenarios that require extensive cooperation from all the agents. To train and later evaluate

the resulting control policies, a multi-agent environment was implemented that has been based on a park-

ing environment (introduced in Chapter 4). In the extended version, multiple agents are simulated at once,

each with its own distinctive goal. Based on that, scenarios similar to road situations were formed, in which

coordination of agents is a necessity.

Part of the simulated scenarios is quite novel for reinforcement learning setup, which is quite specific

in its kind, therefore comparison to other methods is difficult to consider. In some cases, such a comparison

would not be informative due to different assumptions in problem formulation (like in the case of global

planning methods), and some would require extensive implementation efforts (e.g., the system for prediction

and planning). Existing methods should be then considered as important solutions to the stated problem, but

93

5. Multi-agent Maneuvering 94

cannot be easily and directly compared with the approach which has been taken in this research. Therefore,

the focus has been on comparing different customisations within the proposed method and has referred to

the baseline acquired by training in the simplest version of the proposed approach.

The method proposed in this research relies on a combination of a relatively straightforward training

approach, policy design, and environmental dynamics with a carefully designed scenario generation pro-

cess. Policy inference is based only on the local perception of the scene and, therefore, agents do not rely on

any communication with other road users or infrastructure and resembles the human driver decision-making

process. By achieving satisfactory performance, it might be argued that individual agents’ policies lead to

a globally efficient strategy in some of the most challenging cases from a decision-making perspective in

autonomous driving. In the following part of the research, the introduction of a shared reward mechanism

was examined, which both improves training efficiency and allows better coordination of actions in con-

gested traffic scenarios. It allowed as well to train the policy to cover other agents’ objectives, without the

requirement of having access to those during execution time. On the basis of the results, it might be argued

that the proposed approach is well suited to motion planning applications, especially when dealing with

multiple road users, and its main principles might be used in autonomous driving decision-making systems.

The outcome of multi-agent research has also been summarised in [93].

5.2 Problem Formulation and Assumptions

5.2.1 Problem Formulation

Experiments summarised in this chapter aim to solve the multi-agent aspect of driving. Using the same base

environment as in parking experiments (see Chapter 4), three scenarios have been modelled that require

agents to cooperate, including zipper, bottleneck, and crossroad. All agents in the scene are controlled with

the same trained policy and share its parameters.

Due to the existence of multiple agents in the scene, the problem is modelled as Partially Observable

Markov Game, but in line with previous experiments partial observability has not been addressed in any

specific manner during training process. At the beginning of each episode, the environment is generating a

scenario consisting of obstacles which reflect the road infrastructure (like crossroads) and a given number

of agents in their initial positions, each with its individual goal position. The optimised policy, shared across

the agents, is responsible for deriving an action which consists of combination of acceleration and steering

angle for each of those agents individually. Policy operates only on local information, which includes goal

position, ego vehicle speed, freespace measuremenet around the car (which reflects both static context and

other agents) and relative position and speed of other agents. In response to all agent actions, the environment

simulates their movement according to kinematic motion model. Later, the check for potential collision

between agents and infrastructure and between agents is made, where any collision terminates and excludes

from simulation all agents involved in the collision. Similarly, each agent is checked for achievement of the

goal. At the end, a new set of observations is provided to all active agents in the scene. The episode ends

when all the agents terminates individually by reaching the goal or being involved in a collision.

M. Orłowski Reinforcement learning in autonomous driving

5. Multi-agent Maneuvering 95

A multi-agent version of the PPO algorithm was used, where each observation is collected in the same

buffer and used to optimise singular policy. Different reward mechanisms are examined and compared,

allowing to estimate the effect of multi-agent rewards application.

5.2.2 Assumptions and Limitations

Our multi-agent experiments with the following assumptions and limitations:

• All vehicles movements are modeled with bicycle kinematic model in plannar way, not assuming any

dynamic effects. As in some cases this assumption might introduce errors, it might be argued that the

ADAS and AD systems operate in limited dynamic scope, so that the dynamic effects are negligible

and can be addressed at the control level.

• No traffic laws or regulations were directly modelled, as agents were asked to manoeuvre around each

other without prior knowledge or limitations. Some of the behaviours acquired during training that

resemble human driver behaviour are the effect of crafting scenarios in a specific manner (like placing

agents on the correct side of the road). Some of the behaviours are just the effect of randomness

and might not reflect the desired behaviour (see bottleneck scenario manoeuvres, where agents pass

themselves on the left, while at crossroads they follow the right-side movement pattern).

• The occlusion happening in the scene for agents’ observation were not modelled, therefore each agent

has perfect knowledge of all the agents in the scene regardless of their position.

• All agents in the scene are controlled with the same policy, therefore, resulting policy is surely not

robust to out-of-distribution behaviours. This is a strong assumption, and fitting to other behaviour

profiles needs to be addressed before moving to the application stage.

• Perfect knowledge of the surroundings without any measured noise modelled was assumed, which is

a not realistic assumption. The use of randomised data, ideally based on real-world measurements,

would be a preferable next step.

5.3 Prior Art

The problem of multi-agent coordination in complex and interactive scenarios for on-road maneuvering

is an active field of research. In [152], authors summarised the most common approaches and provided

the taxonomy for the methods used in intersection scenarios, however, this review could be extended to

non-intersection cases as well. Cooperative driving strategies rely on communication between vehicles and

infrastructure (V2I–vehicle–to–infrastructure communication) or between vehicles directly (V2V–vehicle–

to–vehicle communication). In the first case, planning is made in the central coordination unit which was

assigned to a given intersection. By having access to all vehicle information and controlling them, these

methods might define globally optimal strategies, which is their biggest advantage. This strategising can be

done at the level of individual agents [157, 159] or by grouping the agents into platoons and establishing

drive-through priorities of those [49, 62, 169]. In the case of direct V2V communication, the planning

M. Orłowski Reinforcement learning in autonomous driving

5. Multi-agent Maneuvering 96

process is distributed among agents who communicate with each other to establish a suboptimal coordination

solution. The strategic interaction of agents based on cooperative game theory has been successfully applied

in [24, 46, 64]. Methods based on model predictive control applied to multi-vehicle traffic optimisation have

been presented in [56, 82].

As cooperative methods undoubtedly come with big advantages, including the ability to define the glob-

ally optimal strategy and directly communicate the intention to others, they also have serious limitations.

In the case of centralised cooperative methods, additional hardware has to be mounted in place of interest.

Therefore, methods that are limited to specific locations, while negotiation might be required in random

places as well. Furthermore, all cooperative methods heavily rely on communication and, by definition, re-

quire all traffic participants take part in that process. As human-driven cars, bicycles, and pedestrians are

an inherent element of traffic (at least in the near future), this requirement cannot be fulfilled. This is the

reason why most implementation-orientated research is focused on the second family of methods, which is

concerned with individual driving strategies.

Quite similar to how human drivers make decisions on the road, individual driving strategies rely purely

on on-board perception and aim at taking decisions consistent with other road users’ strategies. By losing ac-

cess to perfect information about other road users’ intentions, methods struggle to derive the globally optimal

strategy, however, they support operations with non-automated agents and do not require any communica-

tion with them. Often, these methods require extended scene perception, including complex understanding

of road structures, object-to-lane assignment, traffic lights and signs detection and understanding, as well

as the intention and trajectory prediction of other road users. The last part is often executed simultaneously

with the planning algorithm to check how agent’s decisions impact the potential behaviour of others.

The baseline methods from this family are based on the concept of Finite State Machines (FSMs),

which divide the vehicle state into a set of modes, which are later traversed with FSM supervision based on

a list of heuristics, resulting in specific control strategies. Extension of FSMs, handling hierarchical states

presentations, has been successfully applied in one of the first autonomous driving experiments in urban

scenarios- the DARPA Urban challenge [40, 81]. However, those methods are suitable only for simple cases

and struggle to cover the vastness of possible on-road scenarios [67].

The obvious choice is to address the multiplicity of scenarios and cases in data-driven methods. Agent

control by imitation learning with the addition of expert data has been presented in [8]. As predicting the

future is an essential part of planning motion in dynamic and reactive environments, numerous methods

used neural network models to predict other road users’ behaviours and trajectories [19, 100, 110]. At

the same time, since trajectory planning is a typical closed-loop control problem, reinforcement learning

methodologies have also been utilised in the autonomous driving domain [23, 57, 63, 147].

In Section 2.2.10 the main concepts in Multi-Agent Reinforcement Learning (MARL) have been intro-

duced, along with a subset of the most influential publications. Here, this review was enriched by referring

to MARL methods applied to different autonomous driving problems.

The authors of [97] introduced a platform that allowed the definition of customisable learning ap-

proaches for multi-agent autonomous driving systems, which enabled training agents in a partially observ-

able 3-way intersection environment, where the right-of-way has been controlled by stop signs while agents

M. Orłowski Reinforcement learning in autonomous driving

5. Multi-agent Maneuvering 97

Figure 5.1: The bottleneck scenario simulated in a maneuvering environment, including two agents trying

to negotiate to drive through it. The goals of individual agents are in the same color as the corresponding

agents, while green lines represent freespace simulation.

operated based on raw camera observation. In [22], the supervisory system based on communication chan-

nels between vehicles and infrastructure (V2I) has been developed to control the merging of cars on the

highway. Cooperation between automated vehicles and human drivers has been studied in [133, 134], which

introduced the notion of altruism in the definition of reward functions that improve safety and traffic flow.

The application of reinforcement learning to behaviour planning in both highway and urban scenarios, while

employing a semantic action space, was implemented and tested in [118, 119]. In an effort to find potential

failure modes of a given autonomous driving system, the authors of [144] introduced adversarial agents

based on MARL, with the objective of causing collisions with other road users. The use of the MARL

methodology for adaptive traffic signal control (ATSC) was shown in [26], solving the issue of a massive

action space of a large ATSC system by distributing control to individual local agents. The authors of [34]

presented a survey that enriches the above review of the literature.

5.4 Multi-Agent Manoeuvring Environment

Using the parking environment introduced in Section 4.4 as a base, the simulation was extended with the

modelling of more than one agent and their corresponding goals. Information about the location of a specific

goal is available only to the agent that owns it. The same mechanism for collision detection as in the Parking

Environment was used, adding agent-to-agent collision checks. Such events result in the termination of

all involved agents and their removal from the simulation. All agents observe and act locally from their

individual perspectives and do not require any communication channels between them.

5.4.1 Motion Modelling and Action Space

Simulating interactions between road users in low-speed scenarios requires tracking the dynamic state of

each vehicle, as their current speed and steering play an important role in predicting their intentions and

negotiation. To do so, the movement of cars was simulated in the form of the bicycle model [70].

The position of the given agent has been represented as x and y values in the global coordinate system,

with the orientation angle (yaw) ψ defined along the longitudinal axis of a car. Additionally, the current

M. Orłowski Reinforcement learning in autonomous driving

5. Multi-agent Maneuvering 98

velocity value along the orientation angle was represented as v, with the yaw rate ω. No modelling of

the slip angle was performed. The input to the motion model, understood as a control, is defined as the

acceleration value a and the angle of the front wheels δ. The model is parameterized with the wheelbase L,

representing the spacing between the axes. The amount of time to be simulated is represented by ∆t. The

equations that define the motion model are defined as follows.

xk+1 = xk + r (sin(ψk + ωk+1∆t)− sinψk) , (5.1)

yk+1 = yk + r (cosψk − cos(ψk + ωk+1∆t)) , (5.2)

ψk+1 = ψk + ωk+1∆t , (5.3)

vk+1 = vk + ak∆t , (5.4)

ωk+1 =
vk +

ak∆t
2

r
, (5.5)

where the turn radius, r, is derived as:

r =
L

tan δk
. (5.6)

In the straight motion use case (when δ = 0), which would result in a badly defined turn radius r,

the equations are simplified. Only forward movement was allowed and the maximum velocity has been

introduced, by saturating the vehicle speed between 0m/s and 7m/s. Saturation applied to velocity has

direct implications on the distances travelled in each step, therefore, of most of the model.

With this motion model in mind, we defined the action space, which was a combination of a discrete

sets of accelerations (in m/s2) and wheel angles (in degrees):

A = Aa ×Aδ, (5.7)

where

Aa = {−1.0,−0.5, 0.0, 0.5, 1.0} , (5.8)

Aδ = {−28◦,−24◦, ..., 24◦, 28◦} . (5.9)

5.4.2 Environment Observation

During the design of the observation of the environment, the inspiration was taken from [7] which dealt

with a similar multi-agent problem in a simulated game of hide-and-seek. The description of the observa-

tion space used in the maneuvering environment can be found in Table 5.1. The same as in the Parking

Environment, the space around individual agents has been represented by a set of distance measurements to

the closest obstacle at uniformly distributed azimuths, resulting in 50 values (see Figure 4.8). As the motion

model used was aimed at representing a car driving with a given speed, information about current velocity

and yaw rate has been added to the relative position of the goal in the ego coordinate system, representing

ego-car information. To provide information about other agents in the scene, parameters of individual agents

are represented as relative position and speed in the ego coordinate system, along with doubled information

M. Orłowski Reinforcement learning in autonomous driving

5. Multi-agent Maneuvering 99

Table 5.1 Observation space used in maneuvering environments. All values has been normalized according

to their natural ranges.

Values Space Range Description

context [4] contextual information about the goal and the ego vehicle

v < −1, 1 > current ego longitudinal velocity

ω < −1, 1 > current ego yaw rate

xg < −1, 1 > relative x position of the goal in VCS

yg < −1, 1 > relative x position of the goal in VCS

freespace [50] freespace described as a set of distance measurements around the car

di < 0, 1 > freespace at the i-th azimuth to the closest obstacle or other agent; saturated at 50 metres

agents [10 x 8] list of agents in the scene with concatenated context

agent [8] encoding of the single agent

xa < −1, 1 > position in the x-axis of the a-th agent

ya < −1, 1 > position in the y axis of the a-th agent

vxa < −1, 1 > velocity of the a-th agent in the x-axis

vya < −1, 1 > velocity of the a-th agent in the y-axis

v < −1, 1 > current ego longitudinal velocity

ω < −1, 1 > current ego yaw rate

xg < −1, 1 > relative x position of the goal in VCS

yg < −1, 1 > relative x position of goal in VCS

valid agents [10] {0, 1} indication of agents’ validity defined above

about the ego context. Those embeddings are later concatenated to form a list, supported by a mask allowing

to identify which embeddings are valid and represent a real car (in case the number of agents is lower than

one assumed by the neural network).

5.4.3 Scenarios

The motion model and collision detection, along with the interface defined by observation and action spaces,

make up the base of the multi-agent manoeuvre environment. Concrete simulated use cases are realised

by defining scenarios, which are parameterized as combinations of agents’ initial positions, corresponding

goals, and obstacle configuration.

With an aim of simulating scenarios that would require agent cooperation, three classes have been de-

fined. These are Bottleneck, Zipper, and Crossroads, which are explained in detail below.

Bottleneck

The bottleneck case is often encountered on smaller roads or residential areas (Figure 5.2). It includes a

narrowing that prevents agents driving from opposite directions from freely passing each other and forces

one of them to wait before the bottleneck and give way to the other vehicles. In the simulated case, two

agents have been spawned at opposite ends of the 40-meter long road, which is 7 metres in width. The

M. Orłowski Reinforcement learning in autonomous driving

5. Multi-agent Maneuvering 100

Figure 5.2: The bottleneck scenario with a centrally placed bottleneck.

Figure 5.3: The zipper scenario with the narrowing located on the left side of the road.

bottleneck part narrows the road to 3.5 metres. The agents’ goals have been placed at the other end of the

road, respectively.

The bottleneck itself has been randomly selected for its precise location, size, and specific structure. In

these experiments, the test scenarios included those with no bottleneck at all, singular or two consecutive

narrowings, as well as placement of the narrowing on one side of the road or centrally.

Zipper

The zipper scenario can often be found in cities or during road work, when one of the lanes is closing,

causing two lanes to become one (Figure 5.3). In case of high traffic, the agents have to negotiate their right

of way. The simulated scenario included six agents simulated in two lanes with a singular goal location

placed at the end of the narrowing. The narrowing itself might have been spawned on the left, centre, and

right side, or might not have been spawned at all.

Crossroad

The four-way crossroad scenario is encountered most frequently in residential areas (Figure 5.4). At the

cruciform intersection, up to 10 agents on different connecting roads were spawned, with the goals randomly

selected on other connecting roads ending. Arbitration of road priority was not introduced.

5.5 Policy Optimisation

All performed experiments were done with agents trained with a self-play mechanism, which improved data

efficiency and allowed synchronisation of agents’ strategies. Training followed the principle of decentralised

experience collection and centralised training. During execution, every agent acts only having access to

local observation. All the experiences collected by all the agents across all the episodes are gathered in a

centralised replay buffer and are used later to improve the policy.

M. Orłowski Reinforcement learning in autonomous driving

5. Multi-agent Maneuvering 101

Figure 5.4: The crossroad scenario, with multiple agents each aiming at a different end goal, which is color-

coded.

The policy is trained with PPO [115] with General Advantage Estimation as a value estimation, using

the implementation included in the RLLib library [65]. To support multi-agent use cases and improve train-

ing efficiency, the guidelines introduced in [161] were partially followed, including reward normalisation,

increase in train batch size, and reduction of the policy optimisation step number per train batch. No special

adaptation has been made to the PPO algorithm to address multi-agent coordination. A list of the parameters

used in training is provided in Table 5.2. All experiments have been run on the local cluster (introduced in

Section 3.6.2), and for most of the training runs 50 rollout workers were used for experience collection and

a single GPU for policy optimisation.

All the agents in the simulation share the same policy parameters, but observe and act based only on

local information. No communication channels are present. Based on the neural network architecture intro-

duced in [7], similar architecture responsible for agent control (Figure 5.5) has been created. The closest

surrounding of the agents is presented in the form of a free-space observation, and it is processed with 1D

Circular Convolution, and concatenated with ego-specific data. Each of the other agent’s data is first con-

catenated with ego-data (for context) and later embedded with the use of FC layers, which are shared for

all the agents. Those embeddings, along with the embedding of the ego itself, are then processed with three

masked multi-head attention layers. Masking is used to eliminate non-existent object embeddings from pro-

cessing. The embedded corresponding to the ego is selected and processed with FC layers to result in a

discrete action distribution and an estimate of the value function.

M. Orłowski Reinforcement learning in autonomous driving

5. Multi-agent Maneuvering 102

Table 5.2 Parameters of PPO algorithm used in all experiments.

Parameter Value

train batch size 2,000,000

number of sgd iterations 6

discount parameter γ 0.995

GAE parameter λ 0.95

kl coefficient β 0.0

clipping parameter ϵ 0.1

gradient clipping 2.0

learning rate 5× 10−5

Figure 5.5: Graph representing neural network architecture. Color scheme follow the one introduced in

Figure 3.12.

M. Orłowski Reinforcement learning in autonomous driving

5. Multi-agent Maneuvering 103

Figure 5.6: Evolution of episodes for bottleneck and zipper scenarios.

5.6 Results

5.6.1 Egoistic Rewards Training Evaluation

The simulated road scenarios can be characterised as episodic tasks from the perspective of individual

agents, with clear end criteria of arriving at a goal or causing a collision. Due to this, in the initial ex-

periments, a straightforward, sparse reward mechanism that was purely egoistic was implemented. In this

setup, each agent receives a +1 reward when arriving at the goal (resulting in the end of episode for this

agent), and is not rewarded in all other cases (Equation (5.10)). This definition does not directly encourage

agents to maximise their speed except for the natural effect of the discount parameter (γ), which is less than

1.0. Agents have been trained in all scenarios separately.

r(s, a, s′) =

1, if goal is reached

0, otherwise
(5.10)

Agents have been trained separately in all the mentioned scenarios (zipper, bottleneck, and crossroads),

using a trained policy for all agents on the scene.

The evolution of example episodes with trained agents can be checked in Figure 5.6 and 5.7. The most

interesting and immediately conspicuous conclusion is that all training resulted in cooperative and well-

performing agents (see Baseline data Table 5.3 for the results in the Crossroads scenarios), despite the fact

that the defined reward was purely egoistic. After careful analysis, the potential reason for this behaviour

M. Orłowski Reinforcement learning in autonomous driving

5. Multi-agent Maneuvering 104

was related to the fact that simulated scenarios are inherently cooperative and their competitive traits are

negligible. With such problem formulation, situations in which one agent takes advantage of the other with-

out cooperation and at the same time not jeopardising its own performance are hard to achieve. Numerous

factors contribute to such a situation, which suggests potential differences between this setup and real-world

use cases. First, accidents and potential blockages have an equally detrimental effect on the performance

of all agents involved. Going further, the lack of traffic rules that require prioritisation of the drive-through

or assigning guilt for an accident does not allow agents to be penalised for specific actions. Additionally,

sharing the same policy parameters by all agents allows one to derive a consistent policy. Last but not least,

agents are not directly rewarded for arriving at the destination as fast as possible, so they do not mind wait-

ing for their turn. To conclude, with the main incentive not to cause collisions, agents have to acquire strong

cooperative skills to maximise performance, and the individual goals of each agent are aligned with the

goodness of all the others.

By comparing the training times required to achieve stable performance, one might conclude that the

hardest scenario to train was the bottleneck (see Figure 5.8). The reason for that is most probably the fact

that a deadlock situation is easily achievable, and such a case has to be carefully negotiated and demands

long prediction and planning horizons.

Taking into consideration all the setup limitations, such as lack of traffic rules, shared policy among

all agents, no adversary actors in the scene, and a narrow set of scenarios, it is important to highlight the

good performance of the policy. Simulated scenarios are not easily solvable, while the objective (the reward)

was defined in a quite straightforward manner. Behaviour acquired by agents, based on visual inspection,

resembles a human one and it is quite realistic.

5.6.2 Introduction of Time Incentive and Reward Sharing

After realising that the initial setup is highly cooperative, more competitiveness was introduced by making

the rewards dependent on the time needed to reach the goal. Same as in the previous experiments, a sparse

reward mechanism that was non-zero only at the end of the episode was utilised, when the agent arrived at

the destination. In case of success, the agent’s driving time (td) and the length of the reference route, dref ,

were used to calculate the effective average velocity, Ve. In the case of crossroads scenarios, the reference

route has been defined as driving in a straight line from the original position to the crossroad centre and from

there driving to the destination. Normalisation of the reward has been achieved by dividing the average speed

by the assumed high bound for it Vref , which in the test scenarios was set to 5 m/s. Such a definition allowed

one to keep a reward within a normalised range and promote arriving at the destination in the shortest time.

r =
Ve
Vref

, where Ve = dref/td (5.11)

Furthermore, to steer the level of cooperation between agents, the reward sharing mechanism was intro-

duced, similar to the one introduced in [91]. Reward sharing allows weighting individual agent rewards, ri,

with the average reward of the team r̄ with the team spirit parameter τ , where τ ∈< 0; 1 > (see Equation

5.12).

M. Orłowski Reinforcement learning in autonomous driving

5. Multi-agent Maneuvering 105

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Evolution of episode for one of the crossroad scenarios.

M. Orłowski Reinforcement learning in autonomous driving

5. Multi-agent Maneuvering 106

Figure 5.8: Reward mean progression for tree trained scenarios. Note: the target value of mean reward for

each of the scenario is different as its depends on the mean number of agents simulated in the scene.

rfi = (1− τ)ri + τ r̄ , (5.12)

In the experiments, the assumption has been made that all the agents belong to the same team and

share the rewards with all the others. Additionally, since agents are terminated at different moments of the

episode and use a sparse reward mechanism, to effectively share the reward, the publication of their terminal

state along with the reward was delayed until the termination of all agents. With that, terminated agents are

removed from the scene as previously, but that fact is not reported right at this moment. When all agents do

terminate, all rewards are recalculated with the reward sharing mechanism, and the final tuples are published

to the trainer process.

To compare the effects of the introduced reward and the reward sharing mechanism, experiments were

performed in crossroad scenarios. The performance of the policy trained with and without reward sharing,

as well as the baseline training without time-dependent reward (see Section 5.6.1) was compared. Regarding

the reward sharing mechanism, the constant value of team spirit τ = 0.5 was used. Initially, a value of 1.0

was tested (agent rewarded only for team performance), however, the policy did not converge at all, which

is expected behaviour with such a weak relationship between own behaviour and reward. The rewards graph

has been presented in Figure 5.9, suggesting that reward sharing improves policy performance.

To analyse the policies characteristics in detail, an evaluation on 10,000 episodes resulting in around

563,000 agent trajectories has been performed. These results are presented in Table 5.3. Predictably, the

Baseline training presented the highest performance in achieving the goal and caused fewer collisions, while

Timed and Timed with reward sharing policies acquired higher average velocities and smoother behaviours,

with a slight advantage of the second (see Figure 5.10 for a histogram of agents’ average velocities). The

behaviour of the agents, depending on the number of agents that have been simulated in the episode, with

respect to their average velocities and their performance in achieving goals, has also been made (Figure

5.11). The results suggest that the reward-sharing mechanism has been especially helpful in achieving higher

M. Orłowski Reinforcement learning in autonomous driving

5. Multi-agent Maneuvering 107

Figure 5.9: Average reward graph showing the progress of training. The introduced reward-sharing mecha-

nism slows down progress in the beginning but is able to achieve better final performance.

Table 5.3 Table presents performance evaluation for three crossroads setups: Baseline, with reward not

taking into consideration time, Timed with such incentive and Timed with shared reward, where

additionally performance of all agents has been shared. The values which relate to episode duration, speed,

and acceleration have been only calculated for agents successfully arriving at the destination.

Baseline Timed Timed with Reward Sharing

Goal reached [%] 99.5 96.9 97.65

Obstacle collision [%] 0.12 0.43 0.24

Agent collision [%] 0.32 2.73 2.16

Avg episode length 31.08 23.33 22.86

Avg speed [m/s] 1.9 2.566 2.584

Max speed [m/s] 3.41 5.21 5.761

Min speed [m/s] 0.52 1.01 1.032

Static in episode [%] 13.23 6.14 6.34

Avg sum acc [m/s2] 20.64 18.58 18.27

Std sum acc [m/s2] 0.76 0.856 0.855

M. Orłowski Reinforcement learning in autonomous driving

5. Multi-agent Maneuvering 108

Figure 5.10: Histogram of average velocities acquired in episodes.

average speeds in crowdy scenarios, while in ones with fewer traffic the results have not provided any benefit

or worsen the performance. Goal-reaching performance metrics suggest that reward sharing is helpful in all

cases, most probably due to the multiplied effect of caused collisions.

5.7 Discussion and Further Work

The above experiments prove that with straightforward problem formulation, it is possible to acquire policies

that perform well in road scenarios that require a lot of cooperation between road users. Additionally, since

the reward design was quite straightforward, one may argue that cooperation is a natural strategy in chal-

lenging on-road scenarios. With the detrimental and equal effect of collision for all participants of such an

event, both the victim and the culprit, priority number one is collision avoidance. At the same time, acquired

behaviours seemed to be quite human-like, even though any direct mechanism of making them similar to the

human benchmarks has been applied. Lack of traffic rules and enforcing them reward mechanisms, effected

in highly cooperative and efficient, but a bit unstructured, movement patterns.

With time-dependent reward experiments, it has been shown that the reward-sharing mechanism im-

proves cooperation between agents and yields better individual results. This effect was amplified in scenar-

ios with many agents, where coordination played an even more important role. At the same time, the balance

between average speed and safety must be carefully addressed.

Numerous possible extensions of this research are possible. From a policy optimisation perspective, a

grid search for parameters such as team spirit, gamma, and reward parameters should be executed to find

the best set that meets the target KPIs. Although training scenarios have been randomised and other agents’

behaviour played an important role in the diversification of experiences, a more broad set of road use cases

should be added to acquire more robust policies. As the training has been carried out in a self-play manner

M. Orłowski Reinforcement learning in autonomous driving

5. Multi-agent Maneuvering 109

Figure 5.11: Presentation of the average speed of the agents (left Figure) and goal-reaching performance

right Figure depending on the number of vehicles present in a given scenario. First, as the number of agents

grows, the average velocity decreases. What is especially interesting is that the agent trained with a reward-

sharing mechanism (green) improves average speed in scenarios with higher traffic (when there are more

than 5 agents in the scene) and lowers it when the number of agents is smaller. Goal-achieving performance

is improved by reward sharing in all scenarios, although the baseline policy (blue) is superior in all cases.

Those results bring up the conclusion that the reward-sharing mechanism plays an important role in multi-

agent scenarios especially when the number of agents is greater.

in a highly cooperative driving environment, the strategy of all agents assumes most likely narrow behaviour

patterns of other road users and is not robust to any out-of-distribution cases. With that in mind, a robustness

study followed by adaptations of the policies to other potential behavioural patterns of other road users

would be an important addition to the research. Finally, safety considerations with the integration of rule-

based constraints or handwritten rules into the planning mechanism (encapsulating traffic rules) would be

one of the most important and challenging elements moving toward commercialisation applicability. Despite

the above, the multi-agent reinforcement learning with carefully designed extensions can be successfully

used as a solid base for the motion planning of highly automated vehicles.

M. Orłowski Reinforcement learning in autonomous driving

5. Multi-agent Maneuvering 110

M. Orłowski Reinforcement learning in autonomous driving

Chapter 6

Conclusions

6.1 Key Contributions and Conclusions

Based on the experiments performed in different domains, the conclusion can be drawn that the reinforce-

ment learning methodology is an attractive and reasonable alternative to the standard control methods used

so far in the autonomous driving domain.

In the following part, key contributions of this work have been listed.

• It has been proven that a simulated autonomous car can be controlled by a high-level interface, such as

a behaviour planning one, with the use of reinforcement learning methodology, which supports claim

(i).

• Research proved that the introduction of a proposed deterministic mechanism during training, includ-

ing a finite state machine manoeuvre, available action predefinition mechanism, and trajectory gener-

ation, results in better end performance and faster convergence compared to doing so after training.

This supports claim (ii).

• It has been confirmed that introduction of deterministic rules decreases the transparency of the system

from reinforcement learning agent perspective, therefore such integration needs to be done with care.

• As part of a collaborative effort, a traffic simulator applicable for the autonomous driving reinforce-

ment learning application has been created.

• It has been proven that controlling a vehicle in parking scenarios with a low-level control interface by

reinforcement learning policies is possible, supporting claim (iii).

• Comparison of two observation models and associated neural network architectures with them has

been performed, showing benefits and drawbacks of both solutions.

• The integration of the RL-based parking application within the car test system has been carried out,

proving the real-time potential of the proposed solution and the applicability to real-world data.

111

6. Conclusions 112

• The reinforcement learning methodology has been successfully used to coordinate the movement of

multiple agents in city-like scenarios, which required careful coordination of all agents’ behaviour,

supporting claim (iv).

• The proposed reward sharing mechanism with a straightforward definition of the reward function

improved the effectiveness of training and the resulting functional performance for all agents, which

proved claim (v).

• The research conducted resulted in the implementation of a set of reinforcement learning environ-

ments which can be further customised and reused to perform new experiments.

To summarise, author argues that reinforcement learning methodologies are applicable to autonomous

driving problem, however, due to high complexity and safety requirements, introduction of them to real-

world system will require further development, careful analysis and validation accordingly to all automotive

standards. Based on the examination, parking setup was the most successful trial to introduce the reinforce-

ment learning methodology to a given autonomous driving problem and has the greatest industrialisation

potential. All resulting models and solutions created within work described in this work are considered part

of the Aptiv product portfolio and will be considered in future business pursuits.

6.2 Looking Behind and Ahead

Looking at the research performed from the perspective of time, it has been concluded that some of the

research elements could be done better. Early expansion of computation capabilities was crucial to achieve

a stable optimisation process, and having a local cluster significantly reduced optimisation costs. At the

same time, utilising cloud environments would accelerate activities much faster and reduce the time spent

managing on-premise resources. The prioritisation of a clear and precise validation and evaluation mech-

anism should be prioritised almost from the beginning of training, as reinforcement learning problems in

autonomous driving are complex and cannot be clearly evaluated just by looking at the behaviour of the

vehicles.

Looking ahead, many potential ways of continuing research were identified both in terms of increasing

its capability and adapting it to a production environment. Multiple ways of progressing the research in the

corresponding conclusions chapter were already provided, therefore, most general ones will be reiterated.

First and foremost, the utilisation of real-world data to close the gap between simulation and real-world data

will be crucial to make the solution resilient for a potential production environment. Within that, simulating

imperfect perception data and, therefore, training resilient reinforcement learning policies is an attractive

research direction. To successfully work on real-world data, production-grade application will require ex-

tensive testing and evaluation and strong statistical reasoning to prove potential effectiveness in real-world

examples. The problem of reward definition in direct control of reinforcement learning agent behaviour

should be studied in depth as well. Potential connection with methods allowing for behaviour cloning, which

could allow to mimic desired behaviours, would be crucial to introduce more control over agent behaviour.

Although clear benefits of doing pure behaviour cloning can be seen, optimising behaviour by reinforcement

M. Orłowski Reinforcement learning in autonomous driving

6. Conclusions 113

learning means is still a crucial part of artificial intelligence-driven autonomous driving system. In summary,

research on architecture that would combine reinforcement learning, supervised learning, and model-based

methods is highly appreciated. Exploring the use of other reinforcement learning algorithms, including ones

such as DQN [76] or AlphaZero [122] would be equally beneficial, as it will provide less unimodal policies.

M. Orłowski Reinforcement learning in autonomous driving

6. Conclusions 114

M. Orłowski Reinforcement learning in autonomous driving

Bibliography

[1] (R) Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor

Vehicles. Tech. rep. Geneva, CH: SAE International, Apr. 2021. DOI: https://doi.org/10.

4271/J3016{_}202104.

[2] Andrew Jazwinski. Stochastic Processes and Filtering Theory, Volume 64 1st Edition. San Diego:

Academic Press, 1970, p. 370. ISBN: 9780080960906.

[3] Marcin Andrychowicz et al. “Hindsight Experience Replay”. In: Advances in Neural Informa-

tion Processing Systems 2017-December (July 2017), pp. 5049–5059. ISSN: 10495258. DOI: 10.

48550/arxiv.1707.01495. URL: https://arxiv.org/abs/1707.01495v3.

[4] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. “A tutorial on particle

filters for online nonlinear/non-Gaussian Bayesian tracking”. In: IEEE Transactions on Signal Pro-

cessing 50.2 (Feb. 2002), pp. 174–188. ISSN: 1053587X. DOI: 10.1109/78.978374.

[5] ASAM OpenDRIVE® v1.7. Tech. rep. ASAM, 2021. URL: https : / / www . asam .

net / index . php ? eID = dumpFile & t = f & f = 4422 & token =

e590561f3c39aa2260e5442e29e93f6693d1cccd.

[6] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. “Finite-time Analysis of the Multiarmed Bandit

Problem”. In: Machine Learning 2002 47:2 47.2 (May 2002), pp. 235–256. ISSN: 1573-0565. DOI:

10.1023/A:1013689704352. URL: https://link.springer.com/article/10.

1023/A:1013689704352.

[7] Bowen Baker et al. “Emergent Tool Use From Multi-Agent Autocurricula”. In: (Sept. 2019). DOI:

10.48550/arxiv.1909.07528. URL: https://arxiv.org/abs/1909.07528v2.

[8] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. “ChauffeurNet: Learning to Drive by Imitat-

ing the Best and Synthesizing the Worst”. In: Robotics: Science and Systems (Dec. 2019). ISSN:

2330765X. DOI: 10.15607/RSS.2019.XV.031. URL: https://arxiv.org/abs/

1812.03079v1.

[9] Gabriel Barth-Maron et al. “Distributed Distributional Deterministic Policy Gradients”. In: 6th In-

ternational Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings

(Apr. 2018). DOI: 10.48550/arxiv.1804.08617. URL: https://arxiv.org/abs/

1804.08617v1.

115

https://doi.org/https://doi.org/10.4271/J3016{_}202104
https://doi.org/https://doi.org/10.4271/J3016{_}202104
https://doi.org/10.48550/arxiv.1707.01495
https://doi.org/10.48550/arxiv.1707.01495
https://arxiv.org/abs/1707.01495v3
https://doi.org/10.1109/78.978374
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://doi.org/10.1023/A:1013689704352
https://link.springer.com/article/10.1023/A:1013689704352
https://link.springer.com/article/10.1023/A:1013689704352
https://doi.org/10.48550/arxiv.1909.07528
https://arxiv.org/abs/1909.07528v2
https://doi.org/10.15607/RSS.2019.XV.031
https://arxiv.org/abs/1812.03079v1
https://arxiv.org/abs/1812.03079v1
https://doi.org/10.48550/arxiv.1804.08617
https://arxiv.org/abs/1804.08617v1
https://arxiv.org/abs/1804.08617v1

BIBLIOGRAPHY 116

[10] Andrea Bassich, Francesco Foglino, Matteo Leonetti, and Daniel Kudenko. “Curriculum Learning

with a Progression Function”. In: (Aug. 2020). DOI: 10.48550/arxiv.2008.00511. URL:

https://arxiv.org/abs/2008.00511v2.

[11] Eduardo Bejar and Antonio Moran. “Reverse Parking a Car-Like Mobile Robot with Deep Rein-

forcement Learning and Preview Control”. In: 2019 IEEE 9th Annual Computing and Communica-

tion Workshop and Conference (CCWC) (Mar. 2019), pp. 377–383. DOI: 10.1109/CCWC.2019.

8666613.

[12] Marc G. Bellemare, Will Dabney, and Rémi Munos. “A Distributional Perspective on Reinforcement

Learning”. In: 34th International Conference on Machine Learning, ICML 2017 1 (July 2017),

pp. 693–711. DOI: 10.48550/arxiv.1707.06887. URL: https://arxiv.org/abs/

1707.06887v1.

[13] Richard Bellman. Dynamic programing. Princeton: Princeton University Press, 1957. ISBN:

069107951X.

[14] Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. “Curriculum learning”.

In: International Conference on Machine Learning 382 (2009). DOI: 10 . 1145 / 1553374 .

1553380.

[15] Dimitri P. Bertsekas. Dynamic programming and optimal control. Vol. I. 2017. ISBN: 1-886529-43-

4.

[16] Dimitri P. Bertsekas. Dynamic programming and optimal control: Approximate Dynamic Program-

ming. Vol. II. 2012. ISBN: 978-1-886529-44-1.

[17] Greg Brockman et al. “OpenAI Gym”. In: Arxiv (June 2016). DOI: 10.48550/arxiv.1606.

01540. URL: https://arxiv.org/abs/1606.01540v1.

[18] Rodney A. Brooks. “A Robust Layered Control System For A Mobile Robot”. In: IEEE Journal on

Robotics and Automation 2.1 (1986), pp. 14–23. ISSN: 08824967. DOI: 10.1109/JRA.1986.

1087032.

[19] Holger Caesar et al. “Nuscenes: A multimodal dataset for autonomous driving”. In: Proceedings of

the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Mar. 2020),

pp. 11618–11628. ISSN: 10636919. DOI: 10.1109/CVPR42600.2020.01164. URL: https:

//arxiv.org/abs/1903.11027v5.

[20] Micah Carroll et al. “On the Utility of Learning about Humans for Human-AI Coordination”. In:

Advances in Neural Information Processing Systems 32 (Oct. 2019). ISSN: 10495258. DOI: 10.

48550/arxiv.1910.05789. URL: https://arxiv.org/abs/1910.05789v2.

[21] Chao Chen, Markus Rickert, and Alois Knoll. “Path planning with orientation-aware space explo-

ration guided heuristic search for autonomous parking and maneuvering”. In: 2015 IEEE Intelligent

Vehicles Symposium (IV) 2015-August (Aug. 2015), pp. 1148–1153. DOI: 10.1109/IVS.2015.

7225838.

M. Orłowski Reinforcement learning in autonomous driving

https://doi.org/10.48550/arxiv.2008.00511
https://arxiv.org/abs/2008.00511v2
https://doi.org/10.1109/CCWC.2019.8666613
https://doi.org/10.1109/CCWC.2019.8666613
https://doi.org/10.48550/arxiv.1707.06887
https://arxiv.org/abs/1707.06887v1
https://arxiv.org/abs/1707.06887v1
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.48550/arxiv.1606.01540
https://doi.org/10.48550/arxiv.1606.01540
https://arxiv.org/abs/1606.01540v1
https://doi.org/10.1109/JRA.1986.1087032
https://doi.org/10.1109/JRA.1986.1087032
https://doi.org/10.1109/CVPR42600.2020.01164
https://arxiv.org/abs/1903.11027v5
https://arxiv.org/abs/1903.11027v5
https://doi.org/10.48550/arxiv.1910.05789
https://doi.org/10.48550/arxiv.1910.05789
https://arxiv.org/abs/1910.05789v2
https://doi.org/10.1109/IVS.2015.7225838
https://doi.org/10.1109/IVS.2015.7225838

BIBLIOGRAPHY 117

[22] Dong Chen et al. “Deep Multi-Agent Reinforcement Learning for Highway On-Ramp Merging

in Mixed Traffic”. In: IEEE Transactions on Intelligent Transportation Systems (2023). ISSN:

15580016. DOI: 10.1109/TITS.2023.3285442.

[23] Jianyu Chen, Bodi Yuan, and Masayoshi Tomizuka. “Model-free Deep Reinforcement Learning for

Urban Autonomous Driving”. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC)

(Oct. 2019), pp. 2765–2771. DOI: 10.1109/ITSC.2019.8917306.

[24] Xuemei Chen et al. “A conflict decision model based on game theory for intelligent vehicles at urban

unsignalized intersections”. In: IEEE Access 8 (2020), pp. 189546–189555. ISSN: 21693536. DOI:

10.1109/ACCESS.2020.3031674.

[25] Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. “Shared Experience Actor-Critic for

Multi-Agent Reinforcement Learning”. In: Advances in Neural Information Processing Systems

2020-December (June 2020). ISSN: 10495258. DOI: 10.48550/arxiv.2006.07169. URL:

https://arxiv.org/abs/2006.07169v4.

[26] Tianshu Chu, Jie Wang, Lara Codeca, and Zhaojian Li. “Multi-Agent Deep Reinforcement Learning

for Large-Scale Traffic Signal Control”. In: IEEE Transactions on Intelligent Transportation Sys-

tems 21.3 (Mar. 2019), pp. 1086–1095. ISSN: 15580016. DOI: 10.1109/TITS.2019.2901791.

[27] Paweł Cichosz. “Truncating Temporal Diierences: On the EEcient Implementation of TD for Rein-

forcement Learning”. In: Journal of Artiicial Intelligence Research 2 (1995), pp. 287–318.

[28] Laurene Claussmann, Marc Revilloud, Dominique Gruyer, and Sebastien Glaser. “A Review of

Motion Planning for Highway Autonomous Driving”. In: IEEE Transactions on Intelligent Trans-

portation Systems 21.5 (May 2020), pp. 1826–1848. ISSN: 15580016. DOI: 10.1109/TITS.

2019.2913998.

[29] Cruise’s Safety Record Over 1 Million Driverless Miles | Cruise. URL: https://getcruise.

com / news / blog / 2023 / cruises - safety - record - over - one - million -

driverless-miles/.

[30] Jonas Degrave et al. “Magnetic control of tokamak plasmas through deep reinforcement learning”.

In: Nature 2022 602:7897 602.7897 (Feb. 2022), pp. 414–419. ISSN: 1476-4687. DOI: 10.1038/

s41586-021-04301-9. URL: https://www.nature.com/articles/s41586-021-

04301-9.

[31] Delphi Successfully Completes First Coast-to-Coast Automated Drive. URL: https://www.

aptiv . com / en / newsroom / article / delphi - successfully - completes -

first-coast-to-coast-automated-drive.

[32] Nachiket Deo, Eric Wolff, and Oscar Beijbom. “Multimodal Trajectory Prediction Conditioned on

Lane-Graph Traversals”. In: Proceedings of the 5th Conference on Robot Learning. Ed. by Alek-

sandra Faust, David Hsu, and Gerhard Neumann. Vol. 164. Proceedings of Machine Learning Re-

search. PMLR, July 2022, pp. 203–212. URL: https://proceedings.mlr.press/v164/

deo22a.html.

M. Orłowski Reinforcement learning in autonomous driving

https://doi.org/10.1109/TITS.2023.3285442
https://doi.org/10.1109/ITSC.2019.8917306
https://doi.org/10.1109/ACCESS.2020.3031674
https://doi.org/10.48550/arxiv.2006.07169
https://arxiv.org/abs/2006.07169v4
https://doi.org/10.1109/TITS.2019.2901791
https://doi.org/10.1109/TITS.2019.2913998
https://doi.org/10.1109/TITS.2019.2913998
https://getcruise.com/news/blog/2023/cruises-safety-record-over-one-million-driverless-miles/
https://getcruise.com/news/blog/2023/cruises-safety-record-over-one-million-driverless-miles/
https://getcruise.com/news/blog/2023/cruises-safety-record-over-one-million-driverless-miles/
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1038/s41586-021-04301-9
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-021-04301-9
https://www.aptiv.com/en/newsroom/article/delphi-successfully-completes-first-coast-to-coast-automated-drive
https://www.aptiv.com/en/newsroom/article/delphi-successfully-completes-first-coast-to-coast-automated-drive
https://www.aptiv.com/en/newsroom/article/delphi-successfully-completes-first-coast-to-coast-automated-drive
https://proceedings.mlr.press/v164/deo22a.html
https://proceedings.mlr.press/v164/deo22a.html

BIBLIOGRAPHY 118

[33] Detecting Obstacles and Drivable Free Space with RadarNet | NVIDIA Technical Blog. URL:

https : / / developer . nvidia . com / blog / detecting - obstacles - and -

drivable-free-space-with-radarnet/.

[34] Joris Dinneweth, Abderrahmane Boubezoul, René Mandiau, and Stéphane Espié. “Multi-agent re-

inforcement learning for autonomous vehicles: a survey”. In: Autonomous Intelligent Systems 2.1

(Nov. 2022), p. 27. ISSN: 2730-616X. DOI: 10.1007/S43684-022-00045-Z. URL: https:

//link.springer.com/10.1007/s43684-022-00045-z.

[35] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel. “Path Planning for

Autonomous Vehicles in Unknown Semi-structured Environments”. In: The International Jour-

nal of Robotics Research 29.5 (Apr. 2010), pp. 485–501. ISSN: 02783649. DOI: 10 . 1177 /

0278364909359210.

[36] Ziyue Feng, Shitao Chen, Yu Chen, and Nanning Zheng. “Model-Based Decision Making with

Imagination for Autonomous Parking”. In: IEEE Intelligent Vehicles Symposium, Proceedings 2018-

June (Oct. 2018), pp. 2216–2223. DOI: 10.1109/IVS.2018.8500700. URL: https://

arxiv.org/abs/2108.11420v1.

[37] First internationally valid system approval: Conditionally automated driving | Mercedes-Benz

Group > Innovation > Product innovation > Autonomous driving. URL: https://group.

mercedes - benz . com / innovation / product - innovation / autonomous -

driving/system-approval-for-conditionally-automated-driving.html.

[38] Meire Fortunato et al. “Noisy Networks for Exploration”. In: 6th International Conference on Learn-

ing Representations, ICLR 2018 - Conference Track Proceedings (June 2017). DOI: 10.48550/

arxiv.1706.10295. URL: https://arxiv.org/abs/1706.10295v3.

[39] Gene F Franklin, J David Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic Systems

(8th Edition) (What’s New in Engineering). Pearson, 2018. ISBN: 0134685717. URL: https://

www.amazon.com/Feedback-Control-Dynamic-Systems-Engineering/dp/

0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&

linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134685717.

[40] Lina Fu, Ahmet Yazici, and Ümit Ozgüner. “Route planning for OSU-ACT autonomous vehicle in

DARPA Urban Challenge”. In: IEEE Intelligent Vehicles Symposium, Proceedings (2008), pp. 781–

786. DOI: 10.1109/IVS.2008.4621279.

[41] Scott Fujimoto, Herke Van Hoof, and David Meger. “Addressing Function Approximation Error

in Actor-Critic Methods”. In: 35th International Conference on Machine Learning, ICML 2018 4

(Feb. 2018), pp. 2587–2601. DOI: 10.48550/arxiv.1802.09477. URL: https://arxiv.

org/abs/1802.09477v3.

[42] David González, Joshué Pérez, Vicente Milanés, and Fawzi Nashashibi. “A Review of Motion Plan-

ning Techniques for Automated Vehicles”. In: IEEE Transactions on Intelligent Transportation Sys-

tems 17.4 (Apr. 2016), pp. 1135–1145. ISSN: 15249050. DOI: 10.1109/TITS.2015.2498841.

M. Orłowski Reinforcement learning in autonomous driving

https://developer.nvidia.com/blog/detecting-obstacles-and-drivable-free-space-with-radarnet/
https://developer.nvidia.com/blog/detecting-obstacles-and-drivable-free-space-with-radarnet/
https://doi.org/10.1007/S43684-022-00045-Z
https://link.springer.com/10.1007/s43684-022-00045-z
https://link.springer.com/10.1007/s43684-022-00045-z
https://doi.org/10.1177/0278364909359210
https://doi.org/10.1177/0278364909359210
https://doi.org/10.1109/IVS.2018.8500700
https://arxiv.org/abs/2108.11420v1
https://arxiv.org/abs/2108.11420v1
https://group.mercedes-benz.com/innovation/product-innovation/autonomous-driving/system-approval-for-conditionally-automated-driving.html
https://group.mercedes-benz.com/innovation/product-innovation/autonomous-driving/system-approval-for-conditionally-automated-driving.html
https://group.mercedes-benz.com/innovation/product-innovation/autonomous-driving/system-approval-for-conditionally-automated-driving.html
https://doi.org/10.48550/arxiv.1706.10295
https://doi.org/10.48550/arxiv.1706.10295
https://arxiv.org/abs/1706.10295v3
https://www.amazon.com/Feedback-Control-Dynamic-Systems-Engineering/dp/0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134685717
https://www.amazon.com/Feedback-Control-Dynamic-Systems-Engineering/dp/0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134685717
https://www.amazon.com/Feedback-Control-Dynamic-Systems-Engineering/dp/0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134685717
https://www.amazon.com/Feedback-Control-Dynamic-Systems-Engineering/dp/0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134685717
https://doi.org/10.1109/IVS.2008.4621279
https://doi.org/10.48550/arxiv.1802.09477
https://arxiv.org/abs/1802.09477v3
https://arxiv.org/abs/1802.09477v3
https://doi.org/10.1109/TITS.2015.2498841

BIBLIOGRAPHY 119

[43] Ralph Grewe, Andree Hohm, Stefan Lüke, and Hermann Winner. “Environment Models as Stan-

dardised Interface for Future ADAS”. In: ATZelektronik worldwide 2012 7:5 7.5 (Oct. 2012), pp. 10–

15. ISSN: 2192-9092. DOI: 10.1365/S38314- 012- 0110- 5. URL: https://link.

springer.com/article/10.1365/s38314-012-0110-5.

[44] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. “Soft Actor-Critic: Off-Policy

Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor”. In: 35th International

Conference on Machine Learning, ICML 2018 5 (Jan. 2018), pp. 2976–2989. DOI: 10.48550/

arxiv.1801.01290. URL: https://arxiv.org/abs/1801.01290v2.

[45] Tuomas Haarnoja et al. “Soft Actor-Critic Algorithms and Applications”. In: (Dec. 2018). DOI:

10.48550/arxiv.1812.05905. URL: https://arxiv.org/abs/1812.05905v2.

[46] Peng Hang, Chen Lv, Chao Huang, Yang Xing, and Zhongxu Hu. “Cooperative Decision Making of

Connected Automated Vehicles at Multi-Lane Merging Zone: A Coalitional Game Approach”. In:

IEEE Transactions on Intelligent Transportation Systems 23.4 (Apr. 2022), pp. 3829–3841. ISSN:

15580016. DOI: 10.1109/TITS.2021.3069463. URL: https://arxiv.org/abs/

2103.07887v1.

[47] Matteo Hessel et al. “Rainbow: Combining Improvements in Deep Reinforcement Learning”. In:

32nd AAAI Conference on Artificial Intelligence, AAAI 2018 (Oct. 2017), pp. 3215–3222. DOI: 10.

48550/arxiv.1710.02298. URL: https://arxiv.org/abs/1710.02298v1.

[48] Honda Global | November 11 , 2020 "Honda Receives Type Designation for Level 3 Automated Driv-

ing in Japan". URL: https://global.honda/newsroom/news/2020/4201111eng.

html.

[49] Hsu Chieh Hu, Stephen F. Smith, and Rick Goldstein. “Cooperative Schedule-Driven Intersec-

tion Control with Connected and Autonomous Vehicles”. In: IEEE International Conference on

Intelligent Robots and Systems (Nov. 2019), pp. 1668–1673. ISSN: 21530866. DOI: 10.1109/

IROS40897.2019.8967975. URL: https://arxiv.org/abs/1907.01984v1.

[50] Tommi Jaakkola, Satinder P. Singh, and Michael I. Jordan. “Reinforcement learning algorithm for

partially observable Markov decision problems”. In: NIPS’94: Proceedings of the 7th International

Conference on Neural Information Processing Systems. 1994, pp. 345–352. URL: https://dl.

acm.org/doi/10.5555/2998687.2998730.

[51] Jyun Hao Jhang and Feng Li Lian. “An Autonomous Parking System of Optimally Integrating Bidi-

rectional Rapidly-Exploring Random Trees* and Parking-Oriented Model Predictive Control”. In:

IEEE Access 8 (2020), pp. 163502–163523. ISSN: 21693536. DOI: 10.1109/ACCESS.2020.

3020859.

[52] Simon J. Julier and Jeffrey K. Uhlmann. “Unscented filtering and nonlinear estimation”. In: Pro-

ceedings of the IEEE 92.3 (Mar. 2004), pp. 401–422. ISSN: 00189219. DOI: 10.1109/JPROC.

2003.823141.

M. Orłowski Reinforcement learning in autonomous driving

https://doi.org/10.1365/S38314-012-0110-5
https://link.springer.com/article/10.1365/s38314-012-0110-5
https://link.springer.com/article/10.1365/s38314-012-0110-5
https://doi.org/10.48550/arxiv.1801.01290
https://doi.org/10.48550/arxiv.1801.01290
https://arxiv.org/abs/1801.01290v2
https://doi.org/10.48550/arxiv.1812.05905
https://arxiv.org/abs/1812.05905v2
https://doi.org/10.1109/TITS.2021.3069463
https://arxiv.org/abs/2103.07887v1
https://arxiv.org/abs/2103.07887v1
https://doi.org/10.48550/arxiv.1710.02298
https://doi.org/10.48550/arxiv.1710.02298
https://arxiv.org/abs/1710.02298v1
https://global.honda/newsroom/news/2020/4201111eng.html
https://global.honda/newsroom/news/2020/4201111eng.html
https://doi.org/10.1109/IROS40897.2019.8967975
https://doi.org/10.1109/IROS40897.2019.8967975
https://arxiv.org/abs/1907.01984v1
https://dl.acm.org/doi/10.5555/2998687.2998730
https://dl.acm.org/doi/10.5555/2998687.2998730
https://doi.org/10.1109/ACCESS.2020.3020859
https://doi.org/10.1109/ACCESS.2020.3020859
https://doi.org/10.1109/JPROC.2003.823141
https://doi.org/10.1109/JPROC.2003.823141

BIBLIOGRAPHY 120

[53] Rudolf Kalman. “A new approach to linear filtering and prediction problems”. In: Journal of Fluids

Engineering, Transactions of the ASME 82.1 (1960), pp. 35–45. ISSN: 1528901X. DOI: 10.1115/

1.3662552.

[54] Malvin H. Kalos and Paula A. Whitlock. Monte Carlo Methods: Second Edition. Wiley-VCH, July

2009, pp. 1–203. ISBN: 9783527407606. DOI: 10.1002/9783527626212. URL: https://

onlinelibrary.wiley.com/doi/book/10.1002/9783527626212.

[55] Takeo Kanade, Chuck Thorpe, and William (Red) L Whittaker. “Autonomous Land Vehicle Project

at CMU”. In: Proceedings of ACM 14th Annual Conference on Computer Science (CSC ’86). Feb.

1986, pp. 71–80.

[56] Alexander Katriniok, Peter Kleibaum, and Martina Joševski. “Distributed Model Predictive Control

for Intersection Automation Using a Parallelized Optimization Approach”. In: IFAC-PapersOnLine

50.1 (July 2017), pp. 5940–5946. ISSN: 2405-8963. DOI: 10.1016/J.IFACOL.2017.08.

1492.

[57] B. Ravi Kiran et al. “Deep Reinforcement Learning for Autonomous Driving: A Survey”. In:

IEEE Transactions on Intelligent Transportation Systems 23.6 (June 2020), pp. 4909–4926. ISSN:

15580016. DOI: 10.1109/TITS.2021.3054625.

[58] Sebastian Klemm et al. “Autonomous multi-story navigation for valet parking”. In: IEEE Confer-

ence on Intelligent Transportation Systems, Proceedings, ITSC (Dec. 2016), pp. 1126–1133. DOI:

10.1109/ITSC.2016.7795698.

[59] János Kramár et al. “Negotiation and honesty in artificial intelligence methods for the board game of

Diplomacy”. In: Nature Communications 2022 13:1 13.1 (Dec. 2022), pp. 1–15. ISSN: 2041-1723.

DOI: 10.1038/s41467-022-34473-5. URL: https://www.nature.com/articles/

s41467-022-34473-5.

[60] Karol Kurach et al. “Google Research Football: A Novel Reinforcement Learning Environment”.

In: AAAI 2020 - 34th AAAI Conference on Artificial Intelligence (July 2019), pp. 4501–4510. ISSN:

2159-5399. DOI: 10.48550/arxiv.1907.11180. URL: https://arxiv.org/abs/

1907.11180v2.

[61] Stéphanie Lefèvre, Dizan Vasquez, and Christian Laugier. “A survey on motion prediction and

risk assessment for intelligent vehicles”. In: ROBOMECH Journal 1.1 (Dec. 2014), pp. 1–14.

ISSN: 21974225. DOI: 10.1186/S40648- 014- 0001- Z/FIGURES/8. URL: https:

//robomechjournal.springeropen.com/articles/10.1186/s40648-014-

0001-z.

[62] Bai Li, Youmin Zhang, Yue Zhang, Ning Jia, and Yuming Ge. “Near-Optimal Online Motion Plan-

ning of Connected and Automated Vehicles at a Signal-Free and Lane-Free Intersection”. In: IEEE

Intelligent Vehicles Symposium, Proceedings 2018-June (Oct. 2018), pp. 1432–1437. DOI: 10.

1109/IVS.2018.8500528.

M. Orłowski Reinforcement learning in autonomous driving

https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1002/9783527626212
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527626212
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527626212
https://doi.org/10.1016/J.IFACOL.2017.08.1492
https://doi.org/10.1016/J.IFACOL.2017.08.1492
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1109/ITSC.2016.7795698
https://doi.org/10.1038/s41467-022-34473-5
https://www.nature.com/articles/s41467-022-34473-5
https://www.nature.com/articles/s41467-022-34473-5
https://doi.org/10.48550/arxiv.1907.11180
https://arxiv.org/abs/1907.11180v2
https://arxiv.org/abs/1907.11180v2
https://doi.org/10.1186/S40648-014-0001-Z/FIGURES/8
https://robomechjournal.springeropen.com/articles/10.1186/s40648-014-0001-z
https://robomechjournal.springeropen.com/articles/10.1186/s40648-014-0001-z
https://robomechjournal.springeropen.com/articles/10.1186/s40648-014-0001-z
https://doi.org/10.1109/IVS.2018.8500528
https://doi.org/10.1109/IVS.2018.8500528

BIBLIOGRAPHY 121

[63] Changjian Li and Krzysztof Czarnecki. “Urban Driving with Multi-Objective Deep Reinforcement

Learning”. In: Proceedings of the International Joint Conference on Autonomous Agents and Mul-

tiagent Systems, AAMAS 1 (Nov. 2018), pp. 359–367. ISSN: 15582914. URL: https://arxiv.

org/abs/1811.08586v2.

[64] Nan Li, Yu Yao, Ilya Kolmanovsky, Ella Atkins, and Anouck R. Girard. “Game-Theoretic Modeling

of Multi-Vehicle Interactions at Uncontrolled Intersections”. In: IEEE Transactions on Intelligent

Transportation Systems 23.2 (Feb. 2022), pp. 1428–1442. ISSN: 15580016. DOI: 10.1109/TITS.

2020.3026160. URL: https://arxiv.org/abs/1904.05423v1.

[65] Eric Liang et al. “RLlib: Abstractions for Distributed Reinforcement Learning”. In: 35th Interna-

tional Conference on Machine Learning, ICML 2018 7 (Dec. 2017), pp. 4768–4780. DOI: 10.

48550/arxiv.1712.09381. URL: https://arxiv.org/abs/1712.09381v4.

[66] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement learning”. In: 4th Interna-

tional Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings (Sept.

2015). DOI: 10.48550/arxiv.1509.02971. URL: https://arxiv.org/abs/1509.

02971v6.

[67] Xiao Lin et al. “Decision Making through Occluded Intersections for Autonomous Driving”. In:

2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019 (Oct. 2019), pp. 2449–2455.

DOI: 10.1109/ITSC.2019.8917348.

[68] Chang Liu, Seungho Lee, Scott Varnhagen, and H. Eric Tseng. “Path planning for autonomous

vehicles using model predictive control”. In: 2017 IEEE Intelligent Vehicles Symposium (IV) (July

2017), pp. 174–179. DOI: 10.1109/IVS.2017.7995716.

[69] Ryan Lowe et al. “Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments”. In:

Advances in Neural Information Processing Systems 2017-December (June 2017), pp. 6380–6391.

ISSN: 10495258. DOI: 10.48550/arxiv.1706.02275. URL: https://arxiv.org/

abs/1706.02275v4.

[70] Kevin M Lynch and Frank C Park. MODERN ROBOTICS MECHANICS, PLANNING, AND CON-

TROL. Cambridge: Cambridge University Press, 2017. ISBN: 9781107156302. URL: http://

modernrobotics.org.Commentsarewelcome!.

[71] Pattie Maes. “Do the right thing.” In: Nursing standard (Royal College of Nursing (Great Britain) :

1987) 1.3 (Jan. 1989), pp. 291–323. ISSN: 13600494. DOI: 10.1080/09540098908915643.

[72] Daniel J. Mankowitz et al. “Faster sorting algorithms discovered using deep reinforcement learning”.

In: Nature 2023 618:7964 618.7964 (June 2023), pp. 257–263. ISSN: 1476-4687. DOI: 10.1038/

s41586-023-06004-9. URL: https://www.nature.com/articles/s41586-023-

06004-9.

[73] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015.

URL: https://www.tensorflow.org/.

M. Orłowski Reinforcement learning in autonomous driving

https://arxiv.org/abs/1811.08586v2
https://arxiv.org/abs/1811.08586v2
https://doi.org/10.1109/TITS.2020.3026160
https://doi.org/10.1109/TITS.2020.3026160
https://arxiv.org/abs/1904.05423v1
https://doi.org/10.48550/arxiv.1712.09381
https://doi.org/10.48550/arxiv.1712.09381
https://arxiv.org/abs/1712.09381v4
https://doi.org/10.48550/arxiv.1509.02971
https://arxiv.org/abs/1509.02971v6
https://arxiv.org/abs/1509.02971v6
https://doi.org/10.1109/ITSC.2019.8917348
https://doi.org/10.1109/IVS.2017.7995716
https://doi.org/10.48550/arxiv.1706.02275
https://arxiv.org/abs/1706.02275v4
https://arxiv.org/abs/1706.02275v4
http://modernrobotics.org.Commentsarewelcome!
http://modernrobotics.org.Commentsarewelcome!
https://doi.org/10.1080/09540098908915643
https://doi.org/10.1038/s41586-023-06004-9
https://doi.org/10.1038/s41586-023-06004-9
https://www.nature.com/articles/s41586-023-06004-9
https://www.nature.com/articles/s41586-023-06004-9
https://www.tensorflow.org/

BIBLIOGRAPHY 122

[74] Branka Mirchevska, Christian Pek, Moritz Werling, Matthias Althoff, and Joschka Boedecker.

“High-level Decision Making for Safe and Reasonable Autonomous Lane Changing using Re-

inforcement Learning”. In: IEEE Conference on Intelligent Transportation Systems, Proceedings,

ITSC 2018-November (Dec. 2018), pp. 2156–2162. DOI: 10.1109/ITSC.2018.8569448.

[75] Volodymyr Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning”. In: 33rd In-

ternational Conference on Machine Learning, ICML 2016 4 (Feb. 2016), pp. 2850–2869. DOI:

10.48550/arxiv.1602.01783. URL: https://arxiv.org/abs/1602.01783v2.

[76] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In: Nature 2015

518:7540 518.7540 (Feb. 2015), pp. 529–533. ISSN: 1476-4687. DOI: 10.1038/nature14236.

URL: https://www.nature.com/articles/nature14236.

[77] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: Arxiv (Dec. 2013).

DOI: 10.48550/arxiv.1312.5602. URL: https://arxiv.org/abs/1312.5602v1.

[78] Mobileye REM™ - Road Experience Management. URL: https://www.mobileye.com/

technology/rem/.

[79] Sharada Mohanty et al. “Flatland-RL : Multi-Agent Reinforcement Learning on Trains”. In: (Dec.

2020). DOI: 10.48550/arxiv.2012.05893. URL: https://arxiv.org/abs/2012.

05893v2.

[80] George E. Monahan. “State of the Art—A Survey of Partially Observable Markov Decision Pro-

cesses: Theory, Models, and Algorithms”. In: http://dx.doi.org/10.1287/mnsc.28.1.1 28.1 (Jan.

1982), pp. 1–16. ISSN: 00251909. DOI: 10 . 1287 / MNSC . 28 . 1 . 1. URL: https : / /

pubsonline.informs.org/doi/abs/10.1287/mnsc.28.1.1.

[81] Michael Montemerlo et al. “Junior: The stanford entry in the urban challenge”. In: Springer Tracts

in Advanced Robotics 56 (2009), pp. 91–123. ISSN: 16107438. DOI: 10.1007/978-3-642-

03991-1{_}3/COVER. URL: https://link.springer.com/chapter/10.1007/

978-3-642-03991-1_3.

[82] Alejandro Ivan Morales Medina, Nathan Van De Wouw, and Henk Nijmeijer. “Cooperative Intersec-

tion Control Based on Virtual Platooning”. In: IEEE Transactions on Intelligent Transportation Sys-

tems 19.6 (June 2018), pp. 1727–1740. ISSN: 15249050. DOI: 10.1109/TITS.2017.2735628.

[83] Igor Mordatch and Pieter Abbeel. “Emergence of Grounded Compositional Language in Multi-

Agent Populations”. In: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 (Mar. 2017),

pp. 1495–1502. DOI: 10.48550/arxiv.1703.04908. URL: https://arxiv.org/abs/

1703.04908v2.

[84] Motional Launches First Robotaxi Service on the Uber Network | Motional. URL: https://

motional.com/news/motional-launches-first-robotaxi-service-uber-

network.

M. Orłowski Reinforcement learning in autonomous driving

https://doi.org/10.1109/ITSC.2018.8569448
https://doi.org/10.48550/arxiv.1602.01783
https://arxiv.org/abs/1602.01783v2
https://doi.org/10.1038/nature14236
https://www.nature.com/articles/nature14236
https://doi.org/10.48550/arxiv.1312.5602
https://arxiv.org/abs/1312.5602v1
https://www.mobileye.com/technology/rem/
https://www.mobileye.com/technology/rem/
https://doi.org/10.48550/arxiv.2012.05893
https://arxiv.org/abs/2012.05893v2
https://arxiv.org/abs/2012.05893v2
https://doi.org/10.1287/MNSC.28.1.1
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.28.1.1
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.28.1.1
https://doi.org/10.1007/978-3-642-03991-1{_}3/COVER
https://doi.org/10.1007/978-3-642-03991-1{_}3/COVER
https://link.springer.com/chapter/10.1007/978-3-642-03991-1_3
https://link.springer.com/chapter/10.1007/978-3-642-03991-1_3
https://doi.org/10.1109/TITS.2017.2735628
https://doi.org/10.48550/arxiv.1703.04908
https://arxiv.org/abs/1703.04908v2
https://arxiv.org/abs/1703.04908v2
https://motional.com/news/motional-launches-first-robotaxi-service-uber-network
https://motional.com/news/motional-launches-first-robotaxi-service-uber-network
https://motional.com/news/motional-launches-first-robotaxi-service-uber-network

BIBLIOGRAPHY 123

[85] Rémi Munos, Thomas Stepleton, Anna Harutyunyan, and Marc G. Bellemare. “Safe and Efficient

Off-Policy Reinforcement Learning”. In: Advances in Neural Information Processing Systems (June

2016), pp. 1054–1062. ISSN: 10495258. DOI: 10.48550/arxiv.1606.02647. URL: https:

//arxiv.org/abs/1606.02647v2.

[86] Raul Mur-Artal and Juan D. Tardos. “ORB-SLAM2: an Open-Source SLAM System for Monocular,

Stereo and RGB-D Cameras”. In: IEEE Transactions on Robotics 33.5 (Oct. 2016), pp. 1255–1262.

DOI: 10.1109/TRO.2017.2705103. URL: http://arxiv.org/abs/1610.06475%

20http://dx.doi.org/10.1109/TRO.2017.2705103.

[87] Kevin P. Murphy. A Survey of POMDP Solution Techniques | Semantic Scholar.

Tech. rep. 2007. URL: https : / / www . semanticscholar . org /

paper / A - Survey - of - POMDP - Solution - Techniques - Murphy /

43ac7c95bce9c9d1417c45b7c5b76b6c88fcb633.

[88] Subramanya Nageshrao, H. Eric Tseng, and DImitar Filev. “Autonomous highway driving using

deep reinforcement learning”. In: Conference Proceedings - IEEE International Conference on

Systems, Man and Cybernetics 2019-October (Oct. 2019), pp. 2326–2331. ISSN: 1062922X. DOI:

10.1109/SMC.2019.8914621. URL: https://arxiv.org/abs/1904.00035v1.

[89] Sanmit Narvekar et al. “Curriculum Learning for Reinforcement Learning Domains: A Framework

and Survey”. In: Journal of Machine Learning Research 21 (Mar. 2020), pp. 1–50. ISSN: 15337928.

DOI: 10.48550/arxiv.2003.04960. URL: https://arxiv.org/abs/2003.

04960v2.

[90] OpenAI. GPT-4 Technical Report. Tech. rep. OpenAI, Mar. 2023. URL: https://arxiv.org/

abs/2303.08774v3.

[91] OpenAI et al. “Dota 2 with Large Scale Deep Reinforcement Learning”. In: (Dec. 2019). DOI:

10.48550/arxiv.1912.06680. URL: https://arxiv.org/abs/1912.06680v1.

[92] Mateusz Orłowski and Paweł Skruch. “A Reinforcement Learning Framework for Motion Planning

of Autonomous Vehicles”. In: Progress in Polish Artificial Intelligence Research 4. Łódź: Lodz

University of Technology Press, 2023, pp. 395–400. ISBN: 978-83-66741-92-8. DOI: 10.34658/

9788366741928.62.

[93] Mateusz Orłowski and Paweł Skruch. “Multiagent Manuvering with the Use of Reinforcement

Learning”. In: Electronics 12.8 (Apr. 2023), p. 1894. ISSN: 2079-9292. DOI: 10 . 3390 /

ELECTRONICS12081894. URL: https://www.mdpi.com/2079-9292/12/8/1894/

htm%20https://www.mdpi.com/2079-9292/12/8/1894.

[94] Mateusz Orłowski, Tomasz Wrona, Nikodem Pankiewicz, and Wojciech Turlej. “Safe and Goal-

Based Highway Maneuver Planning with Reinforcement Learning”. In: Advances in Intelligent Sys-

tems and Computing 1196 AISC (2020), pp. 1261–1274. ISSN: 21945365. DOI: 10.1007/978-

3-030-50936-1{_}105/COVER. URL: https://link.springer.com/chapter/

10.1007/978-3-030-50936-1_105.

M. Orłowski Reinforcement learning in autonomous driving

https://doi.org/10.48550/arxiv.1606.02647
https://arxiv.org/abs/1606.02647v2
https://arxiv.org/abs/1606.02647v2
https://doi.org/10.1109/TRO.2017.2705103
http://arxiv.org/abs/1610.06475%20http://dx.doi.org/10.1109/TRO.2017.2705103
http://arxiv.org/abs/1610.06475%20http://dx.doi.org/10.1109/TRO.2017.2705103
https://www.semanticscholar.org/paper/A-Survey-of-POMDP-Solution-Techniques-Murphy/43ac7c95bce9c9d1417c45b7c5b76b6c88fcb633
https://www.semanticscholar.org/paper/A-Survey-of-POMDP-Solution-Techniques-Murphy/43ac7c95bce9c9d1417c45b7c5b76b6c88fcb633
https://www.semanticscholar.org/paper/A-Survey-of-POMDP-Solution-Techniques-Murphy/43ac7c95bce9c9d1417c45b7c5b76b6c88fcb633
https://doi.org/10.1109/SMC.2019.8914621
https://arxiv.org/abs/1904.00035v1
https://doi.org/10.48550/arxiv.2003.04960
https://arxiv.org/abs/2003.04960v2
https://arxiv.org/abs/2003.04960v2
https://arxiv.org/abs/2303.08774v3
https://arxiv.org/abs/2303.08774v3
https://doi.org/10.48550/arxiv.1912.06680
https://arxiv.org/abs/1912.06680v1
https://doi.org/10.34658/9788366741928.62
https://doi.org/10.34658/9788366741928.62
https://doi.org/10.3390/ELECTRONICS12081894
https://doi.org/10.3390/ELECTRONICS12081894
https://www.mdpi.com/2079-9292/12/8/1894/htm%20https://www.mdpi.com/2079-9292/12/8/1894
https://www.mdpi.com/2079-9292/12/8/1894/htm%20https://www.mdpi.com/2079-9292/12/8/1894
https://doi.org/10.1007/978-3-030-50936-1{_}105/COVER
https://doi.org/10.1007/978-3-030-50936-1{_}105/COVER
https://link.springer.com/chapter/10.1007/978-3-030-50936-1_105
https://link.springer.com/chapter/10.1007/978-3-030-50936-1_105

BIBLIOGRAPHY 124

[95] Mateusz Orłowski, Tomasz Wrona, Wojciech Turlej, and Nikodem Pankiewicz. Methods and sys-

tems for determining a maneuver to be executed by an autonomous vehicle. 2020. URL: https:

//patents.google.com/patent/EP4001041A1/de?oq=EP4001041.

[96] Piotr Franciszek Orzechowski, Christoph Burger, and Martin Lauer. “Decision-Making for Auto-

mated Vehicles Using a Hierarchical Behavior-Based Arbitration Scheme”. In: IEEE Intelligent Ve-

hicles Symposium, Proceedings (Mar. 2020), pp. 767–774. DOI: 10.1109/IV47402.2020.

9304723. URL: http://arxiv.org/abs/2003.01149%20http://dx.doi.org/

10.1109/IV47402.2020.9304723.

[97] Praveen Palanisamy. “Multi-Agent Connected Autonomous Driving using Deep Reinforcement

Learning”. In: Proceedings of the International Joint Conference on Neural Networks (Nov. 2019).

DOI: 10.48550/arxiv.1911.04175. URL: https://arxiv.org/abs/1911.

04175v1.

[98] Nikodem Pankiewicz, Tomasz Wrona, Wojciech Turlej, and Mateusz Orłowski. “Promises and Chal-

lenges of Reinforcement Learning Applications in Motion Planning of Automated Vehicles”. In:

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics) 12855 LNAI (June 2021), pp. 318–329. ISSN: 16113349. DOI:

10.1007/978-3-030-87897-9{_}29. URL: https://link.springer.com/

chapter/10.1007/978-3-030-87897-9_29.

[99] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In:

Advances in Neural Information Processing Systems 32. Ed. by H Wallach et al. Curran Associates,

Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.cc/paper/9015-pytorch-

an-imperative-style-high-performance-deep-learning-library.pdf.

[100] Tung Phan-Minh, Elena Corina Grigore, Freddy A. Boulton, Oscar Beijbom, and Eric M. Wolff.

“CoverNet: Multimodal Behavior Prediction Using Trajectory Sets”. In: 2020 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR) (2019), pp. 14062–14071. ISSN:

10636919. DOI: 10.1109/CVPR42600.2020.01408.

[101] Harold Phelippeau, Mohamed Akil, Breno Dias Rodrigues, Hugues Talbot, and S. Bara. “Bayer

bilateral denoising on TriMedia3270”. In: Real-Time Image and Video Processing 2009 (Feb. 2009).

ISSN: 0277786X. DOI: 10.1117/12.812330. URL: https://www.researchgate.net/

publication/237537605_Bayer_Bilateral_denoising_on_TriMedia_3270.

[102] Philip Polack, Florent Altche, Brigitte DAndrea-Novel, and Arnaud De La Fortelle. “The kinematic

bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles?” In:

IEEE Intelligent Vehicles Symposium, Proceedings (July 2017), pp. 812–818. DOI: 10.1109/

IVS.2017.7995816.

[103] Radars | Advanced Safety | Aptiv. URL: https://www.aptiv.com/en/solutions/

advanced-safety/adas/radars.

M. Orłowski Reinforcement learning in autonomous driving

https://patents.google.com/patent/EP4001041A1/de?oq=EP4001041
https://patents.google.com/patent/EP4001041A1/de?oq=EP4001041
https://doi.org/10.1109/IV47402.2020.9304723
https://doi.org/10.1109/IV47402.2020.9304723
http://arxiv.org/abs/2003.01149%20http://dx.doi.org/10.1109/IV47402.2020.9304723
http://arxiv.org/abs/2003.01149%20http://dx.doi.org/10.1109/IV47402.2020.9304723
https://doi.org/10.48550/arxiv.1911.04175
https://arxiv.org/abs/1911.04175v1
https://arxiv.org/abs/1911.04175v1
https://doi.org/10.1007/978-3-030-87897-9{_}29
https://link.springer.com/chapter/10.1007/978-3-030-87897-9_29
https://link.springer.com/chapter/10.1007/978-3-030-87897-9_29
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/CVPR42600.2020.01408
https://doi.org/10.1117/12.812330
https://www.researchgate.net/publication/237537605_Bayer_Bilateral_denoising_on_TriMedia_3270
https://www.researchgate.net/publication/237537605_Bayer_Bilateral_denoising_on_TriMedia_3270
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/IVS.2017.7995816
https://www.aptiv.com/en/solutions/advanced-safety/adas/radars
https://www.aptiv.com/en/solutions/advanced-safety/adas/radars

BIBLIOGRAPHY 125

[104] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You Only Look Once: Unified,

Real-Time Object Detection”. In: Proceedings of the IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition 2016-December (June 2015), pp. 779–788. ISSN: 10636919.

DOI: 10.1109/CVPR.2016.91. URL: https://arxiv.org/abs/1506.02640v5.

[105] Julio K. Rosenblatt. “DAMN: a distributed architecture for mobile navigation”. In: J. Exp. Theor. Ar-

tif. Intell. 9.2-3 (Apr. 1997), pp. 339–360. ISSN: 13623079. DOI: 10.1080/095281397147167.

[106] Reuven Y. Rubinstein and Dirk P. Kroese. Simulation and the Monte Carlo Method. 3rd ed. Wiley,

2016, p. 435. ISBN: 978-1-118-63216-1.

[107] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. “Trajectron++:

Dynamically-Feasible Trajectory Forecasting with Heterogeneous Data”. In: Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) 12363 LNCS (2020), pp. 683–700. ISSN: 16113349. DOI: 10.1007/978-3-

030-58523-5{_}40.

[108] Mikayel Samvelyan et al. “The StarCraft Multi-Agent Challenge”. In: Proceedings of the Interna-

tional Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 4 (Feb. 2019),

pp. 2186–2188. ISSN: 15582914. DOI: 10 . 48550 / arxiv . 1902 . 04043. URL: https :

//arxiv.org/abs/1902.04043v5.

[109] Saved by the Sensor: Vehicle Awareness in the Self-Driving Age | Machine Design. URL: https://

www.machinedesign.com/mechanical-motion-systems/article/21836344/

saved-by-the-sensor-vehicle-awareness-in-the-selfdriving-age.

[110] Maximilian Schafer, Kun Zhao, Markus Buhren, and Anton Kummert. “Context-Aware Scene Pre-

diction Network (CASPNet)”. In: IEEE Conference on Intelligent Transportation Systems, Pro-

ceedings, ITSC 2022-October (Jan. 2022), pp. 3970–3977. DOI: 10.1109/ITSC55140.2022.

9921850. URL: https://arxiv.org/abs/2201.06933v1.

[111] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. “Prioritized Experience Replay”.

In: 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Pro-

ceedings (Nov. 2015). DOI: 10.48550/arxiv.1511.05952. URL: https://arxiv.org/

abs/1511.05952v4.

[112] Julian Schrittwieser et al. “Mastering Atari, Go, chess and shogi by planning with a learned model”.

In: Nature 2020 588:7839 588.7839 (Dec. 2020), pp. 604–609. ISSN: 1476-4687. DOI: 10.1038/

s41586-020-03051-4. URL: https://www.nature.com/articles/s41586-020-

03051-4.

[113] John Schulman. “Optimizing Expectations: From Deep Reinforcement Learning to Stochastic Com-

putation Graphs”. PhD thesis. 2016. URL: http://joschu.net/docs/thesis.pdf.

[114] John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel. “Trust Region

Policy Optimization”. In: 32nd International Conference on Machine Learning, ICML 2015 3 (Feb.

2015), pp. 1889–1897. DOI: 10.48550/arxiv.1502.05477. URL: https://arxiv.

org/abs/1502.05477v5.

M. Orłowski Reinforcement learning in autonomous driving

https://doi.org/10.1109/CVPR.2016.91
https://arxiv.org/abs/1506.02640v5
https://doi.org/10.1080/095281397147167
https://doi.org/10.1007/978-3-030-58523-5{_}40
https://doi.org/10.1007/978-3-030-58523-5{_}40
https://doi.org/10.48550/arxiv.1902.04043
https://arxiv.org/abs/1902.04043v5
https://arxiv.org/abs/1902.04043v5
https://www.machinedesign.com/mechanical-motion-systems/article/21836344/saved-by-the-sensor-vehicle-awareness-in-the-selfdriving-age
https://www.machinedesign.com/mechanical-motion-systems/article/21836344/saved-by-the-sensor-vehicle-awareness-in-the-selfdriving-age
https://www.machinedesign.com/mechanical-motion-systems/article/21836344/saved-by-the-sensor-vehicle-awareness-in-the-selfdriving-age
https://doi.org/10.1109/ITSC55140.2022.9921850
https://doi.org/10.1109/ITSC55140.2022.9921850
https://arxiv.org/abs/2201.06933v1
https://doi.org/10.48550/arxiv.1511.05952
https://arxiv.org/abs/1511.05952v4
https://arxiv.org/abs/1511.05952v4
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://www.nature.com/articles/s41586-020-03051-4
https://www.nature.com/articles/s41586-020-03051-4
http://joschu.net/docs/thesis.pdf
https://doi.org/10.48550/arxiv.1502.05477
https://arxiv.org/abs/1502.05477v5
https://arxiv.org/abs/1502.05477v5

BIBLIOGRAPHY 126

[115] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov Openai. “Proximal

Policy Optimization Algorithms”. In: (July 2017). DOI: 10.48550/arxiv.1707.06347. URL:

https://arxiv.org/abs/1707.06347v2.

[116] Harm van Seijen and Richard S Sutton. “True Online TD(λ)”. In: Proceedings of the 31st Interna-

tional Conference on Machine Learning 32.1 (2014), pp. 692–700.

[117] Konstantin M. Seiler, Hanna Kurniawati, and Surya P.N. Singh. “An online and approximate solver

for POMDPs with continuous action space”. In: Proceedings - IEEE International Conference on

Robotics and Automation 2015-June.June (June 2015), pp. 2290–2297. ISSN: 10504729. DOI: 10.

1109/ICRA.2015.7139503.

[118] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. “On a Formal Model of Safe and

Scalable Self-driving Cars”. In: (Aug. 2017). DOI: 10.48550/arxiv.1708.06374. URL:

https://arxiv.org/abs/1708.06374v6.

[119] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. “Safe, Multi-Agent, Reinforcement

Learning for Autonomous Driving”. In: arXiv preprint arXiv:1610.03295v1 (Oct. 2016), p. 13. DOI:

10.48550/arxiv.1610.03295. URL: https://arxiv.org/abs/1610.03295v1.

[120] Xu Shen, Xiaojing Zhang, and Francesco Borrelli. “Autonomous Parking of Vehicle Fleet in

Tight Environments”. In: Proceedings of the American Control Conference 2020-July (July 2020),

pp. 3035–3040. ISSN: 07431619. DOI: 10.23919/ACC45564.2020.9147671. URL: https:

//arxiv.org/abs/1910.02349v3.

[121] Xu Shen et al. “ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots”. In: 2020

IEEE Intelligent Vehicles Symposium (IV) (2020), pp. 1170–1175. DOI: 10.1109/IV47402.

2020.9304795.

[122] David Silver et al. “Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning

Algorithm”. In: (Dec. 2017). DOI: 10.48550/arxiv.1712.01815. URL: https://arxiv.

org/abs/1712.01815v1.

[123] Satinder P. Singh and Richard S. Sutton. “Reinforcement learning with replacing eligibility

traces”. In: Machine Learning 1996 22:1 22.1 (1996), pp. 123–158. ISSN: 1573-0565. DOI: 10.

1007/BF00114726. URL: https://link.springer.com/article/10.1007/

BF00114726.

[124] Slurm Workload Manager - Documentation. URL: https : / / slurm . schedmd . com /

documentation.html.

[125] Bruno Sousa, Tiago Ribeiro, Joana Coelho, Gil Lopes, and A. Fernando Ribeiro. “Parallel, Angular

and Perpendicular Parking for Self-Driving Cars using Deep Reinforcement Learning”. In: 2022

IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) (2022),

pp. 40–46. DOI: 10.1109/ICARSC55462.2022.9784800.

M. Orłowski Reinforcement learning in autonomous driving

https://doi.org/10.48550/arxiv.1707.06347
https://arxiv.org/abs/1707.06347v2
https://doi.org/10.1109/ICRA.2015.7139503
https://doi.org/10.1109/ICRA.2015.7139503
https://doi.org/10.48550/arxiv.1708.06374
https://arxiv.org/abs/1708.06374v6
https://doi.org/10.48550/arxiv.1610.03295
https://arxiv.org/abs/1610.03295v1
https://doi.org/10.23919/ACC45564.2020.9147671
https://arxiv.org/abs/1910.02349v3
https://arxiv.org/abs/1910.02349v3
https://doi.org/10.1109/IV47402.2020.9304795
https://doi.org/10.1109/IV47402.2020.9304795
https://doi.org/10.48550/arxiv.1712.01815
https://arxiv.org/abs/1712.01815v1
https://arxiv.org/abs/1712.01815v1
https://doi.org/10.1007/BF00114726
https://doi.org/10.1007/BF00114726
https://link.springer.com/article/10.1007/BF00114726
https://link.springer.com/article/10.1007/BF00114726
https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/documentation.html
https://doi.org/10.1109/ICARSC55462.2022.9784800

BIBLIOGRAPHY 127

[126] Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. “Curriculum Learning: A Survey”.

In: International Journal of Computer Vision 130.6 (June 2022), pp. 1526–1565. ISSN: 15731405.

DOI: 10.1007/S11263-022-01611-X. URL: https://arxiv.org/abs/2101.

10382v3.

[127] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. “Learning Multiagent Communication with

Backpropagation”. In: Advances in Neural Information Processing Systems (May 2016), pp. 2252–

2260. ISSN: 10495258. DOI: 10.48550/arxiv.1605.07736. URL: https://arxiv.

org/abs/1605.07736v2.

[128] Richard S Sutton. “Generalization in Reinforcement Learning: Successful Examples Using Sparse

Coarse Coding”. In: Advances in Neural Information Processing Systems. Ed. by D. Touretzky,

M.C. Mozer, and M. Hasselmo. MIT Press, 1995. URL: https://papers.nips.cc/paper/

1995/hash/8f1d43620bc6bb580df6e80b0dc05c48-Abstract.html.

[129] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. Cambridge, MA,

USA: A Bradford Book, 2018. ISBN: 0262039249.

[130] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. “Policy Gradi-

ent Methods for Reinforcement Learning with Function Approximation”. In: Advances in

Neural Information Processing Systems. Ed. by S. Solla, T. Leen, and K. Muller. Vol. 12.

1999. URL: https : / / proceedings . neurips . cc / paper / 1999 / file /

464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

[131] Richard S. Sutton. “Learning to predict by the methods of temporal differences”. In: Machine Learn-

ing 1988 3:1 3.1 (Aug. 1988), pp. 9–44. ISSN: 1573-0565. DOI: 10.1007/BF00115009. URL:

https://link.springer.com/article/10.1007/BF00115009.

[132] Sebastian Thrun et al. “Stanley: The robot that won the DARPA Grand Challenge”. In: Springer

Tracts in Advanced Robotics 36 (2007), pp. 1–43. ISSN: 1610742X. DOI: 10.1007/978-3-

540-73429-1{_}1/COVER. URL: https://link.springer.com/chapter/10.

1007/978-3-540-73429-1_1.

[133] Behrad Toghi, Rodolfo Valiente, Dorsa Sadigh, Ramtin Pedarsani, and Yaser P. Fallah. “Coopera-

tive Autonomous Vehicles that Sympathize with Human Drivers”. In: IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS) (2021), pp. 4517–4524. ISSN: 21530866. DOI:

10.1109/IROS51168.2021.9636151.

[134] Behrad Toghi, Rodolfo Valiente, Dorsa Sadigh, Ramtin Pedarsani, and Yaser P. Fallah. “Social Coor-

dination and Altruism in Autonomous Driving”. In: IEEE Transactions on Intelligent Transportation

Systems 23 (2022), pp. 24791–24804. ISSN: 15580016. DOI: 10.1109/TITS.2022.3207872.

[135] Traffic AI™ – Simteract. URL: https://simteract.com/projects/traffic-ai/.

M. Orłowski Reinforcement learning in autonomous driving

https://doi.org/10.1007/S11263-022-01611-X
https://arxiv.org/abs/2101.10382v3
https://arxiv.org/abs/2101.10382v3
https://doi.org/10.48550/arxiv.1605.07736
https://arxiv.org/abs/1605.07736v2
https://arxiv.org/abs/1605.07736v2
https://papers.nips.cc/paper/1995/hash/8f1d43620bc6bb580df6e80b0dc05c48-Abstract.html
https://papers.nips.cc/paper/1995/hash/8f1d43620bc6bb580df6e80b0dc05c48-Abstract.html
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://doi.org/10.1007/BF00115009
https://link.springer.com/article/10.1007/BF00115009
https://doi.org/10.1007/978-3-540-73429-1{_}1/COVER
https://doi.org/10.1007/978-3-540-73429-1{_}1/COVER
https://link.springer.com/chapter/10.1007/978-3-540-73429-1_1
https://link.springer.com/chapter/10.1007/978-3-540-73429-1_1
https://doi.org/10.1109/IROS51168.2021.9636151
https://doi.org/10.1109/TITS.2022.3207872
https://simteract.com/projects/traffic-ai/

BIBLIOGRAPHY 128

[136] Paul G. Trepagnier, Jorge Nagel, Powell M. Kinney, Cris Koutsougeras, and Matthew Dooner.

“KAT-5: Robust systems for autonomous vehicle navigation in challenging and unknown terrain”.

In: Springer Tracts in Advanced Robotics 36 (2007), pp. 103–128. ISSN: 1610742X. DOI: 10.

1007/978-3-540-73429-1{_}3/COVER. URL: https://link.springer.com/

chapter/10.1007/978-3-540-73429-1_3.

[137] Nivedita Tripathi and Senthil Yogamani. “Trained Trajectory based Automated Parking System us-

ing Visual SLAM on Surround View Cameras”. In: (Jan. 2020). DOI: 10.48550/arxiv.2001.

02161. URL: https://arxiv.org/abs/2001.02161v3.

[138] Wojciech Turlej, Mateusz Orłowski, Tomasz Wrona, and Nikodem Pankiewicz. Method and system

for planning the motion of a vehicle. 2021. URL: https://patents.google.com/patent/

US20210300413A1/en.

[139] G. E. Uhlenbeck and L. S. Ornstein. “On the Theory of the Brownian Motion”. In: Physical Review

36.5 (Sept. 1930), p. 823. ISSN: 0031899X. DOI: 10.1103/PhysRev.36.823. URL: https:

//journals.aps.org/pr/abstract/10.1103/PhysRev.36.823.

[140] Chris Urmson et al. “A robust approach to high-speed navigation for unrehearsed desert terrain”.

In: Springer Tracts in Advanced Robotics 36 (2007), pp. 45–102. ISSN: 1610742X. DOI: 10 .

1007/978-3-540-73429-1{_}2/COVER. URL: https://link.springer.com/

chapter/10.1007/978-3-540-73429-1_2.

[141] Christopher Urmson et al. Tartan Racing: A Multi-Modal Approach to the DARPA Urban Challenge.

Tech. rep. Pittsburgh, PA: Carnegie Mellon University, Apr. 2007.

[142] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learning with Double Q-

learning”. In: 30th AAAI Conference on Artificial Intelligence, AAAI 2016 (Sept. 2015), pp. 2094–

2100. DOI: 10.48550/arxiv.1509.06461. URL: https://arxiv.org/abs/1509.

06461v3.

[143] Harm Van Seijen, A. Rupam Mahmood, Patrick M. Pilarski, Marlos C. Machado, and Richard S.

Sutton. “True Online Temporal-Difference Learning”. In: Journal of Machine Learning Research

17 (Dec. 2015), pp. 1–40. ISSN: 15337928. DOI: 10.48550/arxiv.1512.04087. URL:

https://arxiv.org/abs/1512.04087v2.

[144] Akifumi Wachi. “Failure-scenario maker for rule-based agent using multi-agent adversarial rein-

forcement learning and its application to autonomous driving”. In: IJCAI International Joint Con-

ference on Artificial Intelligence 2019-August (2019), pp. 6006–6012. ISSN: 10450823. DOI: 10.

24963/IJCAI.2019/832.

[145] J. van der. Wal. Stochastic dynamic programming : successive approximations and nearly optimal

strategies for Markov decision processes and Markov games. 2nd ed. Mathematisch Centrum, 1981.

ISBN: 9061962188. URL: https://books.google.com/books/about/Stochastic_

Dynamic_Programming.html?id=GMoGPwAACAAJ.

M. Orłowski Reinforcement learning in autonomous driving

https://doi.org/10.1007/978-3-540-73429-1{_}3/COVER
https://doi.org/10.1007/978-3-540-73429-1{_}3/COVER
https://link.springer.com/chapter/10.1007/978-3-540-73429-1_3
https://link.springer.com/chapter/10.1007/978-3-540-73429-1_3
https://doi.org/10.48550/arxiv.2001.02161
https://doi.org/10.48550/arxiv.2001.02161
https://arxiv.org/abs/2001.02161v3
https://patents.google.com/patent/US20210300413A1/en
https://patents.google.com/patent/US20210300413A1/en
https://doi.org/10.1103/PhysRev.36.823
https://journals.aps.org/pr/abstract/10.1103/PhysRev.36.823
https://journals.aps.org/pr/abstract/10.1103/PhysRev.36.823
https://doi.org/10.1007/978-3-540-73429-1{_}2/COVER
https://doi.org/10.1007/978-3-540-73429-1{_}2/COVER
https://link.springer.com/chapter/10.1007/978-3-540-73429-1_2
https://link.springer.com/chapter/10.1007/978-3-540-73429-1_2
https://doi.org/10.48550/arxiv.1509.06461
https://arxiv.org/abs/1509.06461v3
https://arxiv.org/abs/1509.06461v3
https://doi.org/10.48550/arxiv.1512.04087
https://arxiv.org/abs/1512.04087v2
https://doi.org/10.24963/IJCAI.2019/832
https://doi.org/10.24963/IJCAI.2019/832
https://books.google.com/books/about/Stochastic_Dynamic_Programming.html?id=GMoGPwAACAAJ
https://books.google.com/books/about/Stochastic_Dynamic_Programming.html?id=GMoGPwAACAAJ

BIBLIOGRAPHY 129

[146] Jiacun Wang and William M. Tepfenhart. Formal methods in computer science. Chapman & Hall,

July 2019. ISBN: 9781498775328. URL: https : / / www . routledge . com / Formal -

Methods-in-Computer-Science/Wang-Tepfenhart/p/book/9781498775328.

[147] Sen Wang, Daoyuan Jia, and Xinshuo Weng. “Deep Reinforcement Learning for Autonomous Driv-

ing”. In: [RecSys2018]Proceedings of the 12th ACM conference on Recommender systems (Nov.

2018), pp. 95–103. URL: https://arxiv.org/abs/1811.11329v3.

[148] Weixun Wang et al. “From few to more: Large-scale dynamic multiagent curriculum learning”. In:

AAAI 2020 - 34th AAAI Conference on Artificial Intelligence (Sept. 2020), pp. 7293–7300. ISSN:

2159-5399. DOI: 10.1609/AAAI.V34I05.6221. URL: https://arxiv.org/abs/

1909.02790v2.

[149] Ziyu Wang et al. “Dueling Network Architectures for Deep Reinforcement Learning”. In: 33rd

International Conference on Machine Learning, ICML 2016 4 (Nov. 2015), pp. 2939–2947. DOI:

10.48550/arxiv.1511.06581. URL: https://arxiv.org/abs/1511.06581v3.

[150] Ziyu Wang et al. “Sample Efficient Actor-Critic with Experience Replay”. In: 5th International Con-

ference on Learning Representations, ICLR 2017 - Conference Track Proceedings (Nov. 2016). DOI:

10.48550/arxiv.1611.01224. URL: https://arxiv.org/abs/1611.01224v2.

[151] Christopher J. C. H. Watkins and Peter Dayan. “Q-learning”. In: Machine Learning 8.3-4 (May

1992), pp. 279–292. ISSN: 0885-6125. DOI: 10.1007/bf00992698. URL: https://link.

springer.com/article/10.1007/BF00992698.

[152] Lianzhen Wei, Zirui Li, Jianwei Gong, Cheng Gong, and Jiachen Li. “Autonomous Driving Strate-

gies at Intersections: Scenarios, State-of-the-Art, and Future Outlooks”. In: IEEE Conference on

Intelligent Transportation Systems, Proceedings, ITSC 2021-September (Sept. 2021), pp. 44–51.

DOI: 10.1109/ITSC48978.2021.9564518. URL: https://arxiv.org/abs/2106.

13052v2.

[153] Welcome to the Ray documentation — Ray 1.12.0. URL: https://docs.ray.io/en/

latest/index.html.

[154] Moritz Werling, Julius Ziegler, Sören Kammel, and Sebastian Thrun. “Optimal trajectory genera-

tion for dynamic street scenarios in a Frenét Frame”. In: 2010 IEEE International Conference on

Robotics and Automation. 2010, pp. 987–993. DOI: 10.1109/ROBOT.2010.5509799.

[155] Ronald J. Williams. “Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning”. In: Machine Learning 1992 8:3 8.3 (May 1992), pp. 229–256. ISSN: 1573-0565.

DOI: 10.1007/BF00992696. URL: https://link.springer.com/article/10.

1007/BF00992696.

[156] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. “Simple online and realtime tracking with a

deep association metric”. In: Proceedings - International Conference on Image Processing, ICIP

2017-September (Feb. 2018), pp. 3645–3649. ISSN: 15224880. DOI: 10.1109/ICIP.2017.

8296962. URL: https://arxiv.org/abs/1703.07402v1.

M. Orłowski Reinforcement learning in autonomous driving

https://www.routledge.com/Formal-Methods-in-Computer-Science/Wang-Tepfenhart/p/book/9781498775328
https://www.routledge.com/Formal-Methods-in-Computer-Science/Wang-Tepfenhart/p/book/9781498775328
https://arxiv.org/abs/1811.11329v3
https://doi.org/10.1609/AAAI.V34I05.6221
https://arxiv.org/abs/1909.02790v2
https://arxiv.org/abs/1909.02790v2
https://doi.org/10.48550/arxiv.1511.06581
https://arxiv.org/abs/1511.06581v3
https://doi.org/10.48550/arxiv.1611.01224
https://arxiv.org/abs/1611.01224v2
https://doi.org/10.1007/bf00992698
https://link.springer.com/article/10.1007/BF00992698
https://link.springer.com/article/10.1007/BF00992698
https://doi.org/10.1109/ITSC48978.2021.9564518
https://arxiv.org/abs/2106.13052v2
https://arxiv.org/abs/2106.13052v2
https://docs.ray.io/en/latest/index.html
https://docs.ray.io/en/latest/index.html
https://doi.org/10.1109/ROBOT.2010.5509799
https://doi.org/10.1007/BF00992696
https://link.springer.com/article/10.1007/BF00992696
https://link.springer.com/article/10.1007/BF00992696
https://doi.org/10.1109/ICIP.2017.8296962
https://doi.org/10.1109/ICIP.2017.8296962
https://arxiv.org/abs/1703.07402v1

BIBLIOGRAPHY 130

[157] Jia Wu, Florent Perronnet, and Abdeljalil Abbas-Turki. “Cooperative vehicle-actuator system: A

sequencebased framework of cooperative intersections management”. In: IET Intelligent Trans-

port Systems 8.4 (2014), pp. 352–360. ISSN: 1751956X. DOI: 10.1049/IET-ITS.2013.

0093. URL: https : / / www . researchgate . net / publication / 256473294 _

Cooperative_vehicle-actuator_system_A_sequencebased_framework_of_

cooperative_intersections_management.

[158] Yi Xiao, Felipe Codevilla, Akhil Gurram, Onay Urfalioglu, and Antonio M. López. “Multimodal

End-to-End Autonomous Driving”. In: IEEE Transactions on Intelligent Transportation Systems

23.1 (June 2019), pp. 537–547. DOI: 10.1109/TITS.2020.3013234. URL: http://

arxiv.org/abs/1906.03199%20http://dx.doi.org/10.1109/TITS.2020.

3013234.

[159] Huile Xu, Yi Zhang, Li Li, and Weixia Li. “Cooperative Driving at Unsignalized Intersections Us-

ing Tree Search”. In: IEEE Transactions on Intelligent Transportation Systems 21.11 (Nov. 2020),

pp. 4563–4571. ISSN: 15580016. DOI: 10.1109/TITS.2019.2940641. URL: https://

arxiv.org/abs/1902.01024v1.

[160] Weirui Ye et al. “Mastering Atari Games with Limited Data”. In: (Oct. 2021). DOI: 10.48550/

arxiv.2111.00210. URL: https://arxiv.org/abs/2111.00210v2.

[161] Chao Yu et al. “The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games”. In: (Mar.

2021). DOI: 10.48550/arxiv.2103.01955. URL: https://arxiv.org/abs/2103.

01955v4.

[162] Shuyou Yu, Matthias Hirche, Yanjun Huang, Hong Chen, and Frank Allgöwer. “Model predictive

control for autonomous ground vehicles: a review”. In: Autonomous Intelligent Systems 2021 1.1

(Aug. 2021), pp. 1–17. ISSN: 2730-616X. DOI: 10.1007/S43684- 021- 00005- Z. URL:

https://link.springer.com/article/10.1007/s43684-021-00005-z.

[163] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. “A Survey of Au-

tonomous Driving: Common Practices and Emerging Technologies”. In: IEEE Access 8 (2019),

pp. 58443–58469. ISSN: 21693536. DOI: 10.1109/ACCESS.2020.2983149.

[164] Wenyuan Zeng et al. “End-To-End Interpretable Neural Motion Planner”. In: 2019 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR) 2019-June (June 2019), pp. 8652–

8661. ISSN: 10636919. DOI: 10.1109/CVPR.2019.00886.

[165] Ji Zhang and Sanjiv Singh. “LOAM : Lidar Odometry and Mapping in real-time”. In: Robotics:

Science and Systems Conference (RSS) (June 2014), pp. 109–111.

[166] Peizhi Zhang et al. “Reinforcement Learning-Based End-to-End Parking for Automatic Parking

System”. In: Sensors (Basel, Switzerland) 19.18 (Sept. 2019). ISSN: 14248220. DOI: 10.3390/

S19183996.

M. Orłowski Reinforcement learning in autonomous driving

https://doi.org/10.1049/IET-ITS.2013.0093
https://doi.org/10.1049/IET-ITS.2013.0093
https://www.researchgate.net/publication/256473294_Cooperative_vehicle-actuator_system_A_sequencebased_framework_of_cooperative_intersections_management
https://www.researchgate.net/publication/256473294_Cooperative_vehicle-actuator_system_A_sequencebased_framework_of_cooperative_intersections_management
https://www.researchgate.net/publication/256473294_Cooperative_vehicle-actuator_system_A_sequencebased_framework_of_cooperative_intersections_management
https://doi.org/10.1109/TITS.2020.3013234
http://arxiv.org/abs/1906.03199%20http://dx.doi.org/10.1109/TITS.2020.3013234
http://arxiv.org/abs/1906.03199%20http://dx.doi.org/10.1109/TITS.2020.3013234
http://arxiv.org/abs/1906.03199%20http://dx.doi.org/10.1109/TITS.2020.3013234
https://doi.org/10.1109/TITS.2019.2940641
https://arxiv.org/abs/1902.01024v1
https://arxiv.org/abs/1902.01024v1
https://doi.org/10.48550/arxiv.2111.00210
https://doi.org/10.48550/arxiv.2111.00210
https://arxiv.org/abs/2111.00210v2
https://doi.org/10.48550/arxiv.2103.01955
https://arxiv.org/abs/2103.01955v4
https://arxiv.org/abs/2103.01955v4
https://doi.org/10.1007/S43684-021-00005-Z
https://link.springer.com/article/10.1007/s43684-021-00005-z
https://doi.org/10.1109/ACCESS.2020.2983149
https://doi.org/10.1109/CVPR.2019.00886
https://doi.org/10.3390/S19183996
https://doi.org/10.3390/S19183996

BIBLIOGRAPHY 131

[167] Xiaojing Zhang, Alexander Liniger, Atsushi Sakai, and Francesco Borrelli. “Autonomous Parking

Using Optimization-Based Collision Avoidance”. In: 2018 IEEE Conference on Decision and Con-

trol (CDC) 2018-December (July 2018), pp. 4327–4332. ISSN: 25762370. DOI: 10.1109/CDC.

2018.8619433.

[168] Xinyuan Zhang, Cong Zhao, Feixiong Liao, Xinghua Li, and Yuchuan Du. “Online parking assign-

ment in an environment of partially connected vehicles: A multi-agent deep reinforcement learning

approach”. In: Transportation Research Part C: Emerging Technologies 138 (May 2022). ISSN:

0968090X. DOI: 10.1016/J.TRC.2022.103624.

[169] Yue J. Zhang, Andreas A. Malikopoulos, and Christos G. Cassandras. “Optimal Control and Coor-

dination of Connected and Automated Vehicles at Urban Traffic Intersections”. In: Proceedings of

the American Control Conference 2016-July (Sept. 2015), pp. 6227–6232. DOI: 10.1109/ACC.

2016.7526648. URL: http://arxiv.org/abs/1509.08689%20http://dx.doi.

org/10.1109/ACC.2016.7526648.

[170] Julius Ziegler, Philipp Bender, Thao Dang, and Christoph Stiller. “Trajectory planning for Bertha

— A local, continuous method”. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings (2014),

pp. 450–457. DOI: 10.1109/IVS.2014.6856581.

[171] Julius Ziegler et al. “Making bertha drive-an autonomous journey on a historic route”. In: IEEE In-

telligent Transportation Systems Magazine 6.2 (2014), pp. 8–20. ISSN: 19391390. DOI: 10.1109/

MITS.2014.2306552.

M. Orłowski Reinforcement learning in autonomous driving

https://doi.org/10.1109/CDC.2018.8619433
https://doi.org/10.1109/CDC.2018.8619433
https://doi.org/10.1016/J.TRC.2022.103624
https://doi.org/10.1109/ACC.2016.7526648
https://doi.org/10.1109/ACC.2016.7526648
http://arxiv.org/abs/1509.08689%20http://dx.doi.org/10.1109/ACC.2016.7526648
http://arxiv.org/abs/1509.08689%20http://dx.doi.org/10.1109/ACC.2016.7526648
https://doi.org/10.1109/IVS.2014.6856581
https://doi.org/10.1109/MITS.2014.2306552
https://doi.org/10.1109/MITS.2014.2306552

	List of Figures
	List of Abbreviations
	Summary of Notation
	Introduction
	Motivation
	Problem Statement
	Work Structure

	Background
	Reinforcement Learning Introduction
	The Reinforcement Learning Problem
	Elements of Reinforcement Learning

	Reinforcement Learning Methods
	Multi-Armed Bandits
	Markov Decision Process and its Extensions
	Dynamic Programming
	Monte Carlo Methods
	Temporal-Difference Learning
	Deep Reinforcement Learning
	Value-Based Methods
	Policy-Based Methods
	Actor-Critic Methods
	Multi-Agent Reinforcement Learning

	Autonomous Driving
	History of Autonomous Driving
	Typical System Architecture and Components of AD System
	Sensors
	Perception Data Representation
	Localization and Mapping
	Tracking and Fusion
	Situation Assessment, Prediction, and Planning
	Control

	Goal-based Behaviour Planning With Manoeuvre and Desired Speed Control
	Introduction
	Problem Statement
	Problem Formulation
	Assumptions and Limitations

	Prior Art
	Behavior Planning Environment Description
	TrafficAI Simulation Tool
	TrafficAIEnv
	Observation Space
	Action Space
	Reward Function

	Hybrid System Architecture
	Safety Envelope and Responsibility-Based Safety Framework
	Deterministic Available Actions Definition
	Maneuver State Machine
	Transparent Speed Control Design
	Trajectory Generation Module

	Policy Optimisation
	RLLib Reinforcement Learning Library
	Training Infrastructure
	Proximal Policy Optimisation Algorithm
	Neural Network Architecture and Training Details

	Results
	Discussion and Further Work

	Parking
	Introduction
	Problem Formulation and Assumptions
	Problem Formulation
	Assumptions and Limitation

	Prior Art
	Parking Slot Environment
	Environment Class Structure
	Path Planning Ego Motion Model
	Obstacles and Collision Detection Mechanism
	Parking Scenarios

	Observation Space and Corresponding Neural Network Design
	Graph Representation of the Scene
	Free Space Observation

	Reward Design
	Policy Optimisation
	Initial Phases of Training
	Curriculum to the Rescue

	Experiments
	Observation Space and its Processing
	Real-World Experiments

	Discussion and Further Work

	Multi-agent Maneuvering
	Introduction
	Problem Formulation and Assumptions
	Problem Formulation
	Assumptions and Limitations

	Prior Art
	Multi-Agent Manoeuvring Environment
	Motion Modelling and Action Space
	Environment Observation
	Scenarios

	Policy Optimisation
	Results
	Egoistic Rewards Training Evaluation
	Introduction of Time Incentive and Reward Sharing

	Discussion and Further Work

	Conclusions
	Key Contributions and Conclusions
	Looking Behind and Ahead

