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Completed in: AGH University of Krakow, Faculty of Electrical Engineering, Automatics,
Computer Science and Biomedical Engineering

Kraków, 2023
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Abstract

We are witnessing rapid automotive development and an increasing demand for newer and more versatile

driver assistance systems (ADAS). With the simultaneous intensive development of artificial intelligence

based on deep neural networks, it is possible to replace classical solutions and extend the scope of their op-

eration. One area in which AI may be profitable is the solution to the problem of vehicle behavior planning.

The thesis focuses on inventing a methodology for developing a vehicle behavior policy in adaptive

cruise control mode. The policy plans a target acceleration value which is achieved in a designated time

horizon by planning and executing a trajectory. The strategy is intended to operate on highways, and the

planning takes into account the road situation, which includes the road topology and all vehicles detected

by the perception sensors of the controlled car. The policy aims to be effective in a real environment and

handle a broad range of road situations. For this purpose, research is being conducted on the possibility of

using reinforcement learning (RL) and imitation learning methods.

Preliminary analysis showed that imitation learning, which is based on collected real data, is limited by a

restricted amount and poor data quality. On the other hand, the policy optimized by reinforcement learning

methods in simulation often appears to be suboptimal in real-world conditions. It is due to the deviation

between simulation and reality (sim2real gap) and missing replicated real-world phenomena.

The dissertation presents methods to mitigate these problems. Firstly, it presents a method of improving

the quality of real-world data using numerical optimization. Secondly, it presents a way to combine both

learning methods to minimize the sim2real gap and increase the distribution of situations known to the

agent.

The policies obtained using the presented solutions are assessed using the proposed evaluation methods.

Additionally, the policy effectiveness is compared with the performance of a test driver and a baseline policy

trained with the standard RL approach.

Furthermore, the thesis presents a methodology for evaluating the reliability of the behavior model using

statistical analysis to examine the impact of input elements into the system on the selected action.

The results suggest that the proposed algorithms are promising from the perspective of developing ve-

hicle behavior planning. The presented evaluation method allows a better understanding of the predicted

behavior policy and increases its reliability.
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Streszczenie

Współcześnie obserwowany jest dynamiczny rozwój branży motoryzacyjnej oraz rosnący popyt na

nowoczesne i kompleksowe systemy wsparcia dla kierowców (ADAS). Wraz z intensywnym postępem

możliwości sztucznej inteligencji opartej na głębokich sieciach neuronowych, możliwe jest zastąpienie

tradycyjnych rozwiązań ADAS oraz rozszerzenie zakresu ich działania. Jednym z obszarów, w którym

wykorzystanie sztucznej inteligencji może przynieść wymierne korzyści, jest rozwiązanie problemu

planowania zachowania ruchu pojazdu.

Niniejsza praca skupia się na opracowaniu metodologii pozwalającej na stworzenie strategii zachowa-

nia pojazdu w trybie adaptacyjnego tempomatu. Strategia planuje wartość docelowego przyspieszenia po-

jazdu, która ma zostać osiągnięta w zdefiniowanym horyzoncie czasowym. Zadane przyspieszenie jest os-

iągane przez zaplanowanie oraz wykonanie trajektorii. Działanie strategii przewidziane jest na drogach szy-

bkiego ruchu, a planowanie bierze pod uwagę sytuację drogową, w której skład wchodzi topologia drogi

oraz wszystkie pojazdy wykryte przez sensory percepcji sterowanego auta. Strategia ta ma być skuteczna

w rzeczywistym środowisku i radzić sobie z różnorodnymi sytuacjami. W tym celu prowadzone są badania

nad możliwością wykorzystania metod uczenia ze wzmocnieniem oraz imitacji zachowań.

Wstępna analiza wykazała, że metody imitacji zachowań, które bazują na danych rzeczywistych, lim-

ituje ograniczona ilość danych oraz słaba ich jakość. Natomiast strategia pozyskana przy użyciu metod

uczenia ze wzmocnieniem w symulacji, często okazuje się suboptymalna w warunkach rzeczywistych.

Wynika to z odstępstw pomiędzy symulacją a rzeczywistością (sim2real gap) oraz brakiem możliwości

zamodelowania naturalnych zjawisk w symulacji.

Niniejsza praca przedstawia metody niwelujące wady poszczególnych metod uczenia. Po pierwsze,

przedstawia on procedurę poprawy jakości danych rzeczywistych przy użyciu optymalizacji numerycznej.

Po drugie przedstawia sposób na połączenie obu metod uczenia w celu zminimalizowania sim2real gap

i powiększenia zakresu scenariuszy drogowych, w procesie nauki strategii zachowania.

Strategie zachowania pozyskane przy pomocy prezentowanych rozwiązań są oceniane przy pomocy

zaproponowanych metod ewaluacji. Dodatkowo ich efektywność jest porównana z wydajnością testowego

kierowcy oraz bazową strategią pozyskaną standardowymi metodami RL.

Praca prezentuje także metodologię pozwalająca na ocenę wiarygodności modelu zachowania przy po-

mocy statystycznej analizy badającej wpływ elementów wejściowych do systemu na wybrane przez sieć

neuronową zachowanie.
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Wyniki pracy sugerują, że zaproponowane algorytmy są obiecujące w perspektywie rozwoju tempomatu

adaptacyjnego opartego na sieciach neuronowych. Przedstawione metody ewaluacji pozwalają na lepsze

zrozumienie przewidywanego zachowania strategii oraz zwiększają jej wiarygodność.



Contents

List of Figures xiii

1 Introduction and Motivation 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Work content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5.1 Machine Learning for Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5.2 Adaptive Cruise Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.3 Sim2Real Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Missing Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Work Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Project Foundations 11

2.1 Control Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Motion Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Sensor Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Safety Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Theoretical Introduction to Learning Algorithms 23

3.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 The Intuition Behind Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Value-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.4 State-Value Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.5 Q-Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.6 Temporal Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.7 Q Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.8 Policy Gradient Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.9 Policy Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.10 REINFORCE Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



3.1.11 Actor-Critic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.12 On/Off Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.13 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.14 Proximal Policy Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Offline Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Extrapolation Error in Offline Learning . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Behavioral Cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 Monotonic Advantage Re-Weighted Imitation Learning (MARWIL) . . . . . . . . . 39

3.3 Sim2Real Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Domain Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Real Data Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Experimental Setup 45

4.1 Highway Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Scenario Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.2 State Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.3 Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.4 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Methodology 63

5.1 Baseline PPO Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Improving Experts’ Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.2 Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Optimizing Training Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Offline Learning on Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 PPO Learning with Utilization of Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Solution Evaluation 87

6.1 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 KPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Testing on Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Closed Loop Testing in Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Agent Explainability 99

7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



7.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.4 Collecting Neural Activations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.5 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.7 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8 Conclusions 113
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2 Prove Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A Agent Explainability 117
A.1 Maneuver agent: boxplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2 Acc agent: scatterplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography 127





List of Figures

2.1 Schematic view of a vehicle dynamics system. . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Torque transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Motion planning architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Sensor stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Simulatation in Simteract software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 RSS safe distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Markov decision process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Reinforcement learning framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Offline Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Drift of trajectory caused by distributional shift. . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Policy optimal for all distribution of environments may be not optimal for the real environment. 41

3.6 Methods of closing sim2real gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Visualization of observation space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Example of state observation from the driving log . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Front-facing camera view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Reward function of c0(vs, vmax) and its square. . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Histogram of accelerations in the dataset Dtrain. . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Histogram of speed limit execution ratio for all samples in dataset Dtrain. . . . . . . . . . . 57

4.7 ANN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 Subgraph architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 The mean sum of rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 course of baseline training: rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 course of baseline training: performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Acceleration comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Speed comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Jerk comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6 Comparison of distance to target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.7 Histogram of host accelerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.8 Histogram of speed limit execution ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.9 The acceleration of the leading target (red), human driver (blue), and optimized one (green). 75

xiii



5.10 Speed comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.11 Comparison of distance to target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.12 Action histogram in the original train and test dataset Dtrain. . . . . . . . . . . . . . . . . . 78

5.13 Action histogram in optimized train and test dataset Dopt. . . . . . . . . . . . . . . . . . . . 78

5.14 Acceleration comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.15 Speed comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.16 Comparison of distances to target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.17 Training and testing loss of BC and MARWIL agent on original dataset Dtrain. . . . . . . . 81

5.18 Training and testing loss of BC and MARWIL agent on optimized dataset Dopt, . . . . . . 81

5.19 Course of training rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.20 Course of training performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 Evaluation of final policy on resimulated driving log . . . . . . . . . . . . . . . . . . . . . 93

6.2 Velocity comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Comparison of distances to target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Test case: carry out preset velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Test case: tracking vehicle with constant velocity. . . . . . . . . . . . . . . . . . . . . . . . 96

6.6 Test case: tracking vehicle with oscillating acceleration . . . . . . . . . . . . . . . . . . . . 97

6.7 Test case: avoid collisions with static objects. . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1 ANN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Distributions of attributation values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 Distributions of attributation values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4 Scatterplot of attributation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.5 Scatterplots of correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.1 Attributation distribution of vs_limit_exec input feature for all types of maneuvers. . . . . . . 118

A.2 Attributation distribution of vs input feature for all types of maneuvers. . . . . . . . . . . . 118

A.3 Attributation distribution of vd input feature for all types of maneuvers. . . . . . . . . . . . 119

A.4 Attributation distribution of as input feature for all types of maneuvers. . . . . . . . . . . . 119

A.5 Attributation distribution of ad input feature for all types of maneuvers. . . . . . . . . . . . 120

A.6 Attributation distribution of uLCLavail input feature for all types of maneuvers. . . . . . . . 120

A.7 Attributation distribution of uLCRavail input feature for all types of maneuvers. . . . . . . . . 121

A.8 Attributation distribution of ζfcs input feature for all types of maneuvers. . . . . . . . . . . . 121

A.9 Scatterplot of target acceleration as,target vs as . . . . . . . . . . . . . . . . . . . . . . . . 122

A.10 Scatterplot of target acceleration as,target vs g(as) . . . . . . . . . . . . . . . . . . . . . . . 123

A.11 Scatterplot of target acceleration as,target vs ut−1 . . . . . . . . . . . . . . . . . . . . . . . 123

A.12 Scatterplot of target acceleration as,target vs vs,obj . . . . . . . . . . . . . . . . . . . . . . . 124

A.13 Scatterplot of target acceleration as,target vs sobj . . . . . . . . . . . . . . . . . . . . . . . . 124

A.14 Scatterplot of target acceleration as,target vs g(sobj) . . . . . . . . . . . . . . . . . . . . . . 125



Glossaries

ACC Adaptive Cruise Control mode

ADR Automatic Domain Randomization

ANN Artificial Neural Network

ANOVA Analysis of Variance

API Application Programming Interface

BC Behavioral Cloning

CNN Convolutional Neural Network

COM Center of Mass

CPU Central Processing Unit

DA Domain Adaptation

DDPG Deep Deterministic Policy Gradient

DQN Deep Q Network

DR Domain Randomization

ego/host the object that is controlled by a presented algorithm

FL Follow Lane maneuver

GAN Generative Adversarial Networks

GIS Geographic Information System

GPS Global Positioning System

GPU Graphics Processing Unit

HD High Definition

IG Ingredient Gradients

IL Imitation Learning

IMU Inertial Measurement Unit

KL divergence Kullback-Leibler divergence

KPI Key Performance Indicator

LCL Lane Change Left

LCR Lane Change Right

LiDAR Light Detection and Ranging

LQR Linear Quadratic Regulation

LSTM Long-Short Term Memory

MARWIL Monotonic Advantage Re-Weighted Imitation Learning

xv



MDP Markov Decision Process

MPC Model Predictive Control

NGSIM Next Generation Simulation dataset

object regards any vehicle on the road

OEM Original Equipment Manufacturer

OSM Open Street Map

PLCL Prepare for Lane Change Left

PLCR Prepare for Lane Change Right

POMDP Partially Observed Markov Decision Process

PPO Proximal Policy Optimization

Radar Radio Detecting and Ranging

RBF Radial Basis Function

ReLU Rectified Linear Unit

RL Reinforcement Learning

RNN Recurrent Neural Network

RPM Rotation per Minute

RSS Responsible Sensitive Safety

SAC Soft Actor-Critic

SAE Society of Automotive Engineers

SARS’ SARS’ tuple (st, ut, rt, st+1)

SGD Stochastic Gradient Descent

sim2real gap the difference between simulation and real environment

SLSQP Sequential Least Squares Programming

SVM Support Vector Machine

target a vehicle perceived by the host’s sensors

TD Temporal Difference

TTC Time To Collision

UAV Unmanned Air Vehicle

VCS Vehicle Coordinate System - originates from the center of the rectangle that cir-

cumscribes the vehicle, x-axis points forward, y-axis points left

VRAM Video Random Access Memory

WCS World Coordinate System



Notations
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δ steering angle
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m mass
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ι air mass density
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ω angular velocity

I moment of inertia

Faero aerodynamic resistance force
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af front projected area

vwind wind velocity

rw tire radius

τ torque

vs_limit_exec = vs
vs,max

level of preset speed limit execution

J objective function

ci cost term of objective

gi constrain term of objective
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fbsf(x) B-Spline function

κ road curvature

∆r sensing range

α step-size coefficient in SGD

In Agent Explainability
gi(o) attributation of ith feature of observation

obase baseline observation for Integrated Gradients algorithm

fANN(o) ANN function
∂fANN(o)

∂oi
gradient of fANN(o) along the ith dimension
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according to RSS
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cov(R(X), R(Y )) are the covariance of the rank variables,

σR(X)σR(Y ) are the standard deviations of the rank variables.

rs Spearman correlation coefficient

di the difference between the two ranks of each observation,

n number of observations.



α step-size parameter in IG

uLC(R/L) avail boolean value which represents whether LCL or LCR maneuver is safe - calcu-

lated based on RSS rules

H0 null hypothesis

H1 alternative hypothesis



Chapter 1

Introduction and Motivation

1.1 Introduction

Recently the automotive industry has set itself the goal of minimizing the number of car accidents, especially

fatal ones. Most of these accidents are caused by human error. Therefore, automakers are trying to support

drivers by implementing newer and more advanced assistance systems, which prevent common errors, con-

trol the driver’s attention, and support decision-making. The ultimate goal is to replace the human driver with

fully automated vehicles and eliminate the human factor. Society of Automotive Engineers (SAE) describes

[2] the highest level 5 of vehicle autonomy as a mode that can drive under all possible conditions, and the

vehicle featured with it may not be equipped with a pedal or steering angle. To achieve such automation,

one needs to develop a holistic system that consists of perception, behavior planning, and vehicle control

modules. These subsystems must be integrated to cooperate with each other in order to guarantee safe and

efficient driving.

Over the years, remarkable progress has been made in all of these areas. Perception collects relevant

information about the position and state of a road and objects. The development of machine learning has

led to significant progress and growth in this field. The control theory has been constantly developed since

the middle of the last century. Conversely, behavior planning, which considers traffic situations and outputs

directives to the control modules, appears to be the least researched, albeit very interesting and challenging.

The difficulty of this area is to create a solution that will ultimately handle all situations encountered on the

road in an effective or at least safe manner.

Until now, the most frequent attempts to solve this problem were to code the responses to possible

situations in the form of a decision tree or a procedure algorithm. However, hand-coding the rules that

apply to all situations seems to be a tremendous and error-prone solution. Moreover, it does not assure the

optimality of the final solution, however, it enables complete control and transparency of the system. More

promising might be the data-based methods, which provide behavior rules based on analyzing the spectrum

of traffic situations and optimizing behavior to be the most efficient.

One such method is Reinforcement Learning (RL) which trains the behavior policy to be optimized

according to some reward function. During the training, behavior policy is optimized by an agent which

explores a training environment by selecting available actions. The environment transits its current state to

1



1. Introduction and Motivation 2

the next state according to the selected action. Additionally, it provides the agent with a reward that estimates

how good the selected action was in a given state. Initially, the agent randomly explores the environment

because it does not know the effect of the selected action. Over time, it learns how to act to get higher

rewards and utilizes that knowledge to discover more profitable states. The training aims to learn how to

behave in a given state to maximize the sum of future rewards.

In the case of driving, it is not practical to use RL algorithms to learn how to drive the vehicle on the

real road. To increase training’s safety, speed, and cost-effectiveness, it is more judicious to take advantage

of computer traffic simulations. However, the policy can learn only as much as it has managed to explore

the environment. After transferring the policy to the real environment, it may be only as effective as of

close the simulation was to the real world. The policy may encounter the states that were not present during

training, the perception of states may vary, the transition between states may differ, or the behavior of traffic

participants may be unnatural. The difference between simulation and real-world is called the sim2real gap

and is one of the significant issues of applying RL in real-world applications [3].

1.2 Motivation

The dissertation was completed as a part of an industrial Ph.D. program and carried out in an automotive

company focusing on evolving advanced driver assistance systems (ADAS). Research regards developing

the behavior policy responsible for planning future vehicle behavior with the utilization of Reinforcement

Learning and Imitation Learning methods. Among various features of automated driving, the thesis focuses

on developing a policy for Adaptive Cruise Control mode. The policy is developed in the interests of its

application in customers’ vehicles.

The thesis primarily concentrates on understanding the problem of transferring developed policies from

simulated environments into real ones. It focuses on developing methods that alleviate the sim2real gap and

distributional shift issues. The proposed methods integrate simulated data with test drive data in the learning

process. The approach derives inspiration from offline and online Reinforcement Learning (Sec. 3.1, 3.2).

Offline RL is used for learning only the fixed dataset of experience collected in advance, usually by some

human expert. This type of data harvesting provides close to optimal real-world experience, facilitating

learning and eliminating exploration problems. However, the limited scope of the dataset restricts policy

to handle a wide range of situations. On the other hand, online RL allows unrestricted exploration of the

simulated environment, therefore, learning all possible state transitions and action consequences. It leverages

offline learning in terms of explored situations, however, simulated data is affected by the aforementioned

sim2real gap.

The advantages of these two approaches seem to mitigate each other’s drawbacks. Therefore the methods

proposed in this thesis concentrate on the development of techniques that enable applying data from various

sources in order to train behavior-driving policy which is efficient in a real environment. At the same time,

the work studies the disadvantages of offline learning and proposes a method for increasing the quality of

real data in order to support the learning process.

N. Pankiewicz Behavior prediction model of an automated vehicle
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1.3 Thesis

The objective of this research is to demonstrate the efficacy of utilizing real-world data during the training

process to enhance the performance of outcome policies in natural circumstances. The training regards the

optimization of behavior policy which is responsible for planning the directives for the control module of

a vehicle in Adaptive Cruise Control mode. It is hypothesized that policy training that uses both real-world

and simulated data in presented convention significantly improves performance in the natural environment

compared to using only simulated data. It is also expected that a presented combination of offline and online

learning methods alleviates the limitation of both training methods.

1.4 Work content

Section 1.5 provides a literature review of automated car movement planning. Section 1.5.1 demonstrates a

general approach to path planning using Machine Learning methods. Section 1.5.2 outlines the evolution of

Adaptive Cruise Control technology from classical algorithms to machine learning-based approaches. The

following Section 1.5.3 is devoted to the issues involved in transferring the functionalities developed in the

simulation to natural conditions. The last part 1.6 highlights the elements presented in the reviewed articles,

which an attempt to improve is the subject of this dissertation. It precedes Section 1.7, which clarifies the

thesis’s contribution.

The following Chapter 2 presents the objective of ACC controller 2.1 and project requirements. Require-

ments involve integration with the motion stack of the automated vehicle (Sec. 2.2) and utilizing the vehicle

sensors stack (Sec. 2.3). The last Section 2.4 describes the simulation tool used for experiments and Section

2.5 clarifies applied safety rules.

The next Chapter 3 explains Reinforcement Learning methodology (Sec. 3.1.1) and state-of-the-art RL

algorithms (Sec. 3.1.2-3.1.14). It also includes a description of the Imitation Learning approach and its

methods (Sec. 5.4-3.2.3). Finally, the chapter describes the problem of divergence between simulation and

reality (Sec.3.3) and the standard techniques used to alleviate consequential issues (Sec.3.3.1-3.3.3).

Following Chapter 4 consists of a description of an experimental setup developed for achieving the

project objective according to project specification (Sec. 2). Successive parts describe the experimental

simulated environment (Sec. 4.1), collected dataset (Sec. 4.2), Neural Network architecture (Sec. 4.3), its

inputs (Sec. 4.1.2), outputs (Sec. 4.1.3) and reward function which drives training process (Sec. 4.1.4). It

also presents additional assumptions and limitations of the considered solution (Sec. 4.4).

Chapter 5 explains invented methods of developing ACC RL agents capable of driving in natural con-

ditions. Firstly it presents the general idea, which is then elaborated in the following sections: Subsections

5.2 and 5.3 present the method of improving the dataset concerning action feasibility; Section 5.4 shows the

courses of Offline RL training and their comparison; Section 5.5 presents the methodology of combining

online training in simulation with collected data.

The next Chapter 6.2 firstly presents the evaluation criteria and methodology developed for comparison

of policies trained with different approaches (Sec. 6.1). Then it presents the evaluation process of trained be-
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havior policies according to the presented method. The last Section 6.5 summarizes experiments, interprets

results, and shows the limitations and applicability of the proposed solution.

The penultimate Chapter 7 introduces the novel algorithm for explainability of ANN-based RL policies,

which allows the verification of agents in terms of compliance with human intuition. The method presents

an approach for agents that operate either in continuous or discrete action space.

1.5 Literature Review

1.5.1 Machine Learning for Path Planning

In the literature, it could be found a number of works that focus on the application of Reinforcement Learning

in the domain of vehicle control either in behavior or path planning part ([4], [5], [6], [7],[8]). However,

only a few of them have considered evaluating a trained policy in an actual vehicle, from which the most

important are presented below.

The seminal work ALVINN [9] which used behavior cloning for steering a car, was created in 1989. The

authors proposed an end-to-end approach that is based on training a neural network responsible for control-

ling a car. The ANN took as input the raw camera image and range sensor measurements. It outputs the

steering angle that the vehicle should follow to stay on the road. For training, to preserve a sufficient number

of samples, the author used simulated road images and calculated corresponding distances. To limit neces-

sary computational power and to alleviate the sim2real gap, images were created in very low resolutions to

be indistinguishable from the real ones, which also were captured in low definition.

Similarly to [9], another works [10] and [11] used the raw images as input data and trained a classifier

based on the human demonstrations to indicate the required steering angle. In these cases, images had higher

resolution. Therefore, the authors decided to use Convolutional Neural Networks (CNN) as a backbone of

ANN. Work [11] proposed to reduce Imitation Learning’s drawbacks resulting from a limited number of

samples by additional data augmentation. This approach enriched the training dataset by adding additional

images showing the vehicle fluctuating from the center of the lane and rotating relative to the route’s direc-

tion.

While the methods discussed above have proven to be effective to some extent, it’s worth noting that

they can be limited by some factors. First of all, the end-to-end approach limits the end-users in the matter of

interfering with the entire system. Moreover, it becomes impossible to debug that kind of system, understand

decisions taken by an agent, or prove its reliability. This stays in contradiction to the automakers’ attitude

which prioritizes modularization of the entire software stack to preserve system transparency.

According to a study [12], trained agents are usually only able to perform the specific actions they

were designed for, which is a major issue. The actions that the agents were trained to perform in the cited

works ([9], [10], [11]) were limited to following a lane, making a turn, and avoiding collisions. However,

this restricted set of functions cannot be considered a complete driving system, as users need to be able

to configure the system to meet their needs. This includes specifying driving destinations and performing

maneuvers that are described in higher-level abstractions than control signals.
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A more recent and more advanced approach, which is also based on Imitation Learning, was proposed

in a work that introduced ANN called ChauffeurNet [13]. In contradiction to previous works, it proposed to

use pre-processed raw sensor data as an input to the system. The study utilized a road model, traffic data,

and road users’ states as inputs. These inputs were transformed into a spatial representation as multiple

images from a top-down perspective. The images were fed into a Convolutional Recurrent Neural Network

to predict the future path of the vehicle. The path included the vehicle’s position, orientation, and speed

at various time intervals. The ChauffeurNet was trained on a dataset of 26 million examples, which is

equivalent to two months of continuous driving experience.

While the generated model was effective in controlling an actual vehicle, it was found to be less effective

than the classical motion planning methods. This study highlights the difficulty of establishing the superi-

ority of machine learning over classical approaches in the complex field of motion planning. The author

suggests that in complex multi-stage processes like driving, machine learning could be employed to assist

classical algorithms in specific modules rather than replacing the entire process.

Similar approach to the ChaufferNet was presented by the authors of SafetyNet [14] who adopted pre-

processed objects as input to the ANN. However, these objects were represented as polygons and demon-

strated to the SafetyNet in the form of a graph. Using Graph Neural Networks permitted the representation

of complicated data structures that are not limited by coarse grid format. For training SafetyNet, the au-

thors used Imitation learning with the additional loss function which preserved the safety of the trajectory.

They used logs from 380 hours of real driving and additionally introduced perturbations into presented ob-

servations to extend the state distribution. The model was evaluated by driving 150 miles on roads in San

Francisco. The authors admitted that, even though the model had managed to perform various challenging

maneuvers successfully, it still needed to be wrapped by some deterministic safety layer to guarantee safety.

1.5.2 Adaptive Cruise Control

Conventional Cruise Control was the first system on the market to control the vehicle’s speed to drive at

preset velocity by regulating the throttle [15]. The next iteration of such a controller introduced Adaptive

Cruise Control (ACC) which may adjust the hosts’ longitudinal velocity to the vehicle detected by sensors.

To preserve a preset range to the vehicle in front, it could brake and change throttle level [16, 17]. Most of the

deployed strategies for ACC in customer vehicles are private, constituting the intellectual property of OEMs.

However, in the literature, we can find multiple implementations of such a controller [18, 19, 20, 21, 22].

For example, [18] proposed using Linear Quadratic Regulation (LQR) to achieve optimal trajectory

regarding fuel consumption. However, [19] pointed out that the time of response of the LQR controller

was longer than a system that utilizes Model Predictive Control (MPC). Moreover [22] indicated that LQR

may result in uncomfortable high jerk trajectory. As regards MPC, it is commonly utilized and tested for

ACC implementation (ex. [20, 21, 22]). Work [22] reported that their solution was acceptable, particularly

at closer distances between the host and the vehicle being followed. Numerous studies have indicated that

the accuracy of the used model substantially impacts MPC’s control performance.

Besides classical approaches, researchers incorporated Reinforcement Learning algorithms into ACC

controllers to overcome issues reported by previous works. Work [23] used Deep Deterministic Policy Gra-
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dient method (DDPG) [24] to train policy which maximizes multi-objective reward function. Agents got

positive rewards when they were within a specified distance from the leading target, taking into account the

host vehicle’s velocity, acceleration, and jerk. Work reported that RL policy was able to balance between

followability and comfortability in contrast to a control system based on the LQR.

Another work [25] proved its performance against the MPC approach in terms of safety, comfort, and

inference time. Work utilized the DDPG algorithm [24] to train continuous control policy optimized with

respect to safety, efficiency, and comfort. They applied data from the NGSIM dataset [26] to train and test

agents, designed a new reward function, and incorporated safety checks to avoid collisions.

Next paper [27] introduced a system named SAINT-ACC which also trained an agent to optimize traffic

efficiency, safety, and driving comfort based on training two RL agents. The first one, the ‘TTC agent’ used

discrete action space to define the optimal time to collision (TTC) value and was trained with the DQN

algorithm. The second one, ‘ACC agent’ was trained to specify headway to the leading target. During the

training of the subsequent agent, the TTC value predicted by the first agent was utilized as an input to the

reward function. The agents were trained in two basic highway scenarios: entering and exiting the highway.

The work achieved superior results compared to the approach mentioned in [25].

In addition to the control part, the ACC module is intended to select a target vehicle to which it should

adjust velocity. It requires a deeper understanding of traffic situations than presented in the above works.

Target selection should be able to predict the movement of adjacent vehicles and understand the interaction

between objects. It should predict situations such as a vehicle cutting in between the host and the lead vehicle

or a sudden lane change by the followed target.

The standard approach for the ACC task with multiple targets may be found in [28, 29]. The problem was

divided into three major tasks - multi-target tracking objects, primary target selection, and ACC controller

integrated with the collision avoidance system. The target selection module intended to choose a vehicle that

most affects the host vehicle among all neighbors. The authors proposed to assign targets to lanes and choose

the nearest one in the host lane. In order to predict target lane changes, the researchers developed a fuzzy

logic estimator that delivers a probability indicator for host lane occupancy. It considered the lateral position

and velocity of the vehicle with respect to the host car. Another approach for target selection was presented

in [30] where authors proposed to predict the lane change intention based on a sliding window support

vector machine (SVM) [31]. They proposed a feature vector that consists of relative position, velocity,

and acceleration between the host and target. They tried to train SVM with kernel functions such as linear,

quadratic, cubic, and radial basis functions (RBF). The authors conducted tests with sliding windows ranging

from 0 to 5 seconds, with an interval between frames of 0.2 seconds. Based on the training results on the

NGSIM dataset [26], the RBF kernel with a 2.2s sliding window was found to have the best performance.

The most recent approach for predicting the intentions of nearby vehicles focuses on using ANNs [32,

33, 34, 35]. The widely used method relies on presenting the road situation from a bird’s eye view perspective

as an image. And using it to train the Convolutional Neural Network (CNN) to forecast whether the target

vehicle will change lanes to the left, right, or stay in its current lane.
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1.5.3 Sim2Real Transfer

Transferring the policy trained in simulation to a real environment requires applying special techniques to

close the gap between domains (Sec. 3.3). Usually, there are applied methods such as Domain Adaptation

(DA, Sec. 3.3.2), Domain Randomization (DR, Sec. 3.3.1), or real data are utilized (Sec. 3.3.3). In the

domain of automated driving, most works ([36],[37]) focused on enhancing simulated sensor data to be more

realistic. On the other hand, some researchers [38, 39] concentrated on refining simulation by diversifying

training scenarios and exploiting corner cases present during real drivings.

The example of enhancing sensor data by introducing GANs is presented in [36] and [37]. The work

[36] introduced SurfelGAN aimed at generating realistic images from simulated data. The inputs to the

GAN, which is the root of the proposed network, are the textured voxels (surfels) which were formed based

on LiDAR points and camera images. Additionally, the simulation needs to provide semantic and instance

segmentation masks. These data, which are actually easily accessible from simulation, are converted to

realistic camera images for training the modules of the automated vehicles such as object detectors, behavior

predictors, or motion planners.

The second work [37] used conditional GAN to create two pairs of the encoder-decoder system and

one discriminator. One encoder-decoder was trained to parse virtual images from the driving simulation to

the segmentation masks. In parallel, the second encoder-decoder learned to translate segmentation masks to

realistic images. Accordingly, the discriminator was trained to recognize matching pairs of virtual and real

images. For evaluation, the authors conducted two training sessions with different methods of closing the

sim2real gap. The first was supplied with the presented approach, and another utilized the domain random-

ization technique. Both agents were trained in the same environment and evaluated in a different second

one. The evaluation demonstrated the superiority of the authors’ method over domain randomization.

Other examples of closing the sim2real gap in the automated driving application are the works of [38]

and [39], which considered the approach of DR (Sec. 3.3.1). The work [38] focused on enhancing the

simulation to make the generated scenarios even more challenging for the agent. By increasing the set of

corner cases, an agent was being adapted to real-world incidences.

The work regarded parameterization of the default scenario with a set of adjustable values. The parame-

ters are optimized with respect to the reward that the agent collected facing a given scenario. The parameters

were adjusted when the agent barely exceeded the performance expectation. Every time adjusted parameters

created a slightly different scenario which is supposed to be more challenging for the agent, and therefore

the agent is supposed to be more robust. Such guided domain randomization provided a curriculum of envi-

ronments from the easiest to the most challenging. The evaluation of training showed that the agent is more

efficient and preserved more safety than while trained in an environment with fixed parameters.

However, another work [39] proposed an entire framework for learning driving automatically with RL.

It is worth emphasizing the techniques the authors proposed to alleviate the problem of the sim2real gap.

First of all, for each training episode, they randomized the parameters of the simulation to adapt agents to

diverse environments and avoid overfitting. To reflect the problems with extrinsic sensor calibration, the

position of the camera sensor was randomized. Also, to be robust to variation in vehicle dynamics, the

physical properties of the vehicle were also sampled from distribution. Additionally, the agent robustness
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was enhanced with data augmentation which was based on rotating the camera images. The augmentation

influenced generalization and decreased the demand for training data.

1.6 Missing Factors

The aforementioned works contributed to developing vehicle motion planning based on machine learning

methods. Starting with [9], most authors chose supervised learning or imitation learning technique which

requires training data collected in advance. However, [13] has already stated that using even a large dataset

is not enough to cover the distribution of all possible real-world scenarios. Therefore limited to fixed dataset

training is not sufficient to solve a real-world problem; therefore, the training dataset needs to be augmented

somehow.

The most popular approach for state augmentation is using simulation, which allows for creating an

infinite number of traffic situations. To fully exploit simulation capabilities, training should follow the Rein-

forcement Learning methodology [40]. However, the utilization of simulation in policy optimization results

in a policy that tends to be adjusted to the simulated environment which may diverge from the natural one

due to the sim2real gap.

One possible method to overcome this limitation is a combination of different sources of data. Therefore

learning methods may provide a solution that is optimized for adequate scenario distribution and is optimized

with regard to real data.

However, mixing the data sources or training methods may introduce the issue known in the literature

as catastrophic forgetting, to which ANNs are extremely susceptible. Catastrophic forgetting occurs when

training data is not distributed equally during training. ANN tends to forget what it learned previously

when data that was presented in the early stages of training is not repeated later. In the considered case,

the catastrophic forgetting may be noticeable when the agent is first trained on real-world data and then

improved in the simulation. By keeping this training order, the agent can better fit the simulated data, even

if it was first trained on the dataset.

It is worth mentioning that the data-based method has another disadvantage: the possibility of corruption

in state-action samples. Corruption may occur when the actions are not suitable for the assigned states. The

suboptimal samples may be inferred from faulty actions performed by a human expert or from improper

labeling. Poor quality of the dataset may result in a derated final quality of the developed agent.

The other not thoroughly addressed in the literature problem results from the fact that most of the work

designed artificial agents that consider only sensor data for selecting an action. Typically, the agent maps

the current state, which is observed by the sensors, with the action that the human driver performed. That

approach misses the intention of the end-user of the driving system. Because the optimal action heavily

depends not only on the road situations but also on the goal of driving. For example, an agent, which is

driving through an intersection, needs to know the passenger’s destination to select an appropriate control

decision. The same regards the velocity at which the user wants to drive. The absence of such information in

the dataset and the lack of methods to provide it to the system excludes the agent’s training with intentional

control.
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One more thing that is required from considered driving systems is providing transparency. Automotive

OEMs prefer motion modularized system architecture in which each module is transparent and explainable.

Such an approach allows for debugging, helps to understand the made decisions and to foresee its strengths

and weaknesses. The above-described works show that some researchers consider such an approach, divid-

ing motion architecture into route planning, behavior planning, trajectory generation, and control modules.

While classical algorithms satisfy transparency requirements, the ANN-based modules still lack explain-

ability. They remain considered a black box that does not know what they pay attention to and why they

make particular decisions.

1.7 Work Contribution

The thesis aims to propose a comprehensive method of developing a driving behavior policy that is robust

under real-world circumstances using RL methods (Sec. 5). The behavior policy is responsible for predicting

the next acceleration value, which should be performed by a vehicle within a defined time horizon in order

to fulfill the objectives of the adaptive cruise controller.

The proposed method comprises several solutions that comply with the issues presented in previous

works, summarized in Section 1.6. The thesis focuses on overcoming the problem of data limitation in Im-

itation Learning algorithms. Therefore it incorporates the utilization of simulation within Reinforcement

Learning training alongside real-world data. Such an enhancement provides better coverage over state dis-

tribution due to the exploitation of simulation and, at the same time, minimizes the sim2real gap due to the

utilization of the real data. The work also addresses the issue of catastrophic forgetting by suitable incorpo-

ration of real data during the RL training process. Additionally, RL training is supported by a curriculum

learning method that contains a Domain Randomization mechanism (3.3.1) which supports a broad range

of environmental characteristics.

Another contribution of the thesis is the proposition of solving the issue related to data imperfection

(Sec. 1.6), which appears in offline reinforcement learning algorithms (5.4). The work proposes alleviating

the problem with a proprietary algorithm called Optimization-based Imitation Learning (Sec. 5.2). The

approach involves the numeric optimization of the actions included in the dataset. The optimization leads to

the higher quality of the outcome policy trained with Imitation Learning methods.

Additionally, responding to market requirements regarding the system transparency 1.6, the thesis shows

the integration of developed policy into the modular hierarchical architecture of the motion system 2.2. In

this architecture, only one part is based on ANN, and the rest are derived from legacy solutions which

actually are not a matter of the thesis. However, the ANN-driven module is the core of the driving agent and

remains an integral part of a holistic solution. Besides, the system is suitable for receiving the control signals

from a vehicle user and adapting behavior accordingly. Moreover, to increase system transparency, the work

proposes a methodology that enables understanding the agent’s decisions and deciphering the black box

ANN. The novel method of explainability of the RL agent is presented in Section 7 [41].

As regards the evaluation of the proposed method, the thesis suggests the appropriate to the presented

problem evaluation process (6.2). The process is divided into simulation-aided and real-data parts. The

simulation part aims to pre-select the most promising agent candidates. Whereas the latter tests the agent in
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naturalistic circumstances and returns actual values of Key Performance Indicators (KPIs), which score the

agent’s efficiency in several different aspects.
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Chapter 2

Project Foundations

2.1 Control Objectives

The proposed methods have been implemented and evaluated on the Adaptive Cruise Control (ACC) driving

mode, which fulfills a multi-factor objective. First of all, it should ensure a safe and comfortable driving

experience. In that mode, users can set the desired maximum velocity at which the vehicle should drive. In

order to achieve this, the controller takes into account various factors, including the road conditions and the

state of other vehicles on the road. Therefore, the vehicle only drives at the set speed when the road ahead

is empty, or there are no expected obstructions. If it is foreseeable that some other vehicle will cut into the

host’s lane soon, increasing acceleration to reach the set speed would be suboptimal. If there is a vehicle in

front of the host, the controller adjusts velocity to maintain a safe distance. The same applies if some vehicle

is preparing to cut in front of the host. In that case, the controller should predict its future movement and

adjust its own velocity accordingly.

Adapting speed to the vehicles, particularly those whose speed fluctuates due to disrupted traffic or faulty

perception, directly impacts passenger comfort. To guarantee the highest level of comfort for passengers,

it is essential for the ACC system to adhere to specific acceleration and deceleration thresholds. By doing

so, the system can minimize abrupt movements, ensuring a smoother and more comfortable journey for

passengers.

Moreover, to maintain velocity, the controller should select the target vehicle, which may impact the

host’s driving course. Most of the time, the target vehicle is a car that drives in front of the host preceding

it. However, in more complex scenarios, for example, when the adjacent car is preparing to make a cut in

between the host and the vehicle ahead, also this car should be considered a target.

To summarize, ACC aims to control the host vehicle in such a way as to maximize the configured speed

and preserve safety. Besides that, it should increase driving comfort by suppressing the oscillations resulting

from the movement of the target vehicles. The adequate selection of targets and prediction of their future

states would eliminate rapid speed changes. Moreover, it should minimize heavy braking events, avoid

dangerous cut-ins, and suppress the speed oscillation concerning the target vehicle.

11
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parameter description

w width

l length

h height

m mass

rw,i wheel radius for i th wheel

cd aerodynamic draw coefficient

af vehicle front projected area

ι air mass density

gr gear ratios

lf distance between COM and front axis

lr distance between COM and rear axis

Table 2.1: static parameters of vehicle that are contained in vector p

The conducted experiments assume that driving takes place on the highway (as Section 4.1 describes) at

speeds ranging from 0 to 35 m/s, therefore incorporating both fast driving and traffic congestion.

The problem is to control the vehicle object to fulfill the ACC objective. First of all, the vehicle state is

represented as a vector:

sv =



x,

y,

vx,

vy,

ζWCS


(2.1)

where ζWCS is rotation. The parameters of the vehicle are shown in Table 2.1,

The function

ψ(svt , ϑt, δt, bt)→ svt+1 (2.2)

transforms vehicle state in discrete time steps based on control inputs: ϑt is throttle input to the engine, δt is

a steering angle, bt is a brake input.

The body dynamics are defined as:

mẍ = (Fx,fl + Fx,fr) cos(δ)− (Fy,fl + Fy,fr)sin(δ) + Fx,rl + Fx,rr − Faero (2.3)

mÿ = (Fx,fl + Fx,fr)sin(δ) + (Fy,fl + Fy,fr)cos(δ) + Fy,rl + Fy,rr (2.4)

Iω = lf ((Fx,fl + Fx,fr)sin(δ) + (Fy,fl + Fy,fr)cos(δ))− lr(Fy,rl + Fy,rr) (2.5)
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where x denotes that that forces F acts longitudinally and y laterally. Subscripts fl, fr, rl, rr relate

accordingly to the front left, front right, rear left and rear right wheel as presented in Figure 2.1. Whereas ω

is the angular velocity, δ denotes the steering angle, lf , lr are the distance from the center of mass (COM)

to the front and rear axis respectively, and I is a moment of inertia I = ((0.5(lf + lr))
2m)−1.

Whereas Faero is an aerodynamic resistance force and may be modeled as

Faero = 0.5ιcdaf |vx + vwind|(vx + vwind) (2.6)

where ι is the mass density of air, cd is an aerodynamic draw coefficient, af is the vehicle front projected

area, vwind is the wind velocity.

Figure 2.1: Schematic view of a vehicle dynamics system.

The tire force Fp = {Fx,fl, Fx,fr, Fx,rl, Fx,rr} is related to wheel torque τw and the relationship is given

by:

Iwω̇ = τw − rwFp (2.7)

where Iw is wheel inertia, rw is effective radius of the tire and ω is the tire angular velocity.

τw results from throttle input to the engine, torque converter, and transmission as presented in Figure 2.2.

The engine torque τe is determined by throttle input ϑ and engine angular velocity as defined in [42, 43].

Then τe is converted by torque converter τc and passed to the wheels by transmission τw. The thesis uses

three different models of engines - gas, diesel, or electric.

The transmission is parameterized by set of gear ratios gr ∈ {g−1, g0, g1, . . . , gN} where N is typically

limited to 6.
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Figure 2.2: Torque transmission

τw =
τc
gr

(2.8)

where gr is gear ratio and

ωt =
ωw
gr

(2.9)

The throttle input ϑ, steering angle δ, and brake input b constitute the direct way of controlling the

vehicle object.

However, in the specified problem, the control input is u ∈ A ∈ [−1, 1]. The u is a normalized value of

the longitudinal acceleration as,target to be achieved in the next 0.5s (t+ 1). The value of u is then mapped

into acceleration range as,target ∈ [−3.5, 1.5]m/s2 as defined in Equation (4.1).

The target acceleration as,target is achieved by calculating, updating, and executing future trajectories.

The proprietary trajectory function

k(svt , as,target, ρ)→ R12 (2.10)

takes as an input the actual state of the vehicle svt , target acceleration as,target, and road state ρ. Based on

that it plans the continuous trajectory of control inputs to achieve target acceleration in 0.5s and position the

vehicle in the center of the lane. The continuous trajectory is represented by three cubic polynomials, each

for one control input ϑ, δ, b.

The control takes place in a system defined as a Partially Observed Markov Decision Process (POMDP):

P = (S,A,Ψ, R,Ω, O, γ) (2.11)

where S is set of all possible states of the environment st ∈ S ∈ RM , where st is an environment state

in time t; A is an action space, and u ∈ A ∈ [−1, 1]; Ψ(st+1|st, ut) is a probabilistic transition function

that describes the probability of transitioning from state st to next state st+1 when action ut is selected;

R(st, ut, st+1) → rt ∈ R assigns reward for executing selected control ut in state st to next state st+1;

Ω ∈ R is an observation space andO(st, ut−1)→ os,t is a function calculates observation os,t of the current

state st. The last γ ∈ [0, 1] is a discount factor.

The transition model Ψ defines model and probababilites of reaching state st+1 from state st and control

signal ut:

Ψ(st+1|st, ut) (2.12)

where ut is an action provided by some stationary policy π parameterized by vector θ based on the

observation os,t of current state in time t:

N. Pankiewicz Behavior prediction model of an automated vehicle



2. Project Foundations 15

π(ut|θ, os,t), ut ∈ [−1, 1] (2.13)

The control objective is to maximize the sum of discounted rewards:

J =

(
T−1∑
t=0

γtR(st, ut, st+1)

)
(2.14)

where T is a finit planning horizon and reward function R(st, ut, st+1) is defined as:

R(st, ut, st+1) = −(vs,max − vvcs
t+1)2 − (avcs

s,t+1)2 − c0(∆s)− c1(∆s) (2.15)

where vvcs
t+1 is the absolute velocity of the controlled object in the Vehicle Coordinate System in state

st+1; vs,max is targetted preset velocity; avcs
t+1 is absolute acceleration in VCS achieved by executing ut in

st.

c0(∆s) =

1, if ∆s ≤ dlon_min

0, if ∆s ≥ dlon_min

(2.16)

where dlon_min is defined as (2.19) and ∆s is the distance alongside lane centerline between the front bumper

of the controlled vehicle and the rear bumper of the vehicle in front.

The term c1 determines the collision event of host and front vehicles

c1(∆s) =

1, if ∆s ≤ 0

0, if otherwise,
(2.17)

The state st ∈ RM is a vector that describes the environment state and consists of states of the controlled

vehicle (i = 0), all other N vehicles sv1, . . . , s
v
N , and the state of the road model ρ.

st =



svi

svi+1
...

svN

ρ


(2.18)

The subject vehicle is controlled by π(ut|θ, os,t), ut ∈ [−1, 1] and the rest of the vehicles {1, 2, . . . , N}
is controlled by some heuristic policy πi(st) → {ϑt, δt, bt}. The control policy does not contribute to the

control of the other vehicles however they may react on actions performed by the policy.

The observation space Ω consists of observation of the host object, adjacent vehicles, and road. Ω =

Ωhost × Ωobjects × Ωroad

Ωhost ∈ R4 consists of information about absolute velocity in VCS (vvcs), level of preset speed limit

execution (vs_limit_exec = vvcs/vs,max), absolute acceleration (avcs) and selected acceleration in last time

step (as,target,t−1).
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Ωobjects ∈ R10×11 describes up to 10 vehicles closest to the host object. It includes relative to the

host features such as longitudinal and lateral distance(xvcs, yvcs), velocity (vvcs
x , vvcs

y )), and acceleration

(avcs
x , avcs

y ). It also consists data about target’s rotation (ζvcs) and its dimensions (w, l).

Ωroad ∈ R6×10×3 represent the physical lane markers in front of the host vehicle. Ωroad consists of 10

points on each lane marker and their positions xvcs, yvcs in VCS and encoded lane marker type. Section

4.1.2 provides a detailed description of the observation space.
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2.2 Motion Stack

Behavior planning is a part of the holistic architecture of automated motion systems (Fig. 2.3). The motion

system consists of several parts beginning from the perception of the vehicle’s surroundings through the

planning route, behavior, and future trajectory until to update of the actuators in the control module.

Figure 2.3: Motion planning architecture consists of 3 major modules. Perception provides data about traffic

participants, a detailed road model, and any static object within the range of the host sensors. Relying on

that information, planned route, and user preferences, the behavior planning module selects an appropriate

control signal which supplements the trajectory generator. The generator calculates the continuous reference

trajectory executed by a control module.

All modules work and cooperate as follows:

• Perception module uses all sensors available on the vehicle to represent the situation on the road

and vehicle state. The sensor stack (Figure 2.4) consists of all-around radars, a front-facing camera,

GPS, and IMU. The information from GPS, and IMU, with additional readings from wheel encoders

and platform components, enables estimating vehicle state as its velocity, acceleration, position in the

World Coordinate System (WCS), and yaw rate. Radars provide information about objects around

the vehicle, their positions in VCS, relative speed, dimensions, and type. Front front-facing camera

detects lane markers on the road and objects that remain redundant information to the radar output.

We assume that the maximum detection range is 150m. However, it heavily depends on the traffic

situation, present objects, and weather. The performance of perception directly impacts the steering

effectiveness.

• Routing module is in charge of finding the route between the actual position and the driving destina-

tion and providing a sequence of lane-level goals that should be followed. This module requires HD

maps that specify road geometry, road lane arrangement, lane geometry, driving direction, and con-

nections to each other. Additionally, they consist of all meaningful information for driving decisions,

such as traffic signs, lights, and road surface markings.

• Behavior planning module chooses the parameters of the driving trajectory according to an available

interface that the trajectory planning module provides. The most common decision is to select the

maneuver that should be performed (e.g. follow the lane, change lane, abort maneuver). However, it

could also be reference signals such as desired speed, acceleration, offset from lane center, distance
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to the following car, or its combination [44]. The behavior planning module makes decisions based

on the features returned by the perception module, given goal by routing, or user preferences (for

example max speed, min distance to the leading vehicle). In the presented Adaptive Cruise Control

mode, this module selects the target acceleration signal to be reached within a specified time range.

• Trajectory planning generates a continuous reference trajectory taking into consideration the output

from the behavior planning module (for example the targeted acceleration in ACC mode). This module

should consider the vehicle’s dynamic state and model, localization within the lane, and proximity

to other vehicles to produce a feasible, safe, and efficient trajectory.Trajectory can be defined as a

polynomial that represents the control input value over time.

• Control module takes as input vehicle state and reference trajectory and executes it setting control

signals directly to throttle, steering angle, and braking actuators.

2.3 Sensor Stack

In order to conduct experiments, we utilized a vehicle equipped with sensors such as a front-facing camera,

all-around radars and IMU. Perception software stack employs data from all radars and processes it into a

meaningful representation of surrounding objects. First, a point cloud is generated from radar detections or

range-doppler maps. Then, the Neural Network detects and classifies objects based on that [45, 46, 47]. In

applied stack, ANN can distinguish between classes such as a vehicle, a truck, a pedestrian, and others. De-

tections are returned 20 times per second and contain information about objects’ position, rotation, velocity,

and dimension.

Meanwhile, the front-facing camera monitors the road, capturing images 36 times per second. On each

image, the embedded software detects lane markers and constructs meaningful road representations. Lane

markers are described by parameters of a cubic polynomial function, its width, visible range, and quality of

detection. Additionally, the software provides the marking type of the lines in order to inquire information

about the possibility of lane changing. The limitation of vision data is that it only detects lane markers on the

host lane and on the nearest adjacent lanes. The maximal range of detection is 150m; however, in practice

is limited by vehicles that occlude lane markers, resulting in a mean range of 60m.

A vision system could also detect visible vehicles and may be used alternatively as a source of object

data. However, the radar system has better accuracy in determining vehicles’ speed. At the same time, the

vision outperforms the radars in the precision of objects’ dimensions and classification. Optionally these

two sources may be fused and processed to provide the most accurate result [48, 49].

Additionally, internal vehicle sensors such as IMU, wheel encoders, and GPS provide information about

the state of the host vehicle. The state contains actual velocity, acceleration, steering angle, yaw rate, and

rest information about steering mechanisms such as braking pedal, blinkers, throttle, etc. It may also include

information about the targeted speed that the driver specified.
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Figure 2.4: Sensor stack consists of all-around radars, front-facing camera, and GPS antenna for surround

perception. Additionally, wheel encoders, IMU, and other internal sensors are used for estimating vehicle

state.

2.4 Simulation

Simulation software was created by the [50] and further was developed internally. A package was created to

simulate various situations on the highways based on the randomization of starting parameters and stochastic

behavior of simulated drivers. As regards the definition of road map it might be imported from real-world

maps represented in e.g. OpenStreetMap [51] format. The simulated traffic participants are controlled on

the basis of predefined heuristics, which are supposed to resemble real drivers’ behavior. They may proceed

to the target destination, change lanes, overtake, avoid collisions, merge in and out of the highway, or their

behavior may be randomized to the extent of traffic law.

In order to simulate a broad range of scenarios, the software allows for the creation of different behavior

models of driving actors by specifying heuristics parameters. The parameters refer to values such as speed

deviation from speed limit, accelerating pattern, behavior changing interval, distance to the followed vehicle,

offset from lane center, craving for changing lanes, and a chance for letting in other vehicles in front of them.

The actors may be assigned different types of vehicles, which are specified by the following parameters:

dimensions (width, length, height), axis distances from COM, range of speed and acceleration, dynamic

parameters such as engine parameters (min/max RPM, torque), gearbox ratios, and wheel dimensions.

These parameters are utilized to determine the vehicle’s next position, rotation, velocity, and acceleration

accordingly to 2.1. The simulation provides two control models: bicycle kinematic model [52, 53], and

dynamic with powertrain model [54].
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Dynamic powertrain motion model [54] is defined for middle-size vehicles with front-wheel drive,

equipped with an automatic transmission, four-wheel independent suspension, and open differential. It sup-

ports three standard engine models - gas, diesel and electric.

The software package is designed for high-speed inference to simulate scenarios faster than in real-

time. Therefore it is implemented in low-level Rust programming language while providing APIs to Python

programming language. To limit computational load, it supports only primary object perception, providing

ground truth data about objects’ physical properties. Perception may be visualized in the form of bounding

boxes for vehicles and lines for road geometry (Fig. 2.5). That wireframe visualization does not provide

scene renders with reach images and textures as other simulations such as [55, 56]. Detail scene rendering

would cause significant computational load and not provide any advantage since the proposed methods work

on already detected objects represented in high-level abstraction. Such accelerated software is adequate for

online RL, which requires generating new experience data multiple times during the training process.

Figure 2.5: Simulatation in Simteract software. The green vehicle in the center is controlled by an RL agent,

the rest of the vehicles are driven by a built-in behavior model. Polygons behind vehicles present safety

distances with respect to the host car.

2.5 Safety Consideration

Applying Machine Learning in vehicle control increases the probability of undefined, probably dangerous,

situations. Therefore it is essential to provide some deterministic rules which guarantee the safety of the

motion planning system. For this application, we selected Responsible Sensitive Safety (RSS) [57] frame-

N. Pankiewicz Behavior prediction model of an automated vehicle



2. Project Foundations 21

work, which rules are applied to behavior planning and trajectory generation module. RSS is inspired by the

human common sense of safe driving. Its general rule is not to cause an accident and avoid crashes caused

by others but only when avoiding it will not lead to another one. That approach is formalized in the 5 rules

described below. The first two are explicitly used during experiments, while all of them state the foundation

of safety consideration of the entire project.

’Do not hit the car in front of you (longitudinal distance)’ assumes leaving enough space for the front

vehicle in order to have enough time to react if this car suddenly brakes. The Equation (2.19) calculates

minimum safety distance to front vehicle w.r.t. response time ρ, regarding the velocity of rear (vr) and front

car (vf ). It applies to situations when the front target is braking with maximum acceleration bmax, and the

rear car accelerates by at most amax during response time and then brakes with at least bminm/s
2.

dlon_min =

[
vrρ+ 0.5amaxρ

2 +
(vr + ρamax)2

2bmin
−

v2
f

2bmax

]
where

vr, vf velocity of rear and front vehicle

ρ response time

bmax maximum possible braking acceleration for front vehicle

bmin braking acceleration for rear vehicle

amax maximum possible acceleration

(2.19)

’Do not cut in recklessly (lateral distance)’ formalizes the safe lateral distance between two vehicles

(c1, c2) driving with lateral velocities v1, v2 w.r.t. response time ρ, blat
min, alat

min, µ if during the time interval

[0, ρ] two vehicles approaches with lateral acceleration alat
min, and after that they apply lateral braking of blat

min

until they reach zero lateral velocity, then the final lateral distance between them will be at least µ.

dlat_min = µ+

[
(v1 + v1,ρ)

2
ρ+

v2
1,ρ

2blat
min

−

(
v2 + v1,ρ

2
+

v2
2,ρ

2blat
min

)]
(2.20)

’Right of way is given, not taken’ - such a rule cautions traffic participants who do not adhere to the

right-of-way rules. The car should not admit to crashing in the case when others violate traffic rules.

’Be cautious in areas with limited visibility’ - this statement assumes that from the region, which is

not visible by sensors, other traffic participants may drive from.

’If the vehicle can avoid a crash without causing another one, it must’ - this rule accepts breaking the

traffic rules if an upcoming accident may be averted but only if provided that this will not cause a different

collision.
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Figure 2.6: Safe distance to target driving 25m/s for various values of host response times parameter ρ.

Comparison to the safe distance required by Polish Traffic Law act art.19, par. 3a - which is expressed in

meters and specified as not less than half of the number specifying the speed of the vehicle in which the

driver is moving, expressed in kilometers per hour.
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Chapter 3

Theoretical Introduction to Learning
Algorithms

The present dissertation is grounded on the utilization of deep learning techniques that involve the training

of Artificial Neural Networks (ANN) through the use of Reinforcement Learning and associated algorithms.

This Section aims to introduce the theoretical aspects of Reinforcement Learning (RL), providing an intu-

itive comprehension of its fundamental principles and demonstrating the state-of-the-art algorithms applied

in the experiments.

The conventional background of RL is expanded by introducing the concept of Offline Reinforcement

Learning, which encompasses the utilization of real-world experience in an RL context. Furthermore, the

issue of the distributional shift that arises between simulation and the real world is discussed. The problem,

commonly referred to as the Sim2Real gap in the literature, is presented along with the techniques employed

to alleviate it.

3.1 Reinforcement Learning

Reinforcement learning is a machine learning technique that regards learning an artificial agent to solve a

problem represented by some environment [40]. The problem typically is defined as a Markov Decision

Process (MDP) [58]. MDP is a discrete-time stochastic control process that was originally designed as

a mathematical framework for solving decision-making problems. It formulates a tuple (S,A, P,R, γ) in

which S is a set of possible states and A is a set of available actions. The symbol P represents the function

P (st+1|st, ut) which defines a probabilistic transition function of transforming the environment from state

st while executing actions ut to next state st+1. The next part of tupleR(st, ut, st+1) is an immediate reward

that is granted for selecting action ut, which transitioned the environment from state st to state st+1. The γ

is a discount factor γ ∈ [0, 1]. The state and action could be expressed with discrete or continuous values.

A major part of MDP is also a parameterized policy π(st, θ) −→ ut or π(ut|θ, st), which returns action

based on the given state. The policy is owned by the agent, which could be defined as a part of a learn-

ing algorithm. The agent can interact with the environment, by selecting actions and gathering knowledge

necessary for solving the problem stated by MDP (Fig. 3.1).
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Figure 3.1: Markov decision process

At each time step t, the environment provides the agent an observation of its own state st ∈ S and a

set of available actions u ∈ A. The agent chooses an action ut ∈ A based on the given state st, which

is executed by the environment that causes the change of the environment’s state st+1. The transformation

function P (st+1|st, ut) calculates the new state st+1 based on the previous state st and picked action ut.

Additionally, the reward function R(st, ut, st+1) −→ rt calculates the immediate reward for the agent. The

agent can interact with the environment until reaching a terminal state sd ∈ S of the environment. The

set of consecutive states from the initial state si to the terminal state sd is called an episode (Fig. 3.2). All

consecutive states which are accompanied by selected actions and given rewards, compose a trajectory of

length T :

τ = {(s0, u0, r0, s1), (s1, u1, r1, s2), . . . , (sT−1, uT−1, rT−1, sd)} (3.1)

Based on the interactions, the agent learns how to select actions in order to maximize the cumulative

sum of the reward. The agent’s objective function is:

J(πθ) = Eτ∼p(τ ;πθ)

[
T−1∑
t=0

γtrt

]
where:

Eτ∼p(τ ;πθ) denotes the expectation over trajectories τ generated by following policy πθ.

p(τ ;πθ) is the probability distribution of trajectories τ under policy πθ

T is a number of time steps in an episode

rt is the reward obtained at time step t

γ is the discount factorγ ∈ [0, 1].

(3.2)

The learning process is described by the various reinforcement learning algorithms that define how to

collect the experience and when and how to update parameters θ of the policy πθ. The outcome of RL

algorithms is the optimal policy π∗θ .

The discount factor γ describes how the future return is relevant to the current state and is defined as

Gt = rt + γrt + γ2rt+1 + . . .+ γT−trT−t =
T−1∑
k=0

γkrt+k (3.3)
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Defaults γ equals less than one because the forthcoming rewards are less relevant than the immediate

ones. The γ defines the length of the horizon to be considered by a trained policy and is one of a hyperpa-

rameter of all RL algorithms. If γ equals 0, the policy will act short-sighted, paying attention only to the

closest reward. As the γ value approaches 1, the horizon extends, and the policy plans action further into the

future.

A more generalized form of the MDP is the Partially Observable Markov Decision Process (POMDP)

[59]. In the environment defined as POMDP (3.4), the agent still selects actions that transform the state of

the environment to maximize the sum of collected rewards. However in this setup, an agent is not able to

directly observe the entire state of the environment, but it is limited to perceive only the limited observation

of the state.

The agent uses its observations to form a belief about the current state of the system. This belief is

represented as a probability distribution that includes all possible states. To solve the problem of POMDP,

a policy is developed that determines the best course of action in each belief state. It is worth noting that

belief states are continuous, which means there are an infinite number of possible states. This makes solving

POMDPs more challenging than MDPs.

The versatility of the POMDP framework makes it suitable for modeling various real-world problems

that involve sequential decision-making. Applications range from robot navigation and machine mainte-

nance to general planning under uncertainty.

P = (S,A, P,R,Ω, O, γ)

where:

S ∈ R - state space,

A = {u1, u2, . . . , un} - set of actions,

P (st+1|st, ut) - probability of transition from state s on action u in time t,

to next state st+1

R = R(st, ut, st+1) - reward function

Ω ∈ R- observation space,

O - a set of observation probabilities O(o|st+1, u) conditioned on the reached

state and the taken action

γ ∈ [0, 1] discount factor

(3.4)

3.1.1 The Intuition Behind Reinforcement Learning

Reinforcement Learning originates from the concept of conditioning in psychology. The term condition-

ing describes a psychological phenomenon where the learning process links an unconnected stimulus with

the response. The actions that cause pain or discomfort are impaired, and actions that lead to pleasure are

positively reinforced. To discover how to behave optimally, the learning entity explores the environment,

investigating which actions are profitable in the given states. During the learning, it compromises between
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Figure 3.2: Reinforcement learning framework - the agent interacts with the environment by picking the

action from a set of available actions. The environment executes the selected action, changes its own state,

and rewards the agent. The agent’s goal is to maximize the sum of rewards until the environment reaches a

terminal state.

picking beneficial action and selecting the action whose results are already unknown. In this case, it exposes

itself to the lower reward. However, it also gets the opportunity to discover regions with even higher returns.

This problem is well-known in literature as an exploration-exploitation trade-off. Conclusively, the goal of

the training algorithm is to train the policy to behave optimally. In contrast to other optimization meth-

ods, it often leads to situations where policy is able to sacrifice a high immediate reward for much higher

compensation in the future.

3.1.2 Value-Based Methods

The following sections (3.1.3-3.1.7) present the value-based methods of solving the problem defined as

MDP. These methods formulate policy π(st) based on the estimation of the sum of rewards that can be

accumulated by the policy starting from the given state of the MDP. Concurrently with the value-based

methods, there also exists the policy-based approach, which will be described in further sections (3.1.8 -

3.1.11).

3.1.3 Dynamic Programming

The problem formulated as MDP (Sec. 3.1) may be solved using dynamic programming [60]. Dynamic

programming breaks down the complete problem into simpler subproblems and solves each individually. If

the already solved problem is met, dynamic programming doesn’t work it out again but uses the previously

calculated results. In the case of MDP, the main task can be broken down into sub-tasks that estimate the

maximum reward that can be achieved starting from each of MDP’s states.
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To solve the MDP in a dynamic programming manner, it is helpful to use the Bellman Equation:

V (st) = maxut(R(st, ut) + γV (st+1)) (3.5)

On the left side of the Equation stands the state value function V (st). It represents the expected cumulative

reward that can be achieved when starting from a particular state st in MDP and following a given policy.

The V (st) equals the sum of the immediate reward and the discounted value of the next state. It is the sum

of two factors on the right side of the equation. First of which is the value of the highest possible reward,

which could be collected by picking the most profitable action ut in the given state st. The second one is the

result of the multiplication of the discount factor and state value of the next state V (st+1).

V (st) = maxut(R(st, ut, ) + γ
∑
st

P (st+1|st, ut)V (st+1)) (3.6)

Equation 3.7 presents the evolved Bellman equation and the relation between γ and the relevance of the

future rewards. The τ shows the time horizon related to a discount factor. If γ = 1 corresponds to τ = ∞,

and any rewards that are much more than τ time steps in the future are exponentially suppressed.

V (st) = rt + γrt+1 + γ2rt+2 + ...γnrt+n =
∞∑
n=0

γnrt+n =
∞∑

∆t=0

e−∆t/τrt+∆t (3.7)

3.1.4 State-Value Function

The Bellman equation (3.5, 3.6) is used to define the state-value function. The state-value function V πθ(st) is

the expected cumulative discounted reward that can be achieved, starting in the state st and acts accordingly

to the output of policy π.

V π(st) = E

[
T−1∑
t=0

γtrt]

]
∀s ∈ S (3.8)

If the V π(st) equals the highest possible value in MDP compared to other value functions for all states,

it means that it is the optimal state-value function (equation 3.9).

V ∗(st) = max
π

V π(st) ∀s ∈ S (3.9)

By knowing the optimal value function, we also know the optimal policy π∗ (equation 3.10).

π∗ = arg max
π

V π(st) ∀s ∈ S (3.10)

3.1.5 Q-Value

The state-value function V π(st) returns only one value for each state which describes the expected reward.

This distinguished it from the action-value function Qπ(st, ut), which returns the expected cumulative dis-

counted reward for taking action ut in the state st and continuing acting according to the policy π.
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V ∗(st) = max
ut

Q∗(st, ut) ∀s ∈ S u ∈ A (3.11)

Qπ(st, ut) = E

[
T−1∑
t=0

γtrt]

]
∀s ∈ S u ∈ A (3.12)

The optimal policy π∗, which is based on the action-value function selects the action with the highest

return in a set of available actions A for all consecutive steps st, st+1, . . . , sd.

π∗(st) = arg max
u

Q∗(st, ut) ∀s ∈ S u ∈ A (3.13)

3.1.6 Temporal Difference

To obtain policy π∗ based on value methods, one has to estimate the value function V (st) or action-value

function Q(st, ut). This estimation could be achieved by using Monte Carlo methods [61] or Dynamic

Programming [60]. However, the Reinforcement Learning methodology introduced a novel method called

temporal difference (TD).

TD estimates the V π(st) by interacting with the environment and improving current estimation every

time it picks action and makes the transition in the environment by observing a new state and a corresponding

reward. Referring to the Equation (3.14), it improves its own estimation based on the difference between the

value estimation of the state st and actual immediate reward rt summed with an estimation of the next state

value V (st+1) (algorithm details: Algorithm 1). Because the updates based on the current estimation are

often called bootstrapping methods, and the difference itself is called a TD error. The TD error is commonly

used in various reinforcement learning algorithms, and it is considered to be essential in the RL domain.

V (st)←− V (st) + α

 TD-target︷ ︸︸ ︷
rt+1 + γV (st+1)−V (st)


︸ ︷︷ ︸

TD-error

(3.14)

Algorithm 1 Temporal Difference algorithm for estimating value function V π(s).

Require: policy π

while Loop for N episodes do
while Loop for steps until reaching terminal state do

ut ← action picked by π in st
Take action ut, observe rt+1, st+1

V (st)← V (st) + α [rt + γV (st+1)− V (st)]

st ← st+1

end while
end while

The advantage of the Temporal Difference method is that it does not require knowledge of the environ-

ment model (as the Monte Carlo method does) because it updates the estimation of V (st) in each step of the
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episode. Therefore it also does not need to know about the reward and next-state probability distributions.

Related to the update frequency, there is also an advantage that the learning algorithm does not need the

entire episode to learn. This could be crucial in the case of environments with very long episodes.

3.1.7 Q Learning

One of the algorithms that rely on TD is Q-learning [62]. The algorithm is the value-based off-policy method

(Sec. 3.1.12) that aims to approximate the action-value function Q(st, ut). For interaction with the environ-

ment, it uses behavior policy, for example, ε-greedy policy. It means that it takes random action with a

probability of ε and the action from greedy policy (maxut Q(st, ut)) in 1− ε probability. The ε-greedy pol-

icy is specific for Q-learning and is used to solve the exploration-exploitation problem. During the training,

as the policy quality improves, the value of ε may decrease.

The update of each of the Q(st, ut) takes place accordingly to

Q(st, ut)← Q(st, ut) + α

[
rt+1 + γmax

ut
Q(st+1, ut)−Q(st, ut)

]
(3.15)

where α is the learning rate. The learning algorithm is defined as (Algorithm 2):

Algorithm 2 Q-learning algorithm

Require: α ∈ (0, 1], ε ∈ [0, 1)

while Loop for N episodes do
while Loop for steps until reaching terminal state do

Choose ut on st using for example ε - greedy policy

Take action ut, observe rt+1, st+1

Q(st, ut)← Q(st, ut) + α [rt + γmaxut Q(st+1, ut+1)−Q(st, ut)]

st ← st+1

end while
end while

Convergence results of the Q-learning algorithm were shown in [63, 64]. The convergence is provided

by the value iteration operator which ensures that the Q-values for all state and action pairs update gradually

to the true optimal Q-values of the underlying MDP. The work [64] proved that the random iterative process

∆n+1(x) = (1− αn(x))∆n(x) + βn(x)Fn(x) convergence with probability one under the assumption that

• the state space is finite S = {s1, s2, . . . , sn},

•
∑

n αn(x) = ∞;
∑

n α
2
n(x) < ∞;

∑
n βn(x) = ∞;

∑
n β

2
n(x) < ∞, and E{βn(x)|Pn} <

Eαn(x)|Pn uniformly w.p.1.

• ||E{Fn(x)|Pn}||w 6 γ||∆n||w, where γ ∈ (0, 1)

• V ar{Fn(x)|Pn} 6 C(1 + ||∆n||w)2 where C is constant.
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where Pn = ∆n,∆n−1, . . . , Fn−1, . . . , αn−1, . . . , βn−1, . . . stands for the past at step n. Fn(x), αn(x), and

βn(x) are allowed to depend on the past insofar as the above conditions remain valid. The notation || · ||w
refers to some weighted maximum norm.

The Q-learning algorithm given by (3.15) converge to the optimal Q∗(st, ut) values if

1. the state space is finite S = {s1, s2, . . . , sn},

2.
∑

t αt(st, ut) =∞ and
∑

t α
2
t (st, ut) 6∞ uniformly w.p.1,

3. V ar{cs(ut)} is bounded

4. If, γ = 1, all policies lead to a cost free terminal state w.p.1.

3.1.8 Policy Gradient Methods

As distinct from the value-based methods described in previous sections, there are also methods that learn

direct parameterized policy (Sec. 3.1.10-3.1.14). In contrast to the value-based methods, they do not rely

on the estimation of state-action value but tune parameters θ of the policy function that selects the action.

Although the algorithms do not need value function for inference with the environment, they could employ

it to learn the function parameters (actor-critic methods Sec. 3.1.11).

The policy function π(u|s, θ) could be described as a probability of selecting the action ut at time t in a

state st with vector parameter θ:

π(u|s, θ) = P {At = u|St = s, θt = θ} (3.16)

Learning of such policy function relies on the tuning of the parameters θ based on the gradient of some

objective function J(θ) with respect to the policy parameters. The objective function usually considers the

performance of the trained policy, calculated on the basis of collected rewards. The parameters θ are updated

according to gradient ascent with α-size steps:

θt+1 = θt + α

∈Rd′︷ ︸︸ ︷
∇J (θt) (3.17)

The methods that directly improve policy with gradient ascent are called policy gradient methods. If

they consider also the value function in learning, they are called actor-critic methods (Sec. 3.1.11). This

name suggests that the actor part regards the policy function and the critic refers to the value function as one

is responsible for acting and the latter for performance evaluation.

The policy gradient methods require policy to be differentiable with respect to its parameters θ. The

partial of derivatives of π(u|s, θ) with respect to the θ should exists and be finite for all s ∈ S, u ∈ A,

θ ∈ Rd′ . Additionally, it is required from the policy to be stochastic in order to assure the possibility of an

environment exploration, which is necessary for the correct operation of the algorithm.
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3.1.9 Policy Definition

Consider the environment characterized by a discrete action space where the agent could choose u ∈ A

where A = {uj , uj+1, . . . uN} in each state s ∈ S. In this case, the parameterized function would return

parameterized numerical preferences h(s, u, θ) ∈ R for each state-action pair. Such numerical preferences

could be converted to a probability distribution with the use of the softmax function:

π(uj |s, θ) =
eh(s,uj ,θ)∑
u=A e

h(s,u,θ)
(3.18)

To calculate the action preferences we could use any parameterized functions. This work focuses on

utilizing Artificial Neural Networks (ANN) as a parameterized function where the vector θ contains all

ANN’s trainable weights. In that case the h(s, u, θ) is represented as fANN(s, θ)→ RN .

In the case of the environment with continuous action space with an infinite number of actions, policy-

based methods provide effective solutions. These methods avoid directly computing probabilities for each

individual action. Instead, they focus on learning the statistical characteristics of the probability distribution.

For instance, in scenarios where the action set comprises real numbers, actions can be selected from a normal

(Gaussian) distribution. This approach simplifies the representation and allows policy-based methods to

handle complex action spaces efficiently [40].

The probability density function fPDF(x|µ, σ) for the normal distribution for the random variable x is

defined as

fPDF(x|µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (3.19)

where µ is the mean (or expected value) and σ is the standard deviation of the normal distribution. To create

a policy representation, we can define the policy as a normal probability density function over a real-valued

scalar action as

π(u|s, θ) =
1√

2πσ(s, θ)
e
− (u−µ(s,θ))2

2σ(s,θ)2 (3.20)

where µ : S× Rd′ −→ R and σ : S× Rd′ −→ R+.

The mean and standard deviation of distribution are determined by parametric function approximators

that rely on the state as input fANN(s, θ)→ R2.

3.1.10 REINFORCE Algorithm

The seminal policy-gradient algorithm is called REINFORCE [65]. This algorithm starts with collecting a

trajectory τ of experience (3.1). The trajectory consists of n consecutive tuples of state, action, rewards,

and next states (st, ut, rt, st+1). The length of the trajectory (n) is unrestricted and could enclose part of an

episode or even several episodes. After collecting the trajectory, the algorithm calculates the return of the

trajectory G(τ, t) for each time step t in T length trajectory (eq. 3.21).

G(τ, t) =

T−1∑
k=t

γk−trk (3.21)
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The algorithm aims at tuning the parameters vector θ in such a way that the policy π(u|s, θ) parameter-

ized by this vector maximizes the expected return U(θ, τ). The expected return is expressed as a function of

trajectory τ and parameters θ as a sum of probabilities of getting specified in trajectory rewards (eq. 3.22).

U(θ, τ) =
∑
τ

P (τ, θ)R(τ) (3.22)

To estimate the expected return, the algorithm calculates the weighted average of the previously com-

puted returns of each trajectory weighted by its probability. The probabilities are taken from the policy

function π(u|s, θ) (3.18, 3.20) and describe how much possible is to select action ut in a given state st.

The probabilities are differentiable with respect to the θ parameters, therefore they could be used for

policy updates, which are carried out with the step of gradient ascent (3.24).

However, it would be impossible to calculate the gradient directly on trajectories, because the model of

the transition of the environment’s states is unknown. Therefore in this case the gradient should be estimated

as a derivative of the logarithm of the probability of selecting the action with respect to the parameters θ.

The probability of selecting an action by the behavior policy which returned a higher reward is increased

and the probability of taking unprofitable action is decreased.

∇θU(θ)←−
T−1∑
t=0

∇θlnπ(ut|st, θ)G(τ, t) (3.23)

θ ←− θ + α∇θU(θ)

α is step size parameter of gradient update
(3.24)

Algorithm 3 REINFORCE algorithm

Require: differentiable policy parameterization π(u|s, θ), α in (0,1]

Initialize the policy parameters θ randomly

while until converge do
Collect T steps trajectory

τ = ((s0, u0, r0, s1), . . . , sT−1, uT−1, rT−1, sT ) with policy π(u|s, θ)
Calculate the return of a trajectory τ

where G(τ, t) is the expected return for the transition t

G(τ, t) =
∑T−1

k=t γ
k−trk

Estimate gradient∇θU(θ) using the trajectory τ

∇θU(θ)←−
∑T−1

t=0 ∇θlnπ(ut|st, θ)G(τ, t)

Update the weights θ of the policy

θ ←− θ + α∇θU(θ)

end while

Although the REINFORCE algorithm fulfills its purpose as is able to converge under strict conditions,

it is characterized by noisy gradients and high variance. These cause instability in the learning process

and threaten to get stuck in a local minimum, far from the optimal solution. These issues are caused by
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the method of collecting the trajectory by the algorithm, which depends on random sampling from action

distribution. This causes much deviation between collected trajectories which results in great variability

of logarithms of probability selecting actions by the policy lnπ(ut|st, θ) as well as in varying cumulative

reward G(τ, t).

3.1.11 Actor-Critic Methods

The disadvantages of REINFORCE algorithm, which were described at the end of Section 3.1.10, led to

the formulation of the actor-critic methods [40, 66]. In order to reduce the aforementioned variance these

methods suggest subtracting the cumulative reward by some baseline b(st) in the REINFORCE gradient

calculation 3.23. This subtraction is included in a new objective function defined as:

∇θU(θ)←−
T−1∑
t=0

∇θlnπ(ut|st, θ)(G(τ, t)− b(st)) (3.25)

Subtracting expected reward with baseline results in smaller values of gradients, therefore a more stable

learning process.

The expected return of the trajectory Gt could be expressed as

G(τ, t) = E

[
T−1∑
t=0

γtrt]

]
∀s ∈ S u ∈ A (3.26)

what is exactly the same as in action-value function Q(s, u) (3.12). Therefore the Q-value Q(st, ut) or

state value V (st) could be used as a baseline in the actor-critic method. Actually, the name of this method

refers to the fact that it employs two parameterized functions - actor and critic. The actor function selects

the action and it is optimized with the policy-gradient method (Sec. 3.1.10). And critic is used during the

learning to estimate the expected return and is updated based on TD-error (Sec. 3.1.6). The overall algorithm

is presented in the Alg. 4.

3.1.12 On/Off Policy

Reinforcement Learning algorithms could be categorized as on-policy or off-policy methods. The on-policy

method updates its policy π(u|s, θ) using the samples (st, ut, rt, st+1) generated by the exact same policy.

For any new update, fresh samples are needed, and the old ones are forgotten. An example of such a method

is the REINFORCE algorithm (Sec. 3.1.10). Generally, most policy-based methods belong to the group of

on-policy methods.

On the contrary, the off-policy method is able to update the policy π(u|s, θ) using the samples generated

by some other policies. In the case of Q-learning (Sec. 3.1.7) the behavior policy collects samples (ex. ε-

greedy policy), however, the main policy is updated. Q-learning, like the rest of the value-based methods,

could be considered an off-policy algorithm.

The off-policy algorithms require some replay buffer that stores transition samples generated during the

learning and serves a batch of samples during each policy update. It has a finite capacity, therefore some part

of the experience is forgotten when the replay buffer which stores the trajectories τ runs out of space. Naive
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Algorithm 4 Q Actor Critic
Initialize parameters of policy function θ and action-value function w

Initialize learning rates αθ > 0, αw > 0

sample action ut from policy π(ut|st, θ)
for t = 1...T do

Sample reward rt ←− R(st, ut) and next state st+1 ←− P (st+1|s, u)

Then sample the next action ut+1 ←− π(ut|st, θ)
Update the policy parameters:

θ ←− θ + αθQw(st, ut)∇θlnπ(ut|st, θ)
Compute the td-error for action-value at time t:

ς = rt + γQw(st+1, ut+1)−Qw(st, ut)

and use it to update the parameters of Q function:

w ←− w + αwς∇wQw(st, ut)

Move to ut ←− ut+1 and st ←− st+1

end for

replay buffer samples randomly and overwrites the oldest data. However, the authors of the work Prioritized

Experience Replay [67] presented the method which prioritizes samples with weights based on the TD-error

(Sec. 3.1.6) and manages them accordingly. The prioritization helps algorithms to update policy parameters

with samples that are most problematic, where the TD-error is higher so the estimation of the Q-value is

worse. Updating function parameters more frequently with such samples improves their estimation, which

increases the learning speed in relation to the random sampling method.

3.1.13 Deep Reinforcement Learning

Deep Reinforcement Learning broadens classical RL with the utilization of Artificial Neural Networks

(ANN). In this case ANN serves as approximation of policy function π(u|s, θ), action-value function

Q(s, u, θ) or state-value function V (s, θ). These functions are parameterized by the vector of parameters

θ which refers to the vector of trainable weights of ANNs.

ANNs are mostly utilized in the case of environments characterized by large state space S or action

space A. It could outperform linear functions or tabular methods due to their non-linearity. Additionally,

ANNs are known for their generalization capacity, which means that they can act correctly on inputs that

they have never seen before, assuming that they met similar states during the learning.

The introduction of ANNs in Reinforcement Learning (RL) has led to the emergence of new learning al-

gorithms, marking a new era in RL. This chapter presents one such algorithm, Proximal Policy Optimization

(PPO)[68] which is relied upon by most of the discussed work.

3.1.14 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [68] is an on-policy method and belongs to the family of policy gradient

algorithms (Sec. 3.1.8). Compared to earlier RL algorithms, PPO stands out with two improvements. The
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first regards using trust region for updating parameters instead of the linear search method. The second one

considers the method of calculating the advantage function which is a part of PPO’s objective.

The trust region technique relies on determining the maximum size of the step during the parameters

update in the first place and then the direction of that step (3.17). The maximum step defines an area in

parameter space around the current best solution which cannot be left by stepping in gradient descent update.

This protects the new policy from being too far from the old one after the parameters update which increases

the learning stability.

The authors of PPO proposed two ways to define the trust regions and how to incorporate them into

the objective function. As presented in Section 3.1.10, to update the policy πθ the gradient of the objective

function with respect to the θ must be estimated (3.23). The general form of gradient estimator could be

formalized as:

ĝ = Êt
[
∇θlnπ(ut|st, θ)Ât

]
(3.27)

where Ât is the estimator of the advantage function at time t (3.31). The expectation Êt[. . .] stands for the

empirical average over a finite batch of samples.

Accordingly, to the general form, the PPO defines its own base objective function (3.28). This function

is formulated based on the seminal work [69] which introduced the concept of trust regions in RL optimiza-

tion. The innovation of PPO, however, relies on simplifying the predecessor method with the utilization

of clipping gradients. To calculate the gradient, the objective function (3.28) should be differentiable with

respect to the parameters θ.

JCPI(θ) = Êt
[
π(ut|st, θ)
π(ut|st, θold)

Ât

]
(3.28)

To simplify the notation lets denote the probability ratio rt(θ) = π(ut|st,θ)
π(ut|st,θold) . Notation θold states for θ

parameters actual for previous optimization step.

The algorithm introduced a clipping function

clip(rt(θ), ε) =


1− ε, if rt(θ) < 1− ε

1 + ε, if rt(θ) > 1 + ε

rt(θ) otherwise

(3.29)

with new algorithm’s hyperparameter ε which typically equals 0.2. Using clipping function clip(rt(θ), ε)

the new objective function is formulated as

JCLIP(θ) = Êt
[
min

(
rt(θ)Ât, clip(rt(θ), ε)Ât

)]
(3.30)

The presented clipped objective takes the minimum value of the unclipped objective (eq. 3.28) and the

clipped value to the range of (1−ε, 1+ε). The final objective assumes the pessimistic bound on the unclipped

and clipped objective. Therefore the probability ratio is ignored when it improves the target and is respected

in the case of target degradation.
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The second innovative part of PPO considers the estimation of the advantage estimation Ât (3.31). The

work presented a combination of techniques that aim to reduce the variance of estimation and incorporate

the entropy bonus that incentivizes policy to explore the environment. To reduce the variance of advantage

function estimation it uses the state-value function V (st, θ) like the actor-critic method (Sec. 3.1.11). Be-

sides that, it also considers the option that policy and value functions which are represented by ANN, share

the same parameters θ to some extent. To preserve flexibility, the PPO assumes that policy updates may be

made after collecting the trajectory τ of arbitrarily determined length. That assumption means that policy

updates do not require collecting the entire episode. The following Equation 3.31 presents the estimator of

Ât which meets all aforementioned requirements.

Ât = ςt + (γλ)ςt+1 + ...+ (γλ)T−t+1ςT−1

where:

ςt = rt + γV (st+1, θ)− V (st, θ)

λ is a hyper parameter

(3.31)

The overall PPO algorithm is presented below in Algorithm 5. The algorithm enables the use of a set of

actors that collect the experience trajectory simultaneously. When the trajectories of length T are gathered,

the trainer computes advantage estimation Ât for all of the trajectories. Then the policy π(ut|st, θ) is updated

with gradients calculated based on differentiation of clipped objective function (eq. 3.30) with respect to

parameters θ.

Algorithm 5 Proximal Policy Optimization

Require: Initialized parameters of θ, learning rates αθ, αw, and hyperparameters ε, λ

Set trajectory horizon T , K number of epochs, mini-batch size M

for iteration = 1,2... do
for actor=1,2...,N do

Run policy π(ut|st, θ) in environment for T timesteps collecting trajectory τ

Compute advantage estimation Â1, ..., ÂT

Ât = ςt + (γλ)ςt+1 + ...+ ...+ (γλ)T−t+1ςT−1

where ςt = rt + γV (st+1, θ)− V (st, θ)

end for
Optimize objective

JCLIP(θ) = Êt
[
min

(
rt(θ)Ât, clip(rt(θ), ε)Ât

)]
wrt θ, with K epochs and minibatch size M < NT

θ ←− θ + α∇θJCLIP(θ)

end for
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3.2 Offline Reinforcement Learning

Reinforcement Learning is an effective method for learning-based control. It could achieve a near-optimal

policy that knows how to pursue accordingly to reward function stated in MDP. However, the provided

techniques depend heavily on online interaction with the learning environment. Such interaction may not

be available for all problems, either because interacting is too expensive, dangerous, or taking too long.

Offline Reinforcement Learning alleviates that issue by replacing online interaction with training on the

offline dataset (Figure 3.3). The ANN-driven Offline RL is able to associate input states with actions, akin

to supervised learning methods that learn input-label relationships. However, by incorporating a reward

signal it states a decision-making learning technique that may provide behavior policies that are competitive

with those produced by RL algorithms.

Typically Offline RL algorithms require a dataset Dtrain which is filled with transition tuples

(st, ut, rt, st+1) generated by some unknown expert policy πe during interaction with the target environ-

ment. During the training, the dataset could not be extended nor the trained policy cannot explore the

environment. The policy could be trained by various algorithms, for example, Behavioral Cloning from

Observation (BC) [70] or Monotonic Advantage Re-Weighted Imitation Learning (MARWIL) [71]. During

the training, the policy performance is evaluated with off-policy evaluation metrics (weighted importance

sampling [72] or distributional assumptions [73]). When trained policy meets the criteria, it is deployed to

the environment and runs directly in the target domain.

Figure 3.3: Offline Reinforcement Learning uses a learning dataset that is filled with experiences collected

by some unknown behavior policy. The policy πθ is trained on that dataset and it does not interact with the

environment until it is finally deployed in the environment.

While the applied policy is running it could encounter transitions that are far from the distribution of

these presented in the training dataset. It either could be varying states or selected actions in which con-
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secutive state or expected outcome is unknown for the policy. Typically, the policy cannot handle deviating

situations, which reduces its effectiveness. That situation is a result of a distributional shift and is common

for all Offline RL algorithms becoming its major challenge. Usually, it is caused by the limited number

of samples collected in the learning dataset that do not maintain the ideal distribution of samples over all

possible environment states.

Figure 3.4: Drift of trajectory caused by distributional shift.

3.2.1 Extrapolation Error in Offline Learning

It is worth mentioning a phenomenon that disables learning with value-based methods such as Q-learning

from the static offline dataset, without any exploration. As [74] stated, most RL algorithms are not able

to learn effectively from historical data which does not correlate with the trained policy. It is caused by

the extrapolation error which manifests in the erroneous estimation of q-values of state-action pairs not

presented in the dataset. It also results in an optimistic value overestimation of these actions presented in the

dataset. The policy that selects as an action the argument of the maximum q-value, not taking into account

the uncertainty of estimation, causes persistent overestimation bias. Typically online RL algorithms, such as

SAC [75], enable refining the estimation of the q-value which estimation variance is the highest by pushing

the model to explore that part of state-action space. In offline learning such a refinement could not be carried

out and even increasing the size of the dataset is ineffective [76].

There are three main reasons for the emergence of estimation divergences. The first of which is the

absence of data in the training batch. If a particular state-action pair or near lying (st, ut) one is not there,

the initial estimation of the Q value cannot be adjusted. The following reason is the model bias towards

the transitions of the consecutive states. The model estimates values over the next states, but it only knows

trajectories that occur in the dataset. In value estimation, the model completely disregards the stochastic

nature of MDP. The last factor influencing this phenomenon is the optimization process in relation to uniform
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sampling from the dataset. Even if the dataset contains a sufficient number of samples, sampling results in

loss which is weighted respectively to the likelihood of data in a batch. Sample distribution that does not

correspond with state distribution may lead to increasing exploration error.

The following sections present the two most common Offline RL algorithms.

3.2.2 Behavioral Cloning

Behavioral Cloning was introduced in [77] and further elaborated in [70]. It relies on tuning the policy

function to map the environment states to proper actions π(s, θ) → u. The set of state-action pairs is

granted by the expert policy πe, often human. It collects the trajectories τ of consecutive state-action tuples

(st, ut) that lead to achieving some desired goal. The trajectories τ are gathered in demonstration dataset

Dtrain = {τi, τi+1, . . . , τN}. The algorithm adjusts the policy parameters θminimizing the Kullback-Leibler

Divergence between probabilities of selecting an action by trained and expert policies:

J = Dd
KL(πe||πθ) = −E(st,ut)∈Dtrain

(lnπ(u|s, θ)− lnπe(u|s)) (3.32)

where d(s) is state distribution. The loss function is expressed as a sum of differences between behaviors

and policy natural logarithm of the probability of selecting the action that the expert took in a given state.

The θ parameters of behavior policy are updated according to the gradient of the (3.32) in the gradient ascent

step. This basic algorithm is quite similar to supervised learning. It does not employ reward signals which

are crucial in Reinforcement Learning. Therefore it simply clones the expert’s behavior without paying

attention to the quality of actions. It cannot differentiate between two different actions being selected by

expert policy in the same state.

3.2.3 Monotonic Advantage Re-Weighted Imitation Learning (MARWIL)

MARWIL [71] is a more advanced algorithm than BC since it takes into account the rewards received for

performed actions. Similarly to BC, it also needs training dataset Dtrain, however, the state-action tuples

are extended with reward value. Moreover, tuples in the dataset need to be organized in trajectories τ of

consecutive time steps in order to calculate the cumulative sum of rewards Gt (3.3). This allows MARWIL

to weigh available samples accordingly to advantage estimation of action Ât(st, ut, θ). The higher weight is

put on a sample with a higher advantage, which inclines policy to select more profitable actions. Therefore

theoretically, it could outperform the expert policy by avoiding unprofitable actions.

To calculate Ât(st, ut, θ) authors proposed to use

Ât(st, ut, θ) = (G(τ, t)− V (st, θ))/c (3.33)

where V (st, θ) is a value function, and c is an average norm that stabilizes training across different

environments. The parameters θ are optimized to maximize the objective function:

J = E(st,ut)∈Dtrain
eβÂt(st,ut,θ)lnπ(ut|st, θ) (3.34)

where β is a hyperparameter that controls the influence of advantage weighting of samples. If β equals

0, the algorithm transforms to basic BC (Sec. 3.2.2).

N. Pankiewicz Behavior prediction model of an automated vehicle



3. Theoretical Introduction to Learning Algorithms 40

3.3 Sim2Real Gap

Robotics development relies on physical simulation which allows for rapid growth and progress of robotic

applications. This is possible because simulation provides full controllability of occurring events and the

possibility of their repetitions. Moreover, the simulation could be very effective by running much faster than

real-time or by engaging fewer resources than real experiments. Its scalability over distributed computing

allows for conducting a huge amount of experiments in parallel. The great advantage of simulation is also

its variability which enables diversifying processes through parameterization. Finally, the evaluation of al-

ready developed robotics systems may be performed in homogenous conditions which allows for comparing

systems without environmental errors.

Despite the broad range of advantages, simulation have also its limitations with correctly replicating

real-world phenomena. For example, in the case of traffic simulation, there are plenty of scopes that can

be simulated properly such as vehicle kinematics, traffic flow, or traffic accidents. However, there may be

missed simulation of the broad range of edge cases which made autonomous driving so difficult to achieve.

Moreover, there may be flawed replication of the common driver’s behaviors which impacts the optimization

of the policy behavior.

Modeling errors can have a significant impact on the successful transition of robotic systems from sim-

ulation to real-world environments. The process of such transferring is called sim2real transfer. This diffi-

culty comes from the way in which robotic systems are created. During the development, the system may

be optimized to handle only these states that were simulated. However, the states that were absent during

optimization or were far from a presented one in the real domain cause the robotic system may behave sub-

optimally, incorrectly, or even dangerously. The difference between simulation and real-world which causes

the aforementioned threat is called the sim2real gap and it is a special case of distributional shift.

3.3.1 Domain Randomization

Recently, a significant number of works has been done (ex. [78], [79], [80]) to alleviate the problem that

restrains the application of RL-driven robotic systems in real products. Works considered two approaches,

the first is to improve the simulation to close the sim2real gap. The second is to utilize real data in parallel

with simulated one.

An example of the first approach regards closing the sim2real gap by increasing the diversity of simu-

lation by steering its parameters. Work [81] introduced a method called domain randomization. The work

[82] enhanced it and proved its efficiency by training the robot hand to solve the Rubik’s cube. The robot

was trained initially in simulation, while evaluation took place on real hardware.

Generally, domain randomization relies on changing the simulation parameters during the training ac-

cording to some broad distribution. This method assumes diversification of a set of parameters including

those that characterize a real setup. Therefore agent that handles all possible environment states can handle

actual states occurring in the real world. The process of changing parameters can be manual or automated.

The [82] proposed starting with a narrow range of distribution which simplifies the environment helping

agents learn. Whenever an agent masters the current setup, Automatic Domain Randomization (ADR) ex-
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pands the range of distribution which forces the agent to adapt to broader ranges of states. It maintains the

hardness of training and agents become resistant to versatile situations.

The disadvantage of this method is its time consumption. Because the agent is required to cope with a

broad range of environment versions, the training takes much more time than is needed to learn for one par-

ticular setup. The time required increases exponentially with an increasing number of tweakable parameters.

As in the case of machine learning it needs to evaluate policy in the target domain frequently to determine

if training covered already real parameters and if it could be stopped or at least prevent the expansion of the

randomization range.

The second drawback of this method is that the optimal policy that copes with all possible conditions

may not be optimal under real conditions. This counterintuitive observation could be explained by example.

Imagine that one of the simulation parameters is the force that is needed to move the robot’s joint for some

distance unit. If the value of this force is included in observation space or the robot can infer it somehow,

the action may depend on that value. However, if it is not observable in any way, the agent would search for

a policy that satisfies the entire range of distributions. It means that the policy would not be optimized with

respect to real value, therefore it would not be optimal under real conditions.

Figure 3.5: Policy optimal for all distribution of environments may be not optimal for the real environment.

3.3.2 Domain Adaptation

The second method that closes the sim2real gap is Domain Adaptation (DA). The most popular method in

this class is the utilization of Generative Adversarial Networks (GAN [83]) in order to improve simulated

observations. GAN consists of two ANNs, one of which is a generator and the second one is a discriminator.

The Generator is trained to generate the samples in such a way that they are similar to the samples in the

training set. The Discriminator is trained to recognize whether a given sample is from a dataset or from the

Generator. These two ANNs are trained simultaneously in the form of a zero-sum game. One of the recent

works that incorporated this family of solutions is [84]. It regarded typical end-to-end training of robots that

should grasp some object. RL agent which controls the robot receives images from the camera sensor as

observations of the environment state. The sim2real gap considered here is the unrealistic image rendering
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and faulty sensor model in simulation. To overcome these issues authors proposed to train two GANs. The

first of which transformed simulated images to mimic realistic pictures and the second one mapped real

images into simulated ones. This type of training required a dataset filled with images from real hardware.

The policy is trained with DQN [85] on the samples modified by the first Generator. During the evaluation,

the agent received images directly from the real camera, which were not processed by the Generator. This

method could be applied also to other types of states as far as it is possible to determine the architecture of

GANs.

Figure 3.6: Various methods of closing sim2real gap. System identification starts the process of building

simulation tools. The simulator needs expensive calibration to resemble reality. Domain Adaptation relies on

transfer learning techniques that transform simulated states to match the real ones. Domain Randomization

randomly parameterized simulation and train model across the distribution of environments. It assumes that

one of them matches reality.

3.3.3 Real Data Utilization

The last method which may bypass the sim2real gap, is to utilize real data in training in conjunction with the

simulated one. Offline learning (Sec. 5.4) formalized learning methods on data collected in a real environ-

ment by some external policy. However, as already indicated above, these methods suffer from distributional

shifts due to limitations on data coverage (Fig. 3.6). Therefore a number of works presented an approach

of combining offline and online learning to minimize the sim2real gap while preserving coverage over state

distribution. This type of approach enables minimizing the drawbacks of the particular method. However,

the approach of simply pre-training policy on offline data and then fine-tuning it in simulation faces at least

two perils. One of which is the extrapolation error presented in Section 3.2.1, and the second one is an issue

of catastrophic forgetting knowledge learned during the pretraining stage on the fixed dataset.

One example is [86], which exploited real-world data to train flying micro UAV and utilized simulated

data to generalize behavior policy. The work considered the problem of modeling complex physics and air

currents as a significant factor that reduces the quality of learning in simulation. The authors proposed to

separate neural network policy into the perception part and control module. The perception subsystem is

trained on a significant number of simulated data with a Q-learning algorithm (Sec. 3.1.7). Then control
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module is trained to predict future rewards based on images from the real robots and a sequence of future

actions. This module was part of the control policy, which selected actions with the highest predicted reward.

Because the control module was trained on a narrow data set, it was required to generalize better across

various states. Therefore, the perception module trained in the simulation was transferred into the reward

prediction model.

Another combination of online and offline data is proposed by [87] in order to develop a chatting agent.

The authors proposed to pre-train generative model πgen(u|s) on a batch that contained state-action pairs

from interaction demonstrations. Then conduct RL training on Q-network policy on samples collected by

chatting with humans online. To suppress deviation from prior knowledge, the policy is penalized for diver-

gence between prior πgen and actual πθ. The difference was calculated with a modified form of Kullback-

Leibler (KL) divergence. To minimize the overestimation of the Q-value of state-action pairs, authors pon-

dered using the clipped double Q-learning method [88]. However, because the used Q-network had a consid-

erable size, doubling it may result in tremendous memory and computation load. Therefore authors decided

to use a single target Q-network and sample distribution of actions applying dropout on each layer [89]. For

every sampling, the dropout parameters were changed according to the Gaussian distribution. During the

training and inference, the action corresponded to the minimum value from the action distribution.
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Chapter 4

Experimental Setup

4.1 Highway Environment

The experiments assume that driving takes place on a highway with a maximum number of six lanes. Addi-

tionally, the highway infrastructure contains merging ramps and exit lanes, which diversify traffic scenarios

introducing maneuvers such as merging in and out, slowing down, and speeding up in order to join traffic or

exit the highway. The speed limit is not assigned to the lane. However, the vehicle user selects the velocity

setpoint, which may be dynamically adjusted. The expected objects on the road are cars, motorcycles, and

trucks, while pedestrians are not likely to participate in highway traffic. The controlled car has parameters

corresponding to the Lincoln MKZ model (Tab. 4.1).

For experiments, we developed an ACC environment, which is implemented according to the OpenAI

Gym interface [90]. The implementation provides the following functionalities: observation space, actions

space, reset, step, and render. Observation space specifies the size of the feature vector and the range of

values that are returned from the reset and step functions. What the agent observes and how the environment

state is encrypted is described in detail in Section 4.1.2.

Action space determines valid ranges of action that the agent can pass to the environment. In this case,

action space is continuous in the range u ∈ [−1, 1]. The action value corresponds to the targeted longitudinal

acceleration value in the range as,target ∈
[
−3.5m/s2 − 1.5m/s2

]
. More details about the design and

implementation of action space may be found in Section 4.1.3.

The reset function randomly generates new traffic scenarios from predefined simulation parameter

ranges and returns the first observation in the new episode. We customized the generation process in or-

der to achieve realistic simulation conditions (Sec. 4.1.1).

The step function takes agent action as an argument and executes it in simulation. The function is called

every 0.5s of simulation, which means that the agent specifies acceleration that should be achieved in such a

period of time. Action execution starts with recalculating it to the targeted acceleration value as,target (4.1).

Then the trajectory module (Sec. 2.2) plans a continuous reference trajectory to achieve it. The trajectory

is then executed consecutively in the simulation until the function is called again. The simulation step is

called ten times in 0.05s intervals to properly simulate the traffic and calculate possible collisions. During

the update, the simulation samples the acceleration value from the trajectory for a current time and updates
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the position and state of the host vehicle based on a specified motion model (Sec. 2.4). At the same time,

the simulation updates the state of other objects using a built-in motion model. After updating the states of

all vehicles, the simulation checks collisions between all traffic participants.

In the end, the step function returns the observation of a current environment state, reward, information

about agent performance, and signal, which notifies whether the agent reaches the terminal state. The reward

is calculated by the reward function (Sec. 4.1.4) based on a given state and executed action. The episode

achieves a terminal state when the host vehicle crashes or the episode reaches 150 steps.

The remaining render function visualizes the simulation and presents some information about the host

vehicle, agent performance, and traffic state (Fig. 2.5).

4.1.1 Scenario Generation

The scenario generation process includes designing a map, selecting traffic parameters, and picking a ve-

locity set point. The map is created procedurally and starts with selecting the number of lanes of a major

highway in the range of 1 to 4. The road is created by selecting the length and curvature of the consecutive

road sections. Every several sections, the process may add merging or exiting ramps, in which parameters

such as the number of lanes in the range of 1-2, length, and curvature are also randomized. The procedure

is constrained in advance by the parameters specified by the user to avoid semantic incorrectness.

Having the highway map prepared, the scenario generator proceeds to specify traffic by selecting the

parameters of the simulated drivers that will be spawned. This process is divided into selecting parameters

of vehicles, characteristics of drivers, and targeted traffic flow. The parameters of the vehicles are taken from

different models of real vehicles, while the drivers are drawn from a pool of driver behavior models. The

specified profiles include drivers who drive carefully, aggressively, or recklessly.

The targeted traffic flow specifies the number and frequency of adding the new drivers to the simulation.

New drivers are only spawned at the beginning of the road or merging ramps. In the end, the scenario

generator decides on the velocity set point for a host agent. Velocity is drawn from a range of 15-40 m/s.

It allows for the diversification behavior of the trained agent and teaches it to distinguish between absolute

velocity and target velocity.

There were specified four types of scenarios that are different in resulting traffic flow. The most straight-

forward scenario has no other objects besides the trained agent. Subsequent sets increase parameters grad-

ually to make traffic flow denser. In the last set, the scenario is able to force slow driving on the cluttered

highway resulting finally in traffic congestion. Such separation may be used as a ground for curriculum

learning which relies on increasing the complexity of the scenarios adequately to agent performance [82].

4.1.2 State Observation

The environment state in time t is represented as st ∈ S ∈ R. The state is defined as a vector that contains all

the relevant information about each vehicle and the environment states st =
[
sv
i , s

v
i+1, . . . , s

v
N , ρ, . . . β, . . .

]
.

Where sv
i is the state vector of the ith vehicle: sv

i = [x, y, vx, vy, ζWCS ]. Road model ρ is a vector

that includes information about the road layout and geometry, such as curves, joints, and lane markers.

ρ = [ci, ci+1, . . . , cn, ji, ji+1, . . . , jm] where ci is a vector that includes an identification number, marker
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Lincoln MKZ parameters

length l 4.925 m

width w 1.864 m

height h 1.475 m

center to front axle lf 1.42 m

center to rear axle lr 1.42 m

max speed 68.9 m/s

max reverse speed 2.8 m/s

max acceleration 4.5 m/s2

max braking decelaration 10.0 m/s2

mass m 1774 kg

wheel radius rw 215.9 cm

Engine parameters

min rpm 600 rpm

max rpm 6000 rpm

min torque 100 Nm

max torque 373 Nm

Gear ratios

-2.94, 0.0, 4.58, 2.96, 1.91, 1.45, 1.0, 0.75

Table 4.1: Parameters of host vehicle ‘Lincoln MKZ’
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type of given ci, and points coordinates that describe given curve ci = [i, ctype, xi, yi, . . . , xn, yn]. Marker

(delimiter) type ctype ∈ {0, . . . , N} what symbolizes all typical lane marker types such as solid, dashed,

double solid, double dashed, dotted, etc. Then ji is a tuple that includes a set of identification numbers of ci
that create a road joint. The curve connections provide comprehensive information about road topology.

β contains the data related to the controlled by agent vehicle, such as targeted preset velocity (vs,max),

actions that were selected in the last step (as,target,t−1), information whether the host is colliding with

other object and caused a collision. The symbol ′ . . .′ denotes any other relevant variables or information

that influence the traffic scenario or internal simulation state machine. In summary, the state st provides a

complete depiction of the vehicles and environment, essential for a precise simulation of the traffic scenario.

The training environment is defined as POMDP due to the fact that the agent is not able to observe

the entire state st. Therefore state in time t is represented to the agent as a state observation os,t ∈ Ω by

O(st, ut−1)→ ot. Observation consists of essential information from the perspective of behavior planning.

The os,t is narrower than st and it is limited only to the features that are visible from the host position

perspective and sensor models capacity (Sec. 2.3). Overall, it consists of three major parts, which regard the

host state, perceived targets, and road model Ω = Ωhost × Ωobjects × Ωroad.

The host state Ωhost ∈ R4 is represented as a feature vector that includes: absolute velocity in VCS

(vvcs =
√

(vvcs
x )2 + (vvcs

y )2), level of preset speed limit execution (vs_limit_exec = vvcs/vmax), absolute

acceleration (avcs =
√

(avcs
x )2 + (avcs

y )2) and acceleration targeted in previous time step (as,target,t−1).

The vs_limit_exec is crucial from the perspective of satisfying vehicle user preferences. Its value depends

on vs,max which is the maximal speed at which a vehicle could drive in accordance with user settings.

Ωhost = {vvcs, vs_limit_exec, a
vcs, as,target,t−1}

Objects observation is a matrix that consists of at most ten feature vectors, and each of them describes

one vehicle Ωobjects ∈ R10×11. The observation considers up to 10 vehicles that are closest to the host.

The features include relative to the host information about longitudinal and lateral distance (xvcs, yvcs),

velocity (vvcs
x , vvcs

y )), and acceleration (avcs
x , avcs

y ). It also consists data about target’s rotation (ζvcs) and its

dimensions (w, l).

For training purposes, we also added information on whether the target is visible bvisible from host

sensors and whether the target is valid bvalid. A valid flag informs the neural network whether the tar-

get described in this row exists. Valid and visibility flags are used to mask out objects in the trans-

former attention layer. To ensure software compatibility, observation size must adhere to the prede-

fined shape of (10x11). However, it is important to note that there may not always be ten valid objects

present, such as in the case of an empty road. An object not perceived by the host may also be in-

cluded in observation for different purposes. For example, algorithms that use the critic part for learn-

ing (ex. SAC [75]) may diverge in observation composition for the actor and critic. Since critic is not

used during evaluation, it may know the entire environment state, including information unavailable for

the actor [91]. The visibility mask is used to filter out information that the actor should not consider.

Ωobjects = {svcs
obj, d

vcs
obj, v

vcs
x,obj, v

vcs
y,obj, a

vcs
x,obj, a

vcs
y,obj, ζvcs,obj, wobj, lobj, bvisible, bvalid}

The last part of observation regards the road model which is represented by a 3-dimensional tensor

(number of marking lines × sampled points along lines ×(xvcs, yvcs, ctype))Ωroad ∈ R6×10×3. Each row
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describes one physical marker line on the road, which forms a driving lane boundary. The sensor allows

only forward perception of a road in a maximal range of 150m. Each row consists of coordinates of 10

consecutive points in the vehicle coordinate system (VCS) and information about delimiter type (Fig. 4.1).

Points are separated from each other at constant distances over the entire detected line. The information is

completed by the ‘edge_index’ vector, which tells which points are adjacent, and the cluster vector, which

groups the points into lines. These two complementary vectors are required by the graph part of Neural

Network (sec. 4.3)

A valid range of values has been designed for each feature described above. This range is used to normal-

ize observation within the range [−1, 1] before passing it to the neural network. Normalizing inputs helps in

achieving faster and more stable convergence during the training process. It provides stability during back-

propagation by keeping gradients within a reasonable range, preventing undesirable issues like exploding

or vanishing gradients. It also acts as a form of regularization and helps to avoid overfitting. Constraining

the input values to a similar scale encourages the neural network to focus on the patterns and relationships

within the data rather than being influenced by absolute values. This promotes better generalization and

improves the network’s ability to perform well on unseen data.

Figure 4.1: Visualization of observation space - environment state st is presented to the agent as an obser-

vation os,t.
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4.1.3 Action Space

Action space in the ACC environment is defined by a continuous range between u ∈ [−1, 1]. The action

value is recalculated to the acceleration value which is in range as,target ∈ [−3.5m/s2 − 1.5m/s2] with

as,target = amin +
(amax − amin)(u− umin)

umax − umin
(4.1)

where amin = −3.5, amax = 1.5, umin = −1, umax = 1, and as,target is targeted longitudinal accelera-

tion, u - action returned by policy πθ;u ∈ {−1, 1}.
The calculated value is a target acceleration that the agent expects to achieve in the next environment

state t + 1 which states half a second. As demonstrated in figure 2.3, the acceleration value derived from

agent action goes directly to the trajectory generation module. This module plans future vehicle trajectory in

such a way as to reach the target acceleration in settled duration, keeping constant jerk. The trajectory is then

executed by simulation using the motion model. Therefore the limits of possible acceleration are determined

arbitrarily by the trajectory generation module developed by 3rd party. From the agent’s perspective, training

can be adapted to other acceleration ranges. In the current setup, the acceleration range is available from the

perspective of the trajectory planner module and dynamic motion model. Target values should be feasible

essentially from the perspective of the motion model used in simulation 2.4. In residue situations when

Figure 4.2: Example of state observation from the driving log. There are five marker lines that create the host

and left lanes. The most left and right marker lines represent the road border. The host position is marked by

a green cross. Perception detected two objects on the left lane (blue crosses). Figure 4.3 presents the view

from the front-facing camera, where can be seen two additional vehicles that were not detected.
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Figure 4.3: View from the front-facing camera. State observation is presented in Figure 4.1.

target acceleration cannot be achieved, we expect the agent to infer such an aspect during the learning. The

range of acceleration also complies with the analysis of quality requirements. The work [92] reported that

maximal comfortable acceleration for 50% of drives is 1.6m/s2 and maximum comfortable deceleration

for 90% of drivers is 3.3m/s2. The value of deceleration is selected to provide comfortable driving. It is

much lower than values reached during the activation of the Autonomous Emergency Braking System in

near collision situations 7.7m/s2 <.
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4.1.4 Reward Function

The reward function is a sum of several weighted terms, and each incentivizes appropriate behavior (positive

reinforcement) or discourages undesirable actions (negative reinforcement). The reward function used for

training the ACC agent Racc consists of the following terms:

• Speed execution c0(vvcs, vmax) - calculated as a ratio of current host velocity and setpoint velocity.

The reward is adequately lower if the speed is higher than the velocity setpoint. The maximum value

is 1 as shown in Figure 4.4. It incentives agents to maximize speed limit execution and not exceed it

and it is defined as

c0(vvcs, vmax) =


(

1− 3 |vmax−vvcs|
vmax

)
, if vmax < vvcs

1− |vmax−vvcs|
vmax

, otherwise
(4.2)

where vmax ∈ [0, 35] and vvcs ∈ [0, 45].

• Squared acceleration c1(avcs) - the squared value of acceleration

c1(avcs) = (avcs)2 (4.3)

This negative reward promotes a comfortable ride without upheaval. The weight of this term should

be carefully selected in accordance with the speed execution weight. This term considers the actual

acceleration value which is performed by the host vehicle avcs
t , not the planned acceleration by the

agent as,target,t−1.

• Safety violation c2(sv
host, s

v
target) - a negative reward for entering the safety distance while driving

too close to the front target. Distance is calculated according to Responsibility Sensitive Safety (Sec.

2.5). This term incentivizes agents to drive safely and to avoid triggering emergency braking.

c2(sv
host, s

v
target) =

1, if ∆s 6 dlon_min

0, if ∆s > dlon_min

(4.4)

where dlon_min is defined as (2.19) and ∆s is the distance alongside lane centerline between the front

bumper of the host vehicle and the rear bumper of the leading vehicle ∆s = sobj − 0.5lobj − shost +

0.5lhost, where s i position in Frenet Coordinate System of the vehicle center.

• Terminal State c3(∆s, vvcs) - a negative reward for causing a collision or speeding too much. If any of

these conditions are fulfilled the episode ends because detecting such an event causes the termination

of an episode.

c3(∆s, vvcs) =

1, if ∆s 6 0 ∨ vvcs > 45

0, otherwise,
(4.5)

Racc(s
v
host, s

v
target) = 0.11c0(vvcs, vmax)2 − 0.02c1(avcs)− 0.3c2(sv

host, s
v
target)− 10c3(∆s, vvcs) (4.6)
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Figure 4.4: Reward function of c0(vs, vmax) and its square.

The reward function was created on the basis of multiple agents’ training sessions conducted using

PPO in a highway environment. It is important to notice that in the case of reinforcement learning, the

reward function does not serve only for loss calculation in the policy optimization process. It also drives

the agent’s exploration of the environment. Therefore it needs to be carefully designed, and partial terms

weights must be balanced. Since the reward function incentivizes environment exploration, its weight also

depends on the distribution of transitions and scenarios. For example, in the contemplated ACC case, the

general objective is to minimize the sum of acceleration while maximizing speed. It means that the negative

reward for acceleration should be high. However, if the sum of the rewards is too high with respect to

the reward for maximizing velocity, an agent would not be incentivized to explore outcomes from states

with high-velocity driving. According to experiments, it suppresses exploration in order to avoid negative

reinforcement for acceleration just from the beginning of training, therefore agent never experiences high

rewards for fulfilling preset velocity.

The presented reward function focuses on velocity and acceleration values. However, the other approach

for designing a reward function for ACC is to concentrate on the distance to the leading target rather than

on velocity (such as [25]). It relied on the assumption that by minimizing the separation, the speed is also

maximized. However, our conducted experiments on such a defined reward function contradict this. The

evaluations showed that the agent did not maximize speed but allowed other cars to cut in front of it. Thus

distance was always small, and the reward was maximized, but the real ACC objective was not fulfilled.

This result may be due to the characteristic of the behavior model built-in simulation used for controlling

other vehicles, which tend to change lanes often. It is possible that such an approach would be effective in a

single-lane road environment.
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Regarding weight balance, we found out that too small a negative reward for collisions provokes an

agent to especially cause a crash to avoid collecting negative rewards for the rest of the terms in each step

of an episode.

As a part of reward designing, we investigated the issue related to the responsibility for safety. Initially,

we assumed that the agent would be wrapped by the RSS (Sec. 2.5) safety envelope, which would trigger

emergency braking when the agent enters the safety distance. However, for training purposes, we switched

off this option for two reasons.

In the first place, we intended to train agent which understand the safety issues. Therefore, we can

punish it with the safety violation reward term c2, and through that, it could comprehend the consequence

of accelerating being close to the leading vehicle.

Moreover, we found out that transparency between actions and state transitions contributes much to the

learning pace. Therefore, transparency was achieved by allowing the agent to accelerate at any time and not

override its action by braking signal from RSS.

The performance of the outcome policies was evaluated based on defined KPIs (Sec. 6.2). The reward

function that led to the highest-performing policies in terms of KPIs was selected as the basis for the re-

maining experiments.

4.2 Dataset

The training dataset Dtrain used for experiments consists of 672211m driving experience. The data set cov-

ers various traffic situations, road geometries, weather conditions, and broad traffic flow distribution. Table

4.2 presents major features that describe the characteristics of collected samples. The below figures show

the distribution of driver speed limit execution (Fig. 4.6) and acceleration (Fig. 4.5). The data set comprises

around 60000 state-action pairs sampled every 0.5s from raw data. That complies with an interval of select-

ing behavior in the ACC environment (4.1). Data was collected on the highways and roads outside cities,

mainly in Germany. The data has been segmented into episodes that have a duration of up to two minutes

which corresponds to 240 steps. Records from roads inside cities or parking areas were automatically fil-

tered out from available data based on the host’s mean speed in the episode. Raw data is collected from

vehicle sensors such as the front-facing camera, all-around radars, and internal car sensors such as IMUs

and wheel encoders, as described in Section 2.3). Raw data is processed into trajectories of consecutive

SARS’ tuples τ = {(st, ut, rt, st+1), . . . , (sT−1, uT−1, rT−1, sd)}, which are necessary for further training,

with the following pipeline.

First of all, each sample is parsed to a common representation used in our implementation of the High-

way Environment (sec. 4.1). To simplify the implementation of all experiments, we ensure that objects that

are created from sensor data and simulation implement a common interface. This approach additionally

guarantees that objects from both sources are coherent and both cover common types of data. Common

representation consists of three major objects which are being created: Host object; Targets - representation

of all visible adjacent vehicles; Relative Road object, which represents road lanes in relation to the host

vehicle. Such representation of the environment could be processed further to the state observation os,t as

defined in Section 4.1.2.
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Parameter Original Dataset Unit

Road travelled 672.211 km

Acceleration Mean -0.011 m/s^2

Acceleration Std 0.372 m/s^2

Speed wrt Speed Limit Mean 0.563 %

Speed wrt Speed Limit Std 0.196 %

Speed Mean 22.513 m/s

Speed Std 7.847 m/s

Jerk Mean 0.784 m/s^3

Jerk Std 6.707 m/s^3

Headway to front Mean 10.066 m

Headway to front Std 90.010 m

Lane Bias absolute mean 0.341 m

Lane Bias absolute std 1.522 m

Table 4.2: Characteristics of collected samples in dataset

To complete SARS’ tuple, there is a need to determine the actual driver action ue,t. The action is defined

as a normalized value of target acceleration (4.1). Unfortunately, acceleration data from the sensors could

not be directly used since the driver did not apply the interfaces and steering methods employed in the

experiments. The plotted acceleration curves indicated that drivers changed acceleration more frequently and

in a broader range than specified, or that sensor readings were too noisy. Nevertheless, vehicle acceleration

reported by sensors could not be directly used as a reference for action in agent training. It is mainly due to

the fact that acceleration specifies the desired value of acceleration and not the resulting one from trajectory

execution (as,target,t 6= as,t+1∀t ∈ T ).

In order to estimate the value of the action, we hypothesized that the achieved speed in a particular

time step remains close to the driver’s intention. Based on this assumption, the targeted acceleration value

as,target,t was calculated based on the reached velocity in time step t + 1. For calculation, we employed a

3rd order spline to represent the velocity function with knots at each timestamp of the samples. This method

was found to approximate the dynamics of velocity changes effectively and it complied with approach of

calculating trajectory by trajectory planning module. The acceleration values were then obtained by com-

puting the function derivative at the sampling timestamp and scaling it into the range of [-1, 1], as outlined

in Section 4.1.3 (4.1). We utilized the dynamic model to verify that computed as,target,t actually leads to

achieving velocities performed by the driver. After inspection, it was determined that using a 3rd order poly-

nomial to approximate the acceleration profile was justified. This choice resulted in a trajectory that closely

resembled the original trajectory and remained feasible.

In order to finalize the SARS’ tuple, it was necessary to compute the reward, which is dependent on both

the action and states. To address this, we gathered consistent observations of the states and driver actions

and used reward function (4.6) to calculate the reward for each sample.
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In order to conduct further experiments, we divided the dataset into a test set and a train set with a 1:9

ratio.

p

Figure 4.5: Histogram of accelerations in the dataset Dtrain.

4.3 Neural Network Architecture

The Neural Network architecture, designed for experiments (Fig. 4.7), complies with several requirements

resulting from data characteristics. First of all, ANN should be able to process a variable number of objects

and lane markers. To efficiently handle this case and simultaneously keep a fixed input shape to ANN

as the software requires, we employed TransformerEncoder structure [93] and PointNet architecture [94].

Moreover, in order to effectively address the challenge of varying numbers of lane markers and sensing

ranges, we conducted a search for an efficient representation. Also to consider the topology of driving lanes,

we utilized the ordered graph structure to represent lane markers. This representation was processed by a

graph neural network [95] with message passing operation [96].

Additionally, to address the challenge of temporal aspects in processing the observation of the POMDP

environment, we utilized the Long-Short Term Memory layer (LSTM) [97]. This was necessary because the

history of objects is not included in environment observation but has a significant impact on the decision-

making process. This enabled us to retain valuable information from previous time steps and improve our

overall performance.
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Figure 4.6: Histogram of speed limit execution ratio for all samples in dataset Dtrain.

Overall, ANN architecture is divided into sequentially arranged modules: perception, brain, and control.

Each of these modules consumes the output of the preceding part beside the first perception module, which

retrieves the sensor perception and user inputs in the form of environment observation os,t.

The perception module, firstly, processes host, targets, and road data separately. The neural network

parts that process the host and targets are straightforward and consist of a couple of feed-forward layers

with ReLU activation. All processed objects are encoded in transformer embedding with a feature vector

with size of 256 (defined as a parameter called ‘transformer_emb_dim’ in Tab. 4.3).

The module which processes road observation is built based on the Graph Neural Network and is similar

to the approach presented in [98, 14]. We chose the Graph Neural Network to process roads because the

complex road structure with assigned logic and rules is commonly depicted as a graph in some form. For

example, data in Open Street Map [51] (OSM), HD maps, GIS-related data [99, 100], etc. uses vector

representations of connected nodes, which is an example of the graph structure. In the current work, the lane

markers are depicted as a sequence of ten nodes evenly spaced along the marker, forming a polyline. This

can be seen in Figure 4.1. Each node consists of x, and y coordinates in VCS and encoded delimiter type.

A polyline represented as a direct graph is processed by the subgraph module (Fig. 4.8). Firstly sub-

graph processes each point with a fully connected layer. The size of this layer is defined as ‘subgraph_width’

and equals 64. The output is normalized with Layer Normalization and activated with the ReLu activation

function. Then graph layer conducts message propagation [101], which concatenates the representation of
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connected nodes doubling its size. Connections are encoded in the ‘edge_index’ feature vector which is

included in state observation. Using the same approach as was used for the single point, the extended rep-

resentation of the edge is processed once again. The process is repeated three times (defined by parameter:

‘num_subgraph_layers’). Finally, the operation returns a feature vector with dimensions 6× 10× 24. Then,

as PointNet architecture proposed [94], the most significant polyline representation is selected using the

scatter max operation. Selected feature vectors are further processed with a fully connected layer whose

output size equals 256, matching the size of the representation of other objects.

Encoded representations of the host, lane markers, targets, and one additional trainable input token go to

the Transformer Encoder layer [93]. The selection of the transformer architecture was based on its capability

to handle different numbers of inputs making it suitable for our application where there are varying numbers

of legitimate targets and lanes in each sample. Since the shape of the input tensor should be constant from

a software perspective, the current architecture requires providing mask vectors that inform the transformer

which inputs to disregard.

The transformer is defined according to PyTorch documentation [102]. It consists of 3 layers (param

‘transformer_num_layers’), 2 heads (‘transformer_num_heads’), and the size of the feedforward layer

(‘transformer_ff_dim’) is 512. The module is trained to recognize the relation between embedded scene

features and encodes meaningful representation of the entire scene in input token (as applied in [103]). The

feature output associated with the input token should represent all relevant details about the traffic scene in

the latent state.

The brain module has a form of a Long-Short Term Memory layer (LSTM) [97] with a hidden size

of 128. The LSTM layer should learn to remember important features from past states, encoded by the

perception module, that are crucial for the control task. The LSTM layer passes the embedded state of the

current situation and convolutes it with the hidden memory state. It decides which part of the information

to remove and which to keep for upcoming interference. It produces the feature vector, which goes to the

control module, and the new hidden state, which is preserved for the subsequent network inference.

The control module depends on the action space definition of the experiment. The control head suitable

for acceleration action outputs the parameters of the Normal Distribution: mean value µ and the natural

logarithm of standard deviation ln(σ). The mean value is output by the linear neural layer and activated with

tanh(x) = sinh(x)
cosh(x) = ex−e−x

ex+e−x function in the range µ ∈ [−1, 1]. The ln(σ) could take the value of any real

number ln(σ) ∈ R and is a standalone input-independent trainable parameter. This parameter is initialized

as 0 and it decreases during the training. By decreasing it limits agent exploration [69, 104] and increases

its confidence in selected action.

As mentioned above, the proposed architecture of the Neural Network is parameterized, which results

in a various number of trainable weights θ. The strongest emphasis is put on the perception module be-

cause of its role in processing input data into a meaningful representation. The major hyperparameters of

ANN architecture are presented in Table 4.3 and include those which influence the size of the transformer:

‘transformer_emb_dim’, ‘transformer_num_heads’, ‘transformer_num_layers’, ‘transformer_ff_dim’; and

subgraph: ‘subgraph_width’, ‘num_subgraph_layers’. The parameter values, that were used in the follow-

ing experiments, were selected by conducting several sessions of training with different values of major
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Figure 4.7: ANN consists of 3 major modules: perception, brain, and control. The subgraph is shown in

detail in Fig. 4.8
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Figure 4.8: Subgraph is a part of ANN (Sec. 4.3) which processes the lanes geometry which is represented

as a directed graph (compare with Fig. 4.1)

parameters. I specified four different sets of parameters that increased the number of trainable weights. The

consecutive networks were called adequately ‘small’, ‘medium’, ‘default’, and ‘huge’. Table 4.3 shows se-

lected parameter values for given networks as well as the number of trainable parameters θ and inference

time of NN on modern GPU. Figure 4.9 presents the course of training from the perspective of the mean

sum of reward in episodes.

After thoroughly analyzing the training results, it is evident that the ‘small’ architecture fell short in

terms of performance and can be disregarded. The ‘medium’ and ‘default’ architectures have similar train-

ing progress, although the ‘medium’ network took longer to reach the reward level compared to the ‘default’

architecture. Additionally, the high variance in the mean reward sum during training indicates instability in

the learning process. In comparison to other networks, the ‘huge’ network achieved a desirable reward level

quickly. However, it experienced a decline in performance, as illustrated by the chart, and failed to reach the

reward level attributed to the default network. Furthermore, the huge network’s inference time is approxi-

mately four times longer than that of other networks. Based on this experiment, the default parameters were

chosen for future experiments due to their superior performance and training stability.

4.4 Assumptions and Limitations

The thesis intends to provide a Neural Network policy that may be feasible for preset target acceleration

values for trajectory generation modules in highway environments in order to fulfill the objective of Adaptive
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huge default medium small

num_subgraph_layers 4 3 3 2

subgraph_width 128 64 32 16

transformer_emb_dim 768 256 192 128

transformer_ff_dim 1024 512 384 256

transformer_num_heads 3 2 2 1

transformer_num_layers 4 3 2 1

inference time [ms] 178.43 15.81 9.29 4.25

trainable parameters 16,058,231 1,761,727 761,695 286,147

Table 4.3: Different parameter values of the Neural Network were examined in order to determine the most

appropriate for the rest of experiments

.

Figure 4.9: The mean of rewards collected during the training of neural networks parameterized accordingly

to Table 4.3.
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Cruise Control. Experiments assume driving at speeds in the range of 0 to 35 m/s. Accordingly, traffic

flow generated in simulation scenarios covered a wide range of scenarios from low traffic flow to traffic

congestion, and the solution is tested in such conditions.

It is essential to recognize that the dataset collected for training and validation consists only of logged

data from test drives. The driving was conducted in company vehicles equipped with a sensor stack explicitly

designed for the market platform. Driving episodes in which the average speed was lower than 8m/s were

filtered out to ensure that driving occurred on freeways and not in urban. The presented solution does not

apply to in-town driving. However, the proposed architecture of the ANN was designed to cover complex

urban road topology, as the project coverage is intended to be extended with such scenarios.

Testing on the actual car in natural conditions could not be performed due to the absence of the vehicle,

which consists of all crucial automated driving components. Moreover, it was impossible to fulfill all criteria

required to perform such testing, resulting from the Traffic Law Act, Section 6 ‘The use of roads for research

work on autonomous vehicles’ [105].

Due to limited computing infrastructure, our training experiments were conducted using a cluster of

computers with a single GPU and a maximum of 80 CPUs per experiment. That influenced the training

process limiting the batch size and capacity of the ANN. As could be noticed in the literature, the success of

RL training is directly connected to the volume of computing infrastructure. For reference, a state-of-the-art

solution such as [106] utilized 128000 CPUs and 256 P100 GPUs for distributed training lasting 180 days.

We expected that the course of training and performance of outcome policy may differ while using a much

more powerful infrastructure.

It should be noted that the presented solution is intended to work in real-time on a testing vehicle on

selected computing hardware. That influences the size of the observation, the number and size of ANN

layers, and the computational complexity of creating observation from sensor readings.
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Chapter 5

Methodology

The chapter presents the approach for training an Adaptive Cruise Control (ACC) policy using both online

and offline reinforcement learning methods. The presented approach focuses on developing a policy that

can handle natural driving scenarios. The study is based on simulation and real driving logs obtained from

a test vehicle. The latter serves as a training dataset (Sec. 4.2) and baseline for evaluation of the agent’s

performance.

The novel methods presented below address the challenges discussed in the missing factors section.

(Sec. 1.6). First of all, Section 5.2 presents the method for alleviating the issue of suboptimality of human

actions which are included in the training dataset. The method is adapted to the ACC problem and relies

on the numerical optimization of actions performed by the driver. The section demonstrates the preliminary

results of the presented algorithm by comparing policies trained on the optimized and original samples.

In the following Section 5.3, the aforementioned technique is incorporated into optimizing the dataset

created based on driving logs. The resulting dataset and the original one are then utilized for training agents

with Behavioral Cloning (Sec. 3.2.2) and MARWIL (Sec. 3.2.3) algorithms. The cross-comparison of trained

agents is presented in the next chapter in Section 6.2.

The outcome best-performing agent is then fine-tuned with the PPO algorithm in simulation. This step

aims at increasing the distribution of known situations and reducing the extrapolation error of the agent

trained initially on limited data. Having in mind that tuning in simulation may introduce the issue of catas-

trophic forgetting which would result in forgetting knowledge of real data. To address this issue, Section 5.5

presents the method of online training in simulation with the incorporation of real data. This is done by ex-

tension of the simulated scenarios with the resimulation of driving logs. This approach allows for constantly

refreshing the real states during training and further optimizing the initial policy with new situations.

For further comparison of the policy that resulted from training with invented methods, Section 5.1

presents the standard way of training the baseline agent in simulation with the PPO algorithm.
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5.1 Baseline PPO Training

This section covers the standard training process of the PPO agent (Sec. 3.1.14). The policy that is obtained

through this training will be used as a reference to test the hypothesis (Sec. 1.3). It will be done by comparing

the baseline policy with that obtained through the proposed methods.

The Neural Network presented in Section 4.3 was trained from randomly initialized weights in a simu-

lated ACC environment (Sec. 4.1). The training was performed using the RLlib framework [107] in version

1.12.1. The process used 80 distributed parallel CPU workers for collecting experience and a single trainer,

which performed policy optimization on GPU. The training lasts around 12M steps, and collected experience

equals almost 74 days of constant driving while traveling approximately 144038km. Table 5.1 consists of the

hyperparameters selected for this training. Parameters are named accordingly to RLlib [107] documentation

and relate to algorithm PPO [68].

The primary parameter gamma γ, which directly specifies planning horizon (3.5), was set to 0.99. The

parameter γ affects the number of future steps and rewards the agent takes care of. Considering the relation

between gamma and time horizon (3.7) we may notice that with a gamma of 0.99, the 69th future step is

half as important as the first step. It corresponds to step number 7 in case of γ = 0.9 and step number 693

when γ = 0.999. Previous experiments showed that a gamma of 0.99 is feasible for such a task where the

horizon could not be too far due to the prediction of the future state. Neither should be too short to avoid

fluctuating actions, which is the case when the planning horizon is too limited.

The parameter λ smooths the training process by reducing the variance of calculated advantage (3.31).

It was set as suggested in the original work [68] to 0.95. Such value leverages both short-term and long-term

actions.

The clip parameter and KL coefficient parameters may be used to restrict the policy updates in such

a way that the new one does not deviate much from the older one in gradient space which results in a

more stable training process. As a result, the performance of PPO policy does not collapse or increase

unexpectedly during the training, as is the case with unconstrained policy optimization steps such as DQN

3.1.7 or SAC [75].

In the initial version of [68], the utilization of Kullback-Leibler divergence was suggested, with the

KL coefficient parameters serving as controls. This method measures the distance between two probability

distributions, and in the context of PPO, it is utilized to restrict excessive policy changes during optimization.

In contrast to the previous approach, the updated version of PPO [68] utilizes a clipping mechanism (3.29) to

limit the loss value within the defined range of clip parameter (ε parameter in equation 3.30). In conducted

experiments, the second approach was selected and ε set to 0.2. This value appears to provide adequate

stability during training without being overly limiting.

The next set of parameters specifies train batch size, SGD minibatch size, shuffle sequences, and the

number of SGD iterations. These parameters determine the process of sample collection and optimization.

The train batch size parameter defines the number of samples to collect before starting the optimization

round (Alg. 5). The training batch is then divided into mini-batches based on the SGD minibatch size

parameter. Optimization is performed on each mini-batch one by one, and one round of optimization uses

all the samples in the batch. The number of SGD iterations parameter specifies the number of such rounds.
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The trainer creates the mini-batches separately for each round, randomly selecting from the batch if shuffle

sequences are enabled. The size of the mini-batch is limited by the CUDA memory since the GPU processes

all the samples simultaneously.

The below charts (Fig. 5.1) show the progress of the optimization process concerning the reward function

and its individual components (compare to the definition of reward function 4.1.4). Additionally, KPIs are

calculated (Tab. 6.3) which show the agent performance in detail.

As training progresses, the parameter of the control module in NN ln(σ) (Fig. 4.7) decreases which

causes the narrower distribution of selecting action (Fig. 5.1). This process suppresses exploration due to

the fact the agent is becoming more confident of its actions.

Parameter Value

gamma γ 0.99

lambda λ 0.95

batch mode complete episodes

train batch size 50000

SGD minibatch size 1000

shuffle sequences True

number of SGD iterations 15

grad clip 3.0

KL coefficient 0.0

clip parameter 0.2

entropy coefficient 0

learning rate 1e-4

Table 5.1: PPO hyperparameters used for training of baseline PPO agent. Naming accordingly to applied

RLlib library [107].

The agent is further evaluated using defined methods (Sec. 6.2) and compared to other agents to see if

the use of real data is cost-effective in terms of the feasibility of the agents under natural conditions (Tab

6.2).

5.2 Improving Experts’ Experience

In order to alleviate the issue of data imperfection (Sec. 1.7), which affects Offline RL algorithms (Sec.

5.4), I propose a method called Optimization-based Imitation Learning (ObIL) [108]. The idea regards op-

timization of the experts’ actions ue which are frequently suboptimal due to human factors and the inability

to perfectly predict future traffic situations, which is crucial for selecting appropriate control signals. The

method proposes to use gradient optimization methods to improve experts’ actions, and then use them in

the offline training process. The optimization is done separately for each trajectory (st, ue,t, rt, st+1) ∈ τ
included in the training dataset Dtrain. The dataset which included optimized trajectories is denoted Dopt

(optimized dataset).

N. Pankiewicz Behavior prediction model of an automated vehicle



5. Methodology 66

Figure 5.1: The course of training baseline PPO agent in terms of collected rewards.

The idea assumes its feasibility in the case when the agent’s actions influence only the agent’s state

and affect the rest of the environment in a negligible way. To recalculate the environment state, based on

adjusted actions, the method requires knowing the function ψ(sv
t , ϑt, δt, bt)→ sv

t+1 (2.2), k(sv
i,t, as,target, ρ)

(2.10) and O(st, ut−1) → os,t (2.11). These functions calculate the next vehicle state sv
t+1 and observation

resulting from action ut executed in the state st.

If the accurate model of environment dynamics is already known Ψ(st+1|st, ut) (2.12), the method may

evolve to multi-hypothesis trajectory optimization with a model-based solution such as Monte Carlo Tree

Search [109] or [110, 111, 112].

The effectiveness of this method is based, in the first place, on leveraging the assumption that all states

in the trajectory are already known, therefore, the motion prediction of adjacent vehicles is no longer nec-
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Figure 5.2: The course of training baseline PPO agent in terms of performance of rewards terms (6.3), (6.5),

(6.17), (6.18).

essary and prediction imperfection does not degrade action selection. Secondarily, the method utilizes the

knowledge of the function ψ(sv
t , ϑt, δt, bt)→ sv

t+1, which approximates the environment state when actions

differ from the original ones. In the given timestamp, it only changes the state of the controlled vehicle while

keeping the state of the other vehicles as they were originally.

The idea behind this approach to offline learning is to provide the trajectories with enhanced actions

that would benefit the agent training. This is grounded on the assumption that the agent will be able to

recognize patterns in the data and utilize them as a basis for learning, ultimately exceeding the performance

of the human expert. The following section showcases the efficacy of this technique by conducting a distinct

experiment using simulated data. The outcome of the experiment provides evidence which supports the

hypothesis.

5.2.1 Methodology

The method assumes that the expert trajectory τ contains the set of actions that could be parameterized by

the vector x that contains n parameters, which are subject to optimization. The optimization process aims to

minimize the cost function, concerning the function ψ(sv
t , ϑt, δt, bt) and defined constraints. To obtain the

optimal action the following optimization problem should be solved:
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min
x
f(x) =

m∑
j=1

wjcj(x)

subject to constraints: g(x) > 0 defined in Eq. (5.10-5.12)

where cj for j = 0 . . . 2

denotes cost terms defined in Eq. 5.4-5.6

weighted by predefined weights

wj for j = 0 . . . 2

(5.1)

In order to optimize the actions included in the dataset for ACC agent training, it is required to

define a differentiable acceleration function parameterized with vector x ex. fbsf(x, t), utilize functions

ψ(sv
t , ϑt, δt, bt) (2.2),and k(sv

i,t, as,target, ρ) (2.10), and select the optimization method.

For a given experiment, acceleration is expressed as a continuous BSpline function (5.2). A B-spline

function of degree k is defined recursively based on control points. The B-spline function of degree k is

denoted as bj,k;h, where i is the index of the control point and h is the parameter within the knot span.

fbsf(x, t) −→ as,t

fbsf(x, t) =
n−1∑
j=0

xjbj,k;h(t)

where:

bj,k;h is B-spline basis functions of degree k and knots h

(5.2)

The function is parameterized by n coefficients knots, one for every second of the trajectory and degree

k = 4. The spline function was selected as a basis for acceleration curvature because it allows the repre-

sentation of the solution in a smooth, differentiable form and reduces the nonlinearity of the cost function

compared to the polynomial representation.

The cost function incorporates three main cost terms in order to achieve a trajectory that is desired from

the perspective of a perfect adaptive cruise controller:

1. Maximizing speed limit execution

This term is introduced to achieve optimized actions that make full use of available speed limitations.

At the same time, this term and related additional constraints result in avoiding exceeding the speed

limit or stopping a car on the road.

v(x, t) =

∫ t

0
fbsf(x, τ) dτ + v0 (5.3)

c0(x) = (vmaxT −
∫ T

0
v(x, t) dt)2 (5.4)
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2. Minimizing the velocity changes

This term induces the resulting acceleration function to be as flat as possible thereby it minimizes the

acceleration and jerk values over the trajectory. Such minimization increases the passengers’ com-

fort and reduces fuel consumption. Additional constraints restrict the function to be in the range of

maximal and minimal acceleration.

c1(x) =

∫ T

0
fbsf(x, t)

2 dt (5.5)

3. Maximizing time in the sensible range to the leading target

The ACC objective assumes that the distance to the leading target should be in an optimal span. The

minimal range value depends on the current speed of traffic participants and their maximal possible

values of acceleration and deceleration according to RSS rules (Sec. 2.5). Regarding the maximum

range value, it should not be too high to avoid possible cutting in of other cars, nor too small to leave

space for the agent’s maneuvers. We assume that the maximum distance equals the maximal sensor

range to keep tracking the target.

s(x, t) =

∫ t

0
v(x, τ) dτ (5.6)

ccond
2 (x, t) =

0, if ∆smin 6 |sobj(t)− s(x, t)| 6 ∆smax

1, otherwise
(5.7)

where sobj(t) is a distance travelled by leading vehicle and ∆smin/max is maximal/minimal distance to

following vehicle. The complete cost term is calculated for episode time:

c2(x) =

∫ T

0
ccond

2 (x, t)dt (5.8)

As a primary optimization method, I selected a Sequential Least Squares Programming Optimizer

(SLSQP). It optimizes the fbsf function of n parameters by minimizing the cost function (5.1). The op-

timization method is selected due to its suitability for problems where the cost function and the constraints

are twice continuously differentiable.

Additionally, optimization is constrained by inequality constraints to enforce physical feasibility.

1. Acceleration constraint assumes that values of fbsf in all valid time steps are in a range of -3.5, 1.5:

gcond
0 (x, t) =

0, −3.5 6 fbsf(x, t) 6 1.5

1, otherwise
(5.9)

g0(x) =

∫ T

0
gcond

0 (x, t)dt 6 0 (5.10)
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2. Velocity constraint function to achieve velocity values in given range vs ∈ [0, 35]:

gcond
1 (x, t) =

0, 0 6 v(x, t) 6 35

1, otherwise
(5.11)

g1(x) =

∫ T

0
gcond

1 (x, t)dt 6 0 (5.12)

5.2.2 Proof of Concept

In order to test the hypothesis, the experiments were conducted on a simulated version of an Adaptive Cruise

Control (ACC) environment (Sec. 4.1). The simulation was used to collect a dataset of expert trajectories.

The expert manually selects the target acceleration value using the same interface as the agent to meet the

expectations of a perfect ACC controller. As the major function of ACC is to follow the leading target, the

target was present and tractable most of the time. In order to make the task more challenging, the leading

target behaved unstably and oscillated around the acceleration set point in specific scenarios. This caused a

significant variation in the target’s speed.

The trajectories in the dataset were optimized using the SLSQP optimization method and SciPy pro-

gramming library for scientific computing [113], with respect to the objective function defined in Equation

(5.1). Figures 5.3-5.6 depict the course of one of the trajectories, presenting the acceleration, speed, and

jerk of the vehicle controlled by the expert and the target vehicle, as well as the distance between them.

Additionally, the corresponding plots for the optimized acceleration are also visible.

Figure 5.3: The acceleration of the leading target (red), human driver (blue), and optimized one (green). The

horizontal lines represent the limit values of acceleration (-3.5, 1.5 m/s2).

Subsequently, the optimized trajectories were utilized for training the ANN, which serves as the behavior

policy for the ACC agent. To accomplish this, the MARWIL algorithm, which is currently state of the art in

the field of Imitation Learning (Sec. 3.2.3), was employed.

To assess the effectiveness of the presented approach in comparison to the typical Imitation Learning

approach, I conducted a baseline training session using the original trajectories as the training dataset. All

other training parameters were kept consistent with the previous case.
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Figure 5.4: The speed of the leading target (red), the human driver (blue), and the speed calculated from the

optimized spline function which represents the acceleration function (green). The horizontal lines represent

the limit values of velocity (0, 35 m/s)

Figure 5.5: The jerk values of the leading target (red), the human driver (blue), and the jerk calculated from

the optimized spline function, which represents the acceleration function (green).

Figure 5.6: The distance between the human driver and the leading target (blue) and between the optimized

state and the leading target (red). It could be noticed that the function optimization contributed to the reduc-

tion of the distance, which prevented other vehicles from cutting in. The horizontal lines represent the limit

values of the distance from the agent to the leading vehicle- (40m, 80m).
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Following both training sessions, I evaluated the new behavior policies in the test environment by run-

ning ten episodes. Based on the trajectories obtained, I calculated and compared the Key Performance Indi-

cators (KPIs) as described in Section 6.1. The comparison results are summarized in Table 5.2.

As anticipated, the behavior policy generated with the usage of optimized trajectories outperformed the

policy obtained from the original trajectories. The metric shows that the optimized agent drove faster and

more comfortably than the baseline agent. Based on these findings, it can be concluded that this type of

dataset optimization leads to a more effective policy in terms of ACC objective.

KPI
Policy based on
optimized dataset

Policy based on
original dataset

Average Speed [m/s] 20.303 13.781

Average Acc [m/s2] -0.037 -0.763

Average Abs Acc [m/s2] 0.112 0.883

Average Abs Jerk [m/s3] 0.343 2.719

Distance to Front Target [m] 137.771 140.356

Oscillation on Empty Lane Rate [m/s2] 0.114 1.024

Heavy Braking Events [%] 0.200 0.600

Safety Violation [%] 0.400 1.100

Collisions [%] 0.0 0.0

Table 5.2: KPIs values from the evaluation of two behavior policies. The center column shows the values

for an agent generated with ObIL algorithm. While the right column presents the agent’s results generated

with original trajectories.

5.3 Optimizing Training Dataset

The method ObIL method was employed in the process of training the ACC agent based on the collected

dataset Dtrain (Sec. 4.2). To optimize the dataset, firstly, I filtered out samples that did not contain any valid

target which supposed to be followed by the host vehicle. In the created sub-dataset, I left only these parts

of episodes in which the followed target is visible for more than 10 consecutive steps. However, I retained

samples where the target vanishes for less than three successive steps. The target disappearing may result

from perception issues, and such a small gap does not influence the optimization process. Moreover, since

objects vanishing is a commonly encountered problem in perception, the presence of such samples allows

the policy to learn this aspect of real data.

The resulting subset contains 240 episodes with about 13000 samples. Each of the trajectories was the

subject of optimization which was conducted as described above (Sec. 5.2). The optimized actions were used

for the recalculation of new vehicle states and observations in trajectories. The set of optimized trajectories

is denoted as Dopt.
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In order to guarantee the comparability of various trained agents across all further experiments, I

matched the weights w of the objective function (5.1) with the weights of the ACC reward function (4.6),

providing the common objectives of optimization (eq. 5.13):

J = −0.11c0(x)− 0.02c1(x)− 0.3c2(x) (5.13)

Additionally, this experiment assumed that a minimal distance to the following target (∆smin in Eq.

(5.7)) should be calculated according to the longitudinal rule of RSS (Sec. 2.5, Eq. 2.19).

The example of the real episodes and optimization results are presented in the below figures (5.9 - 5.11).

To outline the optimized datasetDopt, I calculated the same set of KPIs as for the original datasetDtrain

(Sec. 4.2). The comparison table is presented below (Tab. 5.3), the same as the acceleration histogram (Fig.

5.7, compare with Fig. 4.5) and histogram of execution of speed limit (Fig. 5.8, compare with Fig. 4.6).

This dataset was split into test and train sets in the ratio of 1 to 9. The histograms of actions in these sets

are presented in Figure 5.13.

Figure 5.7: Histogram of host accelerations existed in the optimized dataset. Compare with the original

distribution (Fig. 4.5)
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Figure 5.8: Histogram of speed limit execution ratio for all samples in the optimized dataset. Compare with

the original distribution (Fig. 4.6)

Parameter Original Dataset Optimized Dataset Unit

Distance traveled 672.211km 134.651km km

Acceleration Mean -0.011 -0.002 m/s^2

Acceleration Std 0.372 0.300 m/s^2

Speed wrt Speed Limit Mean 0.563 0.602 %

Speed wrt Speed Limit Std 0.196 0.195 %

Speed Mean 22.513 21.088 m/s

Speed Std 7.847 6.825 m/s

Jerk Mean 0.784 0.098 m/s^3

Jerk Std 6.707 0.229 m/s^3

Headway to front Mean 10.066 33.519 m

Headway to front Std 90.010 3764.95 m

Table 5.3: Comparison between original Dtrain and optimized dataset Dopt.
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Figure 5.9: The acceleration of the leading target (red), human driver (blue), and optimized one (green).

Figure 5.10: The speed of the leading target (red), the human driver (blue), and the speed calculated from

the optimized spline function which represents the acceleration function (green).
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Figure 5.11: The distance between the human driver and the leading target (blue) and between the optimized

state and the leading target (red). The green line shows the safe distance to the target calculated for the

optimized host.

5.4 Offline Learning on Datasets

The originalDtrain and optimized datasetDopt were used for training the initial driving policy. Experiments

utilized Behavioral Cloning (Sec. 3.2.2) and MARWIL (Sec. 3.2.3) algorithms with additional tricks and

parameter tweaking. As described in the overview of offline RL algorithms [114], Offline RL algorithms

require a large amount of parameter tweaking to acquire acceptable results. As an illustration, the authors

suggested utilizing dropout regularization, which is often avoided in neural network architectures for RL

policies due to the exploration process resulting in a high variance in observation. Another example is

conducting a thorough search for learning rate values, which may vary for the critic and actor.

All final algorithms’ hyperparameters used for policy training are presented in Table 5.4. The training

and testing losses for training on the original dataset Dtrain are presented in Figure 5.17 and accordingly for

the optimized dataset Dopt in Figure 5.18.

In order to enhance policy training, a few additional improvements were implemented. The first en-

hancement results from the inspection of the charts of policy losses. They showed huge variance across

optimization steps, which indicated that the training batch size was too small. Although memory used for

ANN and batch samples already exploited the available VRAM, I implemented the accumulated gradients

algorithm [115]. It allows multiplying batch size based on summing the gradients from the backward prop-

agations of several loss calculations on consecutive mini-batches. Only after that, the optimization step is

executed, and gradients are applied and reset.

The next enhancement came from the evaluation of policies which showed that policies favor too high or

too low values of acceleration which caused speeding or slowing down too much. Such a problem remained

a typical issue of unbalanced datasets in supervised learning. In order to alleviate that issue, I introduced
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equal sampling from fixed ranges of actions (as done in preliminary work [116]). The method assumes the

clusterization of samples with respect to action values in a selected number of groups. Training batch is

created by sampling from each group an equal number of samples. Experiments showed that performance

increases when samples are clusterized into two groups, such as the first one includes actions with the

corresponding accelerations in the range of as ∈ [−3.5, 0m/s2] and the second one with remaining.

Additionally, a comparison of all optimized trajectories exposed that at the end of the episodes, the

optimization tended to accelerate to minimize the velocity cost. It often accelerated to be as close as possible

to safety distance in the last step of the episode. It remains the situation when a driver accelerates if it predicts

an empty lane in the near future (the front target is cutting off). However, such an assumption is not correct

for all episodes. To overcome this trend, either the optimization problem should be reformulated or training

samples that indicate such behavior should be filtered out.

The last enhancement regards the fact that training samples should contain LSTM hidden states. The

hidden states should be created by the actual version of the trained policy before each optimization step.

This is due to the fact that the optimizer changes LSTM weights which influence how the layer processes

information. Usually, for the training step, the dataset returns an adequate number of samples for burning

hidden states. On the assumption that LSTM takes into consideration the hidden state generated on Nhs

previous samples to get the hidden state for current prediction. The dataset returns a batch that contains

Nhs + 1 consecutive samples for a single learning sample multiplied by the batch size. The neural network

should process all of the consecutive samples to make a single prediction, which significantly increases the

computational workload. In order to minimize that number, I implemented a custom dataset structure that

updates hidden states for each sample after every optimization step. It simply calculates the hidden state of

samples in each trajectory starting from the first one. This decreases computing time during each training

step and eliminates another algorithm hyperparameter Nhs. Since our policy is finally used for predicting

actions in continuous episodes, a single pass for hidden state recalculation seemed appropriate.

Each trained policy was evaluated according to the presented evaluation criteria (Sec. 6.1). The compar-

ison was conducted to select the best policy subject for further optimization in the final training step (Sec.

5.5). The calculated KPIs for final experiments may be found in Table 6.1. Regarding the sum of rewards

(6.1), it turned out that the best agent was trained with the MARWIL algorithm on Dopt dataset.

5.5 PPO Learning with Utilization of Real Data

The model trained with MARWIL on the optimized dataset Dopt was further enhanced with the online RL

method in simulation. Enhancement needs to be completed in order to train the agent in situations that were

not included in the dataset. The simulation incorporated in ACC environment (Sec. 4.1) gives the opportunity

to create an infinite number of traffic scenarios on the grounds of a randomized scenario generation process.

The greater diversification of the course of episodes is also influenced by the agent’s stochastic behavior,

which causes various responses from simulated traffic participants.

This learning method considers also the issue of catastrophic forgetting of previously learned data. In

this case, it relates to the real-world experience acknowledged during offline learning. In order to alleviate

that issue, the presented method incorporates the resimulation of scenarios from logged data. The real cases
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Figure 5.12: Action histogram in the original train and test dataset Dtrain.

Figure 5.13: Action histogram in optimized train and test dataset Dopt.

N. Pankiewicz Behavior prediction model of an automated vehicle



5. Methodology 79

parameter value description

batch size 300
number of samples processed

simultaneously in loss function

gradient accumulations 20
number of loss function calls

before optimization step

learning rate 1e-4 optimizer learning rate

MARWIL β 1 scaling of advantages in exponential terms.

evaluation 3
test loss calculated every n iteration of

policy optimizations

using gae True
if true, use the Generalized Advantage

Estimator (GAE) with a value function

vf coeff 1.0
weight of value estimation loss which

is added to policy optimization loss

Table 5.4: Hyperparameters used for training offline agents (BC and MARWIL) on original and optimized

data.

Figure 5.14: The figure presents the acceleration of different agents, the human driver, and the optimal

trajectory in a resimulated logged episode.

account for the 5th type of scenario in addition to these defined in the scenario generator (Sec. 4.1.1). With

this condition, the agent may further optimize policy on unknown situations, refresh comprehended situa-

tions, and learn transitions that are close to states from the dataset. These states are crucial for optimizing

behavior in situations that reveal when the agent drifts from the known trajectory.
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Figure 5.15: Comparison of executed velocity between different policies evaluated on resimulated log and

the human driver.

Figure 5.16: Comparison of distances to target in resimulated log for trained policies (MARWIL - blue, PPO

- red), optimized trajectory (purple), and the human driver (green).

One may notice that the resimulation may not reflect the real environment accurately as it is and incor-

porates issues known from the sim2real gap (Sec. 3.3). It could be a correct statement, although, utilization

of such samples introduces observations affected by real sensors and traffic situations, which at least slightly

decreases the gap between the simulated and actual world. Combining real trajectories with simulated ones
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Figure 5.17: Training and testing loss of BC and MARWIL agent on original dataset Dtrain.

Figure 5.18: Training and testing loss of BC and MARWIL agent on optimized dataset Dopt,

creates another approach to the sim2real gap problem alongside domain randomization or adaptation meth-

ods (Sec. 3.3.1, 3.3.2).

The presented overall method is committed to creating a vast amount of scenarios concerning the ex-

pected parameters of roads, vehicle dynamics, and driver behaviors. Identification of such parameters aims

at an approximation of the distribution of scenarios into the distribution of real conditions. It would be ben-

eficial to create scene distribution broader than could occur in the real world. That will ensure that most of

the situation is covered. However, it could not be too broad to prevent policy generalization to situations that

never happen, at the expense of lower quality in situations that policy will actually face. Additionally, it is
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worth considering whether the policy should adapt to all driving styles that are performed around the world

or focus just on local ones. Of course, this depends on the planned region of deployment and the learning

capability of ANN.

In my opinion, the distribution resulting from scenario generation may not perfectly match the natural

distribution. However, when combined with scenarios based on driving logs, it has the potential to move

toward the target distribution.

The process of log replay is based on reproducing detected objects and road lanes in consecutive steps

of simulation. Object dimensions and velocity are set according to sensor readings. The planar coordinates

x, y, ζ, which originally was reported in Vehicle Coordinate System (VCS), are transformed based on com-

pensation of host movement function (5.14):

ζ(t) = φ0 + tω + 0.5t2α

v(t) = v0 + ta+ 0.5t2ȧ(
x(t)

y(t)

)
=

(
x0

y0

)
+

∫ t

0
v(t)

(
cos(ζ(t))

sin(ζ(t))

)
dt

where φ-azimuth; ω-host angular speed; α-angular acceleration;

(5.14)

The same relates to the position and types of detected marking lines. Whereas the host vehicle drives

alongside the origin lane, its position depends on acceleration selected by the agent. The acceleration is

given to the trajectory generation module (2.10), performed in simulation by a built-in dynamic vehicle

model. It is expected that the position of the simulated host vehicle would differ from the original one.

However, the observations are recalculated with respect to a new position, actual velocity, and acceleration

by O(st, ut−1) → os,t. The discrepancy between the original and executed positions may induce some

deception in the overall process. This is due to the fact that, the closer the agent is to the original position,

the more realistic the simulation is. If the agent drives farther, the perception should detect other objects

that actually are not visible in a given frame. Moreover, by the fact that the driver at the back should pay

attention to the leading vehicle and not cause a collision, the objects detected behind the host in its lane are

not taken into consideration. This is to avoid collisions that would not be the fault of the agent and not to

terminate the simulation prematurely.

The training aimed at fine-tuning the agent trained previously on MARWIL on the optimized dataset. For

that purpose, I applied the PPO algorithm and ACC environment with the aforementioned log resimulation.

This additional set accounted for 25% of scenarios. The training parameters were the same as specified for

the baseline PPO agent (Sec. 5.1) and are presented in Table 5.1. The training lasted for 400 epochs, and the

course of training in the context of rewards optimization is visible in Figure 5.19. Inspecting it, we may see

that the initial sum of the reward was higher than in baseline ppo training (Fig. 5.1), which was expected

because the process started on a pre-trained policy. The training started achieving a reward of 5, which was

impacted most by the rewards for acceleration (c1 = −2) and for speed limit execution (c0 = 9). However,

the training progress differed from the baseline, primarily noticeable on a chart of c0 reward component.

It is possible that this is due to significant changes in the distribution of scenarios, which leads to different
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samples being collected. The second factor could be due to the use of a pre-trained policy that focused on

reducing acceleration as a priority.

Moreover, the resimulated scenarios forced the agent to drive safer to avoid collision and safety viola-

tions. This conclusion was drawn on close inspection of episodes collected by the baseline PPO agent. It

revealed that the agent developed an aggressive strategy of fast approaching the leading car to force it to

change a lane. This situation occurred on a relatively empty highway when the agent drove fast. It exploited

the behavior model of simulated agents in its favor. However, such a situation does not occur in driving logs,

forcing agents to drive safer.

The final agent from this training is referred to as ‘PPO on MARWIL’ and its evaluation results are

presented in Section 6.2.
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Figure 5.19: The plots of collected rewards during fine-tuning of MARWIL policy and ANN parameter

ln(σ). The training was conducted on the ACC environment enhanced with scenarios created based on

replaying of driving logs.
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Figure 5.20: The plots of performance of reward terms during fine-tuning of MARWIL policy (6.3), (6.5),

(6.17), (6.18)
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Chapter 6

Solution Evaluation

6.1 Evaluation Criteria

To compare and evaluate the performance of all previously trained agents the following methodologies were

applied. As a key performance metric, the mean sum of rewards calculated by the reward function was

considered:

Reval(s
v
host, s

v
target) =

1

T ∗ E

E∑
e=1

T−1∑
t=0

(Racc,e,t(s
v
host, s

v
target)) (6.1)

where Racc,(s
v
host, s

v
target)) is defined in 4.1.4 (4.6), T is the number of time steps in an episode, and E is

the number of testing episodes. In order to deeply understand what impacts the sum of the reward, during

the training, I tracked the mean value of each term of the reward which may be seen in Figures 5.1 and 5.19.

The defined set of Key Performance Indicators (KPIs) strictly measures the agent’s performance in

various aspects of driving that may not be reflected in the reward function. In a phase of designing the

reward function, it helps to understand the course of learning and allows for shaping the multicriterial reward

function [117] by changing its weights and terms to maximize the value of all KPIs. Employing them

allows for comparing different strategies in different aspects. It also permits for discarding of agents that do

not fulfill basic driving assumptions. It is common that agents achieve high rewards by exploiting reward

hacking or other tricks commonly encountered in RL experiments [118, 119]. The KPIs were calculated

during the training, showing the course of training (Fig. 5.1, 5.19) and afterward in the evaluation phase.

The set of KPIs considers features related to the speed, execution of speed limit, acceleration, jerk,

violation of safety distance (Sec. 2.5), heavy braking events, and related metrics. Additionally, most KPIs

are accompanied with its norm ‖KPI‖

AverageSpeed =
1

T

T∑
t=1

(vs,t) (6.2)

‖AverageSpeed‖ =
1

T

T∑
t=1

(
vs,t
vmax,s

)
(6.3)

AverageAcceleration =
1

T

T∑
t=1

(as,t) (6.4)
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‖AverageAcceleration‖ =
1

T

T∑
t=1

(
as,t − as,min

as,max − as,min

)
(6.5)

AverageAbsoluteAcceleration =
1

T

T∑
t=1

(|as,t|) (6.6)

‖AverageAbsoluteAcceleration‖ =
1

T

T∑
t=1

(
|as,t|
as,max

)
(6.7)

AverageAbsJerk =
1

T

T∑
t=1

(|ȧs,t|)) (6.8)

‖AverageAbsJerk‖ =
1

T

T∑
t=1

(
|ȧs,t|
ȧs,max

)
(6.9)

X = {t ∈ 0, 1, ..., T : [leading targett ∈ host lanet]}

DistanceToFrontTarget =
1

X

∑
t∈X

(starget,t − shost,t)
(6.10)

‖DistanceToFrontTarget‖ =
1

X

∑
t=X

(
starget,t − shost,t

smax,perception = 150

)
(6.11)

X = {t ∈ 0, 1, ..., T : [leading targett /∈ host lanet]} (6.12)

OscillationOnEmptyLane =
1

X

∑
t∈X

(as,t) (6.13)

X = {t ∈ 0, 1, ..., T : [leading targett ∈ host lanet]} (6.14)

AverageSpeedToTarget =

∑
t∈X(vs,t)∑

t∈X(vs,target,t)
(6.15)

X = {t ∈ 1, 2, . . . , T : [as,t < −2]}

HeavyBrakingsEvent =
n(X)

T

(6.16)

X = {t ∈ 1, 2, . . . , T : [leading targett ∈ host lanet]}

SafetyViolations =
1

X

∑
t=X

(starget,t − shost,t < dlon_min,t)

‖SafetyViolations‖ =
1

T

∑
t=X

(starget,t − shost,t < dlon_min,t)

(6.17)

where dlon_min,t calculated accordingly to (2.19).
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‖TerminalStates‖ =
1

T

T∑
t=1

(c3(∆s, vs)) (6.18)

where c3(∆s, vs) is Racc component defined as 4.5.

To calculate all of these metrics, the evaluation phase after each training was performed. In that phase,

the agent does not explore the environment. It means that action is the value which ANN returns as mean

acceleration value µ (Fig. 4.7).

The evaluation phase consists of the following steps. The first evaluation phase relies on a testing agent

behavior on a number of randomized episodes (usually 100 episodes) in the exact environment definition,

which was used for training. However, the distribution of the basic types of scenarios is uniform.

The second step of testing includes running the agent in resimulated real logs. Resimulation is performed

in an open-loop manner which means that agent actions are executed, but the trajectories of other vehicles

remain original (as described in Sec. 5.5). This stage is crucial for determining agent performance under

real-life conditions.

The final testing stage relies on running the agent in a set of predefined scenarios that verify its response

in typical road situations. The scenarios are scripted in order to make sure that agents always meet the same

situations. It allows for comparing agent behavior to the expected one. If the agent does not fulfill expec-

tations and significantly differs from the expected behavior, the agent is either discarded or its training is

resumed. In such a case, we assume that optimization is stuck in the local optimum and the agent could not

explore more profitable actions. Additionally, such scenarios allow for close inspection of agent behavior

patterns. Such inspection guides agent development and allows reward tuning and adjusting training sce-

nario distributions. The test set comprises scenarios with varying numbers of lanes, objects, and movement

patterns. A detailed description of the scenarios is described below (Sec. 6.4).

After all stages, the process calculates KPIs that can be compared across agents based on their values

and performances. For ultimate comparison, we consider the mean sum of reward achieved by the agent in

resimulated real scenarios, which states the final metric.

6.2 KPI

The following sections present evaluation results for all trained policies and a complete evaluation conducted

for the final agent (PPO on MARWIL). The Tables 6.1, 6.2, and 6.3 consist of calculated KPIs defined in

previous Section 6.1. Table 6.1 and 6.2 include the most important results regarding agent performance in

natural conditions, as they refer to the resimulation of test drives. Table 6.1 includes metrics for policies

trained only with offline learning methods, and Table 6.2 comprises adequate metrics for the final policy,

baseline PPO agent, and the human driver. The last Table 6.3 provides a comparison between the final

policy, MARWIL trained on the optimized dataset, and baseline PPO agent. KPIs are calculated based on

100 simulated episodes.

Beneath, I analyze the individual values of performance indicators and what influenced their outcome.

Besides the KPIs, Section 6.4 presents the performance of the final agent in scripted scenarios, which tests

the basic functionality of ACC.
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KPI MARWIL on Dopt BC on Dopt MARWIL on Dtrain BC on Dtrain

Speed execution

squared (4.2)
3.190 3.465 3.133 3.344

Squared acceleration (4.3) -0.160 -1.200 -0.203 -0.267

Safety violation (4.4) -0.581 -0.702 -1.545 -0.715

Terminal State (4.5) -1.702 -1.702 -3.404 -1.915

Sum of rewards (6.1) 0.747 -0.140 -2.020 0.447

Average

Speed [m/s]
20.254 15.808 22.031 20.529

AverageAcc [m/s2] -0.088 -0.099 -0.005 -0.069

AverageAbsAcc [m/s2] 0.249 0.572 0.304 0.318

AverageAbsJerk [m/s3] 0.572 0.447 0.761 0.776

DistanceTo

FrontTarget [m]
85.621 114.268 69.835 83.875

AverageSpeed

ToTarget [%]
0.958 0.803 1.017 0.965

HeavyBraking

Event [%]
0.000 0.012 0.000 0.000

SafetyViolation [%] 0.052 0.042 0.119 0.067

Collisions [%] 0.255 0.213 0.489 0.277

CauseCollisions [%] 0.170 0.170 0.340 0.191

NotCauseCollisions [%] 0.085 0.043 0.149 0.085

Oscillation0n

EmptyLane [m/s2]
0.210 0.419 0.233 0.253

Table 6.1: Comparison of KPIs calculated for all offline trained agents for re-simulated logged episodes. It

estimates the performance of a given agent in real conditions.
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KPI PPO on MARWIL MARWIL on Dopt PPO driver

Speed execution

squared (4.2)
3.846 3.190 3.860 3.819

Squared acceleration (4.3) -0.367 -0.160 -0.662 -0.456

Safety violation (4.4) -0.166 -0.581 -1.506 -0.313

Terminal State (4.5) 0.000 -1.702 -2.128 0.000

Sum of rewards (6.1) 3.313 0.747 -0.436 3.050

AverageSpeed [m/s] 18.341 20.254 21.679 21.285

AverageAcc [m/s2] -0.124 -0.088 -0.021 -0.005

AverageAbsAcc [m/s2] 0.312 0.249 0.482 0.303

AverageAbsJerk [m/s3] 0.513 0.572 0.884 0.306

DistanceToFrontTarget [m] 94.511 85.621 65.951 48.930

AverageSpeedToTarget [%] 0.860 0.958 1.003 1.000

HeavyBrakingEvent [%] 0.024 0.000 0.015 0.004

SafetyViolation [%] 0.008 0.052 0.116 0.010

Collisions [%] 0.021 0.255 0.319 0.000

CauseCollisions [%] 0.000 0.170 0.213 0.000

NotCauseCollisions [%] 0.021 0.085 0.106 0.000

Oscillation0nEmptyLane [m/s2] 0.261 0.210 0.390 0.395

Table 6.2: KPIs calculated for all agents trained in online mode for re-simulated logged episodes and for

drivers who collected those episodes.
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6.3 Testing on Logs

According to Table 6.2, the sum of rewards (6.1) indicates that the best performance under real conditions

is achieved by an agent trained simultaneously on logs and simulations (PPO on MARWIL). The final agent

achieved a value of the absolute average acceleration of 0.312m/s2, which is comparable to human driver

0.303m/s2. It is higher than MARWIL policy - 0.249m/s2 - which was directly trained on ground truth

optimized trajectories. In terms of reward component c1, the final agent scored -0.367, the human driver

-0.456, and the MARWIL policy -0.160. Baseline PPO policy stands out from others with the highest value

of 0.482m/s2 and accordingly c1 =-0.662. The same regards to average absolute jerk since the latter is the

first’s derivative. The higher jerk may suggest that the agent frequently changes behavior from step to step,

which can be seen in the attached figures below (6.4a, 6.4a, 6.6a). The outstanding metric is the distance to

the front target, which suggest that trained agents tend to follow agent at a longer distance than the human

driver. This may be due to the fact that the agents in the simulation get significant penalties for falling into a

safe distance. The calculation of safe distance (2.19) depends on the speed of the host and leading vehicle.

Therefore, if actors in simulations frequently brake, the agent will receive a penalty that encourages it to

develop a safer policy.

A similar conclusion can be drawn based on average speed KPI. The final policy tends to drive more

conservatively, sacrificing reward for speed in favor of avoiding penalties for safety violations and collisions.

It could be confirmed by comparing rewards for safety violations and terminal states and corresponding

metrics: Safety Violation and Cause Collisions. For Safety Violation, the PPO on MARWIL policy got a

-0.166 score, and it drove only 0.8% steps closer to the following target than is recommended by safety

distance. Most importantly, the final policy did not cause any collision in opposition to the PPO baseline and

MARWIL policy. MARWIL policy may cause a crash due to the fact that it could not know how to react

while the following vehicle is too close. Such a situation may occur when the driving trajectory drifts too

far from familiar states, which is in the case of a near-collision situation (sec. 5.4).

In Figure 6.1, an example driving log trajectory is presented. It is evident from the figures that the agent

has acquired the skill of securely docking to a leading vehicle and following it. Furthermore, Figure 6.1a

reveals that the variance of the host velocity is significantly lower than the target velocity reported by the

perception system.

Figure 6.2 and 6.3 visualize the course of another driving log. It could be seen the outcome of actions

performed by the final policy, and human driver, and calculated from the optimization process (Sec. 5.2).

The velocity profile of the human driver and the final policy appear similar in some respects. They

both sequentially slow down, accelerate, and rapidly slow down to line up the target speed. However, the

agent’s actions lagged behind the driver, causing a delayed outcome. On the contrary, the optimization-based

approach results in the most comfortable trajectory in terms of acceleration. It keeps an almost constant

speed and does not respond rapidly to shifting target velocity.
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(a) Velocity of host and target
(b) Offset between host and target and adequate safety dis-

tance.

Figure 6.1: Evaluation of final policy on resimulated driving log

Figure 6.2: Comparison of executed velocity by different policies evaluated on resimulated log.

6.4 Closed Loop Testing in Simulation

The trained agents were evaluated on 100 simulated episodes and several predefined test scenarios. Table

6.3 presents the KPIs that were calculated based on these episodes.

The table indicates that the performance of the baseline PPO agent is better in simulation than the

final and MARWIL policy. Compared with the final policy, it maximizes the reward for executing speed

limits while paying less attention to the comfort of driving. It is confirmed by the value of the reward term

squared acceleration c1 and KPIs: average absolute acceleration and average absolute jerk. The final policy

in simulation keeps a comparable distance to the front vehicle as other policies. However, it caused a lot of
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Figure 6.3: Comparison of distances to target during the evaluation of human driver (red), final policy (blue),

and optimized solution on resimulated log (green).

collisions maximizing speed to target. Its speed was 140% of the speed of the following vehicles. This result

is comparable to MARWIL policy which may indicate that training data did not contain part of the situation

that often appeared in simulation. It probably may address problems with traffic jam situations that did not

appear in logged driving.

The similarity between KPIs values for the final and MARWIL policy may suggest that the problem

of catastrophic forgetting was alleviated. The final policy is driving faster than MARWIL, and average

absolute acceleration metric 0.328m/s2 is closer to MARWIL 0.218m/s2 than to baseline PPO 0.518m/s2.

The policies that used real data for training have a similar ratio of collision (26% and 25%) which is much

higher than the baseline PPO agent (3%). It may suggest that the pretrained policy was not able to explore

the actions which cause heavy brakings to be generally more profitable since they preserve from collisions.

The KPIs Heavy Braking Event shows that the final policy only started to explore this range of actions using

it in 1% of steps. The MARWIL policy did not use any action in such range since the training dataset does

not include any of them (Fig. 5.13).

Testing policies on random scenarios are supplemented with testing on scripted scenarios that evaluate

agents in typical road situations. Such an approach allows for a close inspection of agent behavior and com-

paring the policy outcome with expectations. Situations are diversified across a range of preset velocities,

road geometries, and target behaviors. The following paragraphs explain the test case scenarios and expected

agent behavior. The accompanying charts show the example trajectory of agents in the given scenarios.

Carry out preset velocity The test case assumed driving on empty lanes. The agent was intended to

accelerate smoothly to reach the preset velocity and keep it. Figure 6.4 shows the acceleration and speed

profile of the agent driving on a single lane and trying to achieve a preset velocity of 24m/s. It started rapidly

to increase velocity from 15m/s up to 23m/s. Then for the rest of the episode, we can see that the agent’s
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KPI PPO on MARWIL MARWIL on Dopt PPO

Speed execution squared (4.2) 8.296 6.862 11.206

Squared acceleration (4.3) -0.527 -0.186 -1.347

Safety violation (4.4) -1.092 -0.807 -0.453

Terminal State (4.5) -2.600 -2.500 -0.400

Sum of rewards (6.1) 4.077 3.369 9.006

AverageSpeed [m/s] 22.797 20.936 24.376

AverageAcc [m/s2] -0.003 -0.033 -0.009

AverageAbsAcc [m/s2] 0.328 0.218 0.518

AverageAbsJerk [m/s3] 0.551 0.582 0.932

DistanceToFrontTarget [m] 129.680 125.312 118.773

AverageSpeedToTarget [%] 1.412 1.299 1.094

HeavyBrakingEvent [%] 0.012 0.000 0.017

SafetyViolation [%] 0.050 0.053 0.025

Collisions [%] 0.330 0.320 0.040

CauseCollisions [%] 0.260 0.250 0.030

NotCauseCollisions [%] 0.070 0.070 0.010

0scillation0nEmptyLane [m/s2] 0.287 0.190 0.455

Table 6.3: Comparison of KPIs calculated for Marwil and PPO agent trained only in simulation and agent

trained with simulated and real data. KPIs are generated based on 100 simulated episodes.

acceleration fluctuated around 0m/s to fulfill the target speed precisely. It learned that it needed to drive at

a preset velocity. However, it received less reward for driving slightly above the speed limit than for driving

slightly below it. It resulted directly from shape of speed execution reward term c0 (4.2), (Fig. 4.4).

(a) Host acceleration (b) Host velocity

Figure 6.4: Test case: carry out preset velocity.
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Tracking vehicle with constant velocity The next test case type was to follow the target vehicle, which

drove with constant velocity. It assumed that the agent should in the first place decrease the distance to the

target. Then it should align velocity with the target and keep it until the end of the episode. Charts 6.5 show

the offset between host and target and their velocity. When there is no data in the plot that regards the target,

it means that it is not visible to the host since the gap is more expansive than 150m. Charts show that the

host initially decreased the distance to the target as assumed. In the range of about 90m to the target, it

started to adjust velocity. However, its acceleration oscillated, leading to slowing down and drifting apart

the target. This is a unique scenario because the situation when the target is driving with constant velocity

is very rare in the training dataset and in simulated scenarios. In the first source, there is always the sensor

noise which affects the perceived target velocity. In simulation, the behavior model of simulated vehicles is

prone to change velocity frequently.

(a) Offset between target and host. (b) Velocity of leading and host vehicles

Figure 6.5: Test case: tracking vehicle with constant velocity.

Tracking vehicle with oscillating acceleration The typical scenario on the highway is when the leading

target drives with varying velocities because of different reasons. In this scenario, the agent was supposed to

satisfy the ACC objective while keeping the target within the sensor range. Figures 6.6 present the accelera-

tion and speed of target and host vehicles. It is evident from the figures that the agent successfully complies

with the objective by varying its acceleration less than the car in front throughout the entire episode.

Static object on the road The scenario assumed driving on an initially empty highway. However, at a

250m distance from the host starting position, all lanes were occupied by stationary vehicles. The scenario

tested whether the agent recognized the situation and started braking to avoid a collision. As can be seen in

Figure 6.7, the host initially accelerated to reach preset velocity and, after perceiving static objects, started

braking. It successfully avoids collision stopping 18m in front of obstacles.

6.5 Summary

The methodology presented in this study successfully produced the final policy (MARWIL on PPO) that

generated the highest mean sum of rewards (6.1) among other agents during evaluation in resimulated sce-
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(a) Acceleration of leading and host vehicles. (b) Speed of leading and host vehicles.

Figure 6.6: Test case: tracking vehicle with oscillating acceleration

(a) Velocity of host and static objects. (b) Delta distance between host and static objects

Figure 6.7: Test case: avoid collisions with static objects.

narios. The primary goal of the Adaptive Cruise Control system is to optimize both comfort and safety while

simultaneously maximizing vehicle velocity. The final policy resulted in a lower average absolute acceler-

ation and fewer safety violations compared to both a human driver and the baseline PPO driver. Inspection

of the agent trajectories performed in resimulated real logs indicated that the driving behavior of the pol-

icy was quite similar to that of a human driver. However, it differed by keeping a higher degree of caution

and prioritizing safety over speed maximization. Specifically, the policy maintained a greater distance from

the leading vehicle than a human driver but had a similar rate of safety distance violations. The policy

demonstrated the ability to adjust velocity to leading targets which velocity frequently changed. It learned

to maintain a smaller acceleration variance than the leading vehicle. However, further training is required to

eliminate action flickering, which results in unnecessary high jerks in consecutive steps, and other unwanted

behaviors. During the evaluation, it was noticed that RL agents struggled with learning simple tasks such as

maintaining a constant speed on an empty lane. In contrast, they easily cope with more advanced challenges

N. Pankiewicz Behavior prediction model of an automated vehicle



6. Solution Evaluation 98

such as adjusting their speed to follow a target with varying velocities. This discrepancy could result from

an overemphasis on randomized and complex scenarios during training, neglecting the essential basics. To

enhance the training process, it is crucial to improve scenario distribution to include more straightforward

scenarios.

Through the experimentation process, some constraints were discovered with respect to the suggested

solution. In particular, it was observed that trajectory optimization (Sec. 5.2) could sometimes yield trajec-

tories that differ significantly from the customary driving behavior exhibited by humans. Such divergence

could have potentially detrimental effects on other drivers, leading to misunderstandings and disrupted col-

laboration between traffic participants due to the lack of accurate forecasting of the vehicle’s trajectory.

Nonetheless, it was noted that the trained policy performs optimally when it benefits from optimized tra-

jectory paths. The optimization can then be adapted and utilized across the entire spectrum of executed

trajectories during the training phases. This capacity allows for the unification of training samples, thus

producing a near-optimal policy that closely approximates human behavior.

Another limitation regards the applicability of numerical optimization. The proposed solution may be

only used when at least a basic environment transition model is available. Here it could be adopted since the

model of the host movement is known (Sec. 2.1). However, the solution is limited because it is impossible to

model the response of adjacent vehicles to optimized actions accurately. If we want to include modeling such

responses we could use the behavior model included in the simulation. However, due to its stochasticity, it

might be assumed several hypotheses of target responses. Therefore, from single action could result in the

distribution of future states. To confine algorithm complexity, the presented solution is limited to preserving

the original objects’ trajectories. In case the environment model is known, the approach may be transformed

to those represented in Model-Based Reinforcement Learning (for example [112, 111, 110]).

Moreover, the proposed solutions are expected to offer several benefits. One of the most significant

advantages is that the approach eliminates the need to develop additional algorithms, which are commonly

required in traditional ACC approaches. Specifically, our modular Neural Network natively incorporates the

functionality of various algorithms such as trajectory prediction of adjacent cars, target selection, object

lane assignment, and lane change prediction, among others. However, if there is a requirement for any of

these predictions to be returned, the proposed architecture of the Neural Network is easily extendable with

additional prediction heads. These heads can be trained in a supervised manner to return the desired outputs,

providing flexibility and adaptability to our approach.
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Agent Explainability

As an addition to the evaluation process, I propose a new approach that can provide more transparency

on the reasoning behind agent’s decisions [41]. The method utilizes the trajectory samples (observation-

action tuples) collected during the first evaluation phase. The method determines the extent to which a given

input feature affects the agent’s action and indicates the relationship between decisions, the importance of

input features, and their values. The presented method allows for understanding the agent’s behavior and

determines whether the decision-making process is cohesive with human intuition or contradicts it.

7.1 Preliminaries

The decision module, which is based on an RL agent, is considered to be a black box because the agent’s

decision results from ANN inference which information flow is difficult to trace and comprehend. To un-

derstand why the agent selects a particular action, one needs to examine the flow of the input state through

the ANN and induced neuron activation. The family of methods that incorporates that is called primary at-

tributation. It allows for the examination of how a particular element of the input, layer, or individual neuron

influences action selection. The name attributation refers directly to the magnitude of influencing.

To introduce the explainability into behavior planning agents, I incorporated the member of the primary

attributation family, which is the method of Ingredient Gradients (IG) [120]. This method was applied to

determine the significance of the neural network’s input on its output. For calculation, IG requires baseline

input obase which is composed arbitrarily and should be neutral for the model. For example, if the model

consumes images, the typical baseline is an image that contains all black or white pixels.

The process of the calculating attribution of input feature gi(o) starts by generating, in small steps α,

a set of inputs by linear interpolation between the baseline obase and the processed input o = ot. Then

it computes gradients between interpolated inputs and model outputs in order to, finally, approximate the

integral with the Riemann Trapezoid rule as

gi(o) = (oi − obase
i )×

∫ 1

α=0

∂fANN(obase + α× (o− obase))

∂oi
dα (7.1)
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where fANN(o) is function that represent ANN, i is feature dimension, o = ot is input observation,

obase is a baseline observation, and ∂fANN(o)
∂oi

is gradient of fANN(o) along the ith dimension. α denotes

interpolation constant step.

The application of this method directly allows only for interpretation of what influenced the decision

which was selected in a given state. However, understanding why action was selected in a single state does

not really reflect the pattern of agent behavior. Moreover, similar states may trigger quite distinct actions,

therefore, it is beneficial to understand the behavior pattern over multiple episodes. Given the above, I

propose incorporating statistical analyses of attributation calculated for all encountered states in numerous

episodes.

7.2 Experiments

The aim of this study is to develop an interpretation method of RL agents’ decisions adequate for discrete

and continuous action space. To showcase the effectiveness of the proposed algorithm, two agents were

trained: one using a discrete action space (Maneuver Agent) [8] and the other using a continuous action

space (ACC Agent).

The Maneuver agent states a part of the behavior module of the motion model, and it is responsible

for selecting the appropriate maneuver to be executed (Fig. 2.3). Its discrete action space comprises six

maneuvers: Follow Lane (FL), Prepare for Lane Change: Right (PLCR), Left: (PLCL), Lane Change: Right

(LCR), Left (LCL), and Abort Maneuver. The agent’s primary objective is to navigate efficiently on the

multilane highway while maintaining a gentle driving style. The expected behaviors of the agent involve

changing to the faster lane when it is safe and the host’s velocity is lower than the preset speed limit.

Additionally expected is returning to the right lane when it is possible without affecting fulfilling preset

velocity. Depending on the selected action, the trajectory generation module (2.10) plans the trajectory to

achieve the intended position on the road. In the case of lane change actions, the trajectory module plans

a path that will take the vehicle to the center of the adjacent lane within a set amount of time. If the agent

decides to abort the maneuver mid-change, the module plans a path to return the vehicle to its original lane.

In other cases, the planned trajectory follows the currently occupied lane. However, if the prepare for lane

change maneuver is selected vehicle switches on an adequate blinker to communicate its intentions. Such

maneuvers may influence other traffic participants which for example may make room for the host’s lane

change maneuver.

In contrast, the ACC Agent is responsible for planning the continuous acceleration value when the

higher-level agent selects the Follow Lane maneuver according to the objective specified in Section 2.1.

The training of both agents utilized the same simulation (Sec. 2.4) and highway environment as de-

scribed in Section 4.1. However, the observation space and ANN architecture differ slightly from the previ-

ous experiments. The actual ANN architecture used for this research case is presented in Figure 7.1.

The ANN consumes observation from observation space ot ∈ Ωacc for ACC agent and ot ∈ Ωman

in case of Maneuver agent. Both observation spaces include observation of host, adjacent vehicles, and

road Ω = Ωhost × Ωobjects × Ωroad. The host’s observation space includes longitudinal velocity (vs),

the degree to which it adheres to the speed limit (vs_limit_exec = vs/vs,max), longitudinal acceleration
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(as) and selected action in previous time step (ACC agent as,target,t−1; Maneuver agent ut−1). For the

Maneuver agent, additional information is included, such as the lateral position (d), velocity (vd) and

acceleration (ad), rotation towards the center of the lane (ζfcs) and information whether it is safe to

change lanes accordingly to RSS rules (uLCL avail, uLCR avail). Ωacc
host = {vs, vs_limit_exec, as, as,target,t−1}

Ωman
host = {d, vs, vd, as, ad, vs_limit_exec, ζfcs, ut−1, uLCL avail, uLCR avail}

The second observation space Ωobjects presents the perceived vehicles and consists of relative to

the host information about longitudinal and lateral distance (s, d), velocity (vs, vd), and acceleration

(as, ad)). It also consists data about target’s rotation (ζvcs) and its dimensions (w, l). Ωobjects =

{sobj, dobj, vs,obj, vd,obj, as,obj, ad,obj, ζvcs,obj, wobj, lobj}
The Ωroad represents the road geometry by encoding up to six visible marker lines with information

about delimiter type (ctype), curvature (κ = 1
r ), rotation in the host’s position (ζwcs), sensing range (∆r),

and lateral distance from the host to the marking line (droad). Ωroad = {ctype, κ, ζwcs,∆r, droad}
The input data is encoded by the feed-forward layers in the perception module (Fig. 7.1). The encoded

in the latent state features are then passed through three residual blocks [121], the outputs of which are sent

to the Control Module. For the ACC agent, the ANN generates parameters for the Gaussian distribution,

precisely the mean value µ and the natural logarithm of standard deviation ln(σ). The mean value is obtained

through the application of the hyperbolic tangent (tanh) activation function, while the natural logarithm of

standard deviation is a trainable input-independent parameter. For the Maneuver agent, the output from

the residual blocks is passed through the fully connected layer. Any maneuvers that are deemed unsafe

according to the rules described in [57] and implemented in [8] are masked out. The masked-out output is

then converted to probability distribution by the softmax function.

The reward functions vary for both agents since their objectives are different. The ACC agent reward

Racc is a weighted sum of the following terms:

• Speed execution cacc
0 (vvcs, vmax) - calculated as a ratio of host absolute velocity and speed limit -

forces agent to maximize speed limit (4.2).

• Squared acceleration cacc
1 (avcs) = (avcs)2 - the squared value of acceleration - negative reward

promotes a smooth ride

• Jerk absolute cacc
2 (avcs) = |∂a

vcs(t)
∂t | - the value of absolute jerk - also promotes comfort driving

experience

• Safety violation cacc
3 (sv

host, s
v
target) - a negative reward for being too close to other vehicles (4.4).

Distance is calculated based on Responsibility Sensitive Safety assumptions [57]

• Terminal State cacc
4 (∆s, vvcs) - a reward for causing a collision or speeding too much (4.5).

Racc(s
v
host, s

v
target) = 0.07cacc

0 (vvcs, vmax)2 − 0.02cacc
1 (avcs)− 0.0001cacc

2 (avcs)+

− 0.2cacc
3 (sv

host, s
v
target)− 10cacc

4 (∆s, vvcs)
(7.2)

The reward function for Maneuver agent Rman consists of following terms:
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• Speed execution cman
0 (vvcs, vmax) calculated as a ratio of host velocity and speed limit - forces agent

to maximize speed limit, encourages to overtaking slower cars (defined accordingly to (4.2))

• Squared acceleration cman
1 (avcs) = (avcs) - a reward for braking events, incentives for smooth

driving

• Sequence Maneuver Execution cman
2 (ut, ut−1) - a reward for inconsistency in selecting maneuvers,

this term has a non-zero value when the agent selects a different action than selected before. It reduces

the action flickering problem

cman
2 (ut, ut−1) =

1, if ut−1 6= ut

0, otherwise,
(7.3)

• Collision cman
3 (∆s) - a negative reward for causing collision (4.5)

• Right Lane available c4(uLCR avail) - non-zero when the right lane is available and the agent can

change it. It promotes gentleness on the road by releasing the left lane for faster vehicles.

cman
4 = uLCR avail (7.4)

• Being overtaken by right cman
5 (uLCL avail, vs,t, vs,obj right,t) - This reward is non-zero when the agent

is slower than vehicles in the right lane. The agent should change the lane to the right to allow faster

vehicles to drive on the left.

cman
5 (uLCL avail, vs, vs,obj right,t) =

1, if¬uLCL avail ∧ vs < vs,obj right,t

0, otherwise,
(7.5)

where vs,obj right,t is the longitudinal velocity of the vehicle on the right adjacent lane.

• Over taking right cman
6 (vs, vs,objright,t) - This term rewards agents for overtaking other cars while

driving on the left lane.

cman
6 (vs, vs,obj right,t) =

1, if vs > vs,obj right,t

0, otherwise,
(7.6)

where vs,obj right,t is the longitudinal velocity of the vehicle on the right adjacent lane.

Rman(st) =0.03cman
0 (vvcs, vmax)3 − 0.0005cman

1 (avcs)− 0.0001cman
2 (ut, ut−1)− cman

3 (∆s)+

− 0.03cman
4 (uLCR avail)− 0.01cman

5 (uLCL avail, vs,objright,t) + 0.07cman
6 (vs, vs,obj right,t)

(7.7)
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training parameter Maneuver ACC

gamma γ 0.9985 0.998

lambda λ 0.95 0.95

batch mode complete episodes complete episodes

train batch size 1024 50000

SGD minibatch size 512 20000

shuffle sequences True True

number of SGD iterations 3 3

grad clip 3.0 3.0

KL coefficient 0.0 0.0

clip parameter 0.2 0.2

entropy coefficient 0 0

learning rate 4.5e-5 1e-4

Table 7.1: Hyperparameters of PPO algorithm used for training ACC and Maneuver Agents. The training

sessions were performed with the usage of RLlib [107].

7.3 Training

Both the ACC and Maneuver agents were trained for over 30 million steps. During the training process,

the agents started with random actions as a result of the neural networks being initialized randomly and

gradually improved their performance over time. The agents with the highest mean sum of rewards (6.1)

were selected for further investigation. Additionally, to ensure that the agents behaved as expected, they

were tested with predefined test scenarios as described in Section 6.2. In addition to the predefined scenarios

described above, I have also created typical scenarios for testing the Maneuver agent. The performance of

agents during training may be observed through observation of how agents handle predefined scenarios.

For example, a test scenario for the ACC agent involved a single-lane road with both a host vehicle and

a front target that accelerated and decelerated interchangeably. The goal of the agent was to follow the target

while minimizing acceleration oscillation. Initially, the agent struggled to track the target and often either

lost track of it or accelerated too quickly and crashed into it. However, over the course of training, the agent

learned how to track the target and maintained a smooth driving experience by minimizing acceleration.

Another example regards the Maneuver agent. It was tested on a scenario involving a host vehicle and a

slower target car driving in the rightmost lane of a three-lane road. The agent’s task was to overtake the target

vehicle and return to the rightmost lane. At the beginning of training, the agent followed the target vehicle

and changed lanes to the leftmost lane because it learned this was the fastest lane. However, towards the end

of the training, the agent learned to change to the center lane and return to the right lane after overtaking the

target vehicle. It could learn it due to incorporating three terms in the reward function (cman
4 , cman

5 , cman
6 ),

as specified in (7.7).

Other testing scenarios and how agents execute them are comparable to those outlined in Section 6.4.
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7.4 Collecting Neural Activations

Agents with the highest mean sum of rewards were evaluated in randomly generated simulation scenarios.

The process generated 5 hours of driving experience for the Maneuver agent and 3.5 hours for the ACC

agent, which corresponds to over 240,000 simulation steps. To ensure temporal independence for statistical

analysis, every tenth sample was selected from this set for further consideration. The sample included ANN

inputs (state observation os,t) and agent decisions. The decisions are stored in the form of action values ut for

the ACC agent and probabilities of selecting a particular action for the Maneuver Agent. The attributions of

each input value were calculated using the Integrated Gradients method (7.1). As a baseline input obase, there

was defined an observation of a state that represents a three-lane highway with no other vehicles besides

the host in its default state (maximum legal velocity, zero acceleration). The Captum library [122], which

provides an implementation of various interpretability and explainability methods for PyTorch models, was

used for the calculation. The results of the attributions calculation, associated input features, and ANN’s

decisions were subjected to further inspection through statistical analysis.

7.5 Statistical Analysis

The statistical analysis consists of two parts performed using Minitab software [123]. The first part focuses

on the examination of the level of significance of the attributation values and on the analysis of their distri-

bution. The second one investigates the relationships between attributation values and input features.

The first part begins with the identification of elements with statistically significant values of attributation

distribution. That identification regards action selected from the Maneuver Agent’s actions space and overall

action distribution of the ACC agent. The elements at which significant levels were determined are subject to

analysis of variance (ANOVA). For this analysis, attributation data were divided into six groups according

to the type of maneuver. Additionally, to simplify the analysis, attributations related to objects and roads

were summed up in accordance with matching components (for example, components related to road lanes’

marking types or objects’ velocities). For each resulting parameter, a t-test was performed with the null

hypothesis H0 : µ = 0.03 and alternative hypothesis H1 : µ > 0.03. The significance level of all tests

was set to 0.05. Based on the t-test results, parameter distribution was categorized as significant when the

mean value is higher than µ. In the case of the Maneuver Agent, it was conducted by distinguishing between

different maneuvers. In the end, Welch’s ANOVA [124] was performed for results that are significantly based

on the t-test. Such analysis informs which parameters are significantly more important than others regarding

available maneuvers. Additionally, all samples were divided into groups using Games Howell [125] (Tab.

7.4). To visualize distinguished results, the standard deviation was calculated for these samples and 95%-

confidence intervals for their means which gives 95% assurance that the expected value is within these

intervals regarding the dispersion of data.

The second part of the analysis relies on the examination of the linear and monotonic relationship be-

tween feature attributation and the probability of selecting a given maneuver. A Pearson correlation [126]

was applied to study linear correlation and Spearman’s rank correlation coefficient Rho [127] to examine

a monotonic correlation. Correlations were calculated for the attributation of all input features concerning
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the probability of selecting a particular maneuver. Additionally, for the ACC agent, mutual information was

calculated for action and features-attributation (Tab. 7.5).

An analysis based on a Pearson correlation begins with the calculation of the p-value and identification

of whether the correlation is significant at 0.05 α-level. The p-value indicates if the correlation coefficient is

significantly different from 0. If the coefficient tends to 0, it means that there absence of a linear relationship

in the sample population. Afterward, the Pearson correlation coefficients were calculated with

ρx,y =
cov(x, y)

σxσy
(7.8)

where x is given input feature and y an attribution of that featuer. cov is the covariance and σx, σy are the

standard deviation of x and y.

The coefficients were further analyzed in order to determine the strength and correlation direction (Tab.

7.2). The coefficients were within the range of −1 to +1. The larger the absolute value of the coefficient,

the stronger the linear relationship between the samples was. It was assumed that there is a weak correlation

if the absolute value of the coefficient is lower than 0.4. If this value is within the range of 0.4-0.8, the

correlation is moderate, and large if higher than 0.8. To investigate the direction of the dependence, the sign

of the coefficient need to be examined. The positive sign means that compared variables tend in the same

direction and the line that represents the correlation slopes upward. The coefficient values below 0 mean

that the values of compared variables tend in different directions, and the correlation line tilts downward.

Due to the fact that Pearson correlation indicates only linear correlation, Spearman’s rank correlation

coefficient Rho was utilized to detect monotonic correlations, which are not linear (Tab. 7.3). The calculation

of Spearman Rho correlation relies on calculating the rank of the raw data and applying the correlation

formula:

rs = ρr(x),r(y) =
cov(r(x), r(y))

σr(x)σr(y)
(7.9)

where ρr(x),r(y) denotes the usual Pearson correlation coefficient, but applied to the rank variables

r(x), r(y), cov(r(x), r(y)) are the covariance of the rank variables, σr(x)σr(y) are the standard devia-

tions of the rank variables. Only if all n ranks are distinct integers, it can be computed using a formula

rs = 1− 6
∑
d2i

n(n2−1
) where: di = r(xi)− r(yi) is the difference between the two ranks of each observation, n

is the number of observations.

Spearman Rho correlation coefficient describes the direction and strength of the monotonic relationship,

and its coefficients are interpreted analogously to Pearson’s results.

7.6 Results

In this study, the statistical analysis results were analyzed with a systematic approach. Firstly, I examined

the boxplots (Figure 7.2, Appendix A.1) that visually represent the distribution of attributation for each

input signal in a specific maneuver. These plots determine the extent to which a given feature contributes

to selecting a particular maneuver. For instance, Figure 7.2 depicts the distribution of attributation for the

feature d ∈ Ωman
host , which represents the lateral distance of the host-vehicle from the center of the driving

lane.
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The findings indicated that the middle 50% of the distributions (box), mean (dot), and median (horizon-

tal line in the box) of attributation values are significantly higher for maneuvers related to Lane Change.

Moreover, attributation values greater than 0 for Follow Lane and Abort maneuvers are deemed outliers

(star), consistent with drivers’ intuition. These observations affirm that the ANN performs as intended, at

least in this specific domain.

Other results, presented in Figure A.6, demonstrate that the agent emphasizes the information about

fulfilling preset velocity while selecting the maneuver related to the changing lane to the left. It indicates

that the agent reasonably connected the signal of preset velocity with the actions that allow for maximizing

it and fulfilling the controller objective. Because usually changing the lane to the left allows for overtaking

slower vehicles and driving faster.

Other results which are cohesive but rather contradict intuition are presented in Figures A.6 and A.7.

Boxplots demonstrate that the agent pays more attention to information that a given maneuver is safe while

selecting the opposite action. Figure A.6 shows that agents focus more on the availability of lane change left

maneuver while deciding to change the lane to the right. FigureA.6 shows the opposite result.

After inspecting boxplots, I explored the correlation between attributions and the input feature values,

examining this relationship from two perspectives. Firstly, I investigated strong correlations and compared

them against human intuition. The analysis revealed, for example, that when considering the selection of the

Follow Lane maneuver, the agent places less emphasis on the longitudinal velocity value vs as the velocity

increases. Instead, it focuses more on the parameter that indicates whether the velocity limit vs_limit_exec

has been met. This tendency was evident from the Spearman-Rho correlation analysis, while the Pearson

correlation did not exhibit this relationship. Furthermore, these findings could be confirmed by inspecting

the scatterplots of vs and vs_limit_exec attributions, as depicted in Figure 7.4.

I concluded that the agent’s behavior is similar to that of human drivers, as individuals tend to focus

less on absolute speed and more on driving at a legal velocity when accelerating. When speeding up, human

drivers first concentrate on gaining speed and then they shift their attention to assessing whether they comply

with the speed limit.

Regarding the ACC agent, I observed a moderate correlation between the attribution of acceleration and

the acceleration action value. The analysis indicated that the agent emphasizes acceleration value more as it

increases, which is a desirable correlation. However, I believe that the values of attribution should be higher.

In Figure 7.5, it could be observed at least three distinct correlation patterns that are linked to factors not

examined in this study. Therefore, conducting further research to investigate these factors is recommended.

Furthermore, the findings suggest that the agent prioritizes other vehicles’ positions when braking, as

illustrated in Figure 7.5. This observation underscores the importance of the agent’s perception of its envi-

ronment in driving safety and efficiency.

The research process continued, with the goal of identifying the optimal location for a strong correlation

with human cognitive processes. For instance, the hypothesis was that drivers compare the longitudinal

distance to the target vehicle with their velocity, resulting in a strong correlation between the attribution of

objects’ position relative to longitudinal velocity. However, the analysis indicated only a weak correlation

contrary to the assumptions.
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Host
Follow
Lane

PLCL PLCR LCL LCR Abort

d 0.008 -0.017 -0.036 -0.862 -0.707 -0.001

vs 0.024 -0.221 0.080 0.040 0.255 0.162

vs_limit_exec -0.125 0.334 0.031 -0.071 0.096 0.113

vd 0.002 0.018 -0.003 -0.915 -0.677 -0.006

as -0.013 0.053 -0.035 - -0.100 0.029

ad -0.008 -0.020 0.024 0.309 -0.104 -0.025

ζfcs 0.002 0.010 0.000 -0.893 -0.668 -0.003

Table 7.2: Table with values of Pearson corellation for attributation of vs_limit_exec with respect to values of

hosts’s features.

Host
Follow
Lane

PLCL PLCR LCL LCR Abort

d -0.019 0.012 -0.019 -0.681 -0.823 -0.116

vs 0.065 -0.217 0.038 0.114 0.076 0.182

vs_limit_exec -0.003 0.497 0.036 -0.107 0.188 0.135

vd 0.014 0.015 0.013 -0.706 -0.775 -0.081

as -0.022 -0.107 -0.014 -0.025 -0.037 0.171

ad 0.005 0.029 0.017 0.191 -0.341 -0.042

ζfcs 0.012 0.013 0.016 -0.696 -0.753 -0.084

Table 7.3: Values of Spearman Rho correlation for attributation of vs_limit_exec with respect to values of

features which describe host state.

In addition to explaining agent behavior, such a broad analysis of feature values and their attributations

allows for inspecting any potential error in ANN or implementation. For example, reviewing the scatterplots

(e.g., Figure 7.4), which illustrate the value of attribution concerning the input feature values, I noticed that

one feature d ∈ Ωman
host was normalized to the range (-2,0) instead of (-1,1). This observation allowed for

fixing the function that normalizes the agent’s observations and for conducting experiments on the correct

implementation.

The second discovery regards the ANN architecture. It was noticed that the absence of attribution for

every sample in a specific input feature region might indicate the issue of vanishing gradients in the model.

This type of problem is heavily detected but necessary for accurate model training. In the current case,

the incorrect implementation of tensors concatenation in the perception module precludes the model from

passing gradients through it, thereby preventing the agent from utilizing a portion of the input knowledge.

This finding enabled fixing the implementation and conducting more successful training.
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action
number
of samples

mean grouping

LCL 202 0.2515 A

PLCL 7226 0.07468 B

LCR 162 0.02159 C

Abort 911 0.00946 C

Follow Lane 9519 0.002283 D

PLCR 4070 0.000718 E

Table 7.4: Grouping information using the Games-Howell Method and 95% Confidence for vs_limit_exec.

Means that do not share a letter are significantly different.

Feature MI

as,ego 1.658

as,target,t−1 1.074

g(as,obj) 0.621

g(as,target,t−1) 0.350

g(vs,ego) 0.273

g(droad) 0.272

g(vs_limit_exec) 0.248

g(srange) 0.244

g(sobj) 0.196

g(dobj) 0.159

Table 7.5: Values of highest Mutual information for the action of ACC agent with respect to values of the

host’s features and attributation.
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7.7 Application

The presented method can provide a valuable contribution to the understanding of RL agents that make

decisions based on the distribution generated by ANNs. Specifically, it enables the identification of the

input features that have the most significant influence on the agent’s decisions and the examination of the

correlation between the importance of a given input feature and its value. Additionally, it facilitates the

detection of errors present in the model or in the input data. For instance, it may reveal the vanishing

gradient problem, where critical information is ignored, or incorrect data normalization that causes a wrong

data distribution in the charts. These issues were addressed by improving the model architecture and the

normalization implementation, respectively. The application of the presented method can increase the safety

and predictability of the entire system, particularly in the case of automated vehicle motion planning, which

may enhance the reliability of machine learning applications for OEMs and consumers. Furthermore, the

method’s results may be utilized to improve the ANN architecture or to enhance the training process. It may

be accomplished by tuning the reward function to represent the controller objectives better or redesigning the

ANN modules that neglected the input features. For example, if the analysis reveals that the agent does not

pay enough attention to other objects, we may propose to incorporate a term based on the time-to-collision

metric in the reward function. To address this issue, it could be used a proven architecture such as the one

presented in [91].
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Figure 7.1: ANN architecture: FC_id - fully connected layers with bias; CAT - operation of features con-

catenation, { means that layers have shared weights (ex. each target is processed by the same layer).
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Figure 7.2: Distributions of attributation values for one of host parameters (d ∈ Ωman
host) for all maneuver

types.

Figure 7.3: Distributions of attributation values for all ANN inputs - attributations of the same group of

parameters for multiple objects are summed.
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Figure 7.4: Scatterplot shows comparison between host’s longitudinal velocity vs and attributation values of

vs_limit_exec for all maneuvers

Figure 7.5: Scatterplots presents the correlation between acceleration as ∈ Ωacc
host of continuous agent and

attributation of its acceleration value and position of other objects sobj ∈ Ωacc
obj.

N. Pankiewicz Behavior prediction model of an automated vehicle



Chapter 8

Conclusions

8.1 Summary

The thesis presents an approach for developing a behavior policy for an Adaptive Cruise Control driving

mode that is efficient in a natural environment. The policy is integrated into the motion planning architecture

of automated vehicles. The modularity of architecture supports the transparency requirements of vehicles’

OEMs. The behavior module receives data from the perception module about traffic situations and user

preferences. Based on that it returns the directives to subsequent modules. The behavior policy predicts the

target acceleration which should be achieved by vehicle in 0.5s. The acceleration value is utilized by the

trajectory module that generates a continuous reference trajectory that is executed by the control module.

The presented approach benefits from the capabilities of Offline and Online Reinforcement Learning

algorithms and combines them to alleviate the accompanying disadvantages. The Online RL methods rely

on interaction with a simulated environment to collect experiences and evaluations of performed actions

in the form of rewards. They utilized that knowledge to optimize the behavior policy which is supposed to

select actions that maximize the the sum of collected rewards. Utilization of simulation results in a policy that

handles a broad distribution of situations. However, this approach may not be feasible in real conditions due

to the fact that policy is optimized towards the simulated domain which may deviate from real environment.

On the contrary, the Offline RL method uses only data collected in natural conditions, usually by a human

expert. The optimization on such data leads to a policy that can handle real-world situations. However,

this approach covers a narrower distribution of cases than simulation can produce, providing only limited

experience to the policy.

The proposed combination of methods includes training ANN-based policy on a dataset using Offline

RL algorithms and then fine-tuning policy in an online simulation with real data support. The dataset (Sec.

4.2) is created from human driving recordings according to the required format by the algorithm (SARS’

trajectories). Being aware of the suboptimality of human actions, the collected dataset is optimized with

numeric optimization (Sec. 5.2). The original and optimized datasets were used for initial agent training

with the MARWIL and BC algorithms. The resulting agents were evaluated in resimulated driving logs

where their performance was tested under natural circumstances. Evaluation were summed up in the form
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of proposed KPIs which are shown in Table 6.1 in Section 6.2. The best performant policy, which was the

MARWIL policy trained on optimized data, was then fine-tuned in a simulated environment (Sec. 4.1).

The subsequents training was necessary to train policy with the situations not included in training data.

Due to the fact that such fine-tuning can lead to catastrophic forgetting of knowledge inferred during offline

training, the resimulation of driving logs was incorporated as a part of the learning curriculum. The resim-

ulation relied on replaying the scenarios included in dataset but agent might control its own trajectory by

selecting actions. The trajectories of detected by perception module objects remained original. In that setup

the policy could still optimize its behavior in a vast range of simulated scenarios as well as real situations.

In order to compare the effectiveness of the proposed solution, a baseline Reinforcement Learning train-

ing of ACC policy was conducted in simulation, as outlined in Section 5.1. The results from training policies

were compared and evaluated using the approach described in Section 6.1, as presented in Section 6.2.

The agents’ evaluation based on real data revealed that the agent trained accordingly to the proposed

method surpassed the human driver to a certain extent. Its actions distinguished itself by minimizing absolute

acceleration and maintained a wider separation from the leading vehicle. However, it was observed that

the human driver moved faster and closer to targets than the trained agents. Further close inspection of

several resimulated episodes showed that the behavior pattern of our policy closely resembled that of human

driving but with a slight delay and slower reaction times. These findings may suggest that our proposed

solution is a promising approach to developing behavior policy. However further extensive trainings, with a

carefully selected distribution of scenarios, may be required to exceed the performance of human drivers in

all scenarios.

As a supplement to the evaluation process, the work presents a novel approach for the explainability

of the RL agent whose actions are derived from ANN inference (Sec. 7). The method requires collecting a

massive set of observation-action pairs from agent interactions in the testing environment. Based on that it

calculates the significance rate of input features for all pairs and conducts a statistical analysis to identify the

meaningful correlation between actions and the observation’s component. Such analysis enables interpreting

the ANN-based RL agent and investigating whether the agent behavior pattern matches human intuition. The

statistical techniques utilized in this approach enable the examination of overall behavior across multiple

episodes instead of a single action in a specific situation. Moreover, the method can help detect errors in

the ANN model, such as the vanishing gradient problem or concealed implementation errors of observation

encoding or processing.

8.2 Prove Thesis

The demonstrated evaluation results (Sec. 6.2) indicated that the presented approach satisfies the expecta-

tions expressed in the presented thesis (Sec. 1.3) and control objectives (Sec. 5.2). First of all, it was stated

that the presented methodology of combining real data with simulated ones in the training process increases

the performance of policy in the natural environment compared to baseline training in simulation. The thesis

was supported by comprehensive testing which results are presented in Section 6.2 and particularly in Tables

6.2 and 6.3. Calculated metrics and conducted tests showed that it is possible to achieve the human-like per-

formance of trained agents with the presented approach. The final policy resembles the behavior pattern of a
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human driver. It slightly outperforms comfort and safety compared to human driving. However, it developed

a much safer policy that tends to prioritize safety over speed maximization. It is evident from Table 6.2 that

baseline policy trained only in the simulation performed worse in resimulated real scenarios.

Additionally, the comparison of KPIs in Table 6.3 showed the superiority of the final policy over the

MARWIL policy trained purely on static data. This indicated that the proposed approach allows for fur-

ther policy optimization, which broadens the known scenario distribution and simultaneously did not lead

to catastrophic forgetting of knowledge obtained during offline training. Therefore, the evaluation results

supported the hypothesis that proposed combination of offline and online reinforcement learning tech-

niques using real data could lead to better policy efficiency under real-world conditions, outperforming

pure simulation-based approaches.

8.3 Future Work

The behavior model training will be continued to improve policy and achieve a stable and precise solution.

The study was limited to the initially available data, and the conducted evaluation suggested increasing the

portfolio of simulated scenarios. Therefore various data will be collected including urban environments.

Besides, more focus will be put on a randomized scenario generation process. A portfolio of scenarios will

be specified in more detail, and agent performance will be tracked separately for each of them, enabling the

balancing of scenario distribution for training to achieve comparable performance in all situations. Addition-

ally, a continuous learning process will be employed to extend the portfolio of training scenarios according

to the evaluation results and further project requirements, as RL policy optimization is a joint optimization

of policy and training data.

Furthermore, the objective is to decrease the sim2real gap by improving the realism of the simulation. It

is evident that the RL agent can exploit specific simulation aspects in its favor, and if the expected behavior

does not manifest in reality, the agent may select unfeasible actions. Thus, we will initiate the improvement

of the behavior model of simulated agents. To achieve this, we may utilize driving data to imitate natural

driving behaviors. Additionally, we are developing sensor models to distort perception intentionally. As

initial work [128] has demonstrated, it is promising to introduce measurement errors, such as inaccuracies

in position, velocity, and dimension, as well as false positive and false negative object detections.

Depending on the project’s progression and future requirements, we may consider utilizing our modular

ANN to address traditional ACC problems such as target selection, object trajectory prediction, lane assign-

ment, and intention prediction. The ANN presented in Section 4.3 has been designed to be extended with

additional prediction heads. The transformer encoder in the perception module is capable of comprehend-

ing the relationships between the input objects. Furthermore, additional supervised learning of individual

modules would support the policy in gaining a better understanding of the situation.
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Appendix A

Agent Explainability

A.1 Maneuver agent: boxplots
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Figure A.1: Attributation distribution of vs_limit_exec input feature for all types of maneuvers.

Figure A.2: Attributation distribution of vs input feature for all types of maneuvers.
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Figure A.3: Attributation distribution of vd input feature for all types of maneuvers.

Figure A.4: Attributation distribution of as input feature for all types of maneuvers.
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Figure A.5: Attributation distribution of ad input feature for all types of maneuvers.

Figure A.6: Attributation distribution of uLCLavail input feature for all types of maneuvers.
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Figure A.7: Attributation distribution of uLCRavail input feature for all types of maneuvers.

Figure A.8: Attributation distribution of ζfcs input feature for all types of maneuvers.
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Figure A.9: Scatterplot of target acceleration as,target vs normalized host acceleration as in current time

step.

A.2 Acc agent: scatterplots
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Figure A.10: Scatterplot of target acceleration as,target vs attributation of host acceleration g(as).

Figure A.11: Scatterplot of target acceleration as,target vs action selected in previous time step ut−1.
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Figure A.12: Scatterplot of target acceleration as,target vs objects longitudinal velocity vs,obj. Values of

velocity are normalized in range [−1, 1].

Figure A.13: Scatterplot of target acceleration as,target vs objects’ longitudinal position sobj.
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Figure A.14: Scatterplot of target acceleration as,target vs attributation of objects’ longitudinal position

g(sobj)
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