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1. Abstract

Autonomous Driving (AD) is at the forefront of automotive research, promising substantial advancements

in safety and user experience. The thesis investigates the pivotal role of sensors, such as cameras, LiDAR

(Light Detection And Ranging) and Radar (Radio Detection And Ranging), in perception systems, which are

the cornerstone of Autonomous Vehicle (AV). Leveraging Machine Learning (ML) techniques, particularly

Convolutional Neural Network (CNN) and Deep Learning (DL), perception systems excel in tasks like

Object Detection (OD), crucial for AVs’ decision-making processes.

The thesis explores sensor fusion, with a specific focus on Low-Level Fusion (LLF), aiming to amal-

gamate data from diverse sensors to enhance perception capabilities. The proposed Cross-Domain Spatial

Matching (CDSM) method stands out as a novel approach in the domain, addressing the challenge of align-

ing sensor data from disparate sources and facilitating efficient fusion. By seamlessly integrating CDSM

into the Neural Network (NN) architecture, the thesis not only enables end-to-end training but also ensures

sufficient inference times during operational deployment, crucial for real-time applications.

To comprehensively evaluate the efficacy of LLF in AV perception systems, the thesis establishes a

framework encompassing both single-sensor models and fusion architectures. Utilizing prominent open-

source datasets such as KITTI and NuScenes, the performance of these models is rigorously assessed using

a range of visual and Key Performance Indicator (KPI) metrics. The results showcase the potential benefits

of LLF, with CDSM demonstrating competitive performance compared to State-Of-The-Art (SOTA) fusion

methodologies.

Furthermore, the thesis conducts an in-depth analysis of the models’ predictions, shedding light on both

their strengths and limitations. By highlighting efficiency gains and corner-case scenarios where fusion

models diverge from their single-sensor counterparts, the thesis provides valuable insights into the practical

implications of LLF in AV perception systems. Additionally, comparisons with existing fusion solutions

offer a broader perspective, positioning CDSM among leading techniques in the field.

Ultimately, the findings presented in the thesis contribute to advancing our understanding of LLF in

AV perception systems and offer valuable insights into its potential benefits. By bridging the gap between

theoretical research and practical implementation, this work contributes to future developments in AD tech-

nology, with implications for safety, efficiency, and user experience on the roads of tomorrow.
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2. Motivation

Perception forms the backbone of AD systems, enabling critical functions like tracking and planning algo-

rithms. A comprehensive understanding of the environment is essential for AVs to navigate safely. Sensor

fusion combines data from multiple sensors, enhancing perception by providing a broader and more reliable

view. Utilizing LLF methods for sensor fusion offers additional advantages. LLF methods access unpro-

cessed sensor readings, providing diverse data types and perspectives, strengthening the perception system.

Safety is essential for AVs, with perception systems crucial for detecting nearby objects and executing active

safety measures. Relying on a single sensor may pose limitations, making sensor fusion vital to integrate

multiple sensors and mitigate individual sensor vulnerabilities. LLF-based solutions efficiently validate sen-

sor readings and adjust their impact on outcomes, particularly in scenarios with conflicting data.

Moreover, sensor fusion extends perception capabilities beyond individual sensors’ limitations, provid-

ing a more accurate representation of the environment. Research focuses on optimizing fusion algorithms,

especially LLF solutions based on DL, which uncover cross-sensor dependencies and reveal concealed pat-

terns, enhancing perception insights.

In conclusion, sensor fusion research is driven by perception’s critical role in AV systems, safety con-

cerns, and the potential to extend performance beyond individual sensors’ capabilities. Advancements in

fusion techniques are essential for AD technology, despite posing challenges like synchronization and per-

spective alignment, which ongoing research aims to address.

3. Research hypothesis

The thesis aims to assess the efficiency of LLF utilizing automotive sensor data for OD in AV perception sys-

tems. By integrating multiple sensors, the goal is to enhance system performance and robustness. Through

analysis and experimentation, the thesis aims to highlight LLF’s potential benefits, including improved per-

ception accuracy, reduced uncertainty, and a more comprehensive understanding of the environment com-

pared to single-sensor approaches.
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Moreover, the thesis investigates the end-to-end fusion of sensor data within a NN architecture, employ-

ing DL methodologies. This exploration seeks to uncover hidden patterns in complex, high-dimensional

data spaces, potentially amplifying LLF’s effectiveness in AV perception systems.

Finally, recognizing the growing importance of explainability in AD systems, the thesis also explores

Explainable AI (XAI) techniques to enhance interpretability in perception NN models. This endeavour aims

to shed light on the underlying reasoning behind model predictions, critical for understanding decision-

making processes in AV perception systems.

4. Methods and results

The primary focus of the thesis revolves around the fusion of low-level sensor data. It introduces a novel

methodology named CDSM, specifically designed to overcome challenges associated with merging data

from sensors belonging to different domains. The detailed explanation of this methodology serves as the cor-

nerstone of the thesis, including its theoretical foundations: alignment, aggregation, and fusion processes.

Following this theoretical groundwork, the thesis proceeds to present and analyze the obtained results in

depth. Through careful examination, it highlights the advantages of the fusion approach and provides em-

pirical evidence to support the stated hypotheses. This comprehensive analysis underscores the significance

and effectiveness of the proposed fusion methodology in enhancing perception systems. In addition to the

core research on sensor data fusion, the thesis also tackles the realm of XAI. It explores the adaptation of the

popular Gradient-weighted Class Activation Maps (Grad-CAM) method to a novel context, demonstrating

its applicability in elucidating complex decision-making processes within LiDAR and Radar pointclouds.

This exploration further enriches the thesis by broadening its scope to encompass diverse data domains and

methodologies.

4.1 CDSM fusion method

The proposed fusion approach adopts a multi-view setup, utilizing separate network architectures to process

camera images and 3D pointcloud data. In this setup, the camera input undergoes processing within the

2D image domain, while the pointcloud data is handled in an enhanced Bird’s Eye View (BEV). Both

networks generate predictions in their respective domains, with feature maps from both models passed to

a common block for fusion and final 3D predictions. This approach falls under the late LLF category, as

sensor information is fused during the processing phase, and preprocessed feature maps enter the fusion

block, rather than raw sensor readings.
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4. Methods and results 4

Figure 4.1: CDSM solution architecture overview for image and pointcloud fusion.

To enable this late fusion, a novel component called CDSM is introduced, as presented in Figure 4.1.

Its purpose is to fuse feature maps from intermediate layers of the camera and Radar networks, creating a

unified internal representation for object predictions in 3D space. A critical challenge lies in aligning feature

maps from disparate domains, which is accomplished through the CDSM align block, ensuring optimal

fusion of information from both sources.

The proposed fusion NN architecture operates at the feature level, employing the CDSM alignment and

fusion methodology. It requires preprocessed sensor data in the form of extracted feature maps, integrating

SOTA methods from single-sensor perception algorithms. Inspiration for those submodels’ design is drawn

Figure 4.2: Single-sensor features extraction sub-models.
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4. Methods and results 5

from SOTA in a 2D image and a 3D pointcloud OD domains, allowing for the utilization of optimized

network structures validated in their respective contexts. Those single-sensor feature extraction submodels

are presented in Figure 4.2. Additionally, incorporating single-sensor feature extraction networks enables

comparison of intermediate results, aiding in assessing sensor contribution and fusion gain.

The CDSM block aims to spatially align information extracted from 2D camera images and 3D point-

cloud data. Initially, feature maps from the intermediate layers of each network are misaligned (Figure 4.3).

The CDSM method incorporates Domain Alignment and Fusion, with the former addressing misalignment

issues. To facilitate alignment, a unified space called the Vehicle Coordinate System (VCS) is introduced,

providing a standardized framework for representation and alignment. The VCS is a Cartesian coordinate

system centred on the car’s front axle, with axes defined accordingly. By considering the VCS, camera

images and pointcloud data can be aligned consistently. The alignment process involves a custom CDSM

rotation layer, which extracts indexes from the original tensor and calculates a rotation matrix using quater-

nion rotations. The rotation matrix is then applied to the indexes to achieve spatial alignment. Additionally,

carefully designed rotation parameters ensure proper orientation and alignment of camera feature maps with

the VCS. The specific rotation operations are crucial for aligning tensors within the VCS, ensuring not only

proper orientation but also a unified reference point. This level of alignment is significant for seamless fusion

between different sensor modalities. The chosen rotation operations address the unique spatial requirements

of the fusion process, ensuring coherent positioning within the VCS.

Figure 4.3: CDSM domain alignment method visualization.

As presented in the architecture overview, fundamental components necessary for sensor data fusion

have been already established in the proposed pipeline. Single-sensor submodels process inputs, yielding

feature maps representing data from each sensor. CDSM domain alignment transfers image features to a

unified VCS in BEV, enabling fusion between camera images and LiDAR or Radar pointcloud data. Three

fusion methods are introduced: one-to-one concatenation, feature-wise aggregation, and range-based aggre-

gation. One-to-one concatenation merges feature maps directly, while feature-wise aggregation combines
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4. Methods and results 6

vision features before concatenation with pointcloud features. Range-based aggregation integrates distance-

specific information into the fusion process, distributing camera feature maps based on specific distance

ranges as illustrated in Figure 4.4.

Figure 4.4: CDSM range-based aggregation fusion method.

For feature-wise aggregation, camera feature maps are concatenated on a unified BEV grid, then refined

through convolutional layers to establish spatial correlations and generate refined grids for fusion with point-

cloud features. In range-based aggregation, camera feature maps are distributed based on distance ranges,

accommodating range-specific characteristics. Features are adjusted to maintain consistency with the cam-

era’s Field-of-View (FoV), ensuring relevant information is incorporated while excluding irrelevant details.

Finally, refined feature grids are fused with pointcloud features to generate 3D predictions.

4.2 CDSM fusion results

The accuracy and reliability of perception system components are crucial for AV applications. Effective

evaluation methods are necessary to ensure their functionality, especially in challenging automotive envi-

ronments. Evaluation processes should not only confirm functionality but also provide quantitative measures

of performance. In the field of OD, well-established metrics like precision, recall, F1 score, and Mean Av-

erage Precision (mAP) are commonly used to assess NN model performance. Furthermore, considering the

additional features in 3D OD compared to 2D, a set of supplementary metrics is introduced, including Mean

Average Translation Error (mATE), Mean Average Size Error (mASE), and Mean Average Orientation Error

(mAOE), alongside the combination of those metrics in NuScenes Detection Score (NDS). These additional

metrics provide a more comprehensive assessment of the perception system’s performance, capturing as-

pects such as spatial accuracy, object size estimation, and orientation precision in three-dimensional space.

The KPI metrics enable quantitative assessment of OD models, facilitating benchmarking, tracking progress,

and identifying strengths and weaknesses. In the thesis, these metrics are utilized to evaluate both single-

sensor and fusion solutions, allowing for comprehensive comparisons and guiding further improvements.

D. Dworak
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Figure 4.5: The results of the CDSM fusion model for 3D OD using camera and Radar data on the NuScenes
test set. Labels are represented in green, positive detections in blue, false detections in magenta, and missed
detections in yellow.

The fusion architecture proposed in the thesis integrates camera images and Radar pointcloud data,

showing substantial promise in the market due to the utilization of widely available sensors found in pro-

duction vehicles. While existing literature lacks similar fusion solutions tailored to these specific sensor

suites, the model developed here demonstrates potential. The performance of both camera and Radar single-

sensor solutions falls short compared to LiDAR-only models in terms of KPIs for 3D OD tasks. These

limitations stem from challenges such as inaccurate depth estimation with cameras and the low density

of Radar pointcloud data. However, by properly integrating these sensors through fusion, their individual

strengths can be harnessed while mitigating weaknesses. Visualization of the fusion model’s results (Fig-

ure 4.5) confirms its successful synergy between camera and Radar sensors, surpassing the performance

of individual single-sensor solutions. The fusion model exhibits high accuracy and precision, particularly

in densely populated scenes, showcasing its ability to effectively leverage the strengths of both sensors for

reliable object detection.

After training and evaluating all proposed single-sensor architectures and fusion models separately,

a comprehensive comparison was conducted to assess their performance and determine the fusion gain

achieved, shown in Table 4.1. In addition to single sensor models, the fusion setups were explored, including

camera with LiDAR and camera with Radar configurations. The evaluation metrics on the NuScenes dataset

showed favourable results for both single-sensor and fusion models. LiDAR-only architecture achieved the

best performance among single-sensor models, while the fusion of camera and Radar data exhibited signifi-

cant improvement over both individual single-sensor methods. Further optimization of the fusion model led

to even better performance, nearing that of LiDAR-only models. Visual results confirmed the effectiveness

D. Dworak



4. Methods and results 8

Table 4.1: The comparison of the KPI metrics for all single-sensor and fusion models trained on the
NuScenes dataset.

Method Sensor Domain Association mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓

Vision model C 2D IOU20 0.741 - - - -

Vision model C
3D DIST2

0.445 0.439 0.827 0.557 0.315
Pointcloud model L 0.733 0.608 0.524 0.492 0.556
Pointcloud model R 0.324 0.358 0.811 0.613 0.395

CDSM Fusion C+L
3D DIST2

0.743 0.620 0.487 0.488 0.530
CDSM Fusion C+R 0.523 0.486 0.703 0.551 0.393

CDSM Fusion (FT) C+R 0.681 0.584 0.623 0.521 0.390

of fusion, with the fusion architecture outperforming camera-only and Radar-only predictions in terms of

object detection accuracy and depth estimation, as shown in Figure 4.6. This analysis confirms the success of

the fusion approach in significantly enhancing 3D object detection performance, demonstrating the potential

of the proposed CDSM fusion method for low-level sensor data fusion in AV perception systems.

Figure 4.6: The comparison of the results for the same scene in the NuScenes test dataset, showcasing the
outputs of the camera-only, radar-only, and CDSM fusion models from top to bottom. The presented image
highlights the performance gain achieved through the fusion approach when compared to the single-sensor
models.
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4.3 Grad-CAM adaptation

State-Of-The-Art Neural Network architectures in camera image processing present a challenge due to their

"blackbox" nature, lacking transparency. This issue is particularly critical in AD applications due to its reg-

ulations. To that end, XAI methods are being developed to provide insights into NN decision-making pro-

cesses. While XAI methods for camera image processing and OD networks are well-established, applying

them to sensor data from LiDAR and Radar poses challenges. Gradient-based methods, such as Class Acti-

vation Map (CAM) and Grad-CAM (Figure 4.7), offer visualization techniques to understand NN internal

representations, even for convolutional models. These methods provide flexibility by calculating activation

weights based on gradient values, making them adaptable to various network architectures and layers. This

adaptability holds promise for future applications in understanding pointcloud data and fusion solutions.

Figure 4.7: Comparison between CAM and Grad-CAM XAI methods.

The adaptation of the Grad-CAM method for visualizing models processing pointcloud data is a pivotal

step towards enhancing the analysis of Lidar-only, Radar-only, and fusion solutions. Understanding the in-

ternal workings of these models is crucial, especially in domains like autonomous driving, where safety and

regulatory compliance are paramount. However, due to the unique architecture and processing requirements

of pointcloud data, traditional visualization methods encounter challenges in accurately representing model

decisions.

Figure 4.8: An example of generated CAMs and input pointcloud data combination.
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The proposed approach addresses these challenges by generating CAM overlays within the BEV per-

spective. This shift in perspective necessitates careful consideration of how 3D pointcloud input can be

integrated with BEV CAMs coherently. To reconcile disparities in resolution between CAMs and point-

cloud data, a novel fused visualization method is introduced as shown in Figure 4.8. This method leverages

pointcloud masks and up-sampling CAMs to enhance visualization detail. Through experimentation with

various mask resolutions, a resolution of 160x160 pixels emerges as a compromise, striking a balance be-

tween readability and detail.

Figure 4.9: The ultimate Grad-CAM adaptation results; a high-resolution, clear, and noise-free CAM
heatmaps, which effectively highlight essential areas in the input pointcloud overlay.

Furthermore, this approach not only improves visualization clarity but also widens the RGB spectrum

range for relevant CAM values. By excluding certain parts of the activation before normalization, the re-

sulting CAMs exhibit a richer spectrum, enabling more nuanced analysis. The final adaptation for LiDAR

pointcloud networks combines voxel-wise processing with 2D Sparsity Invariant Convolutions. This ad-

vanced technique produces high-resolution, detailed heatmaps for object detection, free from disruptive

noise, and suitable for comprehensive human visual analysis as presented in Figure ??. In essence, this

methodology represents a significant step forward in understanding and interpreting the decisions made by

NN models processing pointcloud data, thereby enhancing their transparency and interpretability in critical

applications like AD.
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5. Summary and contributions

The thesis extensively explores various aspects of AV perception systems, focusing on the fusion of data

from automotive sensors to enhance the accuracy and robustness of DL perception models. It introduces

AD automation levels, defines perception systems, and outlines the roles of each sensor. It discusses sensor

data fusion, encompassing different fusion levels and stages. A survey of OD NN, including single-sensor

models and fusion architectures, is provided. Evaluation methods, such as perception KPI metrics and XAI

techniques like Grad-CAM, are introduced to assess model performance. The core element of the thesis,

the CDSM fusion method, is detailed, utilizing DL techniques for feature-stage LLF. CDSM integrates a

novel domain alignment method and distinct fusion strategies. Experiments on two automotive open-source

datasets validate the efficacy of the CDSM fusion method through visual and numerical evaluations.

The conclusions affirm the thesis’s objective, demonstrating the potential of DL-based LLF solutions

to advance AV perception systems. The CDSM fusion consistently outperforms single-sensor model archi-

tectures, with the fusion of camera and Radar showcasing significant enhancements. Notably, the fusion

compensates for each sensor’s weaknesses, providing synergistic improvements in perception outcomes.

The author highlights the following notable accomplishments throughout the thesis:

• The development and implementation of the CDSM fusion architecture is a significant contribution

to the AV perception research domain. This LLF method offers a unique approach to aligning sensor

data features from different domains, potentially applicable beyond fusion, such as in the presented

3D monocular camera architecture.

• The CDSM architecture introduces novel fusion techniques enabled by the domain alignment compo-

nent. Among these techniques, the range-based approach, utilizing FOV-based features aggregation

and refinement, demonstrates superior performance in terms of KPI metrics.

• The complete CDSM fusion architecture yields improved perception outcomes and could potentially

serve as an alternative to current state-of-the-art approaches.

• The successful adaptation of the Grad-CAM analysis technique to pointcloud models addresses vi-

sualization challenges in complex and Radar models. This adaptation enhances interpretability, aug-

menting their applicability and development process.
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• Research efforts resulting in scientific publications and patent applications underscore the practical

relevance and industrial implications of ML and AV perception research.

Looking ahead, promising avenues for further exploration include data augmentation to boost model

performance, utilization of raw Radar data for fusion, and extension of fusion XAI visualization techniques.

By addressing these challenges, future research can innovate the domain of AV perception systems, building

upon the foundations laid in this work.
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