
FIELD OF SCIENCE: ENGINEERING AND TECHNOLOGY

SCIENTIFIC DISCIPLINE: AUTOMATION, ELECTRONICS, ELECTRICAL ENGINEERING AND

SPACE TECHNOLOGIES

DOCTORAL DISSERTATION

Real-Time Generation of Safe Trajectories for Autonomous
Vehicles in Dynamic Environments

Author: Wojciech Turlej

First supervisor: prof. dr hab. inż. Wojciech Mitkowski

Auxiliary supervisor: dr inż. Krzysztof Kogut

Completed at: AGH University of Krakow, Faculty of Electrical Engineering,
Automatics, Computer Science, and Biomedical Engineering

Kraków, 2023

DZIEDZINA NAUK INŻYNIERYJNO-TECHNICZNYCH

AUTOMATYKA, ELEKTRONIKA, ELEKTROTECHNIKA I TECHNOLOGIE KOSMICZNE

ROZPRAWA DOKTORSKA

Generacja bezpiecznych trajektorii w czasie rzeczywistym dla
pojazdów poruszających się w dynamicznym środowisku

Autor: Wojciech Turlej

Promotor rozprawy: prof. dr hab. inż. Wojciech Mitkowski

Promotor pomocniczy: dr inż. Krzysztof Kogut

Praca wykonana: Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie,
Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii
Biomedycznej

Kraków, 2023

Abstract

Driving in a traffic environment is a notoriously difficult task, both for human drivers and
autonomous driving algorithms. Differently than in the case of static environments, often consid-
ered in the design of planning algorithms for robotic purposes, the generation of a road vehicle’s
trajectory requires a deep understanding of the dynamic environment of public roads. The pres-
ence of other road users, the behavior of which is often unpredictable and depends on complex
interactions between traffic participants, creates a need for new motion planning algorithms that
would result in a safe yet efficient motion of the controlled vehicle.

In this thesis, several challenges related to the design and evaluation of motion planning
algorithms for autonomous driving purposes are addressed.

To solve the problem of planning a safe trajectory for the vehicle in uncertain situations,
a novel Multiple Hypothesis Planning method is introduced. The proposed method takes into
account several hypotheses regarding the behavior of other road users to plan an efficient motion
of the controlled vehicle, which will remain collision-free in all predicted plausible scenarios.
Additionally, the proposed approach can be used to execute a fail-safe planning task, in which
reasonably foreseeable worst-case hypotheses regarding the behavior of other traffic participants
are taken into account to ensure a safe motion.

As the proposed method is intended mainly for short-term planning purposes in difficult
situations, it can be used in conjunction with methods based on machine learning techniques,
such as Reinforcement Learning, that are capable of long-term strategic planning. However,
since such methods are typically trained in a simulation environment, they are often susceptible
to perception errors that are often present in real systems. To address this problem, a set of
low-fidelity sensor models is introduced in this thesis for training and evaluation purposes. The
models simulate common error modalities of dynamic objects perception systems and lane marker
detection systems. A set of driving policies has been trained in a reinforcement learning setup
to closely assess how the use of proposed models affects the robustness of neural networks that
perform vehicle control tasks.

Finally, to enable thorough testing of motion planning systems needed to ensure their safety, a
novel automated scenario generation method is introduced. The method is capable of producing
adversarial test scenarios that uncover potential weaknesses and issues in the evaluated vehi-
cle motion planning algorithms. Unlike the existing adversarial testing methods, the proposed
approach generates not only the trajectories of the surrounding vehicles, but also the correspond-
ing perception error patterns. The effectiveness of the proposed method is demonstrated in the
task of generating adversarial scenarios for machine learning-based driving policies, in which the
method has been used to produce a varied set of safety-critical test scenarios.

Streszczenie

Prowadzenie samochodu stanowi złożone zadanie, zarówno dla kierowców, jak i dla algo-
rytmów jazdy autonomicznej. W odróżnieniu od przypadku planowania ruchu w środowiskach
statycznych, często uwzględnianych robotyce, generacja trajektorii pojazdu wymaga dogłębnego
zrozumienia złożonego środowiska dynamicznego, jakim są publiczne drogi. Obecność innych
pojazdów oraz skomplikowanych interakcji między nimi wymaga opracowania nowych algoryt-
mów planowania, które zagwarantowałyby efektywny i bezpieczny ruch kontrolowanego pojazdu.
W niniejszej pracy zaadresowano szereg problemów związanych z projektowaniem oraz ewaluacją
takich algorytmów.

Celem rozwiązania problemu planowania ruchu w niepewnych sytuacjach, zaproponowano
nową metodę planowania wielohipotezowego. Zaproponowana metoda uwzględnia kilka
hipotez dotyczących przyszłego zachowania innych użytkowników drogi aby zagwarantować
bezkolizyjność i efektywność ruchu kontrolowanego pojazdu we wszystkich prawdopodob-
nych scenariuszach. Proponowane podejście może zostać również użyte w zadaniu planowania
z manewrem awaryjnym, w którym najgorsze prawdopodobne rozwinięcia danej sytuacji dro-
gowej są uwzględniane dla zagwarantowania istnienia bezkolizyjnego manewru bezpieczeństwa.

Zaproponowana metoda planowania wielohipotezowego skupia się na planowaniu krótkich
manewrów w trudnych sytuacjach i może być użyta w połączeniu z metodami planowania opar-
tymi na technikach uczenia maszynowego, które umożliwiają strategiczne planowanie w odległym
horyzoncie czasowym. Jednakże, ponieważ wykorzystywane do tego celu metody, takie jak ucze-
nie ze wzmocnieniem, zazwyczaj trenowane są jedynie w środowisku symulacyjnym, często są one
podatne na błędy percepcji występujące w rzeczywistych systemach. Aby rozwiązać ten problem,
w niniejszej pracy zaproponowano szereg wysokopoziomowych modeli sensorów dla celów ewalu-
acji i trenowania takich algorytmów. Zaproponowane modele symulują rodzaje błędów powszech-
nie występujące w systemach pecepcji obiektów dynamicznych oraz wykrywania pasów ruchu.
Wpływ zaproponowanych modeli na trenowane algorytmy zbadano na przykładzie trenowania
sieci neuronowych sterujących ruchem pojazdu, których odporność na błędy percepcji została
zbadana w szeregu eksperymentów symulacyjnych.

Aby umożliwić dokładne testowanie systemów planowania ruchu pojazdu, w szczególności
tych opartych o techniki uczenia maszynowego, zaproponowano nową metodę automatycznej
generacji scenariuszy testowych. Zaproponowana metoda generuje scenariusze antagonistyczne,
pozwalając na aktywną eksplorację potencjalnych słabości i błędów w testowanych algoryt-
mach. W przeciwieństwie do istniejących metod generacji scenariuszy antagonistycznych, metoda
generuje nie tylko trajektorie użytkowników ruchu, ale także odpowiadające im błędy percepcji
stanowiące wyzwanie dla testowanych systemów. Skuteczność zaproponowanej metody została
zademonstrowana w zadaniu generowania scenariuszy testowych dla systemów planowania ruchu
opartych o uczenie ze wzmocnieniem, pozwalając na wygenerowanie zróżnicowanego zestawu
scenariuszy krytycznych z punktu widzenia bezpieczeństwa testowanego systemu.

Acknowledgements

First and foremost I would like to express my sincere gratitude to my PhD advisor prof.

dr hab. inż. Wojciech Mitkowski and my auxiliary supervisor dr inż. Krzysztof Kogut for their

guidance and support throughout my research and preparation of this thesis.

I would also like to thank all my colleagues at Aptiv for countless discussions, research

collaboration, and creating a great working atmosphere, which helped me immensely in the

preparation of this thesis and all related research. In particular, I am deeply grateful to Mateusz

Orłowski, Nikodem Pankiewicz, Tomasz Wrona, Paweł Kowalczyk, and Michał Sokół - being able

to collaborate with you, learn from you, and rely on you as my friends has been an honor and

joy.

My sincere gratitude goes to my parents Andrzej and Danuta, as well as my wonderful

brothers Piotr and Marcin. I am deeply grateful for your faith, support, and encouragements.

Last but not least, I would like to thank my dear friends Zuzanna, Krzysztof, Joanna and

Dariusz. Although the last four years were definitely challenging for me, you filled them with

amazing moments and adventures, memories of which I will cherish for years to come. Without

your support, none of this would have been possible. Above all, thank you Dagmara, my love,

my friend and my soulmate, for your endless support, patience and unconditional love.

Contents

1. Introduction ... 1

1.1. Driving Automation... 1

1.2. Safety ... 3

1.3. Motivation and Scope .. 4

1.4. Research Hypotheses.. 5

1.5. Thesis Outline and Contributions.. 6

2. Background... 9

2.1. Advanced Driver Assistance Systems and Autonomous Driving Systems................ 9

2.2. Perception Systems Used in Automotive and Their Limitations 10

2.2.1. Sensors... 11

2.2.2. Sensor Fusion... 22

2.3. Autonomous Driving System Architecture .. 26

2.4. Reinforcement Learning ... 28

2.4.1. Proximal Policy Optimization ... 28

2.5. Safety ... 29

2.5.1. Hardware and Software Faults... 29

2.5.2. Sensors Errors and Performance Limitations... 30

2.5.3. Nominal Safety .. 31

3. Multiple Hypothesis Trajectory Planning ... 35

3.1. Introduction and Motivation.. 35

3.1.1. Motion Planning.. 36

3.1.2. Prediction Methods ... 37

3.1.3. Motivation and General Idea... 40

3.1.4. Contributions... 43

3.2. Problem Formulation ... 44

3.2.1. Assumptions .. 44

3.2.2. Static Environment.. 45

xii CONTENTS

3.2.3. Dynamic Constraints ... 47

3.2.4. Control Trajectories... 48

3.2.5. Vehicle Model .. 48

3.3. Constraints Generation .. 50

3.3.1. Worst-case Occupancy Set... 50

3.3.2. Reasonably Foreseeable Occupancy Set... 52

3.3.3. Multi-modal Prediction Occupancy Sets ... 58

3.4. Planning... 58

3.4.1. Cost Terms .. 60

3.4.2. Constraints .. 62

3.5. Evaluation.. 63

3.5.1. Experimental Setup ... 64

3.5.2. Evaluated Scenarios... 65

3.5.3. Computational Performance.. 72

3.6. Conclusions .. 73

3.6.1. Limitations and Further Work... 73

4. Sensor Modeling .. 77

4.1. Introduction and Motivation.. 77

4.1.1. Existing Approaches .. 78

4.1.2. Motivation and General Idea... 81

4.1.3. Contributions... 82

4.2. Problem Formulation ... 83

4.3. Dynamic Objects Detection Model .. 84

4.3.1. Range Limitations and Occlusions .. 86

4.3.2. False Negative Detection Errors .. 86

4.3.3. False Positive Detection Errors ... 87

4.3.4. State Estimation Errors... 88

4.3.5. Complete Model of the Dynamic Environment Perception 89

4.4. Lane Markers Detection Model.. 90

4.4.1. Range Limitations and Occlusions .. 92

4.4.2. False Negative Detection Errors .. 93

4.4.3. Geometry Estimation Errors ... 94

4.5. Application of Sensor Models in RL-based Driving Policy Training........................ 95

4.5.1. Network Inputs.. 96

Wojciech Turlej

CONTENTS xiii

4.5.2. Network Architecture .. 97

4.5.3. Reward Components.. 98

4.5.4. Training Setup... 99

4.6. Evaluation methodology .. 100

4.6.1. Baseline Models ... 101

4.6.2. Test Scenarios.. 103

4.7. Experimental results .. 106

4.7.1. Highway Driving Performance ... 106

4.7.2. Scripted Scenarios Performance... 109

4.7.3. Computational Performance.. 110

4.8. Conclusions .. 111

5. Adversarial Trajectories Generation ... 115

5.1. Introduction and Motivation.. 115

5.1.1. Background.. 116

5.1.2. Existing Approaches .. 117

5.1.3. Motivation and General Idea... 120

5.1.4. Contributions... 121

5.2. Problem Formulation ... 122

5.2.1. Assumptions .. 123

5.2.2. Scenario Description .. 123

5.2.3. System Under Test .. 125

5.2.4. Traffic Participants Model ... 126

5.3. Optimization Problem ... 127

5.3.1. Cost Terms .. 128

5.3.2. Constraints .. 130

5.3.3. Iterative Generation of Multiple Scenarios .. 130

5.3.4. State Estimation Errors... 131

5.4. Evaluation.. 132

5.4.1. System Under Test .. 132

5.4.2. Evaluation Examples ... 134

5.5. Conclusions .. 141

5.5.1. Limitations and Further Work... 142

5.5.2. Further Applications.. 144

6. Conclusions... 145

Wojciech Turlej

xiv CONTENTS

6.1. Summary and Contributions.. 145

6.1.1. Multiple Hypothesis Planning ... 145

6.1.2. Sensors Modeling... 146

6.1.3. Adversarial Scenarios Generation .. 147

6.2. Perspectives and Further Work.. 148

6.2.1. Multiple Hypothesis Planning ... 148

6.2.2. Sensor Modeling .. 149

6.2.3. Adversarial Scenarios Generation .. 149

Bibliography .. 169

List of Figures ... 170

List of Tables ... 172

Wojciech Turlej

List of Symbols

Symbols - Chapter 2

Symbol Description

S State space in RL context.

A Action space in RL context.

σ Environment’s state σ ∈ S.

α Agent’s action α ∈ A.

πθ(α|o)
Probability of taking an action α given observation o and

parameters vector θ under a stochastic policy πθ : A× S → [0, 1].

θ Policy’s parameters vector (e.g., neural network weights).

θk Policy’s parameters vector during the training iteration k.

L Clipped loss function.

πθ(αt|σt)
Probability of action αt in state σt according to a policy parameterized

by a vector θ.

πθ(αt|σt)
Probability of action αt in state σt according to a policy parameterized

by a vector θ.

Âπθk (σ, α) Advantage estimate.

ϵ Training hyperparameter.

rt Reward value at time. t

Vϕ(σ) Value function estimate for a state σ in PPO.

ϕ Critic network parameters in PPO.

λ PPO training hyperparameter.

γ PPO training hyperparameter.

Dk = {τi} Set of trajectory segments collected during the training iteration k.

nepisodes Number of trajectory segments used in each PPO training iteration.

xvi CONTENTS

Symbols - Chapter 3

Symbol Description

th Trajectories overlap duration.

Tp Set of planned control trajectories.

ntraj Number of planned control trajectories.

kpar Number of parameters that describe a single trajectory.

T i(qi, t) i-th control trajectory.

qi Parameters of an i− th control trajectory.

tf Duration of planned trajectories.

Hi Hypothesis regarding current and/or future states of the environment.

Ri Occupancy set based on i-th hypothesis Hi.

Moccupancy Operation of mapping hypotheses set to a set of occupancy sets.

c Control vector.

δ Desired steering angle.

a Desired acceleration.

pveh Vehicle’s parameters.

s State of the ego vehicle.

stp State of a traffic participant other than the ego.

x
Longitudinal position of the ego vehicle in the (X,Y) World

Coordinate System (WCS).

y Lateral position of the ego vehicle in WCS.

ψ Orientation of the ego vehicle in WCS.

v Absolute speed of the ego vehicle in WCS.

β Angle between ego’s longitudinal axis and its velocity vector.

lf Distance between ego’s front axis and CoM.

lr Distance between ego’s rear axis and CoM.

Rwc Worst-case occupancy set.

Hwc Worst-case hypothesis.

δtpmin , δtpmax Steering angle limits of vehicles other than the ego.

atpmin , atpmax Acceleration limits of vehicles other than the ego.

pveh,tp Parameters of vehicles other than ego.

s0 Initial state of a vehicle.

Spt Set of plausible trajectories of a vehicle other than ego.

Ca Set of plausible acceleration values of a vehicle other than ego.

Cδ Set of plausible steering angle values of a vehicle other than ego.

nt Number of discrete time steps used in the generation of the occupancy set.

ti Discrete time step used in the generation of the occupancy set.

Wojciech Turlej

CONTENTS xvii

Continued: Symbols - Chapter 3

Symbol Description

Rll Lane-limited occupancy set.

ncorr Number of relevant driving corridors.

τ i i-th driving corridor.

nsv Number of the vehicles in a scenario excluding the ego.

ρRSS Max response time in the Responsibility-Sensitive Safety (RSS) framework.

abrake,RSS Braking deceleration in the RSS framework.

amax,RSS Maximum acceleration in RSS framework.

abrake,min,RSS Min braking deceleration in RSS framework.

abrake,max,RSS Max braking deceleration in RSS framework.

aego,lon Longitudinal acceleration of the ego vehicle.

tviol Safety violation time.

dlon
min Minimum safe longitudinal distance.

th Trajectory replanning interval.

npred Number of alternative trajectories returned by a prediction method.

Rpredi
Occupancy set based on i-th trajectory prediction.

q Vector of optimized variables.

qi Optimization variables that describe the i-th control trajectory.

nparams Number of parameters of a single trajectory.

pveh Vehicle parameters.

Clci Distance to centerline cost term of i-th trajectory.

Cctrli Squared control values cost term of i-th trajectory.

Cvi Speed keeping cost term of i-th trajectory.

Cbrakei Braking cost term of i-th trajectory.

wlci Weight of Clci cost term.

wacci Acceleration weight in Cctrli cost term.

wδi Steering angle weight in Cctrli cost term.

wvi Weight of Cvi cost term.

wbrakei Weight of Cbrakei cost term.

dmin
i Min distance between the ego and i-th occupancy set.

qinit Initial guess for optimized vector q.

Symbols - Chapter 4

Symbol Description

c Feature class.

Wojciech Turlej

xviii CONTENTS

Continued: Symbols - Chapter 4

Symbol Description

C Feature classes set.

Sc Set of feature states of a class c.

Sc Set of features states of a class c.

Ŝc Set of features state estimates of a class c.

nc Number of features of a class c.

nce Number of feature state estimates of a class c.

sc State of a feature of a class c.

ŝc State estimate of a feature of a class c.

M (i) i-th mapping operation in a sensor model.

nk Number of feature state estimates after k-th mapping operation.

nm Number of mapping operations in a sensor model.

g Dimensions of a dynamic object.

x Position of a dynamic object.

Md,occ Dynamic objects occlusion mapping operation.

pd,occ Parameters of dynamic objects occlusion mapping1.

nd,occ Number of unoccluded dynamic objects.

{sd,occj}
(d,occ)
j=1..nd,occ

Set of objects remaining after occlusion mapping.

Tdelayi
Detection delay of i-th object.

Td,fn,dur Duration of a false negative error.

Md,fn False negative errors mapping operation.

pd,fn Parameters of false negative errors mapping1.

nd,fn Number of dynamic objects after false negative errors mapping.

{sd,fnj
}(d,fn)
j=1..nd,fn

Set of objects remaining after false negative errors mapping.

Td,fp,dur Duration of a false positive error.

Md,fp False positive errors mapping operation.

pd,fp Parameters of false positive errors mapping1.

nd,fp Number of dynamic objects after false positive errors mapping.

{sd,fpj
}(d,fp)
j=1..nd,fp

Set of objects after false positive errors mapping.

POU State estimate error model based on Ornstein-Uhlenbeck noise.

M state,est False positive errors mapping operation.
1All parameters related to dynamic objects perception modeling with their description and values are listed

in the Table 4.1

Wojciech Turlej

CONTENTS xix

Continued: Symbols - Chapter 4

Symbol Description

pstate,est Parameters of false positive errors mapping1.

nstate,est Number of dynamic objects after false positive errors mapping.

{sstate,estj}
(state,est)
j=1..nstate,est

Set of objects after false positive errors mapping.

Sr Set of lane markers geometries.

sr Lane marker geometry.

c Vector of lane marker polynomial coefficients.

h Observed length of a lane marker.

Ŝr Set of lane markers estimates (model output).

ĉ Lane marker coefficients model output.

ĥ Observed length of a lane marker model output.

M r,smpl Lane markers sampling operation.

pr,smpl Parameters of lane markers sampling operation2.

nlm Number of lane markers.

zij j-th sample of i-th lane marker.

M r,occ Lane markers samples occlusion operation.

M r,lsa Lane markers polynomials approximation operation.

M r,fn Lane markers false negative errors mapping operation.

Pdiscard Probability of marking lane marker as a false negative.

Plm,recovery Probability of false negative lane marker recovery.

M r,geom Lane markers geometry estimation errors mapping.

o
(t)
ego Observation of the ego state.

oobji Observation of an i-th dynamic object’s state.

nobj,max Max number of observed dynamic objects.

olmi Observation of an i-th lane marker’s state.

dlmi Lateral offsets vector of the i-th observed lane marker.

γlmi Rotation of the i-th observed lane marker.

mlmi Type of the i-th observed lane marker.

2All parameters related to static environment perception modeling with their description and values are listed
in the Table 4.2

Wojciech Turlej

xx CONTENTS

Symbols - Chapter 5

Symbol Description

Sscen Set of test scenarios.

nscen Number of test scenarios.

ntp Number of traffic participants other than ego in scenario.

tsf Duration of the test scenario.

padv,veh,params Parameters of an adversarial road user.

Stp Set of state trajectories of other traffic participants.

stpi
State of an i-th traffic participant.

Ŝtp Set of state estimate trajectories.

ŝtpi
State estimate (ego’s perception of object’s state) of an i-th traffic participant.

sego State of the ego vehicle.

Tstate,tpi
State trajectory of i-th traffic participant.

Sr Set of static environment features.

sri Vector describing i-th lane marker.

Tctrl,ego Ego’s control trajectory.

Tctrl Set of control trajectories of other traffic participants.

Tstate,tpi
Control trajectory of i-th traffic participant.

q Vector of trajectories’ parameters.

nq Number of parameters that describe a single trajectory.

qse Vector of parameters of state estimates trajectories.

Ŝenv Environment description.

c Control vector.

δ Steering angle.

a Acceleration.

Rphys Set of constraints related to vehicles’ physical limitations.

p Set of parameters used to calibrate generated trajectories.

vs Longitudinal velocity of a vehicle.

Oenv Observation of environment’s state.

oego Observation of ego’s state.

oobji Observation of i-th traffic participant.

olmi Observation of i-th lane marker.

Ccoll Collisions-related cost term3.

CTTC Time To Collision cost term3.

3Weights and additional parameters related to cost terms can be found in Table 5.1

Wojciech Turlej

CONTENTS xxi

Continued: Symbols - Chapter 5

Symbol Description

Cdist Euclidean distance cost term3.

Csim Scenario similarity cost term3.

Operators and distributions

Symbol Description
⊂ Subset of.
∈ Is an element of; e.g. s ∈ S.
∪ Union of sets.
∩ Intersection of sets.
\ Set difference.

Box Planar bounding box of a vehicle.
Hull Convex hull of polygons.
N Normal distribution.
Nk k-dimensional multivariate normal distribution.
U Uniform distribution.

Wojciech Turlej

xxii CONTENTS

Wojciech Turlej

1. Introduction

Road traffic accidents are a leading cause of death among children and young adults, with

a staggering number of 1.35 million traffic-related deaths reported annually [131] and over 50

million injures [137], that often lead to permanent disabilities. Road accidents cause immense

economic burdens related to treatment and rehabilitation costs, property loss, post-trauma pro-

ductivity loss, and legal costs. Traffic injuries are estimated to impose a global economic burden

of approximately 1.8 trillion dollars over the period of 2015-2030 [27].

Despite immense amounts of work and costs put into the development of safer infrastructure,

improvements in vehicle safety systems, as well as legislative and educational efforts, the annual

number of severe injuries and deaths related to traffic remains relatively constant [131], suggesting

that new disruptive technological advancements or legislative changes are needed in order to put

an end to this global crisis. Many researchers and automotive engineers share the belief that

autonomous driving (AD) systems are such an advancement that may revolutionize traffic safety

and significantly reduce the number of traffic accidents [72].

Numerous studies confirm that the overwhelming majority of accidents are caused by drivers’

mistakes, with an estimated fraction of crashes caused by human errors reaching 90% [33] or even

94% [161]. Common causes behind such errors include distraction [149, 186] (present in up to 68%

crashes [33]), alcohol-impaired driving (with approximately 30% traffic fatalities being related to

alcohol consumption in the US [40]) and drowsiness [176].

In the context of these statistical findings, the wide adaptation of Advanced Driver Assistance

Systems and AD systems that are immune to such impairments seems to be in fact a very

promising premise. Unfortunately, with the extreme complexity of the driving task, the multitude

of safety risks, and the potentially immense cost of wrong decisions during driving, a wide

adaptation of such systems still requires a vast amount of research and a social discourse to set

safety goals for AD vehicles and ensure that they meet them.

1.1. Driving Automation

Advanced Driver Assistance Systems (ADAS) are becoming increasingly common in modern

vehicles, and most large automobile manufacturers offer a variety of systems that not only actively

support drivers in their decisions, but even exercise a certain level of direct control over the

2 1.1. Driving Automation

vehicle. Features such as Autonomous Emergency Braking (AEB), Automated Lane Centering

(ALC), or Adaptive Cruise Control (ACC) are slowly becoming a standard equipment in new

cars.

In order to categorize the growing variety of driver assistance systems, the Society of Auto-

motive Engineers (SAE) introduced a classification of vehicle autonomy levels [171], summarized

in Fig. 1.1.

No automation

Systems that provide warnings and momentary assistance (e.g.,
blind spot warning, lane departure warning)

Driver assistance

Features that provide steering OR brake/acceleration support
(e.g., lane centering, adaptive cruise control)

Partial automation
Features that provide steering AND brake/acceleration support
(e.g., lane centering and adaptive cruise control combined)

Conditional automation
Features that can drive the car in certain conditions and may
request the driver to take over (e.g., traffic jam chauffeur)

High automation

Systems that can fully operate the car in certain conditions
(e.g., driverless taxi operating only on selected roads)

Full automation

Systems that can fully operate the car in all conditions,
(e.g., fully autonomous car without pedals nor steering wheel)

SAE

Level 0TM

SAE

Level 1TM

SAE

Level 2TM

SAE

Level 3TM

SAE

Level 4TM

SAE

Level 5TM

SAE Level Description Steer./acc.
control

Enviornment
monitoring

Fallback
control

Human
driver

Human
driver/
system

System

System

System

System

System

System

System

Human
driver

System

System

Human
driver

Human
driver

Human
driver

Human
driver

Human
driver

Human
driver

Responsibility for...

Figure 1.1. Summary of SAE automation levels, based on [171]
.

SAE automation levels span from 0, which means that the vehicle is equipped only with

systems that provide warnings or momentary braking/steering assistance, to 5, which describes

fully autonomous vehicles that can operate without a driver on all roads.

Rapid automation of vehicles in recent years brought many Level 1 and Level 2 cars to the

market. With such quick advancements in automation technology, it may seem that reaching

higher levels of autonomy is only a matter of time and iterative improvements of existing tech-

nologies, considering that many systems are already capable of planning the motion of the vehicle

and controlling it in an efficient manner.

Unfortunately, even if the planning and control algorithms needed for autonomy levels 2

and 3 may seem similar, there is an excessive difference between these levels in terms of required

robustness, performance, and testing efforts. Since in the Level 3 vehicles the system is responsible

for monitoring the environment, it must be able to properly detect dangerous situations and react

to them. Ensuring that it will be able to do so in a sufficient number of situations and conditions

Wojciech Turlej

1.2. Safety 3

requires not only robust planning algorithms, but also precise perception systems, and extremely

thorough validation and verification.

The design of a safe AD system remains an open research area, with many problems requir-

ing further investigation, such as safe trajectory planning, setting safety goals, designing safety

constraints for planning and control algorithms, or developing efficient testing methods.

1.2. Safety

Safety concerns are an inseparable part of most engineering sciences. Their ubiquitous pres-

ence in the aviation, automotive, nuclear energy, and space industries may create the illusion that

practices and standards in this area are already well established, and their application to the

design of Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD) requires

merely minor daptation of existing approaches. Safety standards, such as ISO 26262 [65] (Func-

tional Safety), are in fact already widely used in the automotive industry, and newer standards,

such as ISO/PAS 21448 [66] (Safety of the Intended Functionality, SOTIF) are being introduced

to help develop reliable driver assistance systems. With advanced ADAS already available in

commercial vehicles, it may seem that the development of fully autonomous driving systems is

imminent.

Unfortunately, lessons learned from other industries, as well as from prior developments in the

area of vehicle safety, are only partially applicable to the development of AD systems. Vehicles

routinely operate in a complex, often unpredictable, dynamic environment. The handover of the

driving task to an onboard system is thus related to a broad set of safety challenges unprecedented

in other industries, as all actions undertaken by such a system are fraught with a considerable

level of risk. Furthermore, many variables that are important for the safe execution of the driving

task, such as the future behavior of other vehicles, remain largely unknown.

Existing standards only partially address these challenges. The Functional Safety standard

(ISO 26262) focuses primarily on safety issues resulting from hardware and software failures,

while in ADAS and AD systems, many hazardous situations can be a consequence of erroneous

decisions, limited sensor performance, or behavior of other road users instead. SOTIF, on the

other hand, while in fact focusing on hazards in the absence of faults, provides only a set of

guidelines related mainly to the development and validation process, without complete solutions

nor precise recommendations on how to set and achieve safety goals.

Recently introduced and less known IEEE Standard for Assumptions in Safety-Related Mod-

els for Automated Driving Systems (IEEE 2846-2022) [63] approaches the problem of planning

a vehicle’s motion in a dynamic environment more directly, proposing to use a set of assump-

tions regarding reasonably foreseeable behavior of other road users to define constraints for the

planned motion. The standard remains relatively general; however, it requires further work to

Wojciech Turlej

4 1.3. Motivation and Scope

define precise requirements and develop planning and validation approaches that would fulfill

the standard’s requirements.

A vast amount of research is thus still needed in several areas to set safety goals for an AD

system, develop perception, planning, and control algorithms that would fulfill them, and design

feasible verification and validation methods.

1.3. Motivation and Scope

An immense amount of work has already been invested in the development of motion planning

and vehicle control algorithms for the purpose of ADAS features with autonomy levels from 0

to 2. Still, considering the complexity and difficulty of the driving task, Autonomous Driving

algorithms remain a very active research field, significantly accelerated by recent advancements

in the area of Machine Learning (ML) algorithms. One of the most promising approaches for

vehicle motion planning is the use of the Reinforcement Learning (RL) methods to develop a

driving policy that would plan the near-future motion of the controlled car based on the data

from the vehicle’s sensors and perception algorithms [164]. RL-based policies have been shown to

plan vehicle movement in an efficient and reliable manner while being able to take into account

complex interaction between multiple vehicles, exhibit human-like on-road negotiation skills, and

predict the behavior of other road users [82, 10].

While the capabilities of such algorithms are promising, several challenges related to ensuring

their safety and reliability must be solved before they can be introduced on a large scale to

commercial vehicles, including the issues listed below.

◦ Driving policies trained in RL setups often struggle to learn proper responses to events

that are very rarely observed in the training process, or in which several possible outcomes

of a given situation must be taken into account in the planning. In situations where one

outcome of a given situation is considered significantly more plausible than the others,

RL-based policies tend to disregard less plausible ones. For this reason, a more transparent

trajectory planning method could be used in conjunction with the RL policy, either as a

way to execute in a safe manner the high-level maneuvers chosen by the policy or to be used

as an alternative way of planning in rare, atypical situations in which several hypotheses

regarding the behavior of other vehicles can be formed.

◦ Perception systems utilized in road vehicles often suffer from performance limitations, pro-

ducing various types of perception errors. RL-based policies typically trained in simulation

environments may not be able to maintain desired robustness and performance in the pres-

ence of such errors, potentially leading to erratic, unsafe behaviors. More research is needed

to evaluate the impact of sensing systems deficiencies on such algorithms and to improve

their robustness to various types of perception errors.

Wojciech Turlej

1.4. Research Hypotheses 5

◦ The lack of transparency is an inherent characteristic of ML-based solutions that makes

their validation and verification challenging. Erroneous decisions in such policies may not

necessarily be directly correlated with the objective difficulty of a road situation, and thus

manually designed test cases may fail to expose certain failures. Large-scale test drives,

either performed on the road or in a simulation, while important for the final validation

of the system, tend to be a costly and inefficient way of uncovering issues in AD systems

related to rare, uncommon situations. Therefore, more research into automated adversarial

testing is needed to explore potential issues in such systems.

Addressing these challenges is not only an important step required for the commercializa-

tion of RL-based AD systems, but could also provide valuable insights and methods for the

development of various ADAS features, not necessarily based on ML algorithms.

In this thesis, I focus on these challenges, proposing several methods related to vehicle motion

planning and validation of ADAS/AD systems. While the design and training of RL-based driving

policies are not a direct focus of this thesis, proposed methods are mainly meant to be used in

conjunction with such policies, as well as to ensure their robustness in the presence of perception

errors, and help to validate them. To allow research related to proposed methods, exemplary RL-

based policies are trained and used to test research hypotheses related to the defined challenges.

It should be, however, noted, that most of the proposed methods are designed in a universal

manner, remaining applicable to various types of driving policies, including ones that are not

necessarily based on RL or even ML methods.

1.4. Research Hypotheses

The research hypotheses investigated in this thesis are directly related to the challenges

identified in the previous section. Three main hypotheses are investigated, which are listed below.

1. It is possible to create a safe driving plan for an automated vehicle that considers several

hypotheses regarding the future state of the vehicle’s surroundings. In particular, reasonably

foreseeable worst-case assumptions regarding the behavior of other road users can be taken

into account in the motion planning algorithm, ensuring the existence of feasible collision

avoidance maneuvers during the execution of the motion plan.

2. The use of stochastic models of perception systems in the training process of a

Reinforcement-Learning driving policy improves the policy’s robustness to perception er-

rors.

3. Optimization-based adversarial scenario generation methods can be used in simulation-

based validation of motion planning algorithms to expose potential weaknesses or issues in

the evaluated systems.

Wojciech Turlej

6 1.5. Thesis Outline and Contributions

1.5. Thesis Outline and Contributions

Chapter 2 contains a general introduction to the topic of autonomous vehicles, briefly de-

scribing their history, architecture, and methods used for motion planning.

Chapters 3 - 5 all share a similar structure. All of these chapters start with the motivations and

review of the literature relevant to the discussed problems, followed by the problem statement,

the description of the proposed solutions, the outline of the evaluation methods, and end with

the experimental results and conclusions. Each chapter refers to one of the research hypotheses

defined in Section 1.4.

In Chapter 3 a novel motion planning approach is introduced. The approach utilizes

optimization-based trajectory generation methods to plan the vehicle motion while taking into

account multiple hypotheses regarding the future state of the scene. The hypotheses may be

generated using an arbitrary multimodal trajectory prediction method. In the proposed method,

several vehicle control trajectories are planned, where each trajectory is related to one of the

hypotheses, and all trajectories are identical in a predefined initial time period. This solution

helps to ensure the existence of a feasible collision-free trajectory in this period, regardless of

which hypothesis turns out to be true, allowing the postponement of safety-critical decisions

until more data are collected regarding the environment and behavior of other road users. One

of the important applications of the described method is Fail-Safe Planning, in which one tra-

jectory is planned based on the most plausible hypothesis regarding the future behavior of other

road users, while another respects safety constraints based on reasonably foreseeable worst-case

assumptions regarding the future behavior of other road users. The main contribution presented

in this chapter is a formulation of the optimization problem that enables planning of all the

trajectories simultaneously. This allows ensuring that planning the trajectory based on the most

plausible hypothesis will not render planning other trajectories infeasible, allowing one to suc-

cessfully plan a safe motion of the vehicle in a significantly wider variety of scenarios compared

to existing methods.

Although the method described in Chapter 3 can be used in conjunction with Reinforcement-

Learning-based motion planning methods, e.g., to execute high-level maneuvers chosen by the

RL-based driving policy in a safe manner, Chapter 4 focuses on the problem of robustness of

such policies to perception errors. In this chapter, a set of efficient low-fidelity sensor models is

introduced for modeling both the dynamic environment perception systems (e.g., radar-based

object detection) and static environment perception (e.g., camera-based lane markers detectors).

The proposed sensor models can be used both for the validation of driving policies and for their

training. An exemplary driving policy is trained in a simulation environment with the use of

the proposed sensor models and compared to the policies trained with simpler baseline sensor

models and with a perfect environment perception.

Wojciech Turlej

1.5. Thesis Outline and Contributions 7

While multiple sensor modeling techniques were already proposed in the literature, their

application in training RL-based driving policies and their impact on the system’s final perfor-

mance are rarely analyzed. The main contributions presented in this chapter thus include the

introduction of efficient models for both static and dynamic environment perception and the

investigation of the impact of sensor modeling on driving policies’ performance.

Chapter 5 addresses the problem of automatic validation of ADAS and AD systems. In this

chapter, a novel method for the automated generation of adversarial test scenarios is introduced.

The proposed method can be used to effectively explore potential issues in the developed driving

policies, by using an optimization-based trajectory generation to find the behavior of other road

users, that trigger safety-critical failures in the tested system.

A distinct feature of the presented method is the ability to generate adversarial scenarios with

perception error patterns. Thanks to this feature, the method can be used to actively explore

combinations of other’s behaviors with plausible perception errors occurrences that could result

in incorrect decisions of the driving policy.

The effectiveness of the method was demonstrated in the task of generating a database of

adversarial scenarios for an exemplary RL-based driving policy.

The last chapter summarizes the contributions of this thesis and outlines possible further

steps that could be taken to improve the proposed methods.

Wojciech Turlej

8 1.5. Thesis Outline and Contributions

Wojciech Turlej

2. Background

The safety and performance of Advanced Driver Assistance Systems (ADAS) and Au-

tonomous Driving (AD) systems depend on many factors, such as the choice of sensors utilized in

the system, perception and sensor fusion algorithms, the system’s architecture, as well as plan-

ning and control algorithms. In this chapter, I provide an introduction to these topics, focusing

on subjects that are most relevant to the approaches proposed in further chapters.

2.1. Advanced Driver Assistance Systems and Autonomous

Driving Systems

Autonomous Driving is undoubtedly a very active and interesting research area pursued both

by the automotive industry and the academic community. The introduction of efficient and safe

AD vehicles may not only be very financially profitable but also bring great social benefits, saving

many lives, and making roads safer and more environmentally friendly.

Analyzing the history of research in the AD area, one may notice that the efforts to create

a truly AD system came from two distinct directions. One approach, which could be mainly ob-

served in academic communities, was related to the development of heavily experimental systems

with a high level of autonomy and working on increasing the Operational Design Domain (ODD)

of the developed system. Another approach, pursued mainly by automobile manufacturers, was

to start with SAE Level 0 driver assistance systems and iteratively develop and commercially

introduce ADAS features with higher levels of autonomy.

Experiments with remote-controlled driverless cars began very early in the history of the

automotive industry, with the first patents for such technologies appearing as early as in the

1890s [172], and on-road experiments reported to take place in 1920s [1]. However, the first

experimental cars that could navigate on the road without human control started to appear

significantly later, in the 1950s and 1960s, with a notable example of a self-driving system shown

by RCA Labs in 1958 [16]. Nevertheless, most of the experimental systems showcased in these

years by research laboratories and car manufacturers required specialized infrastructure, such as

magnetic cables or electronic devices embedded in the roadways, and could not operate on public

roads.

10 2.2. Perception Systems Used in Automotive and Their Limitations

Experimental vehicles that could potentially operate without a specialized infrastructure

began appearing in the 1980s, with a vision-guided vehicle developed at Carnegie Mellon Univer-

sity in 1986 [75], and a robotic van developed at Bundeswehr University Munich [16]. A decade

later, autonomous vehicles capable of long highway driving with minimal human intervention

were demonstrated, with VaMP and Vita-2 vehicles developed at Bundeswehr University Mu-

nich driving around 1000 kilometers in heavy highway traffic in 1994 [184], followed by a Navlab

project driving nearly 5000 kilometers across the United States in 1995 [3] and few other similar

successes [16].

In the years 2000-2010, the rapid growth of the autonomous driving research field could be

observed, accelerated mainly by famous DARPA (Defense Advanced Research Projects Agency)

challenges. The DARPA Grand Challenges, held in 2004, 2005, and 2007, offered substantial

prizes to research teams that could create autonomous vehicles that would be able to complete

predefined courses in a desert environment (first two challenges) and in an urban environment

(third challenge). The challenges were well received, sparking significant interest in the develop-

ment of AD systems in an academic community, and many research teams prepared their own

systems for each challenge [173, 21].

Approximately from 2010 onward it is possible to observe significant investments in the devel-

opment of AD technology made by big automotive manufacturers and technological companies.

Examples include Google’s creation of the Waymo autonomous driving company, the introduction

of Tesla’s autopilot feature, Uber’s self-driving research, and the establishment of many startups

and companies focused directly on AD systems, such as Motional, Zoox, Cruise, or Argo AI [4,

195, 31, 155].

At the same time, a wide variety of ADAS features were introduced to commercial vehicles [60,

198, 29]. Nowadays many Level 0 and Level 1 features are considered almost essential in modern

vehicles, with systems such as Adaptive Cruise Control (ACC), Automatic Emergency Braking

(AEB), Cross Trafic Alert (CTA), or Lane Keep Assistance (LKA) progressing from practically

unavailable in commercial vehicles to being equipped in more than 60-70% new vehicles in 2022

[68].

Currently, many automotive companies already offer vehicles with Level 2 autonomy [26],

with first attempts to commercialize Level 3 systems ongoing [2].

2.2. Perception Systems Used in Automotive and Their Limita-

tions

Modern vehicles are equipped with a large number of sensors that provide information about

the state of the vehicle’s mechanical components, its occupants, and the environment in which

it operates. For the design of ADAS / AD systems, the last position will be the most relevant,

as information about other traffic participants, as well as road geometry, is critical for motion

Wojciech Turlej

2.2. Perception Systems Used in Automotive and Their Limitations 11

planning tasks, and the performance of widely used sensors poses a challenge for planning algo-

rithms. It should be noted however that the performance of ego’s state estimation, which may

utilize, for instance, GPS, wheel encoders, and Inertial Measurement Units (IMUs), may also

severely impact the motion planning task.

The most commonly used sensors for exterior sensing are cameras, LiDARs, radars, and

ultrasonic distance sensors. In this section we will focus on the first three, as ultrasonic sensors

are less relevant for on-road planning tasks because of their limited range, finding their application

in parking-related tasks instead.

Understanding the operation principles of sensors and the underlying physical phenomena

that may impact their performance is important for the design of motion planning algorithms,

as each sensor may produce unique error patterns that have to be taken into account.

2.2.1. Sensors

Each of the types of sensors commonly utilized in automotive applications suffers from certain

performance limitations, often associated with environmental conditions or road situations. As

perception systems often play a safety-critical role in ADAS and AD systems, multiple types of

sensors are often used to provide redundant environment state estimations, ensuring the system’s

robustness to temporary performance degradation of a single sensor or sensor type. It should be

Short range radars

Front camera

Short range radars

Figure 2.1. Example of the ADAS/AD sensor stack and mounting positions.

noted, that not all sensor types are able to provide a complete estimation of all environmental

features that may be of interest for ADAS/AD system design - for instance, automotive radars

Wojciech Turlej

12 2.2. Perception Systems Used in Automotive and Their Limitations

do not have the capability of the lane markers geometry estimation, while cameras do not have

the ability of instantaneous object velocity measurement.

The capabilities of various automotive sensors, as well as their limitations, are summarized

in Table 2.1.

Capability Radar Camera LiDAR
Robustness to rain and mist +++ − +
Robustness to poor lighting conditions +++ −− +++
Object classification −−− +++ +
Velocity measurement +++ −−− −−−
Range estimation ++ − +++
Lane markers geometry estimation −−− +++ −−−
Traffic signs recognition −−− +++ −−−
Computational efficiency ++ − −−−
Cost-effectiveness ++ ++ −−−

Table 2.1. Comparison of common types of automotive sensors. +++ denotes
the highest capability/robustness in a given area, while −−− the lowest.

2.2.1.1. Radar

Radar (RAdio Detection and Ranging) sensors are widely used in the automotive industry

due to their low cost and robustness to various adverse weather conditions. The lack of moving

parts makes modern radars durable and resistant to vibrations, temperature changes, and other

adverse conditions present during vehicle operation.

In principle, radar sensors operate by emission of electromagnetic signals and detection of

the returning waves that were reflected from surfaces of the objects in the sensors’ vicinity. Since

radar waves propagate with a known speed (namely, the speed of light), it is possible to determine

the range of the object that reflects the wave based on the time-of-flight of the emitted signal,

i.e., the time elapsed from the signal’s emission to the return of the reflected wave.

Modern automotive radar utilizes wavelengths on the order of millimeters, most commonly

operating at frequencies between 76 GHz and 81 GHz, which corresponds to a wavelength of

approximately 4 mm [188]. Being considered relatively short in the electromagnetic frequency

spectrum, millimeter-range wavelengths enable relatively precise measurements, while providing

robustness to environmental conditions, such as rain or fog, that severely impact the performance

of sensors that operate in the visible light spectrum.

2.2.1.1.1 Features and operating principles

One of the important features of radar sensors is their ability to measure the radial velocity of

the objects that move relative to the sensor. Velocity measurement utilizes the Doppler effect -

a shift in the frequency of the wave that is reflected from a moving object proportional to the

speed with which the distance between the object and the sensor changes. Knowing the shift in

Wojciech Turlej

2.2. Perception Systems Used in Automotive and Their Limitations 13

wave’s frequency, radial velocity vr can be computed as:

vr =
cfD

2fT
, (2.2.1)

where c is the speed of light, fD is Doppler’s frequency (frequency of the returning wave), and

fT is the frequency of the emitted wave.

The ability to measure the object’s radial velocity using the Doppler effect distinguishes

the radar sensors as the only source of reliable velocity measurement that does not rely on

differentiation of multiple range measurements, making them exceptionally useful in applications

that require relatively precise velocity measurement, such as Adaptive Cruise Control systems.

Receiving antennas

Transmitting
antennas

Housing

90o

Reflected wave A

Reflected wave B

Figure 2.2. Determination of the object’s azimuth based on the phase shift
between multiple antenna elements. If the reflected wave is incoming from the
direction perpendicular to the antenna array (Reflected wave A, in blue), the
phase difference of the wave on antenna elements is minimal. For the objects
situated at different angles (example: Reflected wave B, yellow), the phase shift
between array elements is proportional to the object’s azimuth angle.

Although historically a dominant way of determining an object’s azimuth (angle relative to

the sensor) was based on the mechanical rotation of the radar’s antenna, such a solution would

be difficult to execute reliably in a reliable and cost-effective way in the vehicle. Instead, an array

of multiple receiver antennas is used to determine an azimuth angle based on the phase shift

between the antennas placed within a known distance from each other, as shown in figure 2.2.

In particular, a fast Fourier transform (FFT) can be performed across the antenna elements to

determine the frequency of the phase change between elements, which will be proportional to

the azimuth angle [136].

Wojciech Turlej

14 2.2. Perception Systems Used in Automotive and Their Limitations

The power of the signals received by the radar sensor varies significantly depending on mul-

tiple factors, mainly the distance of the object and its Radar Cross Section (RCS). RCS is a

property unique to all objects that describes how well a given object reflects the radar waves to

its source. RCS itself depends on many aspects of the object, including but not limited to the

object’s size, geometry, the material of its surface, and orientation relative to the source of the

radar wave.

Assuming that the receiving antenna is close to the transmitting antenna, the power of the

wave pr on the receiving antenna can be approximated using Equation 2.2.2.

pr =
ptgtarσ

(4π)2r4
, (2.2.2)

where:

pt - power of the transmitter,

gt - transmitting antenna’s gain,

ar - effective aperture of the receiving antenna

σ - RCS of the object,

r - radial distance of the object.

2.2.1.1.2 Radar data processing

There are several ways in which the raw signals received by the radar sensor can be processed

to acquire a useful description of the environment [136]. In this section, a simplified example

of a data processing pipeline will be presented, but it should be noted that the topic of radar

object detection and tracking constitutes a vast research area, and many different algorithms

are proposed for this task, including models based on machine learning that often follow an

entirely different approach [9, 35]. However, in commercial applications, classic solutions based

on deterministic algorithms and tracking methods remain the most widely used.

Although the design and implementation of object detection and tracking algorithms are

beyond the scope of this work, understanding the base principles behind these algorithms is

important, as each major step of these algorithms introduces a potential for certain errors that

will impact the performance of the whole system.

An example of a data processing pipeline is shown in figure 2.3. Raw data from Analog/Dig-

ital converters are used to compose the so-called Radar Data Cube (RDC). RDC is a multi-

dimensional array composed of complex-valued baseband samples whose dimensions represent

radial velocity, range, and angle of the detection. RDC is then used to extract a sparse map of

radar detections, based on a signal-to-noise threshold. Since especially in short ranges multiple

Wojciech Turlej

2.2. Perception Systems Used in Automotive and Their Limitations 15

 Tracking algorithmA/D sampling

Association (bounding
boxes to existing tracks)Digital Signal Processing

(FFTs)

Features extraction

Detection clustering,
bounding box creation

Tracks update

(Kalman Filtering

variants)

 Tracks lifetime
management

Raw data

Radar Data Cube

Detections

Bounding boxes Object list
(object state)

Figure 2.3. Radar data processing workflow.

detections may be caused by a single object, e.g. due to multiple areas with strong radar re-

flection (scattering centers), the detections are clustered to form objects’ bounding boxes and

candidates.

The candidate bounding boxes serve as input to the tracking algorithm, usually based on

derivatives of the Kalman Filter algorithm [104]. Bounding box candidates are associated with

already tracked objects (tracks) or are used to create new tracks if no strong associations can

be found. After association, previously existing tracks can be updated based on the state of the

new bounding box candidate.

It should be noted that the use of the tracking algorithm introduces a certain correlation

between previous objects’ state estimates and current values. Kalman-based approaches utilize

simplified models of the observed objects to update the object’s state estimate based on the

previous measurement, e.g., the object’s velocity measurement may be used to update its position

in the next time step. The estimates are then corrected on the basis of new measurements.

Lastly, the track lifetime management algorithm is used to oversee the existence of the tracks.

This type of algorithm is typically used to decide when existing tracks should be removed (e.g.,

when in a few subsequent steps no bounding-box candidates can be associated with them) and

when the new tracks should be created.

2.2.1.1.3 Error modalities

Physical properties of electromagnetic waves in automotive radar’s spectrum, hardware limi-

tations of cost-effective radar sensors, as well as algorithms utilized for object detection and

tracking, introduce several types of errors that may lead to safety hazards in the ADAS/AD

systems that utilize them.

Differently than in the case of waves in the visible light spectrum, a wide range of surfaces

present in a typical road environment causes a specular reflection of the millimeter-range wave.

Wojciech Turlej

16 2.2. Perception Systems Used in Automotive and Their Limitations

Contrarily to the diffuse reflection, mirror-like specular reflections introduce multipath propa-

gation, that is, situations in which the transmitted radar wave does not return directly to the

sensor after direct reflection from the detected object, but instead bounces from one or more

other surfaces (e.g., surfaces of metal barriers, buildings, or vehicles) on a way to or from the

object. This phenomenon can lead to false positive detection errors, where the sensor detects

such undesirable echo as a real object [90]. Such falsely detected objects are often referred to as

multipath ghosts or ghost objects, in short.

Concrete barrier

Specular reflection
of the radar wave

Perceived position of the
vehicle (ghost object)

Actual position
of the object

Path of the
transmitted wave

Path of the
returning wave

Ego vehicle

Figure 2.4. Example of a false positive detection error caused by the multipath
radar wave propagation.

Distinguishing multipath ghosts from real objects is a difficult task, as they often are detected

in subsequent radar measurements in positions consistent with the measured velocity, e.g., when

the echo of the existing vehicle is reflected from a large flat surface, such as a concrete barrier

along the side of the road. Several methods have been proposed to detect such ghosts and thus

improve the system performance [112, 108], although their applicability in small cost-effective

sensors varies.

While radar sensors are considered relatively robust to difficult weather conditions, a certain

level of performance degradation may still be observed when operating in rain or snow. Both

water splashes and snow debris falling from other vehicles can be falsely detected as objects

relevant to ADAS/AD systems. Traction losses of the ego vehicle also may be detrimental to the

radar performance, as they impact the ego’s state estimation, which plays an important role in

both tracking and object detection. For instance, ego’s velocity estimation is typically used to

Wojciech Turlej

2.2. Perception Systems Used in Automotive and Their Limitations 17

filter out stationary detections, e.g., from rough road surfaces, and its erroneous estimates may

result in false positive detection of dynamic objects.

It should be noted that the level of noise detected by the radar sensor is significant compared

to other commonly used sensor types. Many factors contribute to radars’ noisiness, including

interference with other radar sensors, multipath reflections, and electromagnetic pollution. Es-

pecially in cluttered urban environments with a large number of traffic participants and static

objects in the sensors’ vicinity, the noise level may severely impact the performance of radar

sensors, introducing false positive detections. To partially alleviate this issue, potential detec-

tions with low signal strength compared to background noise are filtered out according to certain

signal-to-noise ratio thresholds. This in turn introduces a certain probability of false negative

detection errors.

Another class of potentially safety-critical errors is state estimate errors in which a particular

object is detected but one or more state variables are disturbed. It should be noted, though,

that severe errors in certain state estimates, especially position, may be classified as a false

positive and false negative object detection pair. In the case of testing and validation methods in

which ground truth data is compared to the sensor stream, usually, certain criteria are chosen to

distinguish between these two situations, e.g., based on calculating the Intersection over Union

(IoU) between the detected bounding box and the ground truth.

Multipath reflections and ego state estimation errors described in previous paragraphs both

may lead to state estimation errors if the position disturbance is not high enough to result in a

false positive.

Velocity reading too high

Correct velocity reading

Velocity reading too low

Figure 2.5. Mechanism of velocity measurement errors due to spinning wheels
reflection. Since the wheel rotates relative to the vehicle, strong reflection from
its different parts may result in severely disturbed velocity estimates.

Wojciech Turlej

18 2.2. Perception Systems Used in Automotive and Their Limitations

Object velocity estimation errors constitute an important subset of errors. Various parts of

the detected objects may differ substantially in RCS depending on their orientation relative to the

sensor. Because of this, there is a certain chance that part of the object that moves relative to the

object’s local coordinate system (e.g., the rotating wheel of the vehicle or one of the pedestrian’s

limbs) will reflect radar’s wave strong enough to contribute significantly to the object’s velocity

estimation. This is especially important in the case of the vehicle’s wheels because complex rim

shapes often serve as efficient scattering centers [78]. Since the magnitude of the instantaneous

velocity of the different parts of the wheel relative to the ground varies from zero (at the bottom

of the wheel) to the double vehicle’s speed (at the top part of the wheel), they may lead to severe

velocity estimation errors, as shown in Fig. 2.5.

2.2.1.2. Camera

Modern vehicles equipped with ADAS/AD systems use cameras in a wide range of subsys-

tems and applications. Their high resolution and ability to operate in a visible and/or infrared

light spectrum make them useful not only for object detection tasks but also for traffic sign

recognition, lane markers detection, driver monitoring, object classification, semantic segmenta-

tion of vehicle surroundings [34], and many other functions. At the same time, cameras remain

relatively inexpensive sensors, offering long-term reliability.

2.2.1.2.1 Operating principles

A typical camera module is composed of several hardware parts. The light enters the device

through a lens system, that focuses the image on the image sensor. The sensor is typically

covered by an infrared filter and a subsequent Color Filter Array (CFA), which is a mosaic of

pixel-size color filters that enables the capturing of color information by the image sensor, which

cannot effectively measure the wavelength of captured light directly. The use of the CFA allows

reconstruction of the colors of the captured image in a demosaicing process, by measuring the

light intensities of the pixels covered by each of the colors in the CFA separately, effectively

capturing several single-color images at the same time (e.g. red, green, and blue).

Lens system

Infrared filter

Color fitler array

Image sensor

Figure 2.6. Simplified camera hardware model.

Wojciech Turlej

2.2. Perception Systems Used in Automotive and Their Limitations 19

Two types of image sensors are commonly used in digital cameras, including camera-based

automotive sensors: Charge-Coupled Devices (CCD), and active-pixel sensors, most commonly

based on Complementary Metal-Oxide-Semiconductors (CMOS).

CCD sensors are effectively an array of light-sensitive analog devices that become electrically

charged when exposed to light. The charge is amplified by a series of amplifiers and converted to

a digital signal by Analog/Digital Converters (ADC) in a sequential manner, i.e., charges of the

pixels closest to the amplifiers are read, and then charges of all pixels in the array are shifted

towards amplifiers by a single pixel. This solution enables the amplifiers to be placed outside the

photosensitive pixel array.

In CMOS sensors, on the other hand, each pixel in the array is coupled with its own amplifier.

As the amplifiers are effectively placed along each of the pixels on the sensor, the effective light-

capturing area of the sensor is smaller than that of CCDs. To increase the amount of light that

affects each pixel, an array of microlenses is often placed in front of the sensors to focus the light

that would otherwise hit the amplifiers on the photosensitive part of the sensors.

Both types of sensors have their advantages: CCD offers a higher dynamic range and lower

noise, while CMOS is faster, less expensive, and more power efficient.

Sensor

Automatic

Gain
Control

Analog/
Digital

Converter

Demosaicing

Auto
exposure

Image
processing

Figure 2.7. Camera operating scheme.

Independently from the sensor type, amplified charges are converted to digital signals and

further processed - starting with a demosaicing process, which is used to reconstruct a color

image from the pixels overlaid with a color filter array. Subsequently, the image can be further

enhanced by gamma correction and noise reduction, as well as subjected to color conversion,

scaling, and compression, if necessary.

Pre-processed images can be used in object detection algorithms. Historically, various meth-

ods were proposed for this purpose, including methods based on optical flow [22, 94], detecting

vehicle shadows on an even road surface [183], detecting vehicle lights [28], or finding symmetric

features on the image, taking advantage of the fact that front and rear views of vehicles are

vertically symmetric [91]. With recent advances in machine learning technology, currently, the

dominating approach is to use ML-based object detection algorithms for this task. Especially the

introduction of approaches that do not require computationally expensive sliding window object

classification, such as YOLO (You Only Look Once) [146] or Single-Shot Detectors (SSD) [111],

enabled accurate real-time object detection for automotive applications [190, 200, 159].

Wojciech Turlej

20 2.2. Perception Systems Used in Automotive and Their Limitations

Knowing the lens characteristics of the camera and its mounting position, the 3D dimen-

sions and position of the detected objects can be easily approximated using simple geometric

transformations, providing information usable in ADAS/AD algorithms.

2.2.1.2.2 Error modalities

One of the important aspects of the camera sensor is its limited performance with regard to

state estimation. While the azimuth of an object usually can be measured in a direct, relatively

precise manner, its distance from the sensor can only be estimated based on its size and/or its

position projected onto an image plane.

One of the unfortunate results of the distance estimation’s limited performance is difficulty

in velocity estimation, as it cannot be measured directly but has to be derived as a change of

the velocity estimate over time.

Both distance and velocity measurement play a safety-critical role in many ADAS features,

as well as in AD systems. For this reason, cameras are often coupled with radar sensors in such

applications, but camera-only AD systems proposals are not unheard of, as such an approach

significantly reduces the cost and complexity of the entire system.

Missed detection errors are one of the most safety-critical issues in camera sensors. Inability

to detect a vehicle, traffic sign, lane marker, or static obstacle may lead to dangerous situations

in ADAS and AD systems. This class of errors may be caused by external factors, such as

poor lighting conditions, or internal factors, such as the limited performance of object detection

algorithms.

There is a large number of factors that can affect the detection performance, the most common

of which are listed below.

High dynamic range. While camera sensors are usually able to adapt to lighting conditions

by exposure modification (by changing the sensitivity or shutter speed), situations in which

different parts of the image have drastically different lightness levels usually pose a difficult

challenge. A common example of such a situation may be observed on tunnel exits during

the day - usually lighting conditions inside the tunnel are much worse than outside and

sensors with insufficient dynamic range tend to either overexpose the external part of the

road or underexpose the internal one. Overexposure and underexposure can cause missed

detections in the affected regions of the image.

Atypical appearance of objects. Detecting the presence of an object by the camera sensor

usually requires the use of object recognition algorithms, most often based on supervised

learning techniques. Although modern algorithms offer a good generalization, i.e., are able

to correctly detect objects that were not present in the training data, they still may fail to

detect objects of severely atypical presence. Examples of such objects may include vehicles

Wojciech Turlej

2.2. Perception Systems Used in Automotive and Their Limitations 21

with complex painting patterns, uncommon animals, or large objects transported by traffic

participants.

Poor visibility environmental conditions. The performance of object detection by camera

sensors can be severely affected by environmental conditions such as fog, heavy rain, or

snow. This limitation is particularly important, as such conditions also affect the perceptive

abilities of the driver and other traffic participants, potentially leading to the aggregation

of dangerous factors.

Occlusions. Although occlusions impact all sensors used for object detection, they pose an

additional challenge in the case of traffic signs recognition and lane markers perception, as

an accumulation of even a thin layer of dirt or snow may lead to false negative detection

errors.

False positive detection errors, while less common, may also lead to dangerous situations,

although typically less severe than in the case of false negatives. One of the main sources of

such errors is the confusion of environmental features observed in the background with relevant

objects [59]. Although this kind of error may be caused by deficiencies in algorithm design or

model training, certain patterns and objects pose particular challenges to most object detection

algorithms. Due to the two-dimensional nature of the input data, images of the relevant objects

(e.g., vehicles’ photos on advertisement billboards, or markings similar to traffic signs painted

on the vehicles) may be easily confused with real relevant objects. Other particularly difficult

situations include the presence of the old lane markers alongside the new ones (e.g., during the

roadwork) and light sources during the night that may be easily confused with the vehicle’s

headlights.

The last type of common error is misclassification. Cameras often play a central role in

object classification. Since the class of the object provides vital cues to the object’s motion

model and expected behavior, this class of errors may lead to safety-critical situations as well.

To provide an example, incorrect classification of the motorbike as a bicycle may lead to issues

in tracking, ADAS, and AD algorithms, e.g., due to the choice of incorrect motion model or

incorrect assumptions regarding possible maneuvers and achievable acceleration levels of the

relevant object.

2.2.1.3. Other sensors

A wide variety of sensors is utilized in addition to cameras and radars both in the development

of ADAS and AD systems, and in a final system on board commercial vehicles, including, but

not limited to, the sensor types listed below.

LiDARs. LiDAR stands for Light Detection and Ranging and is a sensor based on short light

impulses sequentially cast in the form of narrow infrared light beams around the device

[105]. Although the use of strong lasers and time-of-flight measurement allows us to build

Wojciech Turlej

22 2.2. Perception Systems Used in Automotive and Their Limitations

a 3D model of the environment with precision often unmatched by other sensors, currently

LiDARs rarely find applications in commercial vehicles. While the development of solid-

state LiDARs is ongoing, most of the commercially available devices are relatively expensive

and utilize moving elements, such as rotating mirrors or detecting modules, making them

prone to failures in the long run. For these reasons, the use of LiDARs is typically limited

to experimental platforms and test vehicles used in the development process.

GPS and DGPS. GPS (Global Positioning System), while frequently used for tasks related

to road planning and navigation, typically does not have sufficient accuracy to be used in

path planning or vehicle control. There are, however, augmentation methods that allow to

enhance the GPS’ accuracy, such as ground-based Differential GPS (DGPS), which utilizes

one or more reference stations placed in known fixed positions to provide corrections to the

GPS measurement. As the use of DGPS can result in positioning accuracy in a range of

1-3 cm, they are often used during the development of ADAS and AD systems, providing

ground truth reference data on the position of test vehicles during test drives [199].

Ultrasonic sensors. This type of sensor uses ultrasound waves to estimate a distance to the

nearest obstacle by measuring the time after which the emitted sound wave returns to the

sensor after being reflected from the obstacle’s surface [23]. While ultrasonic sensors are

inexpensive and reliable, allowing measurement of distance with relatively high precision,

they operate only on short distances and cannot be used to reliably determine a precise

radial position of detected obstacles. For these reasons, their use is typically limited to

parking applications.

Last but not least, the ADAS and AD systems rely on a variety of sensors that are used to

estimate the state of the controlled vehicle itself, such as Inertial Measurement Units (IMU) or

wheel encoders.

2.2.2. Sensor Fusion

Perception systems used for AD/ADAS vary in terms of sensors and architecture utilized;

however, it is relatively common to combine several types of redundant sensors for certain tasks

in highly autonomous AD systems. One of the typical examples is the use of cameras and radars

for the task of detecting and estimating the state of dynamic objects.

As described in the previous section, both types of sensors are burdened with certain types

of errors that are largely uncorrelated between sensor types. For example, low-light conditions

may pose a severe challenge for camera-based perception systems, while not having any influence

on the radars. On the other hand, false positive errors due to multipath reflections that are

problematic in the case of radar-based object detection do not impact camera-based systems.

Wojciech Turlej

2.2. Perception Systems Used in Automotive and Their Limitations 23

To achieve the high accuracy and low error rates required for highly autonomous AD systems,

a reasonable choice is thus to use both types of sensor to create an accurate representation of

the environment. The process of combining data from several sensors is referred to as sensor

fusion, or fusion in short.

The algorithms used for fusion as well as the architecture of the fusion module depend on

the type of sensors used in the system, but in most cases fusion systems can be classified into

two main types: high-level and low-level sensor fusion.

2.2.2.1. High-level Fusion

Radar sensor

Digital Signal Processing

(FFTs)

Features extraction

Detection clustering,
bounding box creation

Raw data

Radar Data Cube

Detections

Bounding boxes

Camera

2D objects detection

Processed
images

3D projection

2D bounding
boxes

3D bounding
boxes

Tracking (association,
Kalman Filter update,
lifetime managment)

Tracking (association,
Kalman Filter update,
lifetime managment)

Image processing

Raw images

Objects listObjects list

Fusion and tracking

(association, update, tracks lifetime management)

Figure 2.8. Example of a high-level (track-to-track) sensor fusion arhcitecture.
Sensor-specific detection and tracking steps are marked yellow.

In high-level approaches, also referred to as late-fusion approaches, the raw data from sensors

is typically heavily processed before the fusion itself, often using the same algorithms as ones

that would be used for perception and tracking in systems with only one type of sensor. As the

raw data from various sensors is in many instances multimodal, the sensor-specific preprocessing

often additionally converts the data to a common format, e.g., an object list consisting of objects’

state estimates in the case of dynamic object detection applications.

As an example, the mentioned fusion of radar and camera sensors for the detection of dynamic

objects can be considered. An exemplary overview of a high-level fusion algorithm used for these

sensors is presented in Fig. 2.8.

The input to the fusion algorithm in high-level fusion architecture may be composed of

complete object lists, fully preprocessed by perception and tracking algorithms distinct for each

Wojciech Turlej

24 2.2. Perception Systems Used in Automotive and Their Limitations

sensor type. This relatively common high-level fusion setup is often referred to as "track-to-

track fusion", as what is effectively fused are the tracks, i.e., outputs of sensor-specific tracking

algorithms.

Algorithms used for high-level fusion often resemble perception and tracking algorithms used

for single-sensor data processing. An exemplary fusion algorithm may consist of the components

listed below.

◦ Association - an algorithm step that is used to assign new measurements from each sensor

to the existing tracks, i.e., objects’ state estimate vectors from the object list created in

previous iterations of the fusion algorithm. Simplest association approaches may be based

on the measurement of the geometric distance between input objects and existing tracks, or

the measurement of Intersection over Union (IoU) [17]. Other approaches to the association

problem may take into account the Mahalanobis Distance between existing tracks and new

ones, as well as utilize more advanced data association algorithms, such as the Jonker-

Volgenant-Castanon (JVC) algorithm [70] or Joint Probabilistic Data Association (JPDA)

techniques [49].

◦ Tracks lifetime management - a step in which new tracks are created if measurements

from the sensors confirm (with sufficient certainty) the existence of an object that cannot

be associated with any of the existing tracks, and tracks which existence is no longer

confirmed by measurements are removed.

◦ Update - a step in which the state estimation of the relevant object is updated based on

new measurements from a sensor associated with it in the Association step. One of the

most popular approaches to tracking and updating the state of objects is the use of the

Kalman Filter [104], or its various derivatives. Other popular types of methods use the

Integrating Multiple Model algorithms for the state estimation task [44, 49, 43].

High-level fusion has several advantages: the data bandwidth required for sending object

lists to a central computing component is low (compared to raw data), the entire architecture

is relatively transparent, and methods for performing this type of fusion are well-researched and

already established in the automotive industry. One significant disadvantage, however, is the

data loss that occurs before the fusion itself.

2.2.2.2. Low-level Fusion

Low-level fusion, also referred to as early fusion is often proposed as an alternative to high-

level methods. In this approach, the data is not significantly preprocessed before the fusion mod-

ule, and the fusion methods vary greatly with the type of sensors. Due to the higher bandwidth

and general difficulty of this type of fusion, it is relatively less frequently utilized in commercial

systems.

Wojciech Turlej

2.2. Perception Systems Used in Automotive and Their Limitations 25

Recent developments in the ML area, however, enable easier preprocessing of raw sensor data

for low-level fusion applications that often utilize deep neural networks for the task of fusion

itself as well. An example of such a system is presented in Fig. 2.9.

Radar sensor

Digital Signal Processing

(FFTs)

Features extraction

Raw data

Radar Data Cube

Detections

Camera

Processed
images

Image processing

Raw images

Fusion neural network

Encoding Encoding

Tracking

ObservationObservation

Objects list

Figure 2.9. Example of a low-level sensor fusion architecture. Yellow blocks
indicate sensor-specific initial processing steps, blue - parts of the ML-based
fusion module, and red - the tracking module.

A similar architecture has been proposed in [79], where the authors used a modified VGG16

[160] model with a feature pyramid network [107] to preprocess a radar range-azimuth heatmap

and a monocular camera image into feature maps further processed by a detection network.

Another similar approach has been presented by Chadwick et al. [24], with radar detections

preprocessed to a form of range and range rate image channels. Camera images and radar channels

are preprocessed separately by convolutional networks and ResNet blocks [54], and then passed

to a detection network based on the SSD architecture [111].

Other approaches to low-level radar-camera fusion in which radar detections are preprocessed

to the form of an image-like matrix that can be further processed by a deep neural network

similarly to the camera input were presented in [69] and [25].

Wojciech Turlej

26 2.3. Autonomous Driving System Architecture

2.3. Autonomous Driving System Architecture

AD systems vary significantly in terms of the utilized sensors, software modules, algorithms

used, and general architecture. There are, however, certain elements of the system architecture

that are relatively commonly utilized in such systems. A high-level example of a minimal AD

system that utilizes them is presented in Fig. 2.10.

 Driving policy

Behavior
planning

Dynamic objects
detection and tracking

Lane markers detection

Road map

Route

planning

Trajectory
generation

Low level
feedback
control

User input

Actuators
control
values

Control
or state
traje-
ctories

High
level
actions

Object
list

Lane
marker
list

Route

Figure 2.10. Example of a high-level architecture of an AD system. Yellow
indicates algorithms’ inputs, blue - planning modules, and red - low level control
module.

The element of the system that will be at the core of this thesis’ considerations is the driving

policy, also referred to as AD policy, or simply policy for the remainder of this thesis.

For the purpose of this thesis, I define a driving policy as a software module that maps a

certain representation of the ego’s environment to control values or control trajectories that can

be used to control the vehicle’s motion.

The most common inputs used by most driving policies are listed below.

Dynamic objects list, which describes the current (and possibly past) states of the dynamic

objects in the vicinity of the ego vehicle. The objects may include other vehicles, bicycles,

pedestrians, animals, etc. Description of the objects’ state is typically limited to their

simplified geometry (for instance the bounding boxes), class of the object (examples of the

object classes are: vehicle, motorcycle, pedestrian, etc.), its position, velocity, acceleration,

yaw angle, and yaw rate. To ensure accurate estimations of objects’ states, the object list is

typically created using tracing and fusion algorithms based on data from multiple sensors

[119].

Static environment description, which provides information about the geometry of the

road and static obstacles. The source of static environment description varies significantly

- the simplest systems typically utilize lane markers geometry estimates provided by a

front-facing automotive camera, but there are many other approaches that utilize a precise

Wojciech Turlej

2.3. Autonomous Driving System Architecture 27

LiDAR-based model of the environment, High-Definition maps, the output of Simultane-

ous Localization and Mapping algorithms that utilize various sensors to create a precise

description of the environment or even raw camera streams [130].

Ego state, including its current velocity, steering angle, and a variety of other sensor readings

related to the state of the vehicle and its internal components (gear, power mode, error

codes, etc.).

Depending on the level of autonomy of AD systems, additional information may also be

required. Higher levels of autonomy, for instance, require a route planning module that would

prepare a high-level driving plan based on a road map and the desired driving destination selected

by the user. Other relevant information may include local speed limits, traffic sign recognition

outputs, information about local traffic laws, information about the user’s driving preferences,

or the Driver Monitoring Systems (DMS) outputs.

The output of the driving policy also vary between different systems. Simple experimental

setups may utilize direct control signals utilized by vehicle actuators, such as the desired steering

angle, the desired steering angle rate, and the desired throttle position/braking force. More

commonly, the driving policy outputs a desired trajectory that is followed using low-level feedback

control methods.

The driving policy itself is often split into two modules, a high-level behavior planner, that

provides information about a desired maneuver to be executed (e.g., following the vehicle in front

or changing the lane), and a trajectory generation module, that executes the desired maneuver

in a safe and efficient manner [157].

Splitting the driving policy into these two modules offers several benefits. Behavior planning

typically requires complex reasoning regarding the behavior of other vehicles, long-term tactical

planning, and general road situation. The use of Machine Learning (ML) based methods to decide

on a high-level maneuver to be executed thus may be a desirable solution. The execution of the

maneuver in a safe and efficient manner can be carried out with the use of more transparent and

well-researched trajectory planning methods, such as optimization-based trajectory generation

[47]. This allows for leveraging the advantages of both ML-based and classical planning methods.

An alternative approach that currently gains certain attention in the context of the rapid

development of ML techniques is the end-to-end control approach, in which the driving policy is

implemented as a single neural network. This approach, although less transparent, has certain

advantages as well, allowing to leverage of reasoning skills of ML-based driving policies to plan

precise movements of the vehicle in a way that enables the execution of more complex short-term

strategies [170].

Note, that an in-depth review of planning methods that can be used in the trajectory genera-

tion module is provided in Section 3.1.1, and an introduction to Reinforcement Learning methods

that can perform the behavior planning task is presented in the next section (2.4).

Wojciech Turlej

28 2.4. Reinforcement Learning

2.4. Reinforcement Learning

Public roads constitute a complex dynamic environment, and efficiently navigating it requires

considerable planning, prediction, and scene understanding skills. Taking into account all impor-

tant details regarding the environment and complex interactions between road users is difficult

in the case of deterministic rules-based algorithms. For this reason, methods based on Reinforce-

ment Learning (RL) techniques are often proposed for the execution of the behavior planning

task [204].

RL-based driving policies are trained in a simulation environment, in which the trained policy

is used to explore a variety of plausible scenarios and gather experience regarding the effects of

the ego’s actions on other road users.

For the purpose of the definition of the RL-based driving policy, the environment ϵ with

which the policy interacts is defined as a Markov Decision Process (MDP).

MDP definition utilizes the components listed below.

S - state space, set of states, including both environment’s and agent’s (AD system’s) states.

Each state constitutes a complete description of the environment needed to determine its

next state after performing certain actions (in the case of the AD application, that is, states

of vehicles, description of static environment, internal states of the simulation, and relevant

algorithms).

A - action space, or a set of actions that the policy can choose. In the case of the driving

policy, action space often constitutes possible combinations of control values (in the case

of end-to-end driving policies) or available maneuvers (in the case of RL-based behavior

planning modules).

Pa(σ, σ
′) = Pr(σt+1 = σ′|σt = σ, αt = α) denotes the probability that performing an action

α ∈ A while being in a state σ ∈ S will result in a transition to a state σ′ ∈ S at time t+1.

Ra(σ, σ
′) is an expected immediate reward assigned to a transition from a state σ to σ′ as a

consequence of performing the action α.

A stochastic policy πθ(α|o) returns the probability of taking an action α ∈ A to be performed

in time t based on the observation of the environment ot and is parameterized by a parameter

vector θ.

2.4.1. Proximal Policy Optimization

The main goal of training in a Reinforcement Learning setup is to find values of the vector θ

that parameterizes the policy (typically a neural network) that maximize the expected cumulative

reward.

Wojciech Turlej

2.5. Safety 29

Proximal Policy Optimization (PPO) [154] is one of the most commonly used on-policy RL

algorithms, frequently used in control-related tasks.

PPO interactively updates the parameter values based on the following equation:

θk+1 = argmax
θ

Ê
θ∼πθk

[L (σ, α, θk, θ)] , (2.4.1)

with L (σ, α, θk, θ) denoting a clipped loss function defined as follows:

L (σ, α, θk, θ) = min

(
πθ(αt|σt)
πθk(αt|σt)

Âπθk (σ, α), clip
(
πθ(αt|σt)
πθk(αt|σt)

, 1− ϵ, 1 + ϵ

)
Âπθk (σ, α)

)
,

(2.4.2)

where πθ(αt|σt) denotes the probability of action at under the new policy, πθk(αt|σt) describes

the action probability under the current policy, Âπθk (σ, α) is the advantage estimate at the time

t, and ϵ is a training hyperparameter.

In the PPO, estimation of the advantage Âπθk (σ, α) is calculated using a Generalized Advan-

tage Estimator (GAE) [153]:

Â
GAE(γ,λ)
t =

∞∑
l=0

(γλ)l (rt+l + γVϕ(σt+l+1)− Vϕ(σt+l)) , (2.4.3)

rt is the reward at time t, and V ϕ(σ) denotes the value function estimate, which is performed

by a neural network (critic network) parameterized with a parameter vector ϕ. λ and γ denote

calibratable parameters.

Advantage estimation utilizes a set Dk = {τi}i=1..nepisodes
of nepisodes trajectory segments

τi = {σ0, α0, r1, σ1, α1, r2, σ2, α2, ...} collected at each training iteration k through observation of

the policy’s πθk interaction with the environment. To increase the training speed, the trajectory

segments are typically collected in a parallelized simulation setup.

2.5. Safety

Ensuring the safety of ADAS and AD systems is one of the most difficult and expensive

aspects of their development. Due to the difficulty and complexity of this task, several standards

were introduced to provide a structured approach to the development of safe systems.

2.5.1. Hardware and Software Faults

A wide set of standards and good practices for the development of ADAS features with low

autonomy levels already exist. The most well-known standard in this area is perhaps the ISO

26262 [65] titled "Road Vehicles - Functional Safety" (often referred to as FuSa). The standard,

widely used in the automotive industry, recommends practices for the development of vehicles

Wojciech Turlej

30 2.5. Safety

and their components that are intended to address hazards related to malfunctions of electronic

components and electrical systems in the designed products. The standard is primarily focused

on assessing and reducing safety hazards and risks in the system.

The standard specifies a safety life cycle for developed products that divides the develop-

ment process into a series of phases, with related activities that help to identify risks, define

requirements and safety goals, and ensure their fulfillment.

The standard also describes a development process that helps create a safe product, proposes

a way in which potential hazardous events can be classified, introduces methods to specify safety-

related requirements, and ways to analyze and evaluate the system from a safety perspective.

One of the most important concepts introduced by the FuSa standard is the Automotive

Safety Integrity Level (ASIL) analysis. In the initial phases of the safety life cycle, a hazard

analysis is performed to identify potential hazardous events and assess related risks.

Identified hazardous events are classified according to the expected injuries that they may

cause (severity classification), the likelihood of such event (exposure classification), and the like-

lihood of the driver being able to prevent an injury in the case of such event (controllability

classification). Depending on the combination of these factors, a safety level is assigned, and the

standard provides a set of guidelines to assign safety goals related to the analyzed event.

The use of the FuSa standard helps to evaluate and reduce risks related to electronic and

software faults. Unfortunately in ADAS and AD systems, hazardous events may occur in the

absence of such errors - e.g., as a consequence of the limited performance of the perception

systems, incorrect predictions of other road users’ behavior, or dangerous road situations.

2.5.2. Sensors Errors and Performance Limitations

Sensors used to determine the state of other vehicles are inherently inaccurate and various

environmental factors can result in missed detections, false positive detection errors, and state

estimation errors, as discussed in Section 2.2. Depending on the situation on the road and the

error itself, this may result in severely hazardous events.

In order to address safety hazards in the absence of hardware and software faults, an ISO/PAS

21448 [66] standard has been introduced, titled Safety Of The Intended Functionality (SOTIF).

The SOTIF focuses on relevant use cases, i.e., situations in which the system may operate.

The standard distinguishes between four types of use cases: known safe, known unsafe, unknown

unsafe, and unknown safe. Its main goal is to provide a set of guidelines that may help to increase

the number of known scenarios and reduce the number of unsafe use cases.

The standard proposes a general set of activities for the improvement of intended function-

alities to ensure their safety. Activities start with functional and system specification, hazard

identification, and risk evaluation, needed to identify potentially hazardous events. If the events

may lead to harm, their triggering events (e.g. false negative detection errors) are analyzed. If the

Wojciech Turlej

2.5. Safety 31

triggering events are considered unacceptable, the functional and system specification is modi-

fied appropriately; otherwise a verification and validation strategy is defined to ensure that the

known scenarios are sufficiently covered, the system behaves as expected, and the system does

not cause an unreasonable risk in such scenarios [165]. If any of these conditions are not met, the

functional and system specifications are modified until the residual risk is considered acceptable.

The SOTIF standard can be useful in the context of ADAS to address the issues related to

limited sensor performance and potential sensing errors. Unfortunately, the number of possible

road situations and their combinations with sensing error patterns is practically infinite, and

addressing all plausible situations in a scenario-based manner remains a very difficult task.

Furthermore, the SOTIF focuses mainly on foreseeable misuse of the system and performance

limitations of the system, e.g., related to perception system abilities. One can easily imagine a

dangerous situation that is not related to these conditions; for instance, a vehicle stopped in a

traffic jam can be hit from behind by another road user.

2.5.3. Nominal Safety

Scenarios, in which the driver of a vehicle involved in a dangerous situation cannot do anything

to prevent this situation or a subsequent collision are relatively common. A described scenario in

which a vehicle stopped behind other road users (e.g., waiting for a green light at an intersection

or in a traffic jam) is the subject of a rear-end collision is a good example of such a situation. Rear-

end crashes are, in fact, the most common type of collisions in the United States, constituting

29% of reported traffic accidents [123], and in 80-90% of such cases, the front vehicle is, in fact,

stationary according to naturalistic driving studies [99, 13]. Since the front vehicle is usually

stopped due to other vehicles in front of it or a front cross-traffic [13], it cannot perform any

maneuver that could prevent the accident.

It is unclear how to set safety goals for AD vehicles considering these facts. Many sources

suggest setting goals for such systems in terms of accident or fatality rates, where often a fraction

of the human driver’s fatality rate is suggested as a goal [41, 73, 156]. However, as a very

significant subset of collisions is unpreventable as the discussed rear-end collision case suggests,

such safety goals may be unfeasible as long as human-driven vehicles constitute the majority of

road traffic.

However, simply setting safety goals based on accident or fatality rates close to those observed

in the case of human drivers is not a socially acceptable solution - as analysis of a case of a fatal

accident involving the Uber autonomous vehicle in 2018 suggests [138]. Despite the presence of

a human safety driver in the company’s AD cars and the overall lower accident rate involving

AD vehicles [147] compared to human-driven ones, the lack of a proper reaction of the vehicle

to a dangerous situation led to societal outrage and eventually resulted in Uber resigning from

the internal development of AD technology [118].

Wojciech Turlej

32 2.5. Safety

The main conclusion that can be drawn from the above consideration is the fact that setting

safety goals for an AD system with higher levels of autonomy is a very difficult task, as the context

of dangerous situations plays a significant role in societal acceptance, and avoiding collisions

altogether is infeasible, as driving in realistic traffic is always burdened with a relatively significant

collision risk.

In approaching the problem of setting safety goals, a definition of safety proposed in ISO

26262 may be considered - the standard defines safety as "the absence of unreasonable risk",

where the unreasonable risk is "a risk judged to be unacceptable in a certain context according

to valid societal moral complex".

Several influential works that attempt to formally define acceptable risk in the context of AD

systems have been published in recent years.

Shalev-Shwartz et al. proposed a safety framework based on a notion of responsibility, named

"Responsibility-Sensitive Safety" (RSS) [157]. Authors of the framework note that all traffic

participants follow certain rules - both written (e.g., traffic laws) and unwritten (e.g., avoiding

close cut-in maneuvers or otherwise reckless but lawful driving). Human drivers routinely plan

their movements based on the assumption that others will follow these rules.

The framework attempts to formalize these rules and define reasonable assumptions related

to the worst-case behavior of other road users. With clear assumptions regarding reasonably

worst-case behavior of other road users and accurate perception of the environment, one may

plan a motion that guarantees a collision-free movement as long as all other vehicles in fact follow

these rules. This allows us to define an acceptable residual risk as a risk of hazards related to

other vehicles performing unreasonable and unsafe maneuvers. As long as the rules are reasonably

defined and align with societal views on what constitutes safe driving, in all collision cases, the

responsibility for the accident can be clearly assigned to the vehicle that failed to follow them,

that is, was driving recklessly.

The considerations regarding what constitutes proper or safe behavior of a vehicle are often

discussed with the assumption that even a completely functionally safe vehicle in the absence

of internal faults or perception errors may make incorrect decisions. To distinguish these con-

siderations from a Functional Safety domain, authors of the RSS framework propose to refer to

them as a Nominal safety domain. To be precise, the authors state that "Nominal safety is the

concern whether AV is making safe logical decisions assuming that the HW and SW systems

are operating error-free (i.e., are functionally safe)" [157], with AV denoting the Autonomous

Vehicle, HW - hardware, and SW - software.

Similar concepts were used in the definition of a "Safety Force Field" safety framework

proposed by Nvidia [128]. The framework also focuses on the definition of reasonable assumptions

about the worst-case behavior of other road users and demonstrates how constraints for driving

policies can be derived from them.

Wojciech Turlej

2.5. Safety 33

Research and discussions on the topic of nominal safety and formalization of reasonable ex-

pectations regarding the behavior of other road users led to the creation of a recently published

IEEE 2846-2022 standard (IEEE Standard for Assumptions in Safety-Related Models for Au-

tomated Driving System) [63]. The standard introduces a minimum set of assumptions about

reasonably foreseeable behaviors of other road users that can be used for setting the requirements,

test scenarios, and safety goals for the AD systems. The standard proposes to formally define,

e.g., expectations regarding reaction times of other road users or maximum braking deceleration

that they are expected to exhibit in various situations. The expectations can be defined using

a series of parameters that describe them numerically (e.g., acceleration value or response time

value), but the standard does not define the values themselves. The authors of the standard

provide, however, an extensive literature review that can be used as supplementary material for

setting these values.

It should be noted that despite active research efforts and the multitude of proposals regarding

the design and safety of driving policies, nominal safety remains a relatively new research area,

and there is no simple consensus regarding the development and evaluation of highly autonomous

AD systems.

Wojciech Turlej

34 2.5. Safety

Wojciech Turlej

3. Multiple Hypothesis Trajectory Planning

Motion planning for Autonomous Driving (AD) applications is a very difficult task, mainly

due to limited information about both the present and future state of the vehicle’s surroundings.

It is rarely possible to predict the future behaviors of other road users in a precise way. In

many situations, more than one plausible hypothesis regarding future behavior can be formulated,

posing a significant challenge to the planning algorithms. Dangerous situations on the road are

particularly problematic; drivers often react to atypical events in an unpredictable way. As an

example, typical reactions to the sudden appearance of an obstacle (e.g., a wild animal jumping

onto the road in front of the vehicle) may include braking or steering maneuvers, and it is rarely

clear which one will be used by other drivers. To ensure safety in such a situation, planning the

emergency maneuvers of an AD vehicle would have to take into account both possibilities.

Unfortunately, this is not the only uncertainty that has a significant impact on planning

algorithms. While vehicles with AD capabilities are typically equipped with a powerful set of

sensors, such as radars and cameras, all perception systems have limitations, both in terms

of performance and detection range. Furthermore, significant parts of the environment can be

occluded for the sensors by other road users, elements of the road infrastructure, as well as

vegetation or buildings in proximity of the road, which are particularly problematic at road

intersections.

In this chapter, I present a vehicle motion planning method designed to plan a safe motion

of an AD vehicle, taking into account various uncertainties related to the future state of other

road users. In particular, the presented method can be used to plan a motion taking into account

two or more hypotheses related to the future state of the vehicle surroundings, as well as to

implement fail-safe planning, in which worst-case assumptions regarding the behavior of other

road users are taken into account.

3.1. Introduction and Motivation

Predicting the motion of other road users and planning the motion of a vehicle are both large

and active research areas. While many approaches have already been proposed in both fields,

they remain very difficult problems, with new methods constantly being developed. It should

be noted that predicting future trajectories of other road users is outside of the scope of this

36 3.1. Introduction and Motivation

thesis; nevertheless, the proposed method may be used in conjunction with various prediction

approaches, and thus I briefly review existing prediction and planning methods.

3.1.1. Motion Planning

Motion planning is one of the fundamental problems in robotics, and a large number of

efficient methods have already been proposed to control wheeled robots that navigate static

environments [191, 197]. Successful use of various search algorithms, such as A* [53], D* [166],

or Rapidly-exploring random trees (RRT) [96], has been demonstrated numerous times in the

context of wheeled robots path planning.

A major obstacle in the application of such algorithms to the problem of vehicle motion

planning is the fact that the environment in which an AD vehicle has to operate is usually

only partially observable, dynamic, and uncertain in terms of both current and future state.

Navigation in such environments requires a deep understanding and consideration of the vehicle’s

surroundings, interactions between road users, and possible future movements of other vehicles

in the proximity of the ego vehicle.

One of the methods that has been shown to achieve satisfactory performance in the task of

motion planning in such environments is Reinforcement Learning (RL) [132]. RL-based methods

are often used for AD applications, as RL-based policies are known to produce complex behaviors,

demonstrating skills such as long-term strategic planning, behavior prediction, exploration, and

navigation in partially observable environments [12].

One significant downside of RL-based driving policies is the lack of transparency, which is

especially problematic in the context of proving the safety of planned behaviors. To address

this issue, various methods were proposed to constrain the RL policies [15, 113]. Still, to ensure

robustness in particularly difficult and severe situations, Machine Learning (ML) methods are

often combined with more transparent methods, such as Model Predictive Control (MPC), or

search algorithms [83]. This combination is often performed by splitting the planning task into

two subtasks: high-level decision making and low-level trajectory generation [95, 132]. In such

a setup, an ML-based policy typically is responsible for choosing a high-level maneuver to be

performed, and another method, such as MPC is used to plan the trajectory for a safe execution

of this maneuver. Other ways to combine ML-based planning with a more transparent method

may include using ML for typical situations and switching to another method when the situation

is considered uncertain or dangerous [158, 157, 83].

The use of non-ML algorithms, such as MPC or RTT, for planning in difficult situations

provides transparency beneficial from the perspective of ADAD/AD system’s safety analysis, but

comes with a significant downside: most of such classic approaches require explicit constraints

that would take into account plausible future behaviors of other road users. The generation of

such constraints is typically based on various behavior and trajectory prediction algorithms,

increasing the complexity of the entire system.

Wojciech Turlej

3.1. Introduction and Motivation 37

However, while systems based solely on ML methods may be able to account for possible

behaviors of other road users in an implicit way, the safety of such systems is difficult to assess

and prove. Utilization of a separate prediction and/or constraints generation module increases

the transparency of the system’s architecture and helps to evaluate the expected performance of

the entire system.

In the next subsections, I will describe existing prediction approaches that could be used for

the constraints generation for planning purposes and analyze existing planning solutions.

3.1.2. Prediction Methods

Vehicle behavior prediction modules are most commonly used to provide input to various

Autonomous Driving and Advanced Driver Assistance Systems (ADAS) features, such as Au-

tonomous Emergency Braking (AEB) or Adaptive Cruise Control (ACC). In the case of the

planning task, information about the plausible future behavior of other road users can be used

to generate constraints for the planning algorithms, serve as an auxiliary input to ML-based

driving policies, or be utilized to validate generated trajectories and detect dangerous situations.

In the literature, many prediction approaches have been proposed, varying in both their

interfaces and used methods. Existing methods can be categorized in several ways - survey [121]

presents three of the most common categorization approaches, classifying deep learning prediction

methods based on their features listed below.

◦ Input representation. The input type has a significant impact on the complexity

and performance of the prediction. While it is common to use inputs that include

information about road infrastructure and some representation of other road users, the

way these are represented can vary significantly. Following the categorization used in

[121], one can specify a few main input representations: state history of one or more

road users in proximity of the ego vehicle, bird-eye view rendering of the scene, and raw

sensor data input. Choice of the input type impacts the architecture of the module -

for instance, bird-eye-view renderings are most commonly processed using convolutional

neural networks, while objects’ state histories will likely utilize other methods, such as

neural networks with inputs based on transformer encoders.

◦ Output type. The type of output information is a very natural way to categorize predic-

tion methods, as it is one of the main factors in choosing the prediction method for planning

applications. The authors of [121] specify four main output types: Maneuver Intention,

Unimodal Trajectory, Multimodal Trajectory, and Occupancy Map. A similar distinction

was proposed in [20], where prediction methods were divided into categories such as single

future behavior, countable and uncountable sets of future behaviors, and probability

Wojciech Turlej

38 3.1. Introduction and Motivation

distribution of future behaviors. In a more general way, prediction methods can be cate-

gorized on the basis of a prediction horizon (e.g., into short-term and long-term prediction).

◦ Algorithms utilized for prediction. Categorizing approaches based on the utilized

methodology itself is another natural way to present existing approaches. The mentioned

survey [121] focuses mainly on ML-based methods, categorizing them according to the

type of neural network utilized for the prediction task, but other categorizations are

also used, e.g.,[100] splits prediction approaches into physics-based, maneuver-based, and

interaction-aware. This categorization is also related to the prediction horizon - with

simple physics-based methods being suitable for short-term predictions and long-term

trajectory forecasts requiring approaches aware of interactions between road users.

From the context of the planning method that will utilize a behavior prediction, the output

structure of the prediction module will have the largest impact on the planning approach, and

thus I will focus on the output-type-based categorization, with additional remarks on the input

type as well as utilized methods.

A minimal input to the prediction module consists of a state estimation of one or more vehicles

in the proximity of the ego vehicle. While the information provided in the state is typically very

limited, for example, to the position orientation and velocity of a vehicle, it still can be used to

generate meaningful short-term predictions. This type of prediction is commonly used in vehicle

tracking and sensor fusion algorithms [150].

Accurate predictions in a longer time horizon require additional information about the con-

text, both in terms of the state of surrounding vehicles, as well as lane markers and/or road

geometry. Information about the geometry of the road is often provided in the form of a two-

dimensional map, for example, in [133] a 2D binary mask is used as input to the convolutional

layers of the prediction network. The authors of [148] also utilized grid-like inputs representing a

bird-eye view of the ego’s surroundings but with additional information about past trajectories

of other vehicles and multiple channels used for encoding various features of the static environ-

ment. This type of input is often preprocessed using specialized neural networks or convolutional

layers - e.g., in [46] the authors proposed providing the context description in a form of latent

encoding - a network based on GAN architecture is trained alongside the pedestrian’s trajectory

prediction network to encode the description of the environment.

Although input type and processing techniques vary significantly between methods, we can

categorize prediction approaches on the basis of the output they produce with relative ease. Since

the context for introducing prediction methods is their use for planning constraints generation,

I will assign them to five categories: short-term prediction, maneuver recognition, unimodal

trajectory prediction and multimodal prediction, and worst-case prediction.

Wojciech Turlej

3.1. Introduction and Motivation 39

◦ Short-term prediction finds many applications in the ADAS and AD systems. One of

the most common ones can be found in sensor fusion and object tracking algorithms, which

often utilize variations of the Kalman Filter [115], which uses a short-term prediction step

[151] to update estimations of objects’ states.

Short-term prediction is often based on simple mathematical models that assume straight

motion of the vehicles (e.g. Constant Velocity and Constant Acceleration models), or a

constant turn rate (Constant Turn Rate and Velocity, Constant Turn Rate and Acceleration

models) [71, 143]. The idea of using simple models with constant control inputs can also

be extended to take into account the geometry of vehicles, for example, by using a bicycle

kinematic model [142], which allows the motion of a vehicle to be simulated based on its

steering angle and velocity. The bicycle model can be used for a short-term prediction using

assumptions regarding its control values, examples of which are Constant Steering Angle

and Velocity or Constant Steering Angle and Acceleration models.

In certain applications, the use of more advanced dynamic models may be beneficial for

the prediction problem. Dynamic models were, for example, used in threat assessment

applications [19, 38], as well as in planning [139].

As the models used for short-term prediction typically do not take the road geometry nor

interaction with other road users into account for motion calculation, their application

to path planning problems is, however, limited, as they may fail to provide an accurate

prediction in complex road situations.

◦ Maneuver recognition. The behavior of road users, especially vehicle drivers, typically

consists of distinct maneuvers, such as lane changes, overtaking maneuvers, braking, or

lane following. Since maneuvers are performed to fulfill certain intentions (e.g., changing

the lane), one can often assume that the vehicle driver that started performing a maneuver

will continue executing a predictable series of operations typical for this maneuver. For

this reason, recognition of a currently executed maneuver as well as early detection of an

intention to perform a given maneuver can be used to relatively reliably predict future

trajectories of other vehicles.

Various maneuver recognition algorithms were proposed in the literature, including rule-

based heuristics [48], Support Vector Machines [93], and Convolutional Neural Networks

[97]. While the classification of other vehicles’ maneuvers may be useful for Adaptive Cruise

Control (ACC) and Autonomous Emergency Braking (AEB) algorithms, lack of the details

about their expected or plausible trajectories limits their usage in trajectory planning

algorithms.

◦ Unimodal trajectory prediction can be used to provide a single trajectory that is

deemed the most plausible for a given road user.

Wojciech Turlej

40 3.1. Introduction and Motivation

Unimodal trajectory prediction methods provide clear information about the most plausible

trajectory, making them easy to use in planning systems, but fail to capture less plausible

behaviors of other road users, potentially making the planning methods based on such

predictions prone to dangerous behaviors if a road user executes a less likely maneuver.

◦ Multimodal prediction represents the distribution of plausible behaviors of other road

users, either as a list of possible trajectories and their probabilities, the distribution of

plausible maneuvers, or plausible future states as a function of time, for example, in the

form of an occupancy grid.

Multimodal prediction approaches are typically based on ML methods, with a particular

prevalence of Long-Short Term Memory (LSTM) [58] cells use, especially for a longer-

term prediction. One of the LSTM-based approaches has been presented in [32], where

the authors prepare plausible maneuver sequences and use a neural network with LSTM

cells to estimate the probability of the occurrence of each maneuver. The authors of [77]

demonstrated the use of a Convolutional Neural Network (CNN) for multimodal prediction

in the absence of a detailed map of the environment, using only LIDAR-based perception

of a scene for this task.

Lee et al. [98] utilize a Conditional Variational Auto-Encoder (CVAE) [80, 81] to generate

multiple samples of plausible trajectories, which are ranked during the training by a sepa-

rate recurrent neural network. CVAE is also utilized in [189], where future trajectories of

pixels in arbitrary videos are predicted from a single image.

Non-recurrent convolutional neural networks are also commonly used for the task of mul-

timodal prediction. As an example, in [30] authors encoded the scene context in the form

of a multi-channel image and used a CNN to predict multiple plausible trajectories and

estimate their respective probabilities.

For many motion planning approaches, including one presented in this chapter, representing

plausible future positions of other road users in the form of an occupancy grid may con-

stitute a more convenient interface. One of the exemplary approaches that uses grid-based

output was presented in [148], where the authors used a rasterized scene representation with

a recurrent convolutional neural network to predict the motion of other vehicles, producing

a grid with occupancy probabilities.

3.1.3. Motivation and General Idea

Planning a vehicle motion in a traffic environment inherently requires taking into account

possible future behaviors of other road users, either implicitly, as in Reinforcement-Learning-

based planning, or explicitly, e.g., using the trajectory prediction as input. The behavior of other

Wojciech Turlej

3.1. Introduction and Motivation 41

road users rarely can be predicted with perfect accuracy - especially since typically more than

one possible behavior hypothesis can be formulated.

Various planning methods often approach this problem using only the most plausible hypoth-

esis as input. This approach, however, limits and requires adding conservative safety precautions

to ensure that accidents can be avoided if another road user will perform unexpected maneuvers.

Figure 3.1. General idea of the multiple hypotheses planning algorithm. Mul-
tiple trajectories are planned simultaneously based on different hypotheses. The
problem is formulated in a way that enforces that the trajectories remain iden-
tical for a certain duration.

The Multiple Hypothesis Planning algorithms described in this chapter are intended to al-

leviate these issues, allowing to plan safe and efficient trajectories in situations, where multiple

plausible hypotheses regarding the behavior of other road users can be formulated. The algo-

rithm does so by planning multiple trajectories based on different hypotheses simultaneously.

Planned trajectories are constrained to overlap in a certain initial time horizon, allowing one

to switch between executed trajectories depending on future observations performed during this

time horizon.

An example of a possible application of the proposed algorithm is presented in Fig. 3.1, where

the ego vehicle (that will execute the planned trajectories) merges into the traffic on a highway.

Another road user is expected to change the lane to the left based on observation (e.g., it may

be expressing this intention with indicator lights). Two main hypotheses can be formulated with

regard to its near future behavior: either it will change the lane successfully, enabling the ego

to safely merge into the traffic (Hypothesis 1), or it will fail to do so, e.g., due to an unsafe

situation on the adjacent lane (Hypothesis 2). Based on these two hypotheses, two trajectories

are planned: one in which Hypothesis 1 is assumed to be true, and the ego can perform the lane

change (Trajectory A), and one in which the other hypothesis is taken into account and the ego

performs braking, staying on its current lane (Trajectory B). Trajectories overlap in a certain

Wojciech Turlej

42 3.1. Introduction and Motivation

time horizon, allowing for a postponed choice between trajectories to be executed until more

information is gathered.

Note that the proposed trajectory generation method can be used to formulate a control

scheme in which the trajectories are re-planned after execution of the common part of trajectories,

potentially taking into account new or updated hypotheses.

Figure 3.2. Application of multiple hypotheses planning to a Fail Safe Plan-
ning problem. Ego vehicle follows a nominal trajectory, that assumes the most
plausible behavior of other road users. At the same time, a fail-safe trajectory
is planned based on a worst-case hypothesis regarding the behavior of another
vehicle. Replanning in periods shorter than th guarantees the existence of a
collision-free trajectory under worst-case assumptions, as previously planned
fail-safe trajectory can always be executed to avoid accidents.

One of the important applications of the proposed method is Fail-Safe Motion Planning [116].

In this control scheme, one trajectory, denoted the nominal trajectory, is planned based on the

most plausible behavior of other road users. At the same time, another trajectory (a fail-safe

trajectory) that branches from the nominal trajectory at a certain time t = th is planned based

on certain worst-case assumptions regarding the future behavior of other road users. The fail-safe

trajectory utilizes spatio-temporal constraints that can be created based on all possible behaviors

of other road users in such a way, that no overlap exists between the position of ego and the

other vehicle, no matter what behavior will be executed by the other road user.

Fail-safe motion planning can be executed in a loop, where trajectories are re-planned during

the period t ∈ [0; th], ensuring a fail-safe trajectory always exists. As long as the behavior of other

road users is within the derived worst-case constraints, a previously planned fail-safe trajectory

can always be executed to avoid accidents.

The planning method proposed in this work extends existing fail-safe planning methods in a

number of ways, as described in 3.1.4. Most notably, the simultaneous generation of nominal and

fail-safe trajectories allows finding more conservative nominal trajectories in dangerous situations

to enable the generation of fail-safe ones, instead of enforcing overly cautious emergency execution

of a previously planned fail-safe trajectory.

Wojciech Turlej

3.1. Introduction and Motivation 43

3.1.4. Contributions

While a wide selection of planning methods has already been proposed for applications in

ADAS and AD systems, finding trajectories that would produce reliable behaviors in potentially

difficult situations taking into account various hypotheses regarding the state of the environment

and the future behavior of other road users remains a difficult problem. While frameworks such

as Fail-Safe Motion Planning [20] provide a transparent way of planning with safety guarantees,

further work is needed to extend their usefulness, allowing the generation of versatile nominal

trajectories that consider possible risks, generation of trajectories in situations where multiple

hypotheses with similar plausibility must be considered, and providing a convenient way of tuning

comfort/safety trade-offs in generated motions.

Taking into account the described limitations of existing methods, the main contributions of

the approaches presented in this chapter are listed below.

◦ Proposal of the planning architecture, capable of taking into account various hypotheses

regarding future behaviors of other road users, as well as the current state of the environ-

ment surrounding the ego vehicle. The proposed method generates multiple trajectories

that overlap in a defined initial time period, allowing us to gather additional information

before adhering to a trajectory based on one of the plausible hypotheses.

◦ One of the possible applications of the proposed method is fail-safe planning, in which a

nominal trajectory is planned based on a most plausible hypothesis, and a fail-safe trajec-

tory is planned based on certain worst-case assumptions. In contrast to existing methods,

the proposed method applied to the fail-safe planning problem is capable of producing a

nominal trajectory while taking into account the need for the generation of fail-safe tra-

jectories as well. As a result, generated nominal trajectories naturally display a notion of

cautiousness, i.e. they are altered compared to the nominal trajectory optimal in terms

of comfort and/or efficiency in such a way, that enables safe execution of an emergency

maneuver if a worst-case hypothesis turns out to be true. This approach extends to sev-

eral situations in which fail-safe planning can be applied without unnecessary execution of

emergency maneuvers.

◦ Contrary to the existing methods that plan trajectories related to different hypotheses

either independently from each other or sequentially one after another, trajectories planned

using the proposed method are planned simultaneously, affecting each other. While each

trajectory fulfills different goals and/or utilizes different constraints, they all must overlap in

a certain time horizon and different comfort/efficiency weights can be assigned to particular

trajectories in order to fulfill this objective. For instance, one can decide to sacrifice the

efficiency of a trajectory based on a least plausible hypothesis to ensure the high efficiency

of the trajectory that is most likely to be executed.

Wojciech Turlej

44 3.2. Problem Formulation

Parts of the approach presented in this chapter are based on my previous work: the patent

application [180] and the publication [181]. The approaches presented in these works were im-

proved in a number of ways, including but not limited to new constraint formulation methods,

application to situations with multiple plausible hypotheses, and new evaluation scenarios.

3.2. Problem Formulation

In this chapter, the Multiple Hypothesis Planning method is presented. The described method

is intended to be used to generate control trajectories to be executed by a low-level vehicle control

system that performs an autonomous driving task.

The method produces a set Tp of ntraj control trajectories, where each control trajectory

T i(qi, t) for i = i..ntraj is described with a kpar-dimensional vector qi ∈ Rkpar for and represents

certain control values of the ego vehicle in a time frame t ∈ [t0, tf] (for further considerations, it

will be assumed that t0 is equal to 0). Generated trajectories overlap in an initial period of time

t ∈ [0, th], where th is the arbitrarily chosen value 0 ≤ th ≤ tf. Due to this initial overlap, either

trajectory can be safely executed by the ego vehicle during this time period.

3.2.1. Assumptions

Approaches presented in this chapter, unless otherwise stated, follow a set of general assump-

tions, listed below.

◦ The state of the ego vehicle is known, e.g., thanks to the availability of a precise host state

estimation subsystem in the vehicle.

◦ An accurate state estimation of other vehicles is available in the system, e.g., as an output

of a perception system with a set of precise sensors. Perception and tracking problems, as

well as estimation of the perception systems’ performance, are beyond the scope of this

thesis, although certain aspects of the sensor modeling and the impact of perception errors

on the planning systems are described in Chapter 4.

◦ Information about the road geometry is available, e.g., in the form of an HD map or a

perception system that is capable of providing a precise estimation of the lane markers’

geometry based on camera-based sensors.

◦ Ego vehicle is equipped with a low-level control system that is capable of precise execution

of control commands e.g., using feedback control systems.

◦ Environmental conditions, in combination with control constraints used in the planning

approach, do not have a significant impact on the execution of the planned trajectories,

that is, constraints are conservative enough to guarantee the safe execution of the planned

trajectories in all intended environmental conditions.

Wojciech Turlej

3.2. Problem Formulation 45

◦ Vertical road profiles do not have an impact on the execution of planned trajectories; i.e.,

vehicle performance is sufficient to ensure that the planned trajectories will be executed

correctly on all roads the system is intended to be used in, independently of the road profile.

With this assumption, the vertical profile of the road is neglected in the described planning

method.

◦ The high-level route required to be taken by the ego vehicle is either known (e.g., as an

output from a high-level route planning module) or irrelevant to the problem (e.g. when

the method is used for highway drive assist applications, with the assumption that the ego

should follow current road).

3.2.2. Static Environment

Planning a long-term trajectory of the vehicle usually requires knowledge of the geometry of

the road and static obstacles that may limit the drivable area.

Various formats for representing road networks have already been proposed, most notably

OpenStreetMap [50] commonly used in crowd-sourced map creation, and OpenDrive format [37]

that enables the detailed representation of road features suitable for automotive applications.

To enable a transparent description of the method presented in this chapter, I introduce a

set of definitions needed to represent a road network for planning purposes.

Lane fragment is an atomic section of a road represented by a centerline and lane fragment

boundaries. Lane fragments may represent marked sections of the road, for example, a highway

lane enclosed by lane markers or logical connections between road lanes, for example, geometry

that encompasses the logical driving path at an intersection. Centerline of the lane fragment

is a curve that represents a logical driving path related to this lane fragment. Lane fragment

boundaries define an area relevant to a given lane fragment, for example, an area between the

relevant lane markers.

Driving corridor is a road feature composed of a set of lane fragments that can be used by

a vehicle to fulfill a given driving task (e.g., following the current lane and driving straight at

an upcoming intersection, or taking a highway exit). Corridor centerline is a curve composed of

centerlines of lane fragments that constitute the corridor, and corridor area is a sum of areas

defined by its lane fragment boundaries. Note that a single-lane fragment may be used in several

driving corridors.

Intended driving corridor is a driving corridor that is needed to perform current driving tasks.

Available driving area is a sum of corridor areas of the corridors that can be legally used by

the ego vehicle in the driving task (including the intended driving corridor). Note that this may

include corridors that are irrelevant for fulfilling the current driving tasks (but may be used, e.g.,

for the execution of emergency maneuvers).

Wojciech Turlej

46 3.2. Problem Formulation

Driving corridor

Corridor centerline

Ego vehicle

Intended driving corridor

Available driving area
(includes intended corridor)

Lane marker

Road boundary
Road area

Non-drivable area

Figure 3.3. Road model used in this chapter. Road area is composed of pos-
sibly overlapping driving corridors, where each driving corridor represents a
logical set of subsequent lane sections that can be used to fulfill a given driving
task.

Non-drivable area is a sum of areas that cannot be legally accessed by the ego vehicle, e.g.,

an area of the opposite traffic lane behind a solid line. Non-drivable areas may also include areas

of the ego surrounding that are physically inaccessible by the vehicle (e.g., areas occupied by

static obstacles, and areas behind road barriers).

Road representation composed of the road features listed above can be created based on simple

lane marker geometries (e.g., output from the camera-based lane markers detection system), or

more complex maps, such as automotive grade high-definition maps [109].

Note that the definition of the intended driving corridor allows one to encode the current

high-level driving task. The task may represent a simple intention constant for a given ADAS

system, for example, the lane-following task of a lane-centering ADAS feature, as well as the

output of advanced autonomous driving policies. The intended driving corridor can also be used

to represent a desirable driving path chosen by a driving policy, as shown in Fig. 3.4, making

Wojciech Turlej

3.2. Problem Formulation 47

Ego vehicle Corridor centerline

Intended driving corridor

Available driving area
(includes intended corridor)

Figure 3.4. An example showing how the intended driving corridor can be
used to specify a lane change maneuver. The corridor area specifies an area
suitable for performing the maneuver, while the corridor centerline defines the
desired lane change path.

the proposed representation a base for a viable interface between a high-level behavior planning

module and the trajectory generation subsystem.

3.2.3. Dynamic Constraints

The main application of the proposed method is planning efficient ego control trajectories

based on a set {Hi}i=1..ntraj
of ntraj hypotheses regarding the current and / or future states of

the environment. Hypotheses may be formulated, for example, on the basis of the output of a

prediction module or on the basis of an analysis of worst-case future behaviors of other road

users. For further consideration, I will assume that the hypotheses also contain a description of

the static environment relevant for planning. While in the cases considered in further sections the

static environment is assumed to be known and identical in all hypotheses, proposed methods

can be also used if this is not the case - e.g., when alternative hypotheses can be formed with

regard to the static environment state based, e.g., on contradicting data from multiple redundant

sensors.

Depending on the output interface of the prediction method, each hypothesis Hi for i =

1..ntraj can be expressed as, or used to derive, an occupancy set Ri(t) for i = 1..ntraj, t ∈ [0, tf]

that represents areas of the environment that should be avoided by the ego due to the possible

presence of other vehicles in them according to this hypothesis. In other words, the occupancy set

Ri(t) represents an area of the environment, entering which would be dangerous if hypothesis Hi

proved true. The occupation sets can be used to derive state constraints used to plan each of the

trajectories T i(qi, t). The set of all occupancy sets used for planning is denoted {Rj}j=1..ntraj
.

The operation of the {Rj}j=1..ntraj
set generation based on the hypothesis set {Hi}i=1..ntraj

is denoted as a mapping:

Moccupancy : {Hi}i=1..ntraj
→ {Rj}j=1..ntraj

, (3.2.1)

Wojciech Turlej

48 3.2. Problem Formulation

implementation of which depends on the type of available hypotheses.

Trajectory T i(qi, t) generated based on hypothesis Hi fulfills constraints defined by an occu-

pancy set Ri(t) if the bounding box Box(qi, t) of an ego vehicle controlled according to trajectory

T i(qi, t) do not overlap with the constraint at any time, i.e.:

Ri(t) ∩ Box(qi, t) = ∅, ∀t ∈ [0, tf]. (3.2.2)

3.2.4. Control Trajectories

The method generates a set Tp of ntraj control trajectories that describe desired control values

ci(t) for i = 1..ntraj, t ∈ [0, tf] as a function of time. The control vector ci(t) related to the i-th

hypothesis is defined as follows:

ci(t) = [δi(t), ai(t)]
T , (3.2.3)

where δi(t) denotes the value of the vehicle’s steering angle and ai(t) the value of the acceleration

at time t according to the i-th trajectory.

Note that typically the desired control values described by a control trajectory Ti(qi, t) are not

used directly as input to vehicle actuators but serve as input to a low-level feedback controller

that controls steering torque/rate and throttle/brake control values. As a result, the steering

angle and acceleration ci(t) achieved by the ego at time t are not necessarily equal to the desired

control values T i(qi, t). Nevertheless, the problem of low-level control is beyond the scope of this

thesis, and for the purpose of further considerations, the desired control values are assumed to

be executed immediately, and thus ci(t) = T i(qi, t) ∀t ∈ [0, tf].

3.2.5. Vehicle Model

The relation between the control trajectory and the state of a vehicle can be modeled as a

differential equation of the following form:

ṡ(t) = f (s(t), c(t),pveh) , (3.2.4)

where s(t) is a state of the vehicle at a time t, c(t) denotes the control vector, and pveh the

vector of vehicle’s parameters, such as wheelbase, length and width (defined in further parts of

this section).

State vector s(t) utilized in the approach described in this chapter is defined as:

s = [x, y, ψ, v]T , (3.2.5)

where x and y describe the position of the vehicle’s Center of Mass (CoM) in a Cartesian coor-

dinates system (relative to a certain stationary reference frame (X,Y)), ψ denotes the vehicle’s

orientation in this system, and v its absolute speed.

Wojciech Turlej

3.2. Problem Formulation 49

A wide selection of dynamic and kinematic models was proposed for solving optimization-

based trajectory generation problems and Model Predictive Control (MPC) schemes. The choice

between lower-fidelity kinematic models and more accurate dynamic ones remains relatively

difficult in the design of such algorithms, with a number of trade-offs to be considered. Kinematic

models tend to be less computationally expensive but may fail to capture complex phenomena

related to tire friction forces. Dynamic models, while more accurate, often struggle with accuracy

and robustness at low speeds, e.g., tire force models often estimate tire slip angle using a velocity

in the denominator, leading to singularities in stop-and-go scenarios.

To provide insight into the practical differences between these models, the authors of [85]

compared the performance of dynamic and static models in a set of experiments, including test

drives in the vehicle controlled by the MPC control scheme with both types of models. Their

conclusions suggest that the use of the kinematic model does not impact the algorithm’s per-

formance in a significant manner while maintaining a significantly lower computation overhead.

Taking these results into account, I decided to use a kinematic vehicle model to be used in the

design of the described method. In particular, a commonly used Bicycle Kinematic Model [141]

will be utilized for both the constraints computation and trajectory generation tasks.

Y

COM

y

x X

ψ

δ
β

lr

lf

Figure 3.5. Bicycle model of the vehicle used for trajectory planning and
constraints generation.

The model is defined with a set of equations:

ẋ = v cos (ψ + β (δ))

ẏ = v sin (ψ + β (δ))

ψ̇ =
v

lr
sin (β (δ))

v̇ = a,

(3.2.6)

where lr is the distance between the CoM of the vehicle and the center of its rear axis, and

β(δ) is the angle between the longitudinal axis of the vehicle and its velocity vector. β can be

calculated as:

Wojciech Turlej

50 3.3. Constraints Generation

β(δ) = tan−1

(
lr

lf + lr
tan (δ)

)
, (3.2.7)

where lf denotes the distance between the vehicle’s front axis and CoM. Both lr and lf are

included in the parameters vector pveh.

3.3. Constraints Generation

A main goal that each of the trajectories generated by the described method needs to fulfill

is to be collision-free in worst-case scenarios described by their respective hypotheses. This is

facilitated by the introduction of spatial and spatiotemporal constraints that ensure no collisions

with static obstacles (e.g., road barriers) nor dynamic ones (e.g., other vehicles) may happen

assuming the given hypothesis is true.

As described in section 3.2.3, the state constraints used for the generation of i-th control

trajectory are determined based on an occupancy set Ri(t) that describes areas potentially

occupied by other road users according to the respective hypothesis Hi.

The formation of constraints may vary depending on the type of hypotheses provided by a

prediction algorithm. In this section, the formation and utilization of two types of hypotheses

will be presented: one related to the worst-case prediction that can be used for fail-safe planning

approaches and one related to several plausible driving hypotheses, in which other vehicles are

expected to fulfill more restrictive limitations, such as driving within a certain lane.

3.3.1. Worst-case Occupancy Set

The worst-case occupancy set is intended to represent the area reachable by other vehicles

that do not necessarily adhere to traffic laws. Planning and following an ego’s state trajectory

in which its area does not overlap with such a set ensures a collision-free resolution of dangerous

situations that may incorporate erratic driving of other vehicles (e.g., executed by intoxicated

drivers) or sudden emergency maneuvers (such as severe braking and steering reaction to another

dangerous event). In other words, a worst-case occupancy set Rwc(t) for t ∈ [0, tf] is calculated

based on the hypothesis Hwc that other traffic participants can apply arbitrary control values

δtp ∈ [δtpmin , δtpmax] and atp ∈ [atpmin , atpmax], where δtp and atp are the steering angle and

acceleration of other traffic participants, respectively, while δtpmin , δtpmax , atpmin , atpmax are the

parameters that approximate their extreme values.

In the following section, calculation of a worst-case occupancy set for a single vehicle is pre-

sented. Note that a complete occupancy set used for the trajectory generation can be calculated

as a sum of occupancy sets of all the vehicles in the ego’s proximity.

Wojciech Turlej

3.3. Constraints Generation 51

The derivation of the worst-case occupancy set is based on simulations of another vehicle’s

behavior under various plausible control inputs. To allow fast execution of the proposed algo-

rithm, the occupancy set is approximated as a convex hull of the areas occupied by the vehicle

under several plausible control trajectories.

Initial position
of other vehicle

Occupancy set at
t=tf (convex hull)

Occupancy
set at t=t2

Vehicle's bounding
boxes at time t=tf

Occupancy
set at t=t1

Figure 3.6. Generation of the worst-case occupancy set as a convex hull over
extreme (and intermediate) occupancy polygons of a vehicle.

In particular, another vehicle’s response to all permutations of constant extreme control,

values is considered to determine the extreme positions of the vehicle. Additionally, to provide

a better approximation of the occupancy set’s boundaries, response to constant intermediate

control values can also be considered. Overall, a set of relevant plausible (including extreme) state

trajectories of a vehicle described by a parameter vector pveh,tp with an initial state stp(0) = s0

is denoted Spt and can be defined as:

Spt(Cδ, Ca, s0, t) = {stp(δtp, atp, s0,pveh,tp, t)}∀(δtp,atp):δtp∈Cδ,atp∈Ca , (3.3.1)

where each state trajectory stp ∈ Spt is generated through a simulation of the response of the

kinematic model (3.2.6) to all combinations of the constant control values (δtp, atp) : δtp ∈
Cδ, atp ∈ Ca, where Cδ is a set of extreme and intermediate plausible steering angles, and Ca is a

set of extreme and intermediate plausible accelerations.

The occupancy set Rwc(t), t ∈ [0, tf] is then calculated as a convex hull:

Rwc(Cδ, Ca, s0, t) = Hull
(
{Box(s(t))}∀s∈Spt

)
(3.3.2)

over the vehicle’s bounding box polygons at time t ∈ [0, tf].

However, the approach presented in (3.3.2) has one significant disadvantage: over longer

time horizons tf, large values of extreme steering angles δtpmin , δtpmax may result in severe over-

approximations of occupancy sets. To improve this, the following approach can be used instead:

Wojciech Turlej

52 3.3. Constraints Generation

Rwc(Cδ, Ca, s0, t) =
|Cδ|−1⋃
i=1

Hull
({

Box
(
stp(δtpi

, atp, s0,pveh,tp, t)
)}

∀atp∈Ca

∪
{
Box

(
stp(δtpi+1

, atp, s0,pveh,tp, t)
)}

∀atp∈Ca

)
,

(3.3.3)

where δtpi
∈ Cδ, and δtp1

≤ δtp2
≤ ... ≤ δtp|Cδ |

. In this approach, a sum of convex hulls generated

over trajectories with pairs of consecutively large steering angles is used to achieve a closer

occupancy set approximation.

In practical implementation, the geometry of the occupancy set is approximated in nt evenly

spaced discrete-time instances ti for t = 1..nt, where t1 = 0, tnt = tf .

3.3.2. Reasonably Foreseeable Occupancy Set

Depending on the application of the proposed method, the use of strictly worst-case predic-

tions is not always desirable, as they tend to result in overly cautious driving behaviors. As noted

in [157], human drivers routinely take certain risks while driving, as it may not be feasible nor

productive to take precautions against all possible situations on the road. A good example of

this is driving on urban roads without physical separation between lanes with opposite traffic.

Assuming that any vehicle driving in the opposite lane could steer into oncoming traffic at any

time, could easily lead to the conclusion that no action of the ego vehicle can guarantee absolute

safety in many typical road situations.

For this reason, it is often useful to take additional, less conservative assumptions with regard

to the behavior of other road users, e.g., based on an expectation that all road users will respect

certain traffic laws or avoid blatantly reckless maneuvers. While such assumptions do not reflect

all possible traffic scenarios, they may help form a transparent and reasonable set of expectations

with respect to the outcomes of a given road situation. This notion is reflected in traffic rules

formalization efforts, which are currently an active research area [157, 129, 63].

A set of plausible future states of other road users can also be narrowed down based on various

behavior prediction methods 3.1.2. While choice and calibration of a particular prediction method

and safety framework are outside the scope of this thesis, in this section, I demonstrate occupancy

set creation examples in common road scenarios.

3.3.2.1. Lateral Constraints

In many road situations, it is reasonable to restrict the worst-case occupancy set to the

geometry of the road and/or a certain lane. An example of such a situation may be the merge-in

scenario presented in Fig. 3.7. One may intuitively assume that the behavior of another road

user in the near future will likely be limited to a lane change onto the Lane 2 or a braking on

a current lane.

Wojciech Turlej

3.3. Constraints Generation 53

Worst-case occupancy set (physics-based constraints)

Maneuver-based occupancy set (subset of the worst-case occupancy set)

Lane 1

Lane 2

Lane 3

Other road user

Ego vehicle

Figure 3.7. Example of a maneuver-based occupancy set (presented as a sum
of occupancy set geometries over a certain time period t ∈ [0, tf]). While the
other road user may perform a severe steering maneuver of moving onto the
Lane 3 or outside the road, for planning purposes it may be more reasonable
to assume, that its near-future movement will be limited only to Lane 1 and
Lane 2.

It is important to note that such assumptions introduce a risk to the system, as the other

vehicle is physically able to reach the Lane 3 as well, and thus there is a non-zero probability

that the planned ego’s trajectory may lead to a collision even if it does not intersect with the

calculated occupancy set. While this may seem concerning, a common approach to the ADAS

design is to allow for a certain level of risk, as long as it is reasonably low and justifiable [66].

Nevertheless, the assessment of whether the given assumption is reasonable may depend on local

driving culture, the design of other systems implemented in the vehicle, and thorough safety

analyses. While such assessments are outside of the scope of this thesis, constraints similar to

the one described above have the advantage of being relatively transparent and simple to assess -

one may, for example, estimate the probability that the maneuver-based occupancy set presented

in Fig. 3.7 will be in fact respected by other vehicles through an offline analysis of similar scenarios

in naturalistic trajectories datasets, such as the highD [88] or inD [18] datasets.

In the example presented in Fig. 3.7, the maneuver-based occupancy set that constrains the

behaviors of another road user to a lane following and a single left lane change can be derived as

an intersection of the worst-case occupancy set with driving corridors representing lanes 1 and

2.

More generally, assuming that a list of the driving corridors that may be used by other

vehicles is available (it can be generated by a maneuver prediction module, a safety framework

[157, 129], or a set of heuristics based on an observation of a static and dynamic environment),

Wojciech Turlej

54 3.3. Constraints Generation

the worst-case occupancy set can be restricted to these lanes (described as driving corridors) in

a following operation:

Rll(t) =

ncorr⋃
i=1

Rwc(t) ∩ τi for t ∈ [0, tf], (3.3.4)

where Rll(t) is the resulting lanes-limited occupancy set, Rwc(t) is the worst-case occupancy

set, derived as described in Section 3.3.1, ncorr is the number of relevant driving corridors, and

τ i is an i-th avaialble driving corridor.

3.3.2.2. Longitudinal Constraints

Limiting occupancy sets to particular lanes helps to form reasonable assumptions with regard

to future lateral positions of other vehicles, but it does not limit the possible longitudinal positions

of another vehicle (unless the driving corridor has limited length). Taking simple worst-case

assumptions with regard to these positions may result in unreasonably restrictive occupancy sets

in long prediction horizons tf.

Position of vehicle A at t=tf
assuming constant velocity

Occupancy set of
vehicle A at t=tf

Occupancy set of
vehicle B at t=tf

Position of vehicle B at t=tf
assuming constant velocity

Position of ego vehicle at t=tf
assuming constant velocity

Longitudinal
clearance

Figure 3.8. Single-lane example. Distance between vehicle A’s occupancy set
Rwc1(t) and vehicle B’s occupancy set Rwc2(t) is defined as a longitudinal
clearance sclear(t).

To illustrate this issue, a simple single-lane driving scenario presented in Fig. 3.8, in which the

ego drives between two other vehicles, can be considered. To analyze this type of scenario more

closely, I define a longitudinal clearance sclear(t) as a longitudinal distance between occupancy

sets Rwc1(t) and Rwc2(t) of front and rear vehicles at time t respectively, as shown in Fig. 3.8.

Assuming that the initial speed of all vehicles (including the ego) at t = 0 is equal (vego(0) =

v0, vA(0) = v0, vB(0) = v0, with vego, vA, vB denoting speed of the ego, vehicle A and vehicle

B respectively, and v0 being an arbitrary initial speed value), the longitudinal clearance can be

estimated as:

sclear = dAB(0)−
1

2
atpmax ∗ tf2 +

1

2
atpmin ∗ tf2, (3.3.5)

where dAB(0) denotes the initial distance between vehicles A and B.

Wojciech Turlej

3.3. Constraints Generation 55

Taking this into account, it is possible to find that in many relatively common scenarios, the

occupancy sets of nsv vehicles Rwci(t) for i = 1..nsv may overlap in relatively short time horizons

t, potentially resulting in a situation where there is no feasible ego trajectory in which the ego

does not violate occupancy sets. This coincides with a common-sense observation that in such

situations, there is no feasible maneuver that would allow the ego to avoid a collision if the front

vehicle would apply severe braking, while the rear one would accelerate.

Observation that in many traffic situations, it is impossible to guarantee absolute safety, and

the responsibility for avoiding collisions is split between multiple road users, while relatively obvi-

ous, inspired a lot of attempts to formalize unwritten rules that human drivers follow intuitively,

as it is often believed to be an important enabler for commercialization of AD systems [157, 129].

Perhaps one of the most important works in this area was presented by an automotive com-

pany Mobileye [157], which proposed a safety framework Responsibility-Sensitive Safety (RSS),

which later greatly influenced the creation of an IEEE 2846-2022 standard [63]. The RSS frame-

work, while published before IEEE 2846-2022, remains one of the possible realizations of the

standard’s proposals [39].

The standard and the RSS framework formalize traffic laws and certain common-sense rules

that traffic participants are expected to follow (e.g. keeping a certain distance from other vehicles,

or avoiding reckless cut-ins). While adherence to these rules by human drivers is not guaranteed,

their transparent definition simplifies safety analysis, that is, with clearly defined rules it is

possible to estimate how often traffic users violate them, e.g., through an analysis of naturalistic

driving trajectories datasets [88, 18]. As the rules are transparently parameterized, they enable

the design of a system that limits risks related to the behavior of other users to a certain desired

level. In other words, if the system is designed to respect the RSS rules and the probability that

other vehicles will follow them as well is accurately estimated, the risk of a collision in the absence

of perception errors and/or system malfunctions can be estimated and limited by framework’s

parameterization if needed.

According to the RSS framework, the responsibility of all traffic participants in longitudinal

situations similar to the example presented in Fig. 3.8 is defined by a rule, that all vehicles

shall keep at least a minimum longitudinal distance dRSS to vehicles in front of them, that

would be sufficient to notice its sudden severe braking (e.g., in a response to some dangerous

situation), and safely execute a predefined emergency maneuver. The emergency maneuver itself

for longitudinal safe distance violations is defined as a necessity to react within a defined response

time ρRSS by applying braking deceleration abrake,RSS(t) within certain limits abrake,RSS(t) ∈
[abrake,min,RSS, abrake,max,RSS].

Wojciech Turlej

56 3.3. Constraints Generation

Based on the RSS proposals, several assumptions related to the planning constraints in the

example scenario presented in Fig. 3.8 can be formulated:

◦ Ego’s minimum and maximum accelerations should be constrained to

[abrake,max,RSS, amax,RSS] limits.

◦ Occupancy set of the rear vehicle can be omitted in the final constraints - as long as the

ego’s acceleration is bounded, and the ego does not change lanes, responsibility for keeping

proper distance to the ego is assigned to the rear vehicle.

◦ If a safe distance to the front vehicle is violated, the ego vehicle should apply emer-

gency braking with an acceleration aego,lon(t) ∈ [abrake,max, abrake,min] for t ∈ [tviol +

ρRSS, tbrake,end], where tviol is the time at which the violation of the safety distance oc-

curred, and tbrake,end is the time at which no further deceleration is necessary (because the

ego vehicle reaches 0 velocity or the situation is no longer dangerous).

◦ Assuming that no safe distance is currently violated, the safe longitudinal distance of the

front vehicle can be calculated as a distance sufficient to apply an emergency maneuver.

IEEE 2846-2022 standard and the RSS framework do not specify how planning itself should

be executed, focusing only on the general requirements and assumptions regarding the behavior

of other road users. The standard, however, provides a set of guidelines useful for the design of

planning algorithms, including a reasonable approach to setting the longitudinal constraints.

The requirements defined in the RSS framework can be fulfilled by the proposed Multiple

Hypothesis Planning algorithm through the use of two distinct hypotheses: one related to a

situation in which no safe distance is violated (further referred to as safe conditions), and another

related to an emergency situation, i.e., violation of safety distances (referred to as dangerous

situation). This approach constitutes a relatively natural extension of the Fail-Safe Planning

algorithm.

The dangerous situation, corresponds to a reasonably foreseeable worst-case situation, and

thus the relevant occupancy set can be longitudinally constrained based on the IEEE 2846-2022

assumptions. As it is assumed that any vehicle can apply emergency braking with acceleration

of at most abrake,max,RSS, it can be used as a minimal control value atpmin to derive an occupancy

set as described in 3.3.1.

In the safe conditions, the main responsibility of the ego vehicle is to avoid causing dangerous

situations. While being able to avoid the collision with a front vehicle in a worst-case scenario

fulfills the ego’s responsibility according to the RSS in the single-lane scenario, it is not sufficient

in many multi-lane scenarios, such as a lane change scenario presented in Fig. 3.9.

Wojciech Turlej

3.3. Constraints Generation 57

Position of vehicle A at t=tf
assuming constant velocity

Occupancy set of
vehicle A at t=tf

Occupancy set of
vehicle B at t=tf

Position of vehicle B at t=tf
assuming constant velocity

Position of ego vehicle at t=tf
assuming constant velocity

Longitudinal
clearance

Figure 3.9. Lane change example - the ego vehicle is responsible for keeping
the proper distance to the rear vehicle to avoid a reckless cut-in.

In the lane change scenario, the ego vehicle needs to maintain sufficient distance not only to

the front vehicle but also to the rear one, to ensure that in case of an emergency that requires

ego’s severe braking, the rear vehicle will be able to avoid the collision (by noticing the dangerous

situation within ρRSS and applying the braking acceleration below abrake,min,RSS). To achieve this,

the longitudinal distance between the ego and rear vehicle must be at least:

dlon
min(t) = max

(
0, vr(t)ρ+

1

2
∗ amax,RSSρ

2
RSS +

(vr(t) + ρRSSamax,RSS)
2

2abrake,max,RSS
− vf (t)

2

2amax,RSS
,

)
(3.3.6)

where vr(t) denotes the longitudinal velocity of the rear vehicle at time t, amax,RSS the

assumed maximum foreseeable acceleration of a rear vehicle, ρRSS is the assumed response time

in which the rear vehicle should start the braking maneuver in the dangerous situation, and vf (t)

denotes the longitudinal velocity of the front vehicle (in this case ego) at time t. Note that this

is a simplified version of the longitudinal safe distance formula proposed in [39].

Equation (3.3.6) can be used to derive rear vehicle occupancy sets for ego lane change sce-

narios, with two possible hypotheses: one that the rear vehicle will maintain current velocity

(vr(t) = vt(0) for t ∈ [0, tf]), and one that assumes the rear vehicle applying a worst-case accel-

eration (vr(t) = vt(0) + amax,RSS ∗ t for t ∈ [0, tf]).

Reasonably foreseeable occupancy sets derived based on RSS rules can be used to create a

control scheme similar to Fail-Safe Motion Planning, where the trajectory generation is repeated

in intervals tp ∈ [0, th], ensuring that the emergency maneuver trajectory (analogous to a fail-

safe trajectory) is always available, and the nominal trajectory considers the need for potential

execution of the emergency maneuver. To distinguish this approach from Fail-Safe Planning,

it will be referred to as Reasonably Forseeable Fail-Safe Planning (RFFS Planning) for the

remainder of this thesis.

It should be noted that IEEE 2846-2022 defines a large number of other assumptions as

well as possible scenarios [39], and only a subset of them are presented in this section and the

Wojciech Turlej

58 3.4. Planning

examples provided in the next sections, as RFFS planning is only one of the possible applications

of the presented Multiple Hypothesis Planning method.

3.3.3. Multi-modal Prediction Occupancy Sets

Fail-Safe and RFFS planning approaches described in previous subsections can be executed

without the use of any external prediction method, as certain prediction capabilities are built

into the described occupancy sets generation algorithms. The method can however be used

in conjunction with various trajectory prediction algorithms, especially multimodal prediction

methods, where each modality can be used to form a single hypothesis.

The derivation of the occupancy sets based on multi-modal prediction methods will vary

significantly depending on the prediction method. For the simplest example, a multimodal pre-

diction method that returns npred possible sets of trajectories can be considered, where each set

is composed of nsv state trajectories spredi
(t) for t ∈ [0, tf], i = 1..nsv, one for each of the road

users surrounding the ego vehicle. In this case, the occupancy sets Rpredi
(t) for i = 1..npred,

t ∈ [0, tf] corresponding to each predicted set can be generated as a simple sum of nsv vehicles’

bounding boxes:

Rpredi
(t) =

nsv⋃
j=1

Box(sj(t)) for t ∈ [0, tf], (3.3.7)

where Box(sj(t)) denotes the bounding box polygon of a j-th vehicle at time t, with a current

state sj(t).

3.4. Planning

Occupancy sets discussed in a previous section have a central role in the planning problem,

serving as a base for trajectory planning constraints. Each of the control trajectories planned

with the proposed method must result in an ego movement that is constrained based on the

respective occupancy set.

In order to fulfill the goals of the Multiple Hypothesis Planning method (i.e., that several

partially overlapping trajectories are planned), planning all the trajectories is formulated as

a single optimization problem. This is achieved through optimization of the parameter vector

containing the parameters that describe multiple potentially different trajectories.

Each of the ntraj generated control trajectories T i(qi, t) for t ∈ [0, tf], i = 1..ntraj is described

using a respective vector qi of nparams parameters. All the parameter vectors qi for i = 1..ntraj

are gathered in the vector qo = [q1, ...,qntraj], allowing to formulate a following optimization

problem:

Wojciech Turlej

3.4. Planning 59

min
qo

ntraj∑
i=1

wiCi (Ti(qi), s0,pveh)

subject to s1 (T 1(q1), s0,qveh, t) =

= s2 (T2(q2), s0,pveh, t) =

= ... =

= sntraj

(
Tntraj(qi), s0,pveh, t

)
for t ∈ [0, tc];

dmin
i (T i(qi), s0,pveh, t) ≥ 0, for t ∈ [0, tf] , ∀i ∈ {1, ..., ntraj};
δmin ≤ δi (T i(qi), t) ≤ δmax, for t ∈ [0, tf], ∀i ∈ {1, ..., ntraj};
amin ≤ ai (T i(qi), t) ≤ amax, for t ∈ [0, tf], ∀i ∈ {1, ..., ntraj};
0 ≤ vlon

i (T i(qi), s0,pveh, t) ≤ vmax, for t ∈ [0, tf], ∀i ∈ {1, ..., ntraj};

(3.4.1)

where Ci (T i(qi), s0,pveh) is the cost value related to the i-th control trajectory T i(pi) (ex-

plained in Section 3.4.1), s0 denotes the initial state of the ego vehicle, pveh is the vector that

describes the ego vehicle (geometry, kinematic properties).

si (T i(qi), s0,pveh, t) denotes the state of the ego vehicle at time t, assuming that

the vehicle followed the i-th control trajectory T i(qi), starting from the state s0, where

ṡi (T i(qi), s0,pveh, t) = f (si (T i(qi), s0,pveh, t) , ci(T i(qi), t), pveh), as described in Section 3.2.5.

di (T i(qi), s0,pveh, t) denotes the minimal distance between the ego’s bounding box

Box (si (T i(qi), s0,pveh, t)) (assuming that the ego follows the i-th trajectory) and the respective

occupancy set Ri(t) at time t, or the boundary of the drivable area.

δi (T i(qi), t), ai (T i(qi), t) and vlon
i (T i(qi), s0,pveh, t) denote the steering angle, acceleration,

and longitudinal velocity of the ego at time t, respectively, assuming that the ego follows the i-th

control trajectory T i(qi).

It can be noted that the proposed formulation of the optimization problem corresponds

to Direct Single Shooting methods used commonly for solving optimization-based trajectory

generation problems. Depending on the application, other formulations are often proposed as an

alternative to direct shooting methods, such as Direct Multiple Shooting methods, or a family

of Direct Collocation methods. The robustness, efficiency, and implementation efforts related

to each method vary depending on the application. While the use of Multiple Shooting and

Direct Collocation methods was not investigated for the proposed approach, as Direct Single

Shooting offered satisfactory performance for proposed applications, the described problem can

be re-formulated to follow concepts of the other methods, with relatively minor modifications.

Wojciech Turlej

60 3.4. Planning

3.4.1. Cost Terms

The cost terms are intended to ensure that generated trajectories are efficient and comfortable

for the passengers. Choice of the cost terms varies depending on an application, and while often

similar cost terms are used to shape all the trajectories within a single optimization problem,

certain variations can be applied as well.

3.4.1.1. Weight assignment strategy

The weights wi for i = 1..ntraj assigned to the cost terms can also vary depending on the

application. In the Fail-Safe Planning schemes, the comfort-related cost terms corresponding to

the fail-safe trajectories may have significantly lower values compared to the nominal trajectories,

as the fail-safe trajectories are intended to be executed only in rare dangerous situations, and do

not need to be nearly as efficient or comfortable as the nominal trajectory.

In systems, where Multiple Hypothesis Planning is used in conjunction with a multimodal

trajectory prediction method, different strategies can be taken for choosing the cost terms values.

Trajectory prediction methods often, apart from providing hypotheses {Hi}i=1..ntraj
regarding fu-

ture state of the ego surroundings, estimate probabilities {PHi}i=1..ntraj
that each hypothesis is

true (within certain tolerances), or grade hypotheses’ quality in some other way. If the prediction

method used in conjunction with the proposed method in fact provides some plausibility mea-

sures, they can be used to assign weights to the generated trajectory, where the largest weight

would be given to the cost term corresponding to the trajectory planned based on the most

plausible hypothesis.

Assigning weights based on the plausibility of the hypotheses allows increasing comfort and

efficiency of the control trajectory that is most likely to be executed, at a cost of other trajectories

- which is not always the desired approach, although may be beneficial in terms of the overall

efficiency of the final behavior of the ego vehicle, especially if a lot of low-plausibility hypotheses

are considered.

Examples of the assignment of weight values in several applications are presented in Section

3.5.

3.4.1.2. Terms

Cost value is calculated for each trajectory as a weighted sum of several cost terms that are

listed below. Note that the choice of the cost terms, as well as their weights, may be modified

depending on the application and end-user requirements.

◦ Distance from the closest driving corridor centerline cost term is defined as:

Clci(qi) = wlci

∫ tf

t=0
dlci(T i(qi), s0, t)

2dt, (3.4.2)

Wojciech Turlej

3.4. Planning 61

where wlci is the weight assigned to the Clci cost term calculated for i − th generated

trajectory, and dlci(t) denotes the distance between the ego’s center of mass and the closest

centerline of one of available driving corridors at time t, assuming that the ego’s initial state

is c0, and it is controlled with i-th control trajectory T i(qi). This cost term encourages

driving close to the lane center and helps to limit the duration of lane change maneuvers.

◦ Squared control values cost term used to penalize large acceleration and steering angle

values is given by the equation:

Cctrli(qi) = wacci

∫ tf

t=0
ai(T i(qi), t)

2dt+ wδi

∫ tf

t=0
δi(T i(qi), t)

2dt, (3.4.3)

where wacci is the weight assigned to acceleration control value, and wδi is the weight

assigned to the steering angle value. Minimization of this cost term helps to minimize

G-forces, increasing the passengers’ comfort and fuel efficiency.

◦ Speed keeping term, intended to encourage maintaining the desired (e.g., set by the user

or matching the local speed limit) velocity, is defined as:

Cvi(qi) = wvi

∫ tf

t=0
(vi(T i(qi), s0, t)− vd)

2dt, (3.4.4)

where vi(T i(qi), s0, t) denotes the absolute speed of the ego vehicle at time t, that followed

the control trajectory T i(qi), starting from the state s0; vd is the desired velocity, and wvi
is the weight corresponding to this cost term. In Fail-Safe Planning applications weight wvi
can be set to 0 for the fail-safe trajectory, as velocity keeping is typically not a priority in

emergency situations.

◦ The braking term is intended for use for the fail-safe trajectories in Fail-Safe Planning

systems, as it encourages braking until the full stop, which is often a desirable outcome in

emergency scenarios. The term is defined as:

Cbrakei(qi) = wbrakei ∗ vi(T i(qi), s0, tf)2, (3.4.5)

where wbrakei is the weight corresponding to this cost term.

In the practical implementation of the presented problem, ego’s state trajectory is approx-

imated in n∆t =
tf
∆t discrete time steps ∆t using numerical integration methods, and thus the

constraints involving integration are in fact approximated as a Riemann sum. Cost term of a form

Cex(qex) = wex
∫ tf
t=0 f(qex)dt, where wex and pex are the weight and parameters corresponding

to this cost term, is thus approximated as Cex(qex, t) ≈
∑n∆t

i=1 f(qex, ti)∆t, where
∑n∆t

i=1 ∆t = tf .

Wojciech Turlej

62 3.4. Planning

3.4.2. Constraints

Constraints in the proposed setup serve several purposes: ensuring overlapping of all state

trajectories si(T i(qi), s0,pveh, t) for i ∈ {1, ..., ntraj} over the initial time interval t ∈ [0, tc],

restraining the control values to safe and feasible limits, limiting the ego’s motion to the drivable

parts of the road, and ensuring that its area does not overlap with relevant occupancy sets of

other vehicles.

Trajectory overlap in the original problem formulation (3.4.1) is enforced by a set of equality

constraints applied to the ego state functions:

s1 (T 1(q1), s0,pveh, t) = s2 (T 2(q2), s0,pveh, t) = ... = sntraj

(
Tntraj(qi), s0,pveh, t

)
for t ∈ [0, tc];

(3.4.6)

As the initial state s0 and the vehicle parameters pveh are identical for all alternative tra-

jectories, the described set of constraints will be fulfilled if the control values ci(T i(qi), t), t ∈
[0, tc],∀i ∈ {1, ..., ntraj} are equal in the initial time window [0, tc]. For practical implementation,

this is enforced by introducing a set of constraints that enforce the equality of the control values

in discrete time instances, as indicated in Equation (3.4.7).

c1 (T 1(q2, tk)) = c2(T 2(q2, tk)) = ... = cntraj(Tntraj(qntraj , tk)) ∀k ∈ {0,∆t, ..., n∆t ∗∆t}
(3.4.7)

All control values are also constrained to certain limits that reflect the physical limitations

of the vehicle, or, as in the case of safety frameworks based on IEEE 2846-2022 standard, safety-

related constraints. This is reflected in the constraints:

δmin ≤ δi (T i(qi), t) ≤ δmax, for t ∈ [0, tf], ∀i ∈ {1, ..., ntraj};
amin ≤ ai (Ti(pi), t) ≤ amax, for t ∈ [0, tf], ∀i ∈ {1, ..., ntraj},

(3.4.8)

from the Equation (3.4.1). Practical implementation of this constraint, similar to constraints

(3.4.6), is based on the evaluation of control values in discrete time steps, as in (3.4.7). The speed

limitation 0 ≤ vlon
i (T i(qi), s0,pveh, t) ≤ vmax for t ∈ [0, tf], ∀i ∈ {1, ..., ntraj} is enforced in the

same way.

The last set of inequality constraints is based on the occupancy sets derived in section 3.3.

The geometry of the occupancy sets varies in time and between the alternative trajectories, and

thus an alternative set of constraints is introduced for each of the ntraj generated trajectories.

The constraint in the original equation (3.4.1) is defined as:

dmin
i (T i(qi), s0,pveh, t) ≥ 0, for t ∈ [0, tf] , ∀i ∈ {1, ..., ntraj}, (3.4.9)

Wojciech Turlej

3.5. Evaluation 63

where the distance dmin
i between the ego (assuming that the ego started from state s0 and

executed the i− th trajectory T i(qi)) and the closest polygon of i-th occupancy set Ri at time

t (notation omitted in the following equation) is approximated as:

dmin
i = min

(
{-dist(ε, ϑ)}∀ε∈ERi

,∀ϑ∈(VBoxego∩Ri) ∪ {dist(ε, ϑ)}∀ε∈ERi
,∀ϑ∈(VBoxego\(VBoxego∩Ri))

)
,

(3.4.10)

where dist(ε, ϑ) denotes the shortest distance between a line ε and a point ϑ, ERi is the set of the

edges of Ri occupancy set polygon, VBoxego is the set of ego’s bounding box’ vertices. It can be

noted that for the ego’s vertices that are within an occupancy set (denoted ϑ ∈ VBoxego ∩Ri), a

negative distance is used, meaning that negative values dmin
i denote the occupancy set’s polygon

penetration depth.

Similarly as in the case of the other constraints, the constraint (3.4.9) in the practical imple-

mentation of the optimization problem is replaced by a series of constraints related to discrete

time steps.

3.5. Evaluation

The proposed method has been tested in a set of simulated scenarios that at the same time

serve as examples for its various applications described in previous sections, such as the Fail-Safe

Motion Planning. The experiments presented in this section were performed to fulfill several

research goals related to the proposed method, as listed below.

◦ Investigate whether the method can be used in applications such as Fail-Safe Motion Plan-

ning in conjunction with worst-case occupancy sets generation, planning nominal and emer-

gency maneuvers with limitations based on IEEE 2846-2022 standard, and trajectory plan-

ning in conjunction with a multimodal trajectory prediction modules.

◦ Investigate how the trajectory planned based on the most plausible hypothesis is impacted

by a simultaneous generation of several trajectories based on less plausible hypotheses.

◦ Provide insight into the method’s computational performance.

◦ Expose potential issues and limitations of the presented method to identify areas for future

research and improvements.

Each of the scenarios presented in the following section is defined by a description of a static

environment (defined by a road model, as described in section 3.2.2), initial states of ego and

other agents, as well as a set of parameters that include the cost weights and parameters of the

vehicles in the scenario.

Wojciech Turlej

64 3.5. Evaluation

Table 3.1. Vehicle parameters used for ego state trajectory calculation and
occupancy sets generation. Note that steering angle and accelerations are arbi-
trarily limited and do not necessarily reflect the vehicle’s physical limitations.

Parameter Value Unit Description
lr 2.0 m Distance between vehicle’s Center of Mass (CoM) and rear axis
lf 2.0 m Distance between vehicle’s CoM and front axis
δmax 0.3 rad Max steering angle (absolute)
amin -5.0 m

s2
Min acceleration

amax 3.0 m
s2

Max acceleration

3.5.1. Experimental Setup

The optimization problem described in Section 3.4 can be parametrized and implemented in

multiple ways, depending on the intended application, available computational resources, and

other requirements. For the purpose of the evaluation presented in this section, the method

has been implemented as a Python module, with implementation details and adjustments listed

below.

◦ Unless stated otherwise, all generated trajectories were described using 1st-order 2-

dimensional B-splines with 16 free parameters, where both acceleration and steering angle

were constrained to 0 at t = 0 using additional parameters.

◦ SLSQP optimization method [87] has been used, where constraints of the control values

were implemented as actual bounds, and all other constraints were represented as additional

cost terms with large weight parameters.

◦ The initial guess for the vector of the optimized parameters qinit is created by drawing the

value of each parameter qi from a normal distribution qi ∼ N (0, 0.1) ∀i ∈ {1, ..., |qinit|}.

◦ The state trajectories of the ego vehicle under various control values, as well as cost terms

that include integrals, were calculated numerically with a time step dt = 0.1[s].

◦ Curved roads were implemented as third degree B-splines, but for cost and constraints

calculations, they were approximated using linear interpolation with 100 points for each

driving corridor.

Details related to particular scenarios, as well as weights and time-horizon parameters, are

described in the sections corresponding to each scenario.

Vehicle parameters used to acquire the state trajectories of the ego and the occupancy sets

of other vehicles are presented in Table 3.1.

Wojciech Turlej

3.5. Evaluation 65

3.5.2. Evaluated Scenarios

As the proposed Multiple Hypothesis Planning method can be applied in several different

setups, the example scenarios described in this section vary in terms of road geometry, goals,

and type of occupancy sets.

3.5.2.1. Highway Fail-Safe Planning scenario

The highway scenario is intended to showcase the fail-safe planning application of the pre-

sented method with the worst-case occupancy sets.

The scenario defines a simple overtaking situation on a straight three-lane road. The ego

vehicle drives with a 12ms velocity in a middle lane, while the other vehicle, placed in a right

lane at a longitudinal distance of 10m from the ego, maintains a velocity of 10ms .

The worst-case occupancy set of the other vehicle is derived based on assumptions that its

acceleration is limited to a ∈ [−5.5, 2], and the steering angle to δ ∈ [−0.05, 0.05]. On the other

hand, the most plausible hypothesis (further referred to as nominal hypothesis) is that the vehicle

will continue to move in its current lane, maintaining its current speed.

Table 3.2 summarizes the values of other relevant weights and calibration parameters used

in this scenario.

Table 3.2. Calibration parameters used in the urban intersection scenario

Parameter Value Unit Description
th 1.0 s Trajectories initial overlap time horizon
tf 3.0 s Planning time horizon
wlc1 1.0 - Lane centering cost term weight for Hypothesis 1
wlc2 0.0 - Lane centering cost term weight for Hypothesis 2
wacc1 5.0 - Acceleration cost term weight for Hypothesis 1
wacc2 0.0 - Acceleration cost term weight for Hypothesis 2
wδ1 1.0 - Steering angle cost term weight for Hypothesis 1
wδ2 0.0 - Steering angle cost term weight for Hypothesis 2
wv1 0.0 - Velocity keeping cost term weight for Hypothesis 1
wv2 0.0 - Velocity keeping cost term weight for Hypothesis 2
wct 1000 - Trajectory overlapping cost term weight
vd 11.0 m/s Desired velocity

wbrake1 0.0 - Braking cost term weight for Hypothesis 1
wbrake2 10.0 - Braking cost term weight for Hypothesis 2

The execution of the method in the described scenario produces the results presented in Fig.

3.10. The control trajectory, planned based on the nominal hypothesis, results in the ego vehicle

maintaining its current speed and yaw angle, with a slight slowdown at the beginning. On the

other hand, the fail-safe trajectory, planned based on the worst-case hypothesis, consists of severe

braking and steering executed after the initial trajectories overlap period. The ego changes the

lane to the left while executing the braking to avoid crossing the occupancy set of the other

vehicle.

Wojciech Turlej

66 3.5. Evaluation

0 10 20 30 40 50

x [m]

−20

−15

−10

−5

0

5

10

15

20

y
[m

]

Scenario bird eye view map

Hypothesis 1

Hypothesis 2

Constraints

Ego

Other vehicle

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

−0.5

0.0

0.5

A
n

g
le

[r
a
d
]

Steering angle

Hypothesis 1

Hypothesis 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

−4

−2

0

2

A
cc

el
er

a
ti

on
[m s

2
]

Acceleration

Hypothesis 1

Hypothesis 2

Figure 3.10. Trajectories generated for the highway fail-safe planning scenario.

It can be noted, however, that use of the strictly worst-case predictions in similar cases may

result in overly cautious behaviors of the ego vehicle. This issue becomes especially apparent if

we consider a variant of the discussed scenario, in which an additional vehicle is added beside

the non-ego road user, driving with the same speed as the first one. As shown in Fig. 3.11, in

such a configuration, the occupancy sets of both vehicles overlap, resulting in very restrictive

constraints.

0 10 20 30 40 50

x [m]

−20

−15

−10

−5

0

5

10

15

20

y
[m

]

Scenario bird eye view map

Hypothesis 1

Hypothesis 2

Constraints

Ego

Other vehicle

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

−0.5

0.0

0.5

A
n

gl
e

[r
a
d
]

Steering angle

Hypothesis 1

Hypothesis 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

−4

−2

0

2

A
cc

el
er

a
ti

o
n

[m s
2
]

Acceleration

Hypothesis 1

Hypothesis 2

Figure 3.11. Trajectories generated for the highway fail-safe planning scenario
with two other vehicles.

Although the method was able to find a collision-free fail-safe trajectory, it consists of severe

braking and steering, utilizes all the three lanes, and severely impacts the nominal trajectory,

causing the ego to brake heavily in t ∈ [0, th].

For this reason, the use of strictly worst-case assumptions in all situations may not be a

desirable solution. While they may still be beneficial in certain situations, e.g., in emergency

situations in which other vehicles execute severe and unpredictable emergency maneuvers, other

Wojciech Turlej

3.5. Evaluation 67

solutions, such as one featured in the next example, may be more appropriate for typical driving

situations.

3.5.2.2. Urban intersection scenario

Urban intersection scenario is indented to evaluate the applicability of the proposed method

to Reasonably Foreseeable Fail-Safe Planning (RFFSP) with assumptions based on IEEE 2846-

2022 [63].

Intended driving corridor

Available driving area
(includes intended corridor)

Other lanes (non-drivable
for the ego vehicle)

Ego vehicle Other vehicle

Road 1 (with the
right of way)

Road 2 (without
the right of way)

Figure 3.12. Urban intersection scenario overview.

In this scenario, the ego vehicle is driving on a two-lane straight main road (denoted Road A)

approaching an intersection with a road without right of way (further referred to as Road B), as

shown in Fig. 3.12. At the same time, another vehicle approaches the intersection on the Road B

with the intention of merging into traffic on the Road A, on the lane with opposite traffic to the

ego’s lane. While the other vehicle has no right of way and should yield before the ego vehicle,

its high speed may suggest that its driver may not intend to do so (which may be caused by the

driver’s failure to notice the ego vehicle, false assumption that they are on the road with the

right of way, or otherwise incorrect situational assessment). The initial velocity of both vehicles

is set to 11ms .

Use of the strictly worst-case prediction in such a scenario would be problematic - it is feasible

for the other vehicle to swerve into oncoming traffic, making it practically impossible for the ego

vehicle to avoid the collision in such a case. As similar scenarios are relatively common in urban

environments, the use of the RFFSP may be a better alternative for urban applications.

In the discussed scenario, two major plausible hypotheses can be formed: one that the other

vehicle will yield before the ego by stopping before the intersection (Hypothesis 1), and one that

it will fail to do so (Hypothesis 2), which would correspond to the reasonably foreseeable worst-

case scenario. In both hypotheses, the vehicle is assumed to remain within its driving corridor

Wojciech Turlej

68 3.5. Evaluation

Table 3.3. Calibration parameters used in the urban intersection scenario

Parameter Value Unit Description
th 0.8 s Trajectories initial overlap time horizon
tf 3.0 s Planning time horizon
wlc1 1.0 - Lane centering cost term weight for Hypothesis 1
wlc2 0.1 - Lane centering cost term weight for Hypothesis 2
wacc1 5.0 - Acceleration cost term weight for Hypothesis 1
wacc2 0.0 - Acceleration cost term weight for Hypothesis 2
wδ1 1.0 - Steering angle cost term weight for Hypothesis 1
wδ2 0.0 - Steering angle cost term weight for Hypothesis 2
wv1 0.5 - Velocity keeping cost term weight for Hypothesis 1
wv2 0.0 - Velocity keeping cost term weight for Hypothesis 2
wct 1000 - Trajectory overlapping cost term weight
vd 12.0 m/s Desired velocity

wbrake1 0.0 - Braking cost term weight for Hypothesis 1
wbrake2 20.0 - Braking cost term weight for Hypothesis 2

composed of a union of the lanes consistent with its initial driving direction on both roads (i.e.,

the right lane from its perspective). As Hypothesis 1 assumes that the other vehicle breaks

successfully before the intersection, it does not need to use constraints based on occupancy sets,

as long as the ego motion is restricted to the available driving area.

For Hypothesis 2, a reasonably foreseeable worst-case behavior of the other vehicle is consid-

ered. Longitudinal acceleration limits used to create its occupancy set were chosen based on the

literature review [64] published by the authors of the IEEE 2846-2022 standard [63], in particular

the analysis [135] of the InD dataset [18] of the naturalistic trajectories of road users at intersec-

tions. According to these analyses, the 99th percentile of the acceleration values in intersection

scenarios is within −2.9 and 2.8[m/s] for the passenger cars, and thus abrake,max,RSS and amax,RSS

are set to these values respectively.

The lateral limits of the occupancy set are based on the steering angle limits in the range

δ ∈ [−0.3, 0.3], which is sufficient to follow the geometry of the road. The resulting occupancy

set is then restricted to lanes with a correct driving direction (i.e., opposite traffic lanes from the

ego perspective).

The values of the parameters and the weights of the cost terms used in this example are

summarized in the table 3.3.

Solving the optimization problem formulated for this case produces the trajectories presented

in Fig. 3.13. Following the control trajectory generated based on Hypothesis 1 results in a straight

forward motion with the acceleration values close to 0. Following the second of the generated

trajectories, on the other hand, results in a severe collision avoidance maneuver executed right

after the initial overlap period. Since the initial distance to the intersection (approximately 17m)

is too short to allow braking to a full stop without crossing the other vehicle’s occupancy set,

Road 2 is utilized for the collision avoidance maneuver, ensuring the collision-free trajectory.

Wojciech Turlej

3.5. Evaluation 69

The maneuver planned based on the Hypothesis 2 consists therefore of braking with acceleration

abrake,max,RSS applied after the overlap horizon and the steering angle trajectory that facilitates

driving onto the Road 2 and following its curvature.

Although such behavior is not always desirable and can be prevented by excluding the Road

2 from the ego’s drivable area, presented results demonstrate the method’s ability to utilize the

entire available driving area for potential emergency maneuvers.

0 10 20 30 40 50

x [m]

−35

−30

−25

−20

−15

−10

−5

0

5

y
[m

]

Scenario bird eye view map

Hypothesis 1

Hypothesis 2

Constraints

Ego

Other vehicle

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

−0.5

0.0

0.5

A
n

gl
e

[r
a
d
]

Steering angle

Hypothesis 1

Hypothesis 2

Baseline trajectory

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

−4

−2

0

2

A
cc

el
er

at
io

n
[m s

2
]

Acceleration

Hypothesis 1

Hypothesis 2

Baseline trajectory

Figure 3.13. Trajectory generation results for the urban intersection scenario.

One of the important features that distinguishes the proposed method in the context of

fail-safe planning applications from existing ones [116] is the fact that the nominal trajectory

(planned based on Hypothesis 1 in this case) is impacted by the necessity to plan the fail-safe

trajectory. In other words, if the optimal trajectory (in terms of comfort, fuel efficiency, etc.)

planned solely based on the most plausible hypothesis (the first one in this case) would not enable

the generation of a collision-free fail-safe trajectory, the use of the proposed method will result

in an emergence of "cautious" behaviors, such as slowing down to enable collision braking shall

a dangerous situation occur.

The described feature of the proposed method is investigated by planning the baseline tra-

jectory for the scenario analyzed. The trajectory is planned based solely on the Hypothesis 1,

otherwise using the identical configuration as in the described example for Hypothesis 1. The re-

sulting trajectory, as shown in Fig. 3.13, is similar to the nominal trajectory, but the acceleration

in the initial time period th is noticeably higher. This suggests that in the nominal trajectory, the

initial acceleration is kept lower to enable the smooth application of the emergency maneuver if

needed, resulting in the ego exhibiting behavior that can be interpreted as a cautious one.

3.5.2.3. Multimodal trajectory prediction: merge-in scenario

To evaluate the applicability of the method to complex situations with more than two com-

peting hypotheses, a scenario of merging into highway traffic has been prepared. In this scenario,

Wojciech Turlej

70 3.5. Evaluation

the ego vehicle is driving at a speed of 14ms on a short merge-in lane and has to merge into traffic

on the two-lane straight highway road. On this road, the right lane is occupied by a vehicle that

is driving with 15ms , while the left lane remains empty.

In this case, 3 hypotheses are arbitrarily generated for evaluation purposes, as listed below.

The hypotheses were designed in an attempt to describe behaviors often observed in similar situ-

ations, and, while crafted manually, may reflect the plausible output of a multimodal trajectory

prediction algorithm.

0 10 20 30 40 50

x[m]

−5

0

5

y
[m

]

Hypothesis 1: other vehicle changes lane

0 10 20 30 40 50

x[m]

−5

0

5

y
[m

]

Hypothesis 2: other vehicle ignores the ego

0 10 20 30 40 50

x[m]

−5

0

5

y
[m

]

Hypothesis 3: other vehicle brakes

Figure 3.14. Constraints generated for different hypotheses. The ego vehicle
is marked blue, the other vehicle - red, and the constraints - yellow.

◦ Hypothesis 1 assumes, that the other vehicle will change the lane to the left, allowing the

ego to safely merge into the traffic.

◦ Hypothesis 2 is related to a situation in which another vehicle ignores the ego and encom-

passes various plausible maneuvers limited to the area of the main road, similar to the

reasonably foreseeable worst-case hypotheses described in the previous example. Accelera-

tion of the other vehicle is limited to a ∈ [−2.5, 2.5]m
s2

.

◦ Hypothesis 3 assumes, that the other vehicle will perform a braking maneuver (with a

constant braking acceleration a = −1.5m
s2

) in its current lane, helping ego to merge into

the traffic.

The constraints generated for each of the hypotheses are shown in Fig. 3.14, and the calibra-

tion parameters are collected in Table 3.4. In this example, the lane-keeping term is calculated as

a distance from the right lane of the main road, as it is the target lane for the merge-in maneuver.

Wojciech Turlej

3.5. Evaluation 71

Table 3.4. Calibration parameters used in the scenario. All parameters with
the index i, are identical for all hypotheses (i ∈ {1, 2, 3}).

Parameter Value Unit Description
th 0.8 s Trajectories initial overlap time horizon
tf 3.0 s Planning time horizon
wlci 1.0 - Lane centering cost term weight
wacci 1.0 - Acceleration cost term weight
wδi 1.0 - Steering angle cost term weight
wvi 0.0 - Velocity keeping cost term weight
wct 1000 - Trajectory overlapping cost term weight
vd 12.0 m/s Desired velocity

wbrakei 0.0 - Braking cost term weight

The execution of the proposed method in the described scenario results in the generation

of three distinct trajectories. All trajectories overlap in the time horizon t ∈ [0, th], resulting

in driving close to the center of the merge lane while applying moderate braking. After th, the

trajectory generated based on Hypothesis 1 (that the other vehicle will perform a lane change)

consists of a near zero acceleration and early execution of a merge-in maneuver. The trajectory

based on Hypothesis 2 consists of sudden and severe braking that restricts the movement of

the ego to the merge-in lane, ensuring a collision-free trajectory. Hypothesis 3 that assumes the

braking maneuver of the other vehicle results in the ego’s trajectory that consists of a speed-up

with a late execution of a lane change maneuver. A summary of these results is presented in Fig.

3.15.

0 10 20 30 40 50

x [m]

−20

−10

0

10

20

y
[m

]

Scenario bird eye view map

Hypothesis 1

Hypothesis 2

Hypothesis 3

Constraints

Ego

Other vehicle

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

−0.5

0.0

0.5

A
n

gl
e

[r
a
d
]

Steering angle

Hypothesis 1

Hypothesis 2

Hypothesis 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

−4

−2

0

2

A
cc

el
er

at
io

n
[m s

2
]

Acceleration

Hypothesis 1

Hypothesis 2

Hypothesis 3

Figure 3.15. Trajectory generation results for the merge-in scenario. Note,
that only the constraints for the Hypothesis2 were plotted for clarity.

The behavior of the ego vehicle controlled according to the generated control trajectories

seems to reflect the typical behavior of human drivers in similar situations. In the initial overlap

period, moderate braking allows one to gain more time to gather the necessary information about

the evolution of the surrounding situation, while preparing the ego vehicle for a potential braking

Wojciech Turlej

72 3.5. Evaluation

maneuver. The lane change of the other vehicle allows the ego to safely perform a merge-in

without additional requirements, which can be seen in the first of the generated trajectories. The

third trajectory, on the other hand, represents a reasonable trajectory for a case in which another

vehicle yields by performing a braking maneuver - the ego in this case speeds up, performing a

lane change at the very end of the merge-in lane. In the event that the other vehicle continues to

move, preventing the ego from performing a lane change, the ego may break on its current lane.

Note, however, that due to a short planning horizon, this does not guarantee that the ego will

reach a full stop at the end of the lane. To alleviate this issue, an additional constraint based

on safe distance (described in equation (3.4.9)) to a static lane end point may be introduced for

similar cases.

3.5.3. Computational Performance

All experiments were implemented in the Python language using the SLSQP optimization

method [87] implemented in the scipy library and executed on a single thread of Intel(R)

Core(TM) i7-12800H CPU. The resulting execution times for all scenarios except the last one

took approximately 0.5 − 1.0s assuming that linear B-splines with eight parameters were used

for each trajectory. Although this performance is sufficient to execute the method in a loop with

a replanning frequency below th, especially if previously generated trajectories would be used as

initial guesses for subsequent optimization runs, further work may be needed to ensure satisfac-

tory and reliable performance in difficult cases. This is especially apparent in the third scenario,

which took several seconds to compute due to a significantly larger dimensionality of the solution

space.

Profiling the application suggests that relatively slow calculation can be attributed mainly

to the geometrical calculations in the cost and constraints evaluations. Since the cost function

gradient in the utilized optimization method is approximated numerically, the evaluation of cost

terms is repeated multiple times at each iteration of the optimization, requiring substantial

processing power.

These findings suggest that the performance of the proposed method can be significantly

improved using techniques such as the use of automatic differentiation for the gradient estima-

tion, approximation of certain geometries (e.g., the ego vehicle’s bounding box) with simpler

shapes, or linearization of the vehicle model. Potential improvements are further discussed in the

Conclusions section.

However, it should be noted that the use of the proposed method for fail-safe planning ap-

plications brings a significant advantage to real-time systems. In setups where the algorithm is

executed in a loop, a collision-free fail-safe trajectory from previous iterations is always avail-

able, and thus can be utilized by the system if the optimization algorithm fails to produce new

trajectories in a predefined calculation time limit.

Wojciech Turlej

3.6. Conclusions 73

3.6. Conclusions

In this chapter, I presented a novel vehicle motion planning method intended for AD and

ADAS applications, where several different hypotheses can be formed with regard to the current

and future state of the vehicle’s environment. The hypotheses can be produced by a separate

multimodal trajectory prediction module or formed based on a set of assumptions related to the

plausible future behavior of other road users. The method generates several control trajectories

that overlap in an arbitrarily long initial time period, allowing postponement of the decision

on which trajectory should be followed. During this time additional data regarding vehicle sur-

roundings can be gathered, most notably, further behavior of other road users can be observed,

helping to assess the validity of the utilized hypotheses.

The presented method can be utilized to fulfill the Fail-Safe Motion Planning principles, i.e.,

planning a nominal trajectory based on the most plausible hypothesis regarding the future state

of the other road users, as well as additional fail-safe trajectory based on worst-case assumptions

regarding others’ future behavior.

The proposed method is distinct from the existing Fail-Safe Planning methods, as it allows

for simultaneous planning of all the trajectories (e.g., nominal and fail-safe) using a single opti-

mization problem. As a consequence of this approach, the nominal trajectory is affected by the

need to establish a feasible fail-safe trajectory. This feature results in the generation of safe and

cautious nominal trajectories in situations where existing fail-safe approaches would enforce the

execution of emergency maneuvers.

Furthermore, in this chapter, a methodology for the generation of worst-case occupancy sets

was presented, together with an alternative proposal for the creation of occupancy sets based on

reasonably foreseeable assumptions regarding the behavior of other road users. This approach,

inspired by safety frameworks such as RSS [157] or SFF [129], can be used to fulfill the principles

of the new IEEE 2846-2022 standard [63], ensuring a collision-free trajectory under reasonable

assumptions outlined in the standard.

The use of the method has been demonstrated in several simulation examples, showcasing its

applicability to various road situations and system architectures.

3.6.1. Limitations and Further Work

The proposed approach has several limitations that may be addressed at least partially by

further work.

3.6.1.1. Perception errors

While the main objective of fail-safe planning is to provide certain guarantees with regard

to safety, it does not address the problem of perception errors that remain a major issue in

ADAS and AD systems, and all considerations presented in this chapter assume the availability

Wojciech Turlej

74 3.6. Conclusions

of a perfect model of both static and dynamic environment. Further work is required to ensure

that the method is robust in the presence of such errors. Sensor modeling methods presented in

Chapter 4, as well as Adversarial Trajectory Generation methods described in Chapter 5 can be

used to further test the robustness of the method to perception errors and atypical behaviors

of other road users in simulation. Additional evaluation of the method in the setups similar to

Model Predictive Control is also required to ensure the method’s stability in closed-loop control

applications.

3.6.1.2. Computational performance improvements

One of the main limitations of the proposed method is its relatively low computational

performance. This can be mainly attributed to the cost gradient approximation method, as

mentioned in Section 3.5.3. Since the gradient is approximated numerically, its computation

time is proportional to the number of optimization parameters. Furthermore, the cost value,

as well as constraints violation values (in the analyzed examples actually included in the cost),

depend on the optimized variables in a heavily nonlinear way, due to the nonlinear vehicle model

and problem formulation, which can be described as a variant of the Direct Single Shooting

Method. Because of this, the resulting optimization problem is relatively difficult to solve, and

finding a satisfactory solution requires a large number of iterations of the optimization algorithm.

Depending on the optimization method used to solve the problem, the proposed formulation may

also make it difficult to find a globally optimal solution instead of a local optimum.

The performance of the method can be improved in a number of ways, including but not

limited to the ones listed below.

◦ Use of the Direct Multiple Shooting or Direct Collocation trajectory optimization tech-

niques. Direct multiple shooting is an extension of the utilized single shooting method, in

which the trajectory is generated as a series of short segments, with additional constraints

that enforce the continuity of the resulting trajectory. On the other hand, in direct collo-

cation, both the control trajectory and state trajectory are generated by optimization of

their respective parameters, and a series of additional constraints based on the dynamic

model of the vehicle ensure the physical feasibility of the resulting solution. Both methods

are commonly utilized for similar classes of problems, and while these formulations tend

to increase the dimensionality of the problem and the number of constraints, the resulting

problem is typically sparse and significantly easier to solve.

◦ Efficient cost gradient estimation techniques. As the proposed problem is relatively com-

plex, the gradient is not calculated analytically but is estimated numerically through a

finite differences method. Numerical estimation of the cost gradient, as well as constraints

Jacobian in constrained problems, tend to be the most computationally expensive aspect

of optimization-based trajectory generation. Fortunately, several techniques can be utilized

Wojciech Turlej

3.6. Conclusions 75

to address this problem, such as the use of parallel computing or the utilization of gradient-

free optimization techniques. One of the most convenient solutions, however, is to utilize

automatic differentiation techniques [144], which exploit a chain rule to calculate accurate

partial derivatives of arbitrary functions in an efficient way.

◦ Problem simplification. In the proposed method, the vehicle is described using a nonlinear

kinematic model, and the geometric computations used for the constraints and cost cal-

culations are often relatively time-consuming. Several simplifications can be introduced to

improve the performance of the computation, such as approximation of the vehicle and/or

constraints geometries using multiple circles rather than polygons, use of simplified point-

mass kinematic models, or use of efficient approximations of trigonometric functions based

on lookup tables.

With sufficient performance, the proposed method in a fail-safe planning setup is particularly

useful for real-time applications, as it can be used to guarantee constant existence of a collision-

free trajectory that can be safely executed if the system fails to produce new trajectories within

a predetermined time limit.

3.6.1.3. Further applications

While the discussed method has been presented mainly in fail-safe planning and multimodal

prediction-based planning applications, it can also be extended to enable different applications.

Since conflicting hypotheses can be formed in the context of motion planning with regard to not

only the behavior of other road users, but also the current state of the ego and its environment,

the proposed method can be used in conjunction with such hypotheses as well.

As an example, one may consider the situation in which a perception system detects an object

but with a low detection confidence, which may happen, e.g., in situations where only one of the

sensors with overlapping sensing areas in a sensor fusion setup indicates the object’s existence.

In such situations, one of the hypotheses used for multiple hypothesis planning may be that the

object in fact exists, while the other hypothesis is that the object was falsely detected and in

fact does not exist. Use of the multiple hypothesis planning is a very convenient way to address

such situations, as often gathering further observations from the sensors allows us to confirm

or disprove the hypotheses, and thus initial overlap of the planned trajectories helps to make

informed decisions regarding the ego’s behavior.

As the use of redundant sensor sets (e.g., radars and cameras) is common in ADAS/AD sys-

tems, the proposed method can also be utilized to directly address situations in which conflicting

observations are provided by different sensors. Planning a trajectory that takes into account all

observations would greatly reduce the collision probability, especially if the error occurrences

between sensor types are not strongly correlated. Assuming that each sensor set provides a hy-

pothesis regarding the environment’s state, planning a trajectory that respects all the worst-case

constraints derived from these hypotheses ensures a collision-free driving plan as long as at least

Wojciech Turlej

76 3.6. Conclusions

one hypothesis is true. Although the existence of a feasible trajectory that fulfills this goal is

not guaranteed, the proposed method may still sufficiently reduce the system’s susceptibility to

perception errors. Nevertheless, further work is needed to evaluate the correlation between sen-

sor sets’ error occurrences and the method’s performance in conjunction with imperfect sensing

systems.

Automotive sensors are rarely able to detect road users in areas that are occluded, e.g., by

other vehicles, vegetation, or buildings. Safety frameworks such as RSS [157] propose to assume

that occluded areas may in fact contain other road users, taking into account reasonably fore-

seeable worst-case predictions regarding their behavior. The approach presented in this chapter

could as well be utilized to address such situations, as the hypotheses can be also formed with

regard to such an object’s existence and state. Formation of such hypotheses requires, however,

further extension of the proposed worst-case occupancy sets creation method.

Wojciech Turlej

4. Sensor Modeling

Perception systems that estimate the state of the static and dynamic environment of the

vehicle play an essential role in ADAS and AD systems. Modern vehicles are often equipped with

several sensors that provide information about road geometry, static obstacles, and other road

users in their vicinity. Since AD/ADAS systems utilize this information to make safety-critical

decisions, setting the performance requirements for perception systems and ensuring that they

are fulfilled is immensely important in the design and validation of such systems.

Estimates of the environment’s state provided by perception systems are, however, inherently

stochastic, and sporadic occurrence of severe errors is inevitable. Sensors used in the automo-

tive industry are susceptible to several types of errors, the nature of which often differs between

sensor types. For instance, the performance of the camera-based object detection systems may

be negatively impacted by adverse environmental conditions, such as heavy rain, while the per-

formance of radar-based sensors may suffer in a cluttered environment with many surfaces that

may cause undesired multi-bounce reflections of the radar wave. Since the creation of perfect

sensing systems is impossible, the designer of ADAS/AD systems must ensure that they operate

acceptably even in the presence of perception errors and inaccuracies. This requirement presents

several challenges in algorithm design and validation.

Ensuring a robust behavior of the ADAS/AD systems in the presence of perception errors

remains a difficult problem that lacks simple and universal solutions. Understanding the char-

acteristics of the errors and modeling them in an efficient manner plays a significant role in the

testing and development of such systems.

4.1. Introduction and Motivation

Deterministic ADAS/AD algorithms often require complex heuristics to handle potential

errors, e.g., by ensuring that safety-critical decisions are supported by several subsequent mea-

surements or data from several sensors with weakly correlated errors. However, these solutions

come with their own problems, such as slow reaction times caused by the waiting for subsequent

measurements or the need for an expensive set of sensors to ensure adequate redundancy.

One commonly proposed alternative is to utilize machine learning-based algorithms instead,

harnessing their ability to adapt to various complex environments. However, learning such models

78 4.1. Introduction and Motivation

requires a large amount of exemplary data that would incorporate realistic sensor inaccuracies

and errors. While in certain learning approaches perception system output registered during

real-world test drives can be utilized for this purpose, a large subset of approaches utilized in AD

systems relies on closed-loop simulation techniques, in which artificial sensor data that incorpo-

rate realistic error patterns must be created on demand. A good example of such an approach

is Reinforcement Learning, which typically utilizes simulation of the driving environment, and

thus requires synthetic perception data generation.

The need for automatic generation of realistic sensor data streams based on a perfect descrip-

tion of the vehicle’s environment (e.g., generated by a traffic simulator) is even more prominent

in the testing and validation of ADAS/AD systems. Due to the immense efforts related to end-to-

end on-road ADAS/AD systems testing, virtual simulation environments are often proposed as

an efficient way to support testing efforts. Since the precise simulation of all physical phenomena

that impact the sensor’s performance is prohibitively difficult, various techniques of approxima-

tion of expected sensor outputs are proposed to facilitate the provision of realistic perception

data streams to the tested algorithms.

As a consequence of previously defined design and validation needs, the automatic generation

of artificial perception data from simulation-based ground truth, further referred to as sensor

modeling, plays a critical role in the development of ADAS / AD systems.

The types of commonly used automotive sensors and their corresponding error types are

presented in Chapter 2. In this chapter, I present a short introduction to existing sensor modeling

approaches, as well as propose a set of sensor modeling methods that can be efficiently used for the

testing and development of ADAS/AD systems. The effectiveness of the proposed sensor models

is presented in the example of Reinforcement-Learning-based behavior and trajectory planning

system, which utilizes them in a simulation-based learning process. Finally, the impact of sensor

model utilization in the development of AD algorithms on system performance is analyzed and

discussed, based on the results of the extensive simulation-based evaluation.

4.1.1. Existing Approaches

Sensor modeling finds a number of applications in the development, validation, and verifica-

tion of Advanced Driver Assistance Systems (ADAS) and Autonomous Driving Systems (ADS).

While on-road physical testing of vehicle systems provides valuable information about their

real-world performance, it is often not a cost-effective or even viable way to test ADAS/ADS,

especially in the early stages of their development.

A commonly used alternative is the use of simulation tools that enable testing of ADAS/ADS

algorithms in virtual environments. Simulation tools, however, rarely are able to efficiently and

realistically re-create sensor data streams that would closely mimic the realistic performance of

the perception sensors and algorithms, especially since they tend to vary significantly depending

on the number and type of sensors, as well as the type of the perception and tracking algorithms.

Wojciech Turlej

4.1. Introduction and Motivation 79

Thus, models of the sensing systems are often developed for specific applications, depending on

their desired performance and accuracy, as well as the architecture of the modeled system.

4.1.1.1. Automotive Sensor Models

Due to the sheer quantity of existing sensor modeling techniques, they are often categorized

in various ways. The most common and simple categorization can be performed, depending on

the models’ fidelity, by assigning them to one of two classes: high-level or low-level models.

Low-level (high-fidelity) models aim to accurately recreate error patterns observed in given

perception systems through a detailed simulation of the physical phenomena that affect a given

class of sensors. High-level (low-fidelity) models, on the other hand, tend to take a statistical

approach, modeling the outputs of the sensors as stochastic processes with statistical properties

similar to the values observed in real systems. High-level models typically generate a coarser

approximation of sensor output compared to low-level models, omitting the complex physical

simulations used in high-fidelity approaches.

High-fidelity models vary significantly depending on the type of sensor they attempt to sim-

ulate, as well as the intended balance between accuracy and computational performance.

4.1.1.1.1 Radar models

Depending on the application, automotive radars can be modeled on various levels, providing

raw Radar Data Cubes, point-detections, or even output of a sensor-specific object detection and

tracking algorithm, e.g., in the form of bounding boxes. In this section, I will focus mostly on

the point-detections level, given that this type of data is often used for further processing and/or

fusion with other sensors.

Models of the automotive radar sensors often aim to re-cerate errors related to the undesired

reflections of the radar wave, such as mirroring, or multi-path errors. To achieve this, wave

reflections are typically approximated using ray casting methods [57]. To estimate the strength

of wave reflections, as well as the expected distribution of the detections on road users and

static obstacles, simplified geometric models are often utilized [67]. Alternatively, the radar wave

scattering centers of a given object (e.g., vehicle) can be estimated a priori, e.g., using ray casting

with a detailed geometric model [152] for later use in the simulation.

Ray-casting methods that take into account the geometries and material properties of the rel-

evant objects tend to be computationally expensive. In order to achieve satisfactory performance

in setups with stricter time and/or computational power constraints, methods based on various

machine learning techniques are often proposed as an alternative. Machine-learning models uti-

lized for the simulation of the radar’s errors may be trained on a labeled dataset. The authors of

[122] present a comparison of various ML models used for this task. Wheeler et al. [193] present

an application of deep learning for stochastic simulation of radar sensors, taking into account

both static and dynamic environmental features.

Wojciech Turlej

80 4.1. Introduction and Motivation

4.1.1.1.2 Camera models

While methods used for modeling low-level radar sensors vary significantly, most camera-based

perception models involve rendering the simulated 3D scene from the sensor perspective, applying

optional filters and distortions, and running the perception model itself [86].

The environment in proximity of the ego vehicle in this method is represented using detailed

3D models of the relevant static objects and traffic participants [177]. The scene is then rendered

with the use of rasterization or ray-tracing techniques.

Rasterization methods allow rendering of complex scenes quickly with relatively limited com-

putational resources, and thus most commonly find applications in 3D game engines, where

performance is one of the key requirements. As a drawback, rasterization techniques require

certain complex pre-computations and are not as general as ray-tracing methods.

Ray-tracing methods, while significantly slower, accurately simulate complex lighting effects

even in a heavily cluttered environment, where multiple light bounces between objects’ surfaces

with varied light scattering properties. For this reason, these techniques often are utilized in

applications that do not require real-time rendering performance, e.g., in the movie industry.

However, it should be noted that the growing popularity of specialized hardware (graphic cards

with dedicated ray-tracing cores) significantly improves the computation speed of the ray-tracing

rendering techniques, enabling their use in real-time applications.

2D renderings of the ego’s surroundings are typically further processed to take into account

the lens distortions [101], as well as apply the required color space conversions [102].

One significant downside of approaches based on the rendering techniques is that the rendered

scenes must have a high level of realism to ensure that the object detection algorithm, more often

than not trained on datasets composed of real images, would have similar performance on the

synthetic data. Achieving such realism requires a wide variety of detailed 3D models, high-

resolution textures, and realistic simulation of weather conditions. Both the preparation of such

a simulation and its execution tend to be time-consuming and costly.

High-level models are one of the possible alternatives that may greatly reduce the complexity

and computational requirements of sensor modeling. Such models typically operate on object

lists, similarly to the high-level radar sensor models [120, 45].

4.1.1.2. Applications in Reinforcement Learning

Applications of sensor models in the automotive industry are closely connected to simulation-

based testing and validation, as well as to training machine learning-based algorithms that require

realistic road situations samples with corresponding sensor data. While in many cases testing

and learning needs can be fulfilled with the use of pre-recorded sensor streams, together with

reference data that describe the actual state of the environment around the test vehicle, it is

not always a viable solution. Testing AD/ADAS algorithms that control the vehicle in actual

traffic in the early stages of development may pose a danger to other road users and tend to be

Wojciech Turlej

4.1. Introduction and Motivation 81

prohibitively expensive to perform on a large scale. Certain algorithms, such as Reinforcement

Learning, utilize extensive trial-and-error attempts in their learning process, which cannot be

safely executed outside the simulation environment.

The problem of insufficient realism of the simulated environments used for training RL algo-

rithms is widely known and commonly addressed as the Sim-to-Real Gap or Sim-to-Real Transfer

problem [203]. Since RL-based control algorithms are most widely trained using a physical sim-

ulation, they are susceptible to erroneous behaviors in the real world caused by simplifications

and inaccuracies of the simulation environments, that may fail to provide a sufficiently close

re-creation of the targeted real-world environment. This limitation of RL-based algorithms is

often listed as one of the main safety issues that limit their wider adaptation in the robotics and

automotive industries [42].

One of the most commonly proposed approaches to preventing the issues caused by the sim-

to-real gap is the use of domain randomization methods. This type of method is based on the

assumption that the agent trained to operate properly in the presence of a wide spectrum of

randomized modifications of the simulation environments should be also able to operate prop-

erly in the real world, as long as the distribution of modifications includes errors caused by

simplifications of the simulation [175].

Domain randomization techniques are widely used in systems with camera-based perception

modules that fulfill tasks such as object detection or semantic segmentation. The simulated

environment can be easily rendered with a wide spectrum of modifications that include changes

in lighting conditions, object texture, colors, and camera properties, as well as the addition of

random noise or blur filters [55]. This approach has been proven to be effective in alleviating

sim-to-real transfer problems in certain robotics tasks [174].

Randomization techniques can also be applied to the physical properties of simulated objects,

by modifying their surface friction properties, locations, or geometries [8].

Although it could be argued that the randomization methods successfully used for systems

with camera-based perception systems could be applied to the training of RL-based vehicle con-

trol algorithms that utilize camera-based perception, data on the applicability of domain ran-

domization methods to the systems with radar-based or multi-sensor fusion perception systems

is sparse. Atypical error patterns caused by both the physical properties of the radar wave and

the limitations of perception, tracking, and fusion algorithms may not be sufficiently represented

by the random error distributions often used in domain randomization techniques.

4.1.2. Motivation and General Idea

Reinforcement Learning appear to be one of the most promising approaches to vehicle be-

havior and trajectory planning. Its reliance on massive amounts of closed-loop simulation driving

creates a need for efficient sensor modeling techniques to ensure the resulting system’s robust-

ness to sensor errors. Although many sensor modeling techniques have already been proposed for

Wojciech Turlej

82 4.1. Introduction and Motivation

simulation-based testing of ADAS and AD systems, they rarely provide the faster than real-time

performance required for efficient training of neural networks. Simpler domain randomization

techniques frequently utilized in RL-based systems training, on the other hand, fail to capture

the complex nature of automotive perception errors.

In this chapter, I propose a set of sensor models that are intended to be used for RL training

applications, closing the gap between specialized high-fidelity models and simple domain ran-

domization techniques. While the models are generic in their nature and designed to be easily

applicable for various AD/ADAS systems and different types of sensors, their application is pre-

sented in an example of an RL-based direct control AD system (further described in section 4.5)

equipped with 360-degree short range radar-based objects perception system and a front camera

with the lane detection system.

Due to the immense amount of simulations required for most RL training techniques, the

models must remain simple and computationally efficient, yet at the same time should be able to

mimic common error patterns observed in automotive perception systems. Calibration parame-

ters should allow simple adaptation of the proposed models to the different setups and sensor

characteristics.

4.1.3. Contributions

Considering the restrictions of existing techniques and motivations discussed in the previous

section, the primary contributions of the methods proposed in this chapter are listed below.

◦ The proposal of an efficient model of an arbitrary dynamic objects detection system. The

proposed model simulates objects’ state estimation errors, false positive detection errors,

false negative detection errors, as well as object detection delays.

◦ Model of a lane marker detection perception system capable of simulating geometry esti-

mation errors, viewing distance limitations, and false negative detection errors. The model

can take into account lane occlusions, simulating their impact on the perception quality

and false negative detection error occurrence probability.

◦ The proposal of a RL-based driving policy. The policy is capable of performing a highway

driving task efficiently (faster than real-time). The underlying neural network has been

trained with the use of the proposed sensor models, resulting in robust behavior in the

presence of various types of perception errors.

◦ Analysis of an impact of the use of sensor models in RL training on the robustness of the

trained driving policy. The trained policy has been compared with policies trained based

on ground-truth sensors data, and baseline stochastic sensor models resembling existing

Wojciech Turlej

4.2. Problem Formulation 83

domain randomization techniques. A set of simulation experiments involving highway driv-

ing as well as a set of predefined test scenarios has been used to provide insight into the

impact of sensor models and domain randomization on the robustness of the policy.

The methods presented in this chapter are partially based on my previous work [179], with

several notable extensions, including, but not limited to, extended evaluation and performance

analyses.

4.2. Problem Formulation

The main role of sensor models discussed in this chapter is to utilize traffic simulation ground

truth information to generate synthetic data about dynamic objects and lane markers in prox-

imity to the ego vehicle, as perceived by its perception systems. This allows for the creation of

a Software-in-Loop testing and training setup, where the AD/ADAS algorithm controls an ego

vehicle in a simulated traffic environment, performing decisions based on synthetic sensor data.

There is no common agreement on the interfaces used to interact with the traffic simulation

software, even though certain standardization attempts were made, the most notable example

being the Open Simulation Interface (OSI) [51]. Depending on the intended use, typically either

a subset of OSI or application-specific interfaces is utilized.

Sensor models described in this chapter are split into two subsystems: dynamic environment

models, which utilize a list of traffic participants (e.g., vehicles) in the proximity of the ego

with their properties, and static environment models, which use a list of lane markers, with their

types and description of their geometries. There are no substantial differences between the sensor

models’ input and output interfaces.

As both dynamic and static models operate on lists of entities (vehicles, lane markers) with

their respective parameters (such as geometry or position), both models will use a similar nota-

tion.

The simulation package provides information about the environment in discrete time steps,

consisting of nclass sets of environmental features of distinct classes c ∈ C, including, e.g., dynamic

object detection and lane marker detection classes. At each time step t, the environmental features

are represented as sets Sc(t) = {sci(t)}i=1..nc
of nc state vectors sci, where sci ∈ Rnsc . Note that

the size of the state vector nsc may vary between object types, and the number of objects nc in

each set is not constant and may vary over time.

Perception, as a process of acquiring information from sensors and optionally processing it

further (e.g., filtering, tracking), can be modeled as a generation of an objects’ set estimate

Ŝc = {ŝcj}j=1..nce
. The set Ŝc describes nce objects registered by a perception stack, where each

object is described by a state estimate ŝc ∈ Rnŝc .

Following the notation proposed in [52], I describe the sensing process of features of a class

c using a mapping:

Wojciech Turlej

84 4.3. Dynamic Objects Detection Model

M (pc) : {sc}i=1..nc
→ {ŝcj}j=1..nce

, (4.2.1)

where pc is a vector of parameters that have an impact on a sensing process related to a feature

class c, describing e.g., sensor properties, weather conditions, etc.

In general, the sensing process does not preserve the number of objects, as false positive and

false negative detection errors can impact the number of perceived objects, and thus nc ̸= nce.

Further following the notation proposed in [52], the sensing model M can be composed of an

arbitrary number nm of subsequent mapping operations M (k) for k = 1..nm.

The resulting sensor model is given by the following equation:

M(p) =M (nm)(pnm) ◦ ... ◦M (2)(p2) ◦M (1)(p1) (4.2.2)

where pn is a parameters vector that impact the the n-th mapping operation M (n). The mapping

M (n) is defined as:

Mn(pn) : {ŝci}(k−1)
i=1..nk−1

→ {ŝcj}(k)j=1..nk
, (4.2.3)

where nk denotes the number of objects after the k-th mapping operation. It can be noted

that {sci}(1)i=1..nc
= Sc (first mapping M (1)(p1) maps the ground-truth environment description,

or the simulator output, to a certain set {sci}(1)i=1..n1
), and the output of the sensing process is

given by the result of the last mapping operation, so {ŝcj}(k)j=1..nk
= Ŝc.

A significant subset of error patterns observable in perception systems, especially those that

filter their output in time, is time-correlated. Modeling them requires information about previous

states of the environment and/or the use of the internal sensor state, which would enable preser-

vation of certain information between the execution of the algorithm on the subsequent time

samples. To achieve this, previous inputs and outputs of the sensor model, as well as additional

variables that describe the internal state of the model, can be included in the parameter vectors

pi for i = 1..nm.

4.3. Dynamic Objects Detection Model

The dynamic environment perception model utilizes object-level representation of traffic par-

ticipants in proximity to the ego vehicle to simulate a sensing stack composed of multiple sensors,

the output of which is fused and filtered in a central unit. One possible realization of such a sys-

tem often utilized in commercial vehicles is a set of Phase-Modulate Continuous Wave (PMCW)

Radars that operate in the millimeter range of the electromagnetic waves spectrum. As an ex-

ample, radar-based AD/ADAS systems that utilize four short-range radars placed in each corner

of the vehicle to provide a 360-degree environment model can be considered. In certain appli-

cations, additional long-range front radar or front-facing camera is added to provide additional

Wojciech Turlej

4.3. Dynamic Objects Detection Model 85

information about the vehicles in front of the ego, critical for Automatic Cruise Control (ACC)

and Automatic Braking (AB) applications.

Fusion algorithms, often based on Kalman filter concepts, gather information from all sensors,

often in the form of object lists, to produce a single time-filtered object list.

The dynamic perception sensor model described in this section is intended to mimic such a

system, simulating the following limitations and error patterns observed in similar systems:

◦ Range limitations. All dynamic environment sensor types have effective range limita-

tions, above which objects cannot be reliably detected.

◦ Occlusions. Most sensor types cannot detect an object that is occluded by other objects

or static obstacles. While certain exceptions from this rule exist (e.g., radars are sometimes

able to detect an object occluded by a barrier or other vehicle based on radar wave’s ground

reflections), they rarely can be utilized in a reliable manner.

◦ False positive detections. Detection of non-existing objects in unoccupied areas, often

observed in radar-based systems due to, e.g., multipath reflections.

◦ False negative detections. Missing detections, often caused by adverse weather condi-

tions, or an object’s unfavorable Radar Cross Section (RCS) in radar-based systems.

◦ State estimation errors. Errors in the estimation of object’s state (e.g., geometry, ve-

locity, orientation). It should be noted that sometimes severe state estimation errors can

be indistinguishable from a pair of false positive and false negative detection errors.

The ground truth information about the dynamic environment produced by a simulation

package in time t is described by a set Sd(t) = {sdi(t)}i=1..nd
. State of each of nd relevant objects

in is represented by a state vector sdi for i = 1..nd consisting of following state variables:

sdi =



gi

xi

ψi

vi

ai


. (4.3.1)

In the above equation, gi ∈ R2 represents the geometry of the i-th object, in particular the length

and width of its bounding box. Vector xi ∈ R2 is the object’s position in a Cartesian coordinate

system, ψi ∈ R denotes its rotation (with respect to the coordinate system’s origin), while vi ∈ R
and ai ∈ R describe the object’s absolute velocity and acceleration, respectively.

The dynamic perception model performs the mapping:

Mdyn (pd) : {sdi}i=1..nd
→ {ŝdj}j=1..nde

, (4.3.2)

Wojciech Turlej

86 4.3. Dynamic Objects Detection Model

producing an estimate of the dynamic environment’s state Ŝd = {ŝdj}j=1..nde
composed of nde

object’s state estimates ŝdj = [ĝj , x̂j , ψ̂j , v̂j , âj]
T for j = 1..nde. The perception system is

modeled through a set of operations, described in following sections.

4.3.1. Range Limitations and Occlusions

Range limitations and occlusions model is described as Md,occ(pd,occ) mapping operation:

Md,occ(pd,occ) : {sdi}i=1..nd
→
{
sd,occj

}(d,occ)

j=1..nd,occ
, (4.3.3)

where the parameter vector pd,occ describes the sensor’s range limitation, detection angle (if

relevant), and the occlusion level above which the objects are filtered out. nd,occ is a number of

unoccluded objects in the detection area of a sensor.

Occlusion filtering is typically performed in a 2D projection of the environment, using rect-

angular bounding boxes for the relevant objects. Both range limitation and occlusion filtering

operations are commonly available in the simulation packages and can be calculated using rela-

tively trivial trigonometric operations, and thus will not be described in detail in this section.

4.3.2. False Negative Detection Errors

False negative object detection errors may be caused by several different phenomena, but for

the purpose of sensor modeling, they can be categorized into two main types: detection delays

and random disappearances.

The detection delays refer to the time delay between the object’s appearance in an unoccluded

detection area and its addition to the perception output objects list. One source of detection

delays is related to the system’s properties, such as the internal communication network’s latency

and the perception algorithm’s execution time. Second, a more significant source of stochastic

detection delays is related to the design of the tracking and fusion algorithms. In order to filter

out possible false positive errors, such algorithms often require gathering sufficient evidence that

objects, in fact, exist, before they will be added to the objects list. Such evidence may include

the detection of the object’s existence in several subsequent time instances, confirmation from

several sensors, or acquisition of detection with a sufficient confidence level (e.g., the sufficient

signal-to-noise ratio in radar systems). The time needed to gather this evidence may be difficult

to predict, resulting in potentially significant detection delays.

In order to model such delays, each newly observed object that entered the unoccluded

detection area of the sensors (so each new object in the set {sd,occj}
(d,occ)
j=1..nd,occ

) is assigned a

random detection delay Tdelayi
for i = 1..nd,occ. The delay value is sampled from a normal

distribution:

Wojciech Turlej

4.3. Dynamic Objects Detection Model 87

Tdelayi
= max

(
pµ,delay, | ∼ N (0, p2σ,delay)|

)
, (4.3.4)

configured by pµ,delay and pσ,delay calibration parameters.

False negative detection errors may also affect already detected objects, for example, due to

partial occlusions, weak radar reflections in certain orientations, or weather conditions. Such dis-

appearances of objects from the perception output are modeled as random drops with a certain

duration assigned. At each sensing update, each of the objects from the set {sd,occj}
(d,occ)
j=1..nd,occ

can be marked as a false negative (and removed from the subsequent mapping output) with

probability pd,fn,prob. The object newly marked as a false negative is assigned a duration

Td,fn,dur = max
(
pµ,fn,dur, | ∼ N (0, p2σ,fn,dur)|

)
for which it will remain removed from the output

objects list. pµ,delay, pσ,delay, pd,fn,prob, pµ,fn,dur, pσ,fn,dur are the calibration parameters included

in the pd,fn parameters vector.

Additional state variables are required to keep track of false negatives and their duration, i.e.

detection delays Tdelay, detection durations Td,fn,dur, timestamps that allow computing the current

duration of a given false negative, and false negative flags are also included in the parameter

vector.

All operations related to false negatives are described as a mapping:

Md,fn(pd,fn) :
{
sd,occi

}(d,occ)
i=1..nd,occ

→
{
sd,fnj

}(d,fn)

j=1..nd,fn
. (4.3.5)

4.3.3. False Positive Detection Errors

False positive detection errors pose a significant hazard in AD/ADAS, being able to falsely

trigger various emergency responses. False positive errors are especially problematic in radar-

based systems. False detections caused by multipath reflections of the radar wave are difficult to

distinguish from the real objects - especially since they tend to exhibit similar characteristics to

the objects that caused them.

False positives are modeled by random injection of the non-existing objects, that persist for

a certain amount of time. The persistence of the objects for several time frames is often the case

even in camera-based systems, as tracking and fusion algorithms often artificially prolong the

existence of the tracked objects to avoid false negative errors, updating their state according to

simplified motion models.

In the proposed model, at each sensing update, a single false positive object can be randomly

introduced with a probability pfp,prob. Newly created false positive detections are assigned a

duration Td,fp,dur = max
(
pµ,fp,dur, | ∼ N (0, p2σ,fp,dur)|

)
, for which they will persist, and their

state sd,fp is sampled from the following vector of normal distributions:

Wojciech Turlej

88 4.3. Dynamic Objects Detection Model

sd,fp =



g ∼ N2(µg,Σg)

x ∼ N2(µx,Σx)

ψ ∼ N (µψ, σψ)

v ∼ N (µv, σv)

a ∼ N (µa, σa)


, (4.3.6)

where µg, Σg, µx, Σx, µψ, σψ, µv, σv, µa, and σa denote the calibration parameters. All

parameters are stored in a vector pd,fp.

During false positive detections’ existence, their stat is updated according to a basic constant

acceleration model, i.e., objects move in the direction coincident with their orientation keeping

the initial acceleration. The current state of the object, as well as its duration of existence, are

stored in the parameter vector pd,fp as well.

All operations related to the false positive detection errors, i.e., their creation, state updates,

and removal are described with a mapping:

Md,fp(pd,fp) :
{
sd,fni

}(d,fn)
i=1..nd,fn

→
{
sd,fpj

}(d,fp)

j=1..nd,fp
. (4.3.7)

4.3.4. State Estimation Errors

State estimation errors are common in all automotive perception systems, due to the physical

limitations of the sensors, as well as the imperfect nature of the detection, tracking, and fusion

algorithms. This type of errors in automotive systems tends to be time-correlated, as not only

do the environmental triggers that cause the errors tend to persist for multiple sensing updates,

but also the tracking and fusion algorithms usually have filtering properties that introduce time

correlations.

Thus, state estimation errors are simulated using a stochastic process that allows one to

mimic the time-correlated nature of the errors. In particular, a multivariate stochastic model

based on the Ornstein-Uhlenbeck process is used for the update of the state estimate values of

each observed object. At each time update i, each nc-dimensional chunk ŝc of the state estimate

vector is calculated according to the following model:

POUc (̂s
(i)
c |s(i), ŝ(i−1),psc) =

pou,λc ∗ (s(i) − ŝ(i−1)) ∗ dt+W(i) ∗ dt, for i > 1

Nnc(s
(i),pou,Σ,initc), for i = 0,

(4.3.8)

where the ground truth value of the state vector chunk is denoted as s(i) ∈ Rnc , the previous

value of the state estimate is denoted as ŝ(i−1) ∈ Rnc , dt denotes the time between perception

updates, and Wi ∈ Rnc is a random variable, which is sampled according to a multivariate

Wojciech Turlej

4.3. Dynamic Objects Detection Model 89

normal distribution Wi ∼ Nnc(0,pou,Σ,uc
). The process can be calibrated using the parameters:

pou,λc , pou,Σ,initc and pou,Σ,uc
, gathered in a parameter vector psc .

Operations that constitute the update of the objects’ state estimates are described with a

mapping:

M state,est
(
pstate,est, ŝ

(t−1)
state,est

)
:
{
sd,fni

}(d,fn)
i=1..nd,fn

→
{
ŝ
(t)
state,estj

}(state,est)

j=1..nstate,est
, (4.3.9)

where ŝ
(t)
state,estj is computed according to the following mapping:

ŝ
(t)
state,estj = POU (̂s

(t)|s(t), ŝ(t−1),pstate), (4.3.10)

where pstate,est is the calibration vector that includes OU process calibration matrices: pou,λ,

pou,Σ,init and pou,Σ,u.

4.3.5. Complete Model of the Dynamic Environment Perception

The model is composed of all previously described operations: simulation of detection area

limitations, occlusions, false negative and positive errors, and state estimate errors. All these

operations can be described as mapping:

Md(p) =M (state,est)(pstate,est) ◦M (d,fp)(pd,fp) ◦M (d,fn)(pd,fn) ◦M (d,occ)(pd,occ). (4.3.11)

The values of the parameters used for model calibration depend on the particular configu-

ration of sensors and perception algorithms used in the ego vehicle. An exemplary set of values

used for experiments presented in the following sections is shown in Table 4.1.

Wojciech Turlej

90 4.4. Lane Markers Detection Model

Table 4.1. Values of sensor models calibration parameters used in the experi-
mental setup.

Parameter
Name

Value Unit Description

pµ,delay 0.3 s Mean object detection delay
pσ,delay 0.55 s Object detection delay standard deviation
pd,fn,prob 0.001 - Probability of false negative object detection
pµ,fn,dur 1.47 s Mean duration of false negative object detection
pσ,fn,dur 1.5 s False negative object detection duration stan-

dard deviation
pd,fp,prob 0.0175 - Probability of false positive object detection
pµ,fp,dur 0.5 s Mean duration of false positive object detection
pσ,fp,dur 2.8 s False positive object detection duration stan-

dard deviation
µq [4.34, 1.89]T - Mean false positive object size

Σq

[
0.21 0
0 0.01

]
- False positive object size covariance matrix

µx [45.1, 0]T - Mean false positive object position

Σx

[
19.3 0
0 0.97

]
- False positive object position covariance matrix

µψ 0.0 - Mean rotation of false positive object
σψ 0.44 - Standard deviation of false positive object rota-

tion
µv 0.0 m

s Mean speed of false positive object relative to ego
σv 11.7 m

s Standard deviation of false positive object speed
µa 0.0 m

s2 Mean acceleration of false positive object relative
to ego

σa 3.46 m
s2 Standard deviation of false positive object speed

pou,λ diag(0.5, 0.65,
0.11, 0.45, 0,

0.5, 0)

- State estimation noise parameter

pou,Σ,init diag(1.3, 1.0,
1.4, 0.7, 0, 2.2,

0)

- State estimation noise parameter

pou,Σ,u diag(2.0, 1.6,
1.3, 0.7, 0, 2.5,

0)

- State estimation noise parameter

4.4. Lane Markers Detection Model

Static environment perception can refer to the detection and tracking of various elements of

the ego’s surroundings, such as lane markers, road barriers, parked vehicles, debris, or elements

of the road infrastructure.

Wojciech Turlej

4.4. Lane Markers Detection Model 91

In this section, I will focus on the elements that have the greatest impact on AD systems,

which are the lane markers. Lane markers are one of the most important elements of the in-

frastructure that are utilized even in relatively basic ADAS features, such as Lane Centering

or Automatic Cruise Control. However, it should be noted that both parked vehicles and static

elements of road infrastructure may also play a significant role in such features - both can be

represented in a way identical to the elements of the dynamic environment, that is, using the

state vectors sd, with the acceleration and velocity set to 0.

Lane markers are usually detected by a camera-based sensor and thus are prone to errors and

performance degradation related to bad weather conditions, such as rain or snow. Additionally,

the detection of lane markers can be affected by unfavorable light reflections on a wet road, snow

residues, complex road geometry, and wear of the markers themselves.

The model presented in this section is intended to simulate the following types of errors and

performance degradations:

◦ Range limitations. Limited resolution of the cameras hinders their ability to detect

farther objects, including the lane markers. For this reason, the perceived length of the

lane markers is typically limited and tends to decrease on roads with complex geometries

that create unfavorable perspective effects.

◦ Occlusions. Range is further limited on roads with heavy traffic, due to other traffic

participants that may occlude the road markers.

◦ False negative detections. Adverse weather conditions and severe occlusions can lead

to missing lane marker detections. Missing detections are often the case for markers that

have already been partially occluded by other vehicles.

◦ State estimation errors. In the case of lane markers, state estimation errors most often

refer to the incorrect estimation of the marker’s geometry. The geometry error tends to

grow with the longitudinal distance from the ego vehicle.

The lane markers are represented as a set Sr(t) = {sri(t)}i=1..nlm
of nlm l-dimensional vectors

sri ∈ Rl for i = 1..nlm, which describe the geometry of the lane markers in the vicinity of the

ego vehicle. The lane markers’ geometries are defined as:

sri =

[
c

h

]
, (4.4.1)

where c ∈ R4 is a vector of polynomial coefficients c = [c0, c1, c2, c3] that define the lateral

offset d of a lane marker as a function of the longitudinal distance s from the ego vehicle:

d(s) = c3 ∗ s3 + c2 ∗ s2 + c1 ∗ s+ c0. h is the longitudinal length of the observed lane marker.

Wojciech Turlej

92 4.4. Lane Markers Detection Model

The static environment model uses a ground truth of lane markers Sri(t) generated by the

simulator, and produces an estimate of the road model Ŝr, which includes estimates of the state

of the lane markers ŝri(t) =
[
ĉi(t), ĥi(t)

]T
.

4.4.1. Range Limitations and Occlusions

The lane marker detection range limitation model limits the observed marker length in a

stochastic manner, emulating the difficulties of detecting markers at large distances observed in

camera-based sensors. Range limitation directly impacts the lane marker geometry estimation

- in further steps of the processing, the lane marker geometry is estimated based on observed

unoccluded parts of the ground truth marker.

The range limitation is also closely related to the occlusions. If a large part of the marker

is occluded, the observed length is often limited to the distance from the ego vehicle to the

appearance of the occlusion.

Occlusions of the ground truth lane markers are calculated on the basis of discrete samples of

the lane markers’ geometry. Each ground truth lane marker sri is sampled uniformly to a set of

samples sij = [xs, ys]
T , where xs denotes the longitudinal position of a sample and ys its lateral

position, both in the Cartesian Vehicle Coordinates System (VCS).

The sampling operation can be described as a mapping:

M (r,smpl)(pr,smpl) : {sri(t)}i=1..nlm
→
{{

zr,smpl
ij

}
j=1..nr,smpl

}
i=1..nlm

(4.4.2)

where zr,smpl
ij is the j-th sample of i-th lane marker, and pr,smpl is a parameter vector that

allows configuring the number of samples to be gathered and the maximum sampling distance.

The next operation is the removal of the occluded samples. The occlusion is evaluated on the

basis of a 2D projection of bounding boxes of other vehicles, making the occlusion check trivial

to perform. Additionally, if at least ncons consecutive samples in a single marker are occluded, the

rest of the samples (farther from the ego vehicle) are discarded as well. A mapping M (r,occ)(pr,occ)

consists of the execution of occluded samples removal operation for each of the lane markers:

M (r,occ)(pr,occ) :

{{
zr,smpl
ij

}
j=1..nr,smpl

}
i=1..nlm

→
{{

zr,occ
ij

}
j=1..nr,occi

}
i=1..nlm

(4.4.3)

where pr,occ is the calibration vector.

The distance of the farthest sample of each marker is considered its base length used for

subsequent range limitation operations and marked hgt.

The marker length value is calculated using a stochastic model inspired by an Ornstein-

Uhlenbeck process, similar to the model used in state estimate errors for dynamic objects. The

model is defined as follows:

Wojciech Turlej

4.4. Lane Markers Detection Model 93

Ph(ĥ
(t)|h(t)gt , h

(t−1)
gt , ĥ(t−1),ph) =



(
plm,h,λ

((
h
(t)
gt − plm,lim

)
− ĥ(t−1)

)
+W (t)

)
∗ dt

if t > 0 and
(
h
(t)
gt − h

(t−1)
gt

)
≥ plm,jump

N
(
h
(t)
gt − plm,lim, plm,h,σ

)
otherwise,

(4.4.4)

where ph is the calibration vector consisting of the calibration parameters plm,h,λ, plm,lim,

plm,jump, and plm,h,σ. It should be noted that according to the above equation, the process is

reset if the perceived length hgt of the ground truth marker experiences a sudden drop, i.e.,(
h
(t)
gt − h

(t−1)
gt

)
≥ plm,jump. After the reset, the process is initialized by drawing the length value

from a normal distribution. This mechanism is implemented to enable severe length limitations

during sudden occlusions.

Since the final representation of the lane markers ŝri(t) =
[
ĉi(t), ĥi(t)

]T
uses cubic polynomi-

als to represent their geometry, the samples {zr,occ
ij }j=1..nr,occ,i are used to find an approximation

of the polynomial ĉi(t) using the least squares method. This approximation is denoted as a

mapping:

M (r,lsa) :

{{
zr,occ
ij

}
j=1..nr,occi

}
i=1..nlm

→
{
s
(r,lsa)
i

}
i=1..nlm

(4.4.5)

Note that since the approximation is performed using only already filtered-out samples, this

operation at the same time emulates the geometry estimation performance degradation in pres-

ence of occlusions - i.e., loss of information about the markers’ geometry in occluded areas.

4.4.2. False Negative Detection Errors

The false negative model is responsible for the random removal of the lane markers from

the set
{
s
(r,lsa)
i

}
i=1..nlm

. The model is intended to implement the intuition that unoccluded lane

markers in close proximity to the ego vehicle have a higher chance of being detected than markers

that are heavily occluded or are placed farther from the vehicle laterally. Removal of the lane

markers is performed in a mapping:

M r,fn(pr,fn) :
{
sr,lsa
i

}
i=1..nlm

→
{
sr,fn
j

}
j=1..nr,fn

. (4.4.6)

The mapping takes into account the lateral offset of a lane marker, or rather a number of

markers o ∈ N between the ego and the marker, with o = 0 corresponding to the markers

delimiting the lane currently occupied by the ego vehicle.

The probability Pdiscard that the lane marker will be discarded from a final set is defined as:

Wojciech Turlej

94 4.4. Lane Markers Detection Model

Pdiscardi(pfn) =


plm,disc,c0 + plm,disc,l0 ∗ hmax−hi

hmax
if o = 0

plm,disc,c1 + plm,disc,l1 ∗ hmax−hi
hmax

if o = 1

plm,disc,c2 + plm,disc,l2 ∗ hmax−hi
hmax

otherwise,

for i = 1..nlm, (4.4.7)

where the vector pfn is composed of calibration parameters plm,disc,c0 , plm,disc,l0 , plm,disc,c1 ,

plm,disc,l1 , plm,disc,c2 , and plm,disc,l2 . Additionally, the vector includes a value hmax that denotes

the effective detection range of the static environment perception system, that is, the maximum

length of the lane marker.

Lane markers assigned a false negative status may regain a true positive status at each

perception update with a probability Plm,recovery calculated as follows:

Plm,recovery = prec,hyst ∗ (1− Pdiscard) + min(prec,pps ∗ tdisc, prec,sat), (4.4.8)

where tdisc denotes the time for which the lane marker had the false negative status, and prec,hyst,

prec,pps, prec,sat are the configuration parameters.

4.4.3. Geometry Estimation Errors

The geometry estimation error model is based on the Ornstein-Uhlenbeck-based processes

POU
(
ĉ(t)|c(t), ĉ(t−1),pc

)
, with the calibration vector pc including parameters plm,c,λ, plm,c,Σinit

and plm,c,Σu , analogous to the one used for dynamic objects’ state estimation errors modeling. In

combination with the length model defined in Section 4.4.1, the complete geometry model can

be defined as:

s
(t)
j =

[
POU (ĉ

(t)|c(t), ĉ(t−1),pc)

POU (ĥ
(t)|h(t)gt , h

(t−1)
gt , ĥ(t−1),ph)

]
for j = 1..nr,fn. (4.4.9)

Calibration vectors pc and ph are included in the calibration vector pr,geom.

With the geometry model denoted as a mapping:

M (r,geom)(pr,geom) :
{
s
(r,fn)
i

}
i=1..nr,fn

→
{
s
(r,geom)
j

}
j=1..nr,fn

, (4.4.10)

a complete model of a static environment perception system can be defined as:

Mstatic(pr) =M (r,geom) ◦M (r,fn) ◦M (r,lsa) ◦M (r,occ) ◦M (r,smpl). (4.4.11)

The model in the experiments presented in the following sections is calibrated according to

the parameters in Table 4.2

Wojciech Turlej

4.5. Application of Sensor Models in RL-based Driving Policy Training 95

Table 4.2. Calibration values used for lane markers perception model.

Parameter
Name

Value Unit Description

plm,h,λ 0.4 - Lane markers length noise parameter
plm,lim 5.0 m Mean lane markers length shortening
plm,jump 15.0 m Min lane markers length change for noise reset
ph,σ 5.6 - Lane markers length noise parameter

plm,disc,c0 0.001 - Marker false negative probability parameter
plm,disc,l0 0.01 - Marker false negative probability parameter
plm,disc,c1 0.01 - Marker false negative probability parameter
plm,disc,l1 0.01 - Marker false negative probability parameter
plm,disc,c2 0.02 - Marker false negative probability parameter
plm,disc,l2 0.01 - Marker false negative probability parameter
hmax 90.0 m Maximum length of lane marker
prec,hyst 0.005 - Marker false negative recovery probability param-

eter
prec,pps 0.05 - Marker false negative recovery probability param-

eter
prec,sat 0.3 - Marker false negative recovery probability param-

eter
plm,c,λ diag(5.5, 5.5,

1.5, 2.5)
- Lane marker geometry noise parameter

plm,c,Σinit diag(2.5, 0.05,
0.001, 0.0001)

- Lane marker geometry noise parameter

plm,c,Σu diag(0.15,
0.007, 10−4,

10−6)

- Lane marker geometry noise parameter

4.5. Application of Sensor Models in RL-based Driving Policy

Training

The main purpose of the presented sensor models is to enable efficient training of driving poli-

cies based on Reinforcement Learning methods that would be robust to perception errors. In this

subsection I describe a direct control driving policy, which will be used for further experiments

related to the sensor models that will be described in the next sections.

A vast selection of network architectures have already been proposed for the task of au-

tonomous driving. As the network described in this section will be used primarily for experiments

related to perception errors, the main goal of its design is to utilize state-of-the-art solutions (such

as the use of transformers for input processing) while remaining relatively simple.

To fulfill these goals, I propose a direct-control driving policy that outputs acceleration and

steering angle values. This design choice allows for a close investigation of the impact of the

perception errors, as such issues may result in easily observable, immediate reactions to the

Wojciech Turlej

96 4.5. Application of Sensor Models in RL-based Driving Policy Training

policy. In contrast to higher-level control designs, such as behavior-planning policies that output

semantic actions, in this setup incorrect inputs may lead directly to dangerous steering actions

or a lack of appropriate braking reactions in dangerous situations.

4.5.1. Network Inputs

To prevent data loss and maintain efficient execution, object lists were used as input to the

network. The input to the network is made up of several components, which are described in the

following paragraphs.

State of the ego vehicle at time update t defined as:

o(t)ego =
[
v(t)se , v

(t)
exe
, a(t)se , a

(t−1)
se , γ(t)e

]
, (4.5.1)

where v(t)se denotes a longitudinal velocity at time update t, v(t)exe describes the absolute speed

of the ego as a ratio of the speed of the ego at time update t to the current speed limit, a(t)se and

a
(t−1)
se denote the acceleration of the ego at time updates t and t− 1, and γ(t)e denotes the ego’s

yaw rate divided by its absolute velocity.

Description of other road users in the vicinity of the ego vehicle. In the testing setup

used for the experiments, only vehicles were considered for road users, although the description

remains sufficiently general to describe other types of traffic participants, such as bicycles and

pedestrians. Each road user is described using a vector:

oobji = [gi,xi, ψi,vi,ai]
T for i = 1..nobj_max, (4.5.2)

where gi ∈ R2 describes the width and length of the bounding box of the road user, xi ∈ R2

denotes the position of the center of the bounding box relative to the ego vehicle, ψi ∈ R is the

rotation with respect to the ego’s orientation, vi = [vsi , vdi]
T describes the relative velocity of

the road user, and ai ∈ R2 its acceleration relative to the ego.

Description of lane markers geometry, where each relevant (i.e., belonging to the driv-

able road in ego’s proximity) lane marker is described with a state vector:

olmi = [dlmi , hlmi , γlmi ,mlmi]
T , (4.5.3)

where dlmi ∈ R10 describes the marker geometry in the form of a vector of lateral positions.

The vector is created by sampling the polynomial that describes the marker’s geometry in a set

of uniformly distributed longitudinal distances. hlmi ∈ R describes the distance up to which the

marker is reliably observed, that is, the length of the marker, γlmi ∈ R describes the rotation of

the marker relative to the ego vehicle at the point closest to the ego, and mlmi ∈ [0, 1] describes

the type of marker, with mlmi = 0 denoting a broken line, and mlmi = 1 continuous one.

Wojciech Turlej

4.5. Application of Sensor Models in RL-based Driving Policy Training 97

The description of lane markers and other road users, depending on the setup, is created

either based on ground-truth information from the simulation package or from the sensor models’

outputs. All values are updated at each time step, i.e., every time the network inference is

performed.

4.5.2. Network Architecture

FC

Output
token Ego

Object Lane
markerObject

Object
Lane

markerLane
marker

FC FC FC

Transformer encoder layer

Transformer encoder layer

Transformer encoder layer

Deep fully connected

Acceleration Steering angle

Direct control network architecture

Legend

FC Fully connected layer

Concatenation

Multi-Head Attention

Add & Normalize

Feed Forward

Add & Normalize

Input (embedding)

Output

Transfromer encoder layer

Figure 4.1. Architecture of the direct control network. nembd-
dimensional input embeddings of a const output token, Ego features (oego),
objects oobji for i = 1..nmax,obj, and lane markers olmi for i = 1..nmax,lm are
concatenated into matrix I ∈ Rnembd×(1+1+nobj+nlm) and consumed by the
transformer encoder layers. Encoders use a masking mechanism to prevent non-
existing objects or lane markers from impacting the outputs. Ultimately, the
transformer encoder layers produce the output O ∈ Rnembd×(1+1+nobj+nlm). The
first column of O is then processed by a deep fully connected network to gen-
erate the control values αacc and αsteer. Note that the transformer structure
used for observation lacks positional encodings, as there is no need to sort or
prioritize the environmental features.

The use of variable-length object lists as an input to the network, while having the advantage

of small memory requirements, creates a few challenges. For one, since the number of objects ob-

served in the proximity of the ego vehicle varies, an adequate architecture is needed to distinguish

between actual inputs and empty placeholders if not all possible object fields are filled. Another

Wojciech Turlej

98 4.5. Application of Sensor Models in RL-based Driving Policy Training

problem is related to the order of objects - while separate inputs can be used for various objects

depending, e.g., on their position in relation to the ego, such solutions tend to result in sudden

changes in output changes when objects change their categorization (e.g., object categorized as

"adjacent left lane marker" changes when ego change lanes, possibly resulting in action changes).

To alleviate these issues, the transformer encoder model [185] is used for input processing.

All the observation values are scaled and processed by the transformer model as presented in

Fig. 4.1. The output of the model is further processed by a fully connected deep network that

returns the output:

αϕ(oego,oobj,olm) = [αacc, αsteer]
T (4.5.4)

The output values, ranged [−1, 1] are scaled by gains pαacc , pαsteer to acquire actual control

values.

The parameters related to the scaling of the inputs and outputs of the network are presented

in Table 4.3.

Table 4.3. Calibration parameters related to the direct control network.

Parameter
Name

Value Description

pαacc 3.5 Acceleration output scaling.
pαsteer 0.125 Steering output scaling.
nmax,obj 10 Max number of observed objects.
nmax,lm 6 Max number of observed lane markers.

4.5.3. Reward Components

The policy is trained using a PPO algorithm using a set of reward components that are

intended to promote smooth and safe driving in a highway traffic environment. PPO training

utilizes a composite reward r(t) defined as:

r(t) = r
(t)
speed_limit + r(t)acc + r

(t)
steer + r

(t)
centering + r

(t)
TTC + r

(t)
term, (4.5.5)

where rspeed_limit is a speed limit execution component, calculated as r
(t)
speed_limit =

wspeed_limit ∗ v(t)exe , with wspeed_limit being a calibratable weight, and v(t)exe the ratio between ego’s

speed and the speed limit. The second and third reward components penalize high control values

and are defined as racc = wacc∗α(t)
acc and rsteer = wsteer∗α(t)

steer, with wacc and wsteer denoting their

respective weights. Lane centering behaviors are encouraged by the rcentering = wcentering ∗ d(t)

component, with d(t) denoting the lateral distance between the center of the ego and the center

of the current lane.

Wojciech Turlej

4.5. Application of Sensor Models in RL-based Driving Policy Training 99

Although strong penalties for collisions are typically sufficient to achieve satisfactory collision

avoidance performance, an additional time-to-collision (TTC) term r
(t)
TTC is introduced to pro-

mote keeping a safe distance from other vehicles. TTC is a metric often used in ADAS features

and can be calculated as a time after which a collision between the ego and another vehicle is

expected to occur under the assumption that both vehicles will maintain their current accelera-

tion. The component is set to 0 if the collision is not expected to happen; otherwise, the value of

wTTC ∗ 1

max(1,v
(t)
ttc)

is assigned, where wTTC is a calibratable weight and v(t)ttc is the TTC at time t.

The last cost term is assigned on the termination of the episode based on the termination

reason. wterm value is assigned if the episode ends due to the ego’s collision (with barriers or

other road users), or severe speeding (defined as exceeding the current speed limit by 10ms or

more). Otherwise, the value of this reward component is zero.

The scaling parameters used for the reward components in the training are presented in Table

4.4.

Table 4.4. Values of reward components weights for the direct control driving
policy training.

Parameter
Name

Value Description

rspeed_limit 0.04 Speed limit execution squared.
racc −0.003 Ego acceleration squared.
rsteer −1.0 Steering angle squared.

rcentering −0.006 Lane centering.
rTTC_max 6.0 Max Time To Collision to be included in reward in m/s.
rTTC −0.01 Time to collision (inversed).
rterminal −10.0 Terminal states (collisions, speed limit violations.)

4.5.4. Training Setup

Traffic simulation software is the main component of the environment used to both train and

test the proposed driving policy. For this purpose, a proprietary traffic simulation tool TrafficAI

was used.

The simulation environment allows simulation of realistic road traffic on arbitrarily defined

maps. The movement of the road users is governed by a set of semi-random heuristic rules, with

various agents having different driving styles (defined by, e.g., aggressiveness levels).

Training is performed on randomly generated maps consisting of multilane highway roads with

features typical for highway networks, such as exit and merge-in lanes. A simulated highway is

populated with road traffic of various density, ranging from empty road setup to heavy traffic

that results in traffic jams.

The simulation is updated in tsu = 0.05s steps, while the ego’s policy inference resulting in

an update of control values is performed every two simulation steps.

Wojciech Turlej

100 4.6. Evaluation methodology

Figure 4.2. Visualization of the simulation environment used for trainings and
evaluations.

Training of direct control policies presented in the following sections is performed in a dis-

tributed computing setup, where 100 simulation threads are used for data collection, with the

entire training lasting approximately 24 hours.

Training hyperparameters are summarized in the table 4.5.

Table 4.5. Proximal Policy Optimization training hyperparameters.

Hyperparameter Value

Train batch size 250000
Minibatch size 5000
Num epochs 15
Discount (γ) 0.99
GAE parameter (λ) 0.95
Clipping parameter (ϵ) 0.3
KL coefficient 0
Entropy coefficient 0
VF coefficient 1.0

4.6. Evaluation methodology

Training of RL-based driving policies is the main application of the proposed method, which

can be used to alleviate sim-to-real gap issues in the training setup. Developed sensor models

in such a setup can be used to enhance the simulator’s output, producing a realistic set of

observations for the trained agent.

One way to evaluate the models would be to perform statistical comparisons between the

sensors’ output and data produced by the models based on a certain ground truth. While this

approach could provide some insight into the models’ accuracy in terms of mimicking the real

world, it is not very useful in the context of the described application. Since high-fidelity sensor

models tend to be prohibitively slow for RL training, achieving the best accuracy of the models

is not necessarily the main concern in their design.

Wojciech Turlej

4.6. Evaluation methodology 101

For this reason, a more informative evaluation approach is to train the driving policy with

the use of the proposed sensor models and evaluate its performance instead of the sensor models

themselves. Comparison of such policy to the agents trained on ground-truth simulation data

or with the use of certain baseline sensor models would help to understand a crucial question -

whether and how the proposed method improves the performance of the final policy.

Unfortunately, the evaluation of the policy itself is not without its own challenges. Since the

behavior of the ego vehicle inevitably impacts the decisions of other road users, one of the most

informative ways to evaluate AD systems is to perform closed-loop driving tests on public roads

in realistic traffic. Such tests, however, pose severe safety hazards and would require extreme

safety precautions, as well as well-tested trajectory generation systems, and thus are not viable

for safety evaluations and comparisons of new driving policies, especially if a comparison to

baseline policies is required.

Open-loop testing techniques, which do not involve feedback from the environment, cannot

be used to fully evaluate a driving policy, as it is difficult to consider the influence of the policy on

the behavior of other drivers. Pre-recorded sensor data can still, however, be used to investigate

the impact of the sensors’ errors on the policy’s choices. An interesting way to do so was described

in [157], where a Probably Approximately Correct Sensing System was defined as a perception

system that is sufficiently accurate to not cause frequent severe mistakes of the driving policy,

compared to ground truth data. Extending this idea, one can formulate an open-loop test based

on pre-recorded sensor data (e.g., bounding boxes from a radar-based sensing system) with

additional ground-truth information (e.g., manually labeled bounding boxes based on accurate

LiDAR and camera data). A comparison of the policy’s response to both ground truth and sensor

data provides information about how the sensors’ performance limitations impact the policy’s

decisions. While this approach does not provide information about the actual performance of

the policies themselves, it can be used to compare different policies in terms of their robustness

to realistic sensors’ errors. Unfortunately, the lack of open datasets consisting of object-level

radar-based streams with ground-truth data prevents the use of this method for the evaluation

of the method described in this chapter.

The policies are instead evaluated in a set of closed-loop simulation environments. In par-

ticular, two types of simulation-based test environments are used: a highway environment for

large-scale evaluation in typical traffic and a set of short test scenarios that evaluate agents’

performance in challenging situations. Each of the test environments is further specialized by

utilizing three types of sensor models: ground truth, evaluated sensor models, and an additional

set of baseline models described in the next subsection.

4.6.1. Baseline Models

Domain randomization techniques used to alleviate sim-to-gap issues in RL setups often

utilize simple noise models in the training environment to improve the policy’s robustness to

Wojciech Turlej

102 4.6. Evaluation methodology

real-life conditions. The intuition behind such an approach is that policy trained with severe

input noise may acquire robustness to a wide spectrum of possible errors, hopefully including

ones that will be observed in the targeted environment. If this assumption were true for a given

environment, there would be no strong basis for the use of more complex sensor models for

training purposes.

To investigate whether simple domain randomization techniques could be useful for the case

of automotive sensors, I developed a set of baseline sensor models that utilize Gaussian noise for

state estimation errors and simplify false negative detections generation.

The mapping Md,occ defined in previous sections is used to perform deterministic removal of

objects outside the sensing area, resulting in a set
{
sdj
}(v)
j=1..nd,occ

, where nd,occ is the number of

unoccluded objects in a detection area.

Object state estimation errors are modeled as a mapping:

Mbl,state (Σbl,state) :
{
s
(v)
dj

}
j=1..nd,occ

→
{
s
(d)
di

}
i=1..nd,occ

, (4.6.1)

where Σbl_state is a diagonal covariance matrix used to calibrate the model, and the state

estimates in the resulting set s
(d)
di

for i = 1..nd,occ are calculated as:

s
(d)
di

=∼ N (0,Σbl,state) + s
(v)
di

for i = 1..nd,occ. (4.6.2)

Perhaps the most impactful difference between this way of modeling the state estimation er-

rors and the models based on Ornstein-Uhlenbeck noise is the lack of time correlations. Similarly,

false negative object detection errors are modeled as single timestep events, where each object

at each step can be removed from the detection set with a probability pbl,disc. False negatives

removal is described as a mapping:

Mbl,fn(pbl,disc) :
{
s
(d)
di

}
i=1..nd,occ

→
{
s
(fn)
di

}
i=1..nbl,fn

(4.6.3)

False positive detections are also modeled as single-step events, where the additional ob-

ject is created at each timestep with a probability pbl,fp. The state of the false-positive object

sbl,fp = [glon, glat, xlon, xlat, ψ, v, a]
T is sampled according to a distribution ∼ N7(µbl,fp,Σbl,fp).

The creation of false positive object detections is described with a mapping:

Mbl,fp(pbl,fp, µbl,fp,Σbl,fp) :
{
s
(fn)
dj

}
j=1..nbl,fn

→
{
s
(fp)
di

}
i=1..nbl,fp

, (4.6.4)

with nbl,fp denoting the number of objects after the generation of false positive detections,

and µbl,fp,Σbl,fp being calibratable parameters.

The baseline model of the lane markers detection system is created in a similar way, with the

use of Gaussian noise for markers length and coefficients, as well as random single-timestep false

negative detections.

Wojciech Turlej

4.6. Evaluation methodology 103

The state of i−th lane marker ŝbl,lm =
[
ĉ0i, ĉ1i, ĉ2i, ĉ3i, ĥi

]T
for i = 1..nlm of the lane markers

is thus modeled as:

s
(lm,state)
bl,lmi

=∼ N (0,Σbl,lm) + s
(lm,fd)
bl,lmi

for i = 1..nlm,fd, (4.6.5)

where Σbl_lm ∈ R5×5 is the covariance matrix used for calibration.

Furthermore, at each time step a random lane marker can be removed from the set of observed

markers with a probability plm,fn, as well as a false positive lane marker can be added with a

probability plm,fp. False positive lane markers are initialized with a state drawn from a distribution

∼ N5(µbl,lm,fp,Σbl,lm,fp).

Table 4.6. Parameters of baseline sensor models (G-SM).

Parameter Description Value

Σbl,statex Object position error covariance matrix
[
1.2 0
0 0.7

]
σbl,statev Velocity error variance 2.0
σbl,stateq0 Object length error variance 0.5
σbl,state,ming,lon

Object length error lower limit −1.0
σbl,stateg,lat

Object width error variance 0.5
σbl,state,ming,lat

Object width error lower limit −1.0
pbl,fp False positive detection probability 1 0.0575
pbl,fn False negative detection probability 2 0.1
µbl,h Lane marker mean observed length 87.0
σbl,h Lane marker observed length variance 5.0
hbl,max Lane marker observed length upper limit 90.0
Σbl,lm Lane marker coefficients errors covariance ma-

trix
diag(0.005, 0.0005,
0.00005, 0.000005)

1 Parameters of the false positive object detections are drawn from the same distributions as described in Table 4.1.
2 Duration of the false negatives is fixed to a single time step.

4.6.2. Test Scenarios

While the use of baseline sensor models both as an additional testing setup and as a baseline

for the evaluation of OU-based sensor models helps to gain insight into the performance of the

method, testing policies in the described simulation environments is far from ideal. All the setups

utilize the same simulation package, which may be unable to generate certain edge-case scenarios

that could happen in the real traffic environment. Furthermore, even though a setup with baseline

sensor models can be used to compare ground truth policy and OU-based sensor models policy

in a third environment, it cannot be considered a fully independent one, due to the underlying

simulation being common for all setups.

Wojciech Turlej

104 4.6. Evaluation methodology

In order to address these issues, a set of semi-random low-level test scenarios is introduced.

The scenarios are designed to provide insight into the policies’ behaviors in difficult situations re-

lated to sensing errors, emulating cases such as late detection of a vehicle, false-positive detections

in front of the ego, or long-lasting false negatives.

The parameters of particular instances of a given scenario are drawn from random distri-

butions, allowing to test policies in a large number of different versions of a given situation.

Parameters that describe the distributions themselves are chosen manually to produce an in-

tentionally difficult set of scenarios, possibly including unsolvable scenarios, that is, situations

in which avoiding collisions with other road users is impossible considering control constraints.

Testing investigated models in such extreme conditions allows exposure of possible issues in the

tested policies.

Scenario A: Late detection of a slow-moving vehicle in front of the ego

The first test scenario consists of the ego and another vehicle in front of it, both driving on a

2-lane highway. The object remains invisible to the ego (false negative detection) for the first 2

seconds of the scenario. After this time, it is detected correctly with no state estimation errors.

Ego’s initial velocity as well as the initial state of the vehicle are drawn from the distributions

listed in table 4.7. The scenario is intended to evaluate the ego’s responses to late detection of a

slow-moving object.

Depending on a particular instance of the scenario, the correct response may consist of severe

braking or lane change maneuvers applied to avoid a collision with other vehicles.

Table 4.7. Scenario A parameters distributions.

Parameter Value

Ego’s initial velocity [ms] U(20.0, 30.0)
Object’s initial relative longitudinal position [m] N (30.0, 3.02)
Object’s initial relative lateral position [m] N (0.0, 0.32)
Object’s initial absolute speed [ms] N (10.0, 2.02)
Object’s acceleration [m

s2
] N (0.0, 1.02) .

Scenario B: Severe speed estimation error

The scenario is composed of two vehicles (ego and another road user) moving on a 3-lane highway.

The vehicles are placed on a random lane, with relative positions and absolute speeds drawn from

the distributions described in Table 4.8.

The front object’s state estimation performed by ego is accurate, except for the speed esti-

mation, which is disturbed by a constant-velocity estimation error (the observed speed of the

object is higher than the actual speed).

The scenario is intended to evaluate whether the driving policy is able to make correct

decisions in the presence of a severe estimation error affecting one of the state variables based

on other values.

Wojciech Turlej

4.6. Evaluation methodology 105

Table 4.8. Scenario B parameters distributions.

Parameter Value

Ego’s initial velocity [ms] U(20.0, 30.0)
Object’s initial relative longitudinal position [m] N (40.0, 3.02)
Object’s initial relative lateral position [m] N (0.0, 0.32)
Object’s initial absolute speed [ms] N (10.0, 2.02)
Object’s acceleration [m

s2
] N (0.0, 1.02) .

Constant velocity estimation error [ms] 20

Scenario C: Random speed estimation error

Scenario C is set up identically to Scenario B, with one difference: the speed estimation error is

sampled at each time step according to the normal distribution described in the table 4.9.

Table 4.9. Scenario C parameters distributions. Parameters that describe dis-
tributions of vehicles’ initial states are identical to the Scenario B.

Parameter Value

Velocity estimation error [ms] N (0.0, 10.02)

Scenario D: Random lateral position estimation error

In this scenario, in which the ego vehicle follows a slower moving object, the estimation of the

lateral position of the other vehicle is disturbed by an error drawn from a normal distribution

described in table 4.10. Other aspects of the scenario remain identical to those of Scenarios B

and C.

Table 4.10. Scenario D parameters distributions. Parameters that describe
distributions of vehicles’ initial states are identical to the Scenario B.

Parameter Value

Lateral position estimation error [ms] N (0.0, 3.52)

Scenario E: Randomly occurring false negative detections.

Scenario E is set up similarly to scenarios B-D, but instead of state estimation errors, randomly

occurring false negative detection errors are simulated. Errors that affect front vehicle detections

have a constant duration and can occur at each time step with a probability given in the Table

4.11.

Table 4.11. Scenario E parameters distributions. Parameters that describe
distributions of vehicles’ initial states are identical to the Scenario B.

Parameter Value

Probability of false negative detection occurrence in each
time step.

0.1

Duration of false negative detection error events. [s] 0.2

Wojciech Turlej

106 4.7. Experimental results

Scenario F: Randomly occurring false negative road markers detections.

Scenario F consists of the ego vehicle moving on an empty 3-lane highway. The vehicle is placed

in a random lane. During the scenario, lane marker detections are randomly removed for a single

timestep to simulate false negative detection errors.

The scenario allows testing policy’s ability to properly navigate on a road even if certain lane

markers are missing.

Table 4.12. Distributions of Scenario F parameters. Ego initial state param-
eters are identical as in Scenario B.

Parameter Value

Probability of lane marker false negative detection. 0.4

4.7. Experimental results

The main focus of the experiments carried out was to evaluate the impact of the use of

proposed sensor models in the training of the policy on the performance of the policy itself. For

this reason, three training policies were trained for subsequent evaluations: GT policy, trained on

ground truth data from the simulator, Baseline policy, trained with the use of baseline models,

and OU policy, trained on the proposed sensor models based on Ornstein-Uhlenbeck processes.

Except for the sensor models utilized, all training setups and network architectures were identical.

The simulation environment utilized for training consisted of randomly generated highway

maps. The maps represented simple highway networks, with roads between 1 and 4 lanes, and

features such as curves, merge-in lanes, and highway exits.

The policies were trained with the PPO algorithm, tuned with a set of hyperparameters pre-

sented in table 4.5. Trainings were carried out on a computing cluster, each taking approximately

24 hours and utilizing 80 CPU cores.

The use of sensor models did not have a significant impact on the training process itself. All

policies were successfully trained, using a similar number of training iterations. As shown in Fig.

4.3, the final mean reward values achieved in the GT environment have been higher compared

to the environments with sensor models, which is an expected outcome, as the baseline and OU

environments are significantly more difficult. Most notably, the reward component related to ab-

solute accelerations in these environments achieves noticeably lower values in these environments,

most likely due to more frequent sudden brakings caused by late detection errors.

4.7.1. Highway Driving Performance

All of the trained policies were evaluated in the environments described in a previous section:

one with Ground Truth (GT) sensor models, one with Gaussian-based baseline sensor models (G-

SM) and one with Ornstein-Uhlenbeck-based sensor models (OU-SM environment). Evaluation

Wojciech Turlej

4.7. Experimental results 107

50 100 150

Generation

−15

−10

−5

0

5

10

M
ea

n
va

lu
e

r (total reward)

50 100 150

Generation

−8

−6

−4

−2

0

M
ea

n
va

lu
e

racc (acceleration squared)

50 100 150

Generation

0

5

10

15

M
ea

n
va

lu
e

rspeed limit (speed limit execution)

50 100 150

Generation

−10.0

−7.5

−5.0

−2.5

0.0

M
ea

n
va

lu
e

rterminal (terminal states)

50 100 150

Generation

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

M
ea

n
va

lu
e

rcentering (lane centering)

50 100 150

Generation

−4

−3

−2

−1

0
M

ea
n

va
lu

e
rsteer (steering angle squared)

50 100 150

Generation

−0.3

−0.2

−0.1

0.0

M
ea

n
va

lu
e

rTTC (time to collision)

50 100 150

Generation

0

1

2

3

M
ea

n
va

lu
e

Entropy

Policy trained in an environment with Ground Truth sensor models (GT environment)

Policy trained in an environment with baseline (Gaussian) sensor models (G-SM environment)

Policy trained in an environment with Ornstein-Uhlenbeck-based sensor models (OU-SM environment)

Figure 4.3. Progress of the policy’s training in all of the tested environments.
The final rewards of the agents in G-SM and OU-SM environments have lower
values due to the increased difficulty of these setups. Otherwise, all the trainings
progressed in a similar manner.

of each agent was performed by running 100 simulation episodes in all test environments. The

episodes were terminated after reaching a horizon of 1000 simulation steps or after a collision

with other road users or road barriers.

Based on performed simulations, Key Performance Indicators (KPIs) were calculated. listed

in the table 4.13.

The policy trained in the GT environment highlights potential sim-to-real gap issues of the

policies trained in the perfect environment, as it achieves very poor performance in the presence

of simulated perception errors. Almost half of the episodes were in the G-SM environment,

and the vast majority of OU-SM simulations were ended prematurely due to collisions. A large

number of heavy braking events and increased values of control actions observed in the G-SM

environment seem to indicate that the policy has been frequently undertaking severe collision

avoidance attempts. Interestingly, the number of heavy braking events and average steering angles

in the OU-SM environment is lower compared to the G-SM environment. This observation can

be explained by very short mean episode lengths - the policy was likely not able to successfully

execute collision avoidance maneuvers in this setup, and most of the dangerous situations ended

in collision instead.

Manual inspection of the policy’s behavior in the generated episodes supports these hypothe-

ses. The policy trained in the GT environment tends to keep short distances from other road

users, and, as a consequence, many dangerous situations are observed. The policy tends to exhibit

Wojciech Turlej

108 4.7. Experimental results

Table 4.13. Key Performance Indicators calculated based on highway driving
episodes. The performance of three driving policies are summarized here - the
policy trained in the ground-truth environment (GT agent), the policy trained
in the baseline environment (with gaussian-noise-based sensor models, denoted
G-SM agent), and the policy trained with the Ornstein-Uhlenbeck-noise-based
sensor models proposed in previous sections, denoted OU-SM agent. Each pol-
icy has been evaluated in all three training environments.

GT Agent G-SM Agent OU-SM Agent
Performance In-
dicator

GT
env

G-
SM
env

OU-
SM
env

GT
env

G-
SM
env

OU-
SM
env

GT
env

G-
SM
env

OU-
SM
env

Mean episode
length (sim steps)

977.4 716.8 291.5 925.8 927.2 804.0 907.6 941.8 910.8

Average abs speed
[ms]

27.6 27.9 26.0 29.1 29.4 29.0 26.0 26.2 27.1

Average abs steer-
ing angle [rad]

0.35 0.56 0.30 0.54 0.57 0.62 0.41 0.46 0.48

Average abs accel-
eration [m

s2]
0.64 0.91 1.23 0.68 0.76 0.82 0.98 0.91 0.99

Heavy braking
events

1.7 8.7 1.5 2.9 7.6 4.1 2.7 8.2 3.5

Fraction of
episodes failed

0.03 0.48 0.84 0.04 0.07 0.27 0.03 0.02 0.03

various severe reactions to such situations, applying extreme steering angles and accelerations.

However, as most of the errors in this environment are short-lasting, policy’s reactions are often

sufficient to avoid collisions, and overcompensating behaviors are short enough not to cause colli-

sions themselves. Furthermore, the policy in the G-SM environment exhibits frequent oscillations

of both control values.

Observation of the policy behavior in the OU-SM environment highlights even more concerns.

Apart from the lack of caution, oscillations, and overcompensation behaviors observed in G-

SM environments, time-correlated errors observed in the OU-SM environment exposed critical

safety issues of the GT policy. Most notably, the policy reacts to both false-positive detections

appearing in front of the vehicle, as well as late-detected front objects with extreme collision

avoidance attempts. The vehicle typically tries to avoid the collision by applying severe steering

values, which often lead to a collision with road barriers or other road users. Road barrier

collisions caused by such behaviors are categorically the most frequent reason for premature

episode termination.

Training the policy in the G-SM environment, being similar to the domain randomization

techniques used occasionally in Reinforcement Learning, was expected to alleviate at least part

of the issues observed in the GT policy. In fact, the policy achieved significantly better perfor-

mance in both G-SM and OU-SM environments, with 7% and 27% failed episodes, respectively.

The policy exhibited more cautious behaviors in all the environments, including the GT envi-

ronment - the distances kept to other vehicles were larger, and the policy often applied collision

Wojciech Turlej

4.7. Experimental results 109

0,91

0,27

0,48

0,99

0,35

0,03

0,804

0,29

0,6

0,82

0,41

0,27

0,291

0,26

0,3

1,23

0,15

0,84

0 0,2 0,4 0,6 0,8 1 1,2 1,4

KPI value

Mean episode length
[sim steps * 0.001]

Mean speed [m/s *0.01]

Mean steering angle [rad]

Mean acceleration [m/s^2]

Mean number of severe
braking events [*0.1]

Fraction of scenarios ended
by collision

OU-based Baseline Ground truth

KPIs of the policies in OU-SM environment

Figure 4.4. Performance of the trained policies in OU-SM environment. The
results show the inability of both G-SM and GT driving policies to cope with
time-correlated errors present in the OU-SM environment, most apparently
visible in the fraction of failed episodes. Note that a complete set of evaluation
results in all environments can be found in Table 4.13.

avoidance maneuvers in moderately dangerous situations. Evaluation of the policy in the OU-SM

environment has exposed, however, similar, yet less severe, issues to the problems observed in the

GT environment. Time-correlated errors sporadically caused severe reactions, often resulting in

collisions. The final performance, with approximately 27% failed episodes, remains unacceptably

poor.

Training the policy in the OU-SM environment expectedly resulted in significantly better

results in this environment, but also led to smooth and cautious behaviors in other environments,

maintaining a good overall performance. The policy was able to drive in a cautious manner,

handle late detections and false positives correctly by applying appropriate collision avoidance

measures, and overall achieve good performance in all setups. Interestingly, the policy tested in

the G-SM environment achieved significantly better collision avoidance performance compared

to the G-SM policy, with only 2% failed episodes (compared to 7% achieved by the G-SM agent).

4.7.2. Scripted Scenarios Performance

Evaluation in highway driving environments provides valuable insight into the limitations of

GT and G-SM policies, as well as helps to evaluate the robustness and versatility of all policies.

To fully understand the advantages and limitations of all policies, however, additional tests were

performed in a set of scripted scenarios, to ensure an independent testing environment.

Wojciech Turlej

110 4.7. Experimental results

Distributions from which the parameters of scenarios were sampled were intentionally cali-

brated in such a way that the resulting scenarios posed a significant challenge, where part of the

scenarios may be possibly too difficult to resolve without a collision.

The results of the test scenarios are presented on the chart in Fig. 4.5, where a fraction of

the scenarios that led to collisions was used as a safety performance indicator. The scenarios

confirmed the advantage of the policy trained in the OU-SM environment over the other two

policies, with significantly fewer collisions caused by this policy. Interestingly, the performance

of the GT and G-SM policies varied between all scenarios, with the G-SM policy achieving worse

performance in several scenarios.

6%

31%

24%

12%

6%

4%

23%

73%

30%

37%

14%

6%

16%

41%

45%

26%

12%

11%

0% 10% 20% 30% 40% 50% 60% 70% 80%

Fraction of failed scenarios

Late detection of a slow
moving object on a highway

Constant velocity estimation
error of a front object

Random velocity estimation
errors

Random lateral position
estimation errors

Random objects false
negative detections

Random lane markers
false positive detections

OU-SM policy G-SM policy GT policy

Performance of policies in test scenarios

Figure 4.5. Performance of the trained policies in different test scenarios .

4.7.3. Computational Performance

One of the main goals of the proposed sensor models is to enable effective training of RL-based

driving policies in a closed-loop simulation environment. While achieving real-time sensor models

simulation performance is not required for successful training, the massive scale of computation

efforts required for RL training creates an incentive to avoid slow and complex computations to

reduce costs related to high-performance computing.

The computational performance of the proposed methods has been investigated in a closed-

loop highway driving setup, with the OU-SM environment. The proposed models and the driving

policy were executed for 800 time steps in a three-lane highway scenario with relatively heavy

traffic (with 8-10 other traffic participants in the ego’s sensing area throughout the entire sce-

nario). The experiments were executed in a single thread on the Intel(R) Core(TM) i7-12800H

CPU, resulting in the computation times presented in Table 4.14.

Wojciech Turlej

4.8. Conclusions 111

Table 4.14. Single timestep computation time of different components (in
seconds).

Component Average Median Std. dev. Max

Objects perception model 0.0071 0.0068 0.0008 0.0114
Static env. perception model 0.0369 0.0406 0.0075 0.0590
Network inference 0.0030 0.0027 0.0008 0.0059

Despite a very demanding test scenario of a congested multilane highway, the average com-

putation time observed for the proposed sensor models remained below 44ms, allowing for faster

than real-time training of a policy with the network inference performed every 0.1s, as proposed

in previous sections.

Calculations related to static sensor models took significantly longer, due to relatively slow

sampling and polynomial approximation operations. While the achieved performance has been

satisfactory for training purposes, it can be easily improved if needed by decreasing the number of

samples used for the lane markers geometry approximation, as well as by using a single-precision

floating point format for related calculations.

In contrast to sensor models, the driving policy is intended to be employed in a closed-loop

vehicle control system, and thus its performance is significantly more crucial to the final product.

Fortunately, the performance of the proposed lightweight network architecture observed in the

described computing setup is more than satisfactory, with the mean inference time achieved on

a single CPU thread reaching 3 milliseconds. Furthermore, the complexity of the road situation,

the number of vehicles surrounding the ego, and the number of lanes do not significantly impact

the inference time, with the observed standard deviation of the inference time below 1 ms. As the

performance of modern embedded computing platforms used for AD purposes often matches the

performance of the CPU used for the performed tests, real-time performance in a target vehicle

should be easily achievable with the proposed network architecture, as even a 10-fold decrease

in computing power would still leave significant computation time margin even in complex road

situations.

As the policy trained in the described setup with proposed sensor models exhibits robustness

against even severe sensor errors, while producing smooth, efficient movements with an excep-

tionally low computing power needed, it appears to be a viable option for a component of a

commercial real-time ADAS/AD system.

4.8. Conclusions

A wide variety of perception systems is used in the automotive industry for ADAS and AD

systems. Errors observed in such systems vary significantly depending on the number of sensors,

their type, individual properties, as well as utilized algorithms, system architecture, and other

Wojciech Turlej

112 4.8. Conclusions

factors. Furthermore, various road situations, as well as weather conditions, road surface types,

and light sources, can affect sensors’ performance and may produce errors that are difficult to

predict.

The modeling of perception systems is thus a very difficult challenge, especially if one intends

to create general models while maintaining satisfactory computational performance.

Fortunately, not all applications require models to be perfectly accurate. The main application

considered in this chapter is the ‘use of sensor models in the training of driving policies based on

reinforcement learning, where discrepancies between the real world and the simulation used in

training can lead to incorrect behavior of the trained policy in the targeted environment. One of

the most frequently proposed ways to address this problem is the use of domain randomization

techniques, which introduce various random modifications to the input data. This approach has

been shown to produce good results in robotic applications, even if the errors introduced to the

observation were relatively random and did not resemble the error profiles observed in realistic

systems.

These observations seem to suggest that it is more desirable as well as practical to train a

model to generalize well to various domains than to attempt to recreate the intended environ-

ment perfectly. Automotive perception systems suffer, however, from certain safety-critical error

patterns, such as long-lasting false positive detections, that may not be accurately captured by

naive domain randomization techniques.

In this chapter, I described several experiments that I performed to confirm these observa-

tions. Training an RL-based driving policy in a ground truth environment and testing it in both

scripted scenarios and highway environments with sensor models has shown that such systems

may in fact be severely impacted by the gap between the training simulation and real-world

(sim-to-real gap).

The applicability of naive domain randomization techniques to this problem has been eval-

uated by performing similar experiments, but with a policy trained in an environment with

baseline sensor models, based on random false detection events and Gaussian noise added to

state estimations. While the use of such models had a positive impact on the policy’s robustness

to perception errors, evaluations in scripted scenarios exposed several issues, especially related

to time-correlated errors.

The poor performance of driving policies trained with ground truth and baseline sensor

models justifies the need for the development of efficient sensor models that would be able to

mimic more complex errors characteristics of automotive perception systems.

A set of sensor models related to the detection of lane markers, as well as object detection

and state estimation, have been designed and evaluated in scripted scenarios and various high-

way traffic environments. Models maintain faster than real-time performance appropriate for RL

training, while approximating various error patterns observed in automotive perception systems,

Wojciech Turlej

4.8. Conclusions 113

such as time-correlated state estimation errors, long-lasting false detections, occlusions, or de-

tection delays. The policy trained in the environment with developed sensor models has shown

good performance in all test environments as well as in scripted scenarios. The proposed policy

was able to generate smooth and efficient motion while remaining resilient to considerable per-

ception errors with minimal computational requirements. Therefore, it could be a viable choice

for real-time ADAS/AD systems.

The satisfactory results achieved in the simulation-based evaluation suggest that the proposed

sensor models may serve as an efficient domain randomization technique appropriate for training

robust driving policies. However, further testing in real-life situations is needed to confirm that

the proposed methods fully address the sim-to-real gap issues. The effectiveness of the proposed

methods may vary depending on the sensor stack and the architecture of the perception system

in the target vehicle.

Future work on the proposed methods may include the evaluation of the method on sensor

data from test drives in public traffic. While performing closed-loop driving policy evaluation

in public traffic is a potentially dangerous endeavor with severe formal requirements, certain

open-loop testing techniques can be used to gain insight into the method’s performance with

a realistic sensor stack, such as performing various comparisons of the policy’s response to the

actual sensors data streams to the response to the manually labeled ground truth data.

Wojciech Turlej

114 4.8. Conclusions

Wojciech Turlej

5. Adversarial Trajectories Generation

One of the biggest challenges in the development of Advanced Driver Assistance Systems

(ADAS) and Autonomous Driving (AD) systems is their validation and verification. The use of

complex and often nontransparent algorithms, a potentially infinite number of road situations in

which the system may operate, and a diversity of sensing system error modalities make prediction

of all failure modes infeasible in such systems.

The automotive industry employs a variety of exploratory testing techniques to identify

potential safety problems in developed ADAS and AD systems. These include Real-World User

Profiling (RWUP), which involves driving a large fleet of vehicles in real-world traffic, and a

variety of virtual testing methods, which assess the safety of systems in a simulated environment.

However, both types of methods have their disadvantages in the context of testing systems

capable of controlling the vehicle’s movements. Real-world tests tend to be extremely costly and

may pose a danger to test drivers and other road users, while simulation-based testing may fail to

produce certain complex and atypical situations that may be challenging for the tested system.

In this chapter, I describe a testing method designed to explore the vulnerabilities of ADAS

and AD systems to atypical road situations, as well as to perception errors. The method is

designed to produce a variety of virtual test scenarios that are particularly challenging to a given

ADAS/AD system (adversarial scenarios). The use of the proposed method helps to ensure that a

driving policy is robust to plausible but complex road situations that may be difficult to observe

during RWUP or standard simulation-based testing.

The method is particularly suited for testing driving policies that are based on Machine

Learning methods. Its effectiveness in the generation of adversarial scenarios is demonstrated in

the context of Reinforcement-Learning-based driving policy testing.

5.1. Introduction and Motivation

This section introduces the background of simulation-based ADAS/AD systems testing, re-

views existing work in this area, and explains the motivation for the development of the proposed

method.

116 5.1. Introduction and Motivation

5.1.1. Background

Due to the immense costs and potential risks of road driving tests, simulation-based testing

has gained a lot of attention, especially in the context of AD systems testing. Systems are typically

tested in one of the setups listed below.

Model-in-Loop (MiL), where the model of algorithms used in the system controls the virtual

vehicle in the simulation. The model typically makes its decision in a closed-loop manner,

utilizing an approximation of the sensor data that would be generated in the simulated

situations. Models that perform well in the simulation can then be used to develop actual

software that implements the algorithms in a way suitable for the target hardware (e.g., in

low-level programming languages for embedded platforms with limited resources).

Software-in-Loop (SiL), where the software implementation of the algorithms is tested in a

closed-loop manner. The software is not executed on the target hardware in this setup,

instead utilizing a computing cluster or a personal computer that often runs the simulation

at the same time.

Processor-in-Loop (PiL), which resembles the SiL setup, but the software is executed on a

dedicated processor (typically a microcontroller or a digital signal processor).

Hardware-in-Loop (HiL), where the actual electronic component with the developed software

is tested.

Note that certain types of algorithms do not benefit from a closed-loop setup and can be

effectively tested in a simpler open-loop manner. This is usually the case for the algorithms that

do not exercise direct control over the vehicle, such as passive warnings (e.g., Blind Spot Warning

(BSW) that indicates the presence of a vehicle in a black spot of side mirrors or Cross Traffic

Alert (CTA) that warns the driver about vehicles oncoming from the side, e.g., during reversing

into the perpendicular road).

Open-loop testing is especially useful due to its ability to reuse realistic data registered

during the test drives for testing various algorithms’ versions. Raw data registered previously

by the sensors can be provided to a new version of the tested algorithm to observe changes

in the algorithm performance without the limitations of the virtual environments. This type of

regression testing is often referred to as resimulation.

The use of simulation techniques in the testing process enables an efficient evaluation of driv-

ing policies on a massive scale. Thanks to parallel computing, the vehicle model with the tested

system can cover distances in the virtual world that are orders of magnitude larger compared to

the capability of an actual vehicle with the test driver.

Unfortunately, in order to provide meaningful information regarding system performance in

various situations and environmental conditions, the simulation software would have to model

Wojciech Turlej

5.1. Introduction and Motivation 117

the static environment, behavior of other road users, and physical phenomena that impact sen-

sor performance with extraordinary precision. The ability to do that is limited by both the

computational cost of complex simulation (e.g., precise high-resolution rendering of the environ-

ment for camera sensor inputs) and technical limitations. For these reasons, the incorporation

of simulation software into the testing process requires a careful approach and ensuring that

the generated situations are actually representative and/or useful in the system’s safety and

performance evaluations [167].

5.1.2. Existing Approaches

The main objective of both simulation-based and real-world driving tests is to uncover po-

tential issues and limitations of the tested algorithms. The tests are often performed on a large

scale, covering thousands or even millions of kilometers, for the purpose of uncovering weak-

nesses of the system that manifest themselves only in edge cases, specific conditions, situations,

or combinations of these, which cannot be easily predicted by the developers. Such situations

may be related to sensors’ performance degradation in certain situations (e.g., in adverse weather

conditions), atypical behavior of other road users (e.g., erratic driving due to intoxication, trac-

tion loss), or static obstacles that impede the understanding of road situation (e.g., construction

zones).

The rarity of edge cases, in combination with their uniqueness, makes them difficult to predict

or explore efficiently. Typically, the vast majority of the samples collected in the large-scale driv-

ing tests, both on-road and virtual ones, represent situations that do not pose challenges to the

tested system. Due to this, large-scale driving tests, while remaining an important performance

evaluation tool, are an inefficient method of exploring edge cases, as pointed out in [74].

Virtual driving tests suffer from an additional limitation that further impedes the edge case

exploration - difficulty in generating unique atypical scenarios, as algorithms used for traffic

simulation rarely can simulate a wide variety of individual driving styles and behaviors observed

in human traffic participants [117].

At the perception level, a significant disadvantage of simulators is related to the limited

number of textures and 3D models of traffic participants, which hinders their ability to test the

reaction of the system to road users with atypical appearance or geometry [169]. Since these are

significant sources of errors in perception systems, relying on simulation-based testing to explore

edge cases in such systems creates a considerable risk of missing important errors.

On the behavior level, the limitations of simulation packages are related to the repeatability

of traffic participants’ behaviors. Movement trajectories of road users are typically scripted or

generated by machine learning-based algorithms [127]. Because of this, exploration of the system’s

behavior in the presence of traffic participants who behave erratically (e.g., due to intoxication,

distraction, or fatigue) may be difficult or even impossible, depending on the particular software.

Wojciech Turlej

118 5.1. Introduction and Motivation

5.1.2.1. High-Level Test Scenarios

The rarity of edge cases critical for ADAS / AD system evaluation observed during real-world

test drives results in increased use of predefined test scenarios for these applications. Scenario-

based testing, both simulation-based and real-world-based, is used for performance evaluation,

validation, and certification of various ADAS/AD features [126, 124].

Scenario-based testing allows test efforts to be focused directly on critical situations, ensuring

that AD/ADAS reacts accordingly to safety requirements in predictable challenging situations.

On the downside, the design and execution of test scenarios that would explore the system’s

behavior in situations that incorporate complex situations in a cluttered environment (e.g., a

large number of vulnerable road users in the vehicle’s vicinity) may be difficult. Thus, tests

limited to predefined scenarios only may lead to a false sense of safety, especially if tests fail to

recreate complex environments and behaviors of other traffic participants that may be observed

in the real world.

However, numerous studies have shown that scenario-based testing is a convenient tool to

assess the safety of ADAS / AD systems, showing a strong correlation between performance

scores achieved in scenario-based evaluation and real-life injury risk levels [106, 92, 168].

The type of test scenarios and the creation methods depend on the purpose of the testing

procedures. Manual creation of scenarios is widely used to ensure that the system meets its

functional requirements and to measure the performance of its features in the most relevant

situations [194, 62, 114].

While manually crafted scenarios provide a convenient way of atomic requirements testing, the

calculation of Key Performance Indicators defined for given features often requires more extensive

use of real-world data. Numerous methods have been proposed to utilize information collected

during test drives and naturalistic driving studies [89, 201] to derive a portfolio of test scenarios

suitable for the testing of ADAS / AD systems [11, 205]. Similar methods are often proposed for

testing systems in safety-critical situations, where recordings of real-life safety-critical situations

can be used to derive test procedures [110].

5.1.2.2. Adversarial Scenarios Generation

While manually crafted scenarios, as well as randomly generated ones, provide important

insight into the system’s performance in difficult situations, not all edge cases can be easily

predicted. Especially in the case of driving policies based on machine learning, there is a certain

risk of triggering critical failures through seemingly minor anomalies in the observed patterns.

This characteristic of deep neural networks is often exposed in the works on adversarial attacks

[61, 125, 6].

In order to explore difficult situations and edge cases more efficiently, a number of automatic

test scenario generation methods were proposed [163, 162]. In [202] authors proposed to generate

test scenarios through the increase in difficulty of observed or random scenarios. The authors

Wojciech Turlej

5.1. Introduction and Motivation 119

utilize reachability analysis [7] to measure the size of the solution space and apply optimiza-

tion techniques to decrease it by changing the initial conditions of the scenario. Similarly, [76]

proposes a method that increases the criticality of automatically generated test cases, utilizing

Reinforcement Learning techniques to influence RSS safety metrics[156]. [145] focuses on the

development of the scenario derivation method for the purpose of SOTIF safety analysis [66],

proposing a hierarchical framework that describes scenarios with a set of variables that can be

modified to acquire new potentially unsafe situations.

The methods described above enable the generation of a wide set of difficult scenarios, provid-

ing means for edge case exploration, but do not focus on finding flaws in any particular algorithm

directly. This may be an inefficient approach in the case of machine learning-based techniques,

where failures are not necessarily directly related to the objective difficulty of the scenario [196].

To address this issue, methods that are intended to search for vulnerabilities of particular algo-

rithms directly are proposed. The authors of [5] presented a method for falsification of ADAS/AD

systems based on searching through a set of possible decisions of other road users in discrete time

points using Bayesian optimization techniques. Another search-based method was presented by

Tuncali et al. in [178], where search methods were used to modify a set of predefined scenarios to

trigger situations challenging for a predefined ADAS/AD system. The authors focused mainly on

searching for a combination of conditions that would lead to the violation of predefined system

requirements.

Since adversarial methods are often used in the machine learning context, both in falsification-

based testing [196], as well as Robust Adversarial Reinforcement Learning (RARL) [140, 134],

the use of the neural networks for scenario generation is often proposed. An example of such an

approach is given in [187], where Reinforcement Learning (RL) in a multi-agent setup is used to

generate test scenarios for a driving policy based on deterministic rules.

Adversarial networks trained in an RARL setup tend to achieve particularly good performance

in finding vulnerabilities in the trained networks. As their training process is, however, strictly

tied to the training of the evaluated network, the driving policy may achieve robustness to the

adversarial policy, while remaining vulnerable to situations that the adversarial policy fails to

generate. This issue is relatively similar to the overfitting problem common in supervised learning

setups, where trained networks may learn to work perfectly in conjunction with the training data,

while failing to produce satisfactory results on the independent testing datasets.

RL-based adversarial networks can, however, be trained outside the RARL setup, using an

already trained driving policy. While this approach may successfully produce adversarial test

scenarios, it is difficult to ensure the creation of a database with a vast variety of dissimilar

scenarios. Once the adversarial agent based on an RL policy finds one way to trigger a safety

failure in the tested algorithm, it may learn to exploit only this particular issue, failing to uncover

further ones.

Wojciech Turlej

120 5.1. Introduction and Motivation

5.1.3. Motivation and General Idea

A rapidly growing demand for commercially viable Autonomous Driving systems with a

high level of autonomy creates a need for effective virtual testing techniques that could uncover

potential issues in increasingly complex driving policies, which often rely on non-transparent ML-

based techniques. Automatic creation of adversarial scenarios may significantly help to achieve

this, allowing to focus only on the scenarios that pose a significant challenge to the tested policies.

As discussed in the previous section, a number of methods for automatic test scenario gen-

eration have already been proposed. Unfortunately, most of them are not fully suitable for the

generation of larger scenario databases, especially in the context of RL-based driving policy

testing. Most of the methods intended for the creation of scenario databases do not necessarily

produce road situations that are difficult for a particular driving policy. As in the case of RL-

based policies, the objective difficulty of the road scenario may not correlate directly with the

subjective difficulty for a particular policy, it is desirable to incorporate the tested policy itself

in the generation of test scenarios. While RL-based falsification techniques fulfill this goal, they

are rarely suitable for finding variations of a given scenario that would uncover different issues

in a given policy.

The adversarial trajectory generation algorithm presented in this chapter utilizes the eval-

uated driving policy in the process of scenario database creation, allowing for the discovery of

issues in a particular AD algorithm. Contrary to techniques focused on the increase of objective

scenario difficulty measures, this approach helps to uncover failure modes not necessarily related

to objectively difficult situations, which is particularly important in the case of ML-based driving

policies. The proposed approach also utilizes a measure, which allows us to estimate similarity

of the generated scenario to the scenarios already present in a database. The use of this measure

enables the generation of multiple scenarios iteratively, ensuring that they will represent difficult

situations dissimilar to the ones already generated.

The proposed method is based on stochastic optimization techniques that are used to generate

a set of control trajectories for the vehicles surrounding the vehicle controlled by tested driving

policy in a simulation environment. The cost terms used in the trajectories optimization process

are designed to encourage solutions that pose a challenge to the driving policy. This is achieved

by assigning a negative cost value based on a set of safety measures, such as the minimal distance

observed between the ego and other vehicles in the simulated scenario.

Optimization problems formulated in this way can be used to generate a single adversarial

scenario. To incorporate the generation of a scenario database, the optimization can be repeated,

with an addition of the cost term, that encourages finding original trajectories that are dissimilar

to the already generated ones. In this way, each subsequent solution of the optimization problem

yields a novel scenario.

The general idea of the proposed method is presented in Fig. 5.1.

Wojciech Turlej

5.1. Introduction and Motivation 121

Episode loop

ObservationSimulationControl

RL-based driving
policy

Perception
module

(observation
creation)

Ego kinematic

model

Trajectory
sampling

Agent 1 kinematic
model

Agent 2 kinematic
model

Trajectory
sampling

Partial cost
terms

calculation

Particle Swarm
Optimization update

Action
sampling

Cost

Observation

Agents

state

Ego

state

Actions
distribution

Cost terms

Ctrl

values

Ctrl

values

...
...

Trajectories
encoding Cost calculationParams

Trajectories
parameters

Scenarios
database

Scenario
novelty

estimation

Scenario
novelty

cost term

Figure 5.1. General idea of the adversarial trajectory generation method pro-
posed in this chapter.

In addition, an extension to this method that enables the simultaneous generation of state

trajectories and perception error patterns is proposed. In this extension, an error trajectory

is generated alongside the state trajectory of each of the traffic participants (apart from the

ego), which represents plausible state estimation errors that impact the ego’s perception of this

road user. As minimization of the state estimation errors is part of the underlying optimization

problem used for trajectory generation, the method helps to identify small but critical error

modalities that may trigger safety-critical mistakes of the tested policy.

5.1.4. Contributions

Virtual testing of the ADAS and AD systems is an area of extensive research that already

resulted in numerous proposals for automated test scenario generation methods. Popularization of

the Machine-Learning-based approaches to vehicle control and path planning creates, however,

a need for a method that would be capable of an in-depth exploration of potential issues in

such systems. The ability to generate multiple variants of an adversarial scenario is particularly

desired, as it may help to ensure that less apparent vulnerabilities of the policy will be exposed

apart from the most obvious ones.

Considering this need and the limitations of existing methods described in the previous

section, in this chapter I describe a novel automated scenario generation method, bringing several

contributions listed below.

Wojciech Turlej

122 5.2. Problem Formulation

◦ The proposal of the adversarial scenario creation method based on stochastic optimization,

capable of generating multiple variants of a scenario starting from manually defined or

randomly generated initial conditions.

◦ The proposed method allows the generation of situations that pose a challenge to an arbi-

trary driving policy, including the stochastic ML-based driving policies. While falsification

methods (e.g., based on Reinforcement Learning) that explore vulnerabilities of particu-

lar algorithms have already been proposed, they are rarely capable of generating multiple

dissimilar variants of a given scenario.

◦ The proposed method can be used to generate safety-critical perception error patterns

alongside the trajectories of other vehicles in the scenario. While certain existing methods

enable the generation of critical error patterns, the simultaneous generation of both critical

errors and state trajectories of other vehicles is rarely explored and may be used to uncover

vulnerabilities that are difficult to trigger using existing methods.

◦ The proposed method is applied to find vulnerabilities in an exemplary RL-based driv-

ing policy, providing insight into potential issues in such systems, and demonstrating the

effectiveness of the proposed method.

Parts of the described method have been presented in my publication [182]. In this thesis, the

proposed approach is extended in several ways: a new, more modern driving policy architecture

has been used for the evaluation, further calibration allowed to improve the performance of

the method, and new scenario types have been generated to further investigate the method’s

effectiveness. Additionally, a potential for the method’s extension to the generation of adversarial

perception error patterns has been identified and described.

5.2. Problem Formulation

This chapter presents a method that can be used to generate a set Sscen of nscen test scenarios.

Each scenario incorporates an arbitrarily (or randomly) chosen number ntp of traffic participants,

where the properties (geometry, kinematic parameters) of each road user are described by a

parameter vector padv,veh,params. The description of the generated scenario is composed of the

ego’s initial state sego(0) and ntp state trajectories stpi
(t),∀i ∈ {1, ..., ntp}, t ∈ [0, tsf], where tsf

is an arbitrarily chosen duration of the scenario.

Additionally, the method can be used to generate a set of the state estimate trajectories

ŝtpi
(t), ∀i ∈ {1, ..., ntp}, t ∈ [0, tsf], that represent ego’s imperfect perception of other traffic

participants in a given scenario.

Wojciech Turlej

5.2. Problem Formulation 123

5.2.1. Assumptions

Several assumptions regarding the tested policy and generated scenarios are applied in this

chapter. Unless stated otherwise, the assumptions listed below are used in all considerations in

this chapter.

◦ The driving policy can be executed in a Software-in-Loop setup, and can be used to derive

an ego’s control trajectory Tctrl,ego(t), where t ∈ [0, tsf], based on a representation of the

environment, that can be created using the description of the road geometry in ego’s

proximity, information about other road users’ bounding boxes, and state of other road

users Tstate,tpi
(t), ∀i ∈ {1, ..., ntp}, t ∈ [0, tsf].

◦ Ego’s control trajectory Tctrl, ego(t), t ∈ [0, tsf] and initial state sego(0) are sufficient to derive

an ego’s state trajectory sego(t) for t ∈ [0, tsf], e.g., using a known ego’s dynamic model.

◦ False positive and false negative object detection errors, as well as static environment

perception errors (or lack of them), do not have a significant impact on a policy and can be

omitted from the considerations. Note that, as stated in a previous chapter, this is rarely

the case in actual systems. However, such errors are mostly omitted in this chapter, as

the proposed approach can be used in conjunction with the sensor models described in the

previous chapter to at least partially alleviate the resulting issues.

◦ Ego’s state estimation errors are assumed to be negligible and therefore omitted.

◦ The vertical profile of the road as well as environmental conditions such as weather have

no impact on a policy or on constraints applied to other road users and thus are neglected

in the described approach.

5.2.2. Scenario Description

A traffic scenario also referred to as a test scenario can be defined in a relatively broad

manner. It may refer to both simulated situations as well as real-life ones, it may define the state

of the scene and movement of the traffic participants precisely or only in a broad manner, and

it may describe short, atomic situations, or long-term traffic conditions.

For the purpose of this section, I define a passive test scenario, as a short-term virtual sce-

nario that describes precise movements of traffic participants in the vicinity of the ego vehicle.

The movement of the road users excluding the ego in a defined passive test scenario remains

unchanged between executions of the virtual scenario, even if the ego’s movement changes, i.e.,

the environment does not actively react to the ego’s behavior.

The passive test scenario is composed of several main components listed below.

Wojciech Turlej

124 5.2. Problem Formulation

Static environment description consisting of the road description (lanes geometry, lane

markings description, etc.), static obstacles, traffic signs, and other elements of the en-

vironment relevant to the ego’s control algorithm. The exact description may depend on

the tested policy and availability of certain information (e.g., related to the presence of cer-

tain perception modules in the system). In this chapter, the static environment is always

predefined (that is, the map is available), using the description defined in Section 3.2.2. As

driving policies often build the static environment model based on on-board sensors, the

static environment in proximity of the ego can be represented using lane markers geometry

in the ego’s coordinate frame, using the definition provided in Section 4.4. The environment

can be thus represented as:

Sr(sego(t)) = {sri(sego(t))}i=1..ns
, (5.2.1)

where ns is number of the relevant lane markers, and sri ∈ R5 for i = 1..ns describe the

lane markers geometry, as defined in (4.4.1).

Traffic participants properties - number of traffic participants, their type, and corresponding

parameters relevant to the ego’s control algorithm and/or impacting their movement (such

as the size of the vehicle). In this chapter, number of the road users, as well as their

geometry and type are assumed to be predefined for each of the scenarios and remain

constant during the scenario itself.

State trajectories that describe the movement of traffic participants as a function of time. The

set of state trajectories is defined similarly as in Section 4.3 as Stp(t) = {stpi(t)}i=1..naa
,

where each of naa relevant objects is represented using a state vector:

stpi
=



gi

xi

ψi

vi

ai


. (5.2.2)

In equation 5.2.2, the vector gi ∈ R2 consists of the length and width of the i-th vehicle,

xi ∈ R2 denotes its lateral and longitudinal position (xlon
i and xlat

i respectively) in a

predefined reference frame, ψi is the vehicle rotation in reference to this frame, vi - its

absolute speed and ai - acceleration. Note that while gi is predefined and constant for each

scenario, it remains part of the state vector for convenience.

State estimate trajectories (optional) that describe the state estimates of traffic partici-

pants, i.e., the state of other vehicles with possible errors or perturbations. The set of

state estimate trajectories is defined as Ŝtp(t) =
{
ŝtpi

(t)
}
i=1..ntp

. The state estimate vector

Wojciech Turlej

5.2. Problem Formulation 125

contains estimates of the state variables described in (5.2.2):

ŝtpi = [ĝi, x̂i, ψ̂i, v̂i, âi]
T , (5.2.3)

where values ĝi, x̂i, ψ̂i, v̂i, and âi represent estimates of state variables gi, xi, ψi, vi, and

ai respectively.

Initial state consisting of the ego’s initial state:

sego(0) = [gego(0),xego(0), ψego(0), vego(0), aego(0)], (5.2.4)

defined the same way as in the case of other vehicles (5.2.2), and the initial state of other

traffic participants stp(0).

The proposed method is intended for finding the state trajectories of vehicles in proximity

of the ego that fulfill given requirements, e.g., lead to situations that pose a challenge to the

control algorithm in a simulation. While other elements of the scenario can be included in the

optimization problem used for scenario generation as well, for the purpose of this chapter, I

will assume that they are predefined, either manually or automatically, e.g., based on situations

observed in real-world test drives, or through a random generation process. Since the method

focuses on the generation of the trajectories that lead to challenging road situations, that is,

adverse behaviors toward ego vehicles, it can be referred to as Adversarial Trajectories Generation

method.

5.2.3. System Under Test

The method is intended to enable the validation and verification of ADAS/AD systems that

are used for vehicle control. In particular, the method can be used to test a policy πsut that maps

the environment model Êenv(t) to an action cego(t) that will be executed by a system.

In the examples used in this chapter, the environment model is defined as:

Ŝenv(t) = {Stp(t),Sr(t), sego(t)} (5.2.5)

Note that the description includes the ego’s state sego(t), which, while technically not a part of

the environment, has been included in the model for convenience.

The action ca(t) describes a vector of control values sufficient to solve the forward dynamics

problem of the ego, knowing its dynamic model and state sego(t). Control variables as well as

utilized ego’s mathematical model are arbitrary, as long as they can be used to compute its state

in next-time instances.

The definition of a System Under Test (SUT) is intentionally broad. It allows for relatively

complex setups, e.g., the system may include sensor models (for example, the models defined in

Wojciech Turlej

126 5.2. Problem Formulation

the previous chapter) that will map the environment’s state Senv to a vector of state estimates{
Ŝtp(t), Ŝr(t), ŝego(t)

}
. The system may also be composed of several modules, e.g., a planning

module that outputs the reference trajectory and a low-level control module that implements

feedback control algorithms to follow the reference. Note, however, that such setups were not

tested with the proposed method, as a Reinforcement-Learning-based direct control policy has

been used for this purpose.

5.2.4. Traffic Participants Model

While generated scenarios describe the dynamic environment of the ego through a set of state

trajectories of traffic participants Stp(t), the underlying stochastic optimization method actually

generates their control trajectories ctpi
, which are later used to derive the state trajectories.

The state trajectories of traffic participants in each scenario S ∈ Sscen are calculated based on

a set Tctrl of ntp control trajectories ci(qi, t) for i = 1..ntp, where qi is a vector of nq parameters

describing the i− th trajectory. Each control trajectory ci ∈ Tctrl describes values of the control

variables ci(t) defined as:

ci(qi, t) =

[
δi(qi, t)

ai(qi, t)

]
,

where δi(qi, t) denotes the steering angle and ai(qi, t) the acceleration of i − th vehicle in the

scenario at time t. Each of the road users present in the scenario, except for the ego vehicle,

moves according to a predefined dynamic model, which, knowing the initial state and control

variables ci(t) for t ∈ [0, tsf], allows one to derive its state stpi
(t).

5.2.4.1. Kinematic Model

The evolution of the vehicle state in time depends on the control variables and is described

using a kinematic model. The model is a variant of a bicycle kinematic model of a road vehicle

[141], which is commonly used to describe the movement of vehicles in ADAS/AD systems.

The bicycle model approximates the kinematic properties of a four-wheeled vehicle using a two-

wheeled model that resembles a bicycle with negligible tire widths.

Note that the identical model has been used in the previously described Multiple Hypothesis

Planning methods, and thus its full description with the additional rationale behind its choice

can be found in Section 3.2.5.

It should be noted that the model neglects many phenomena that impact vehicle movement,

such as wheel friction, air drag, the influence of road profile or engine dynamics. These simplifica-

tions are frequently used in traffic simulation and perception/prediction systems, as their impact

on the final results of relevant algorithms is often not significant [85] and requires knowledge of

variables that are difficult to measure (such as friction coefficients).

Wojciech Turlej

5.3. Optimization Problem 127

Y

COM

xlat

xlon X

ψ

δ
β

lr

lf
ẋlon = v cos (ψ + β (δ))

ẋlat = v sin (ψ + β (δ))

ψ̇ =
v

lr
sin (β (δ))

v̇ = a,

where

β(δ) = tan−1

(
lr

lf + lr
tan (δ)

)
.

(5.2.6)

Figure 5.2. Kinematic model used for state trajectory calculation. The model
is defined in detail in Section 3.2.5.

5.3. Optimization Problem

The scenario generation is performed through a stochastic optimization of the parameter

vector q = [q1, ...,qntp] composed of parameters vectors qi ∈ Rnq , that describe the multi-

dimensional control trajectories of ntp non-ego vehicles in the scenario. Parameters may encode

the trajectories in an arbitrary way, e.g., using B-splines or polynomials. The trajectories describe

the values of the control variables as a function of time for t ∈ [t0, tf], where t0 is typically set

to 0, as the trajectories start at the beginning of the scenario, and the duration ts = tf − t0 is

chosen arbitrarily (although it can easily be included in the vector of parameters q and optimized

alongside other scenario parameters).

The generation of adversarial trajectories is performed by solving the following non-linear

constrained optimization problem.

min
q

f(q) =
m∑
j=1

wjCj(q)

subject to: Rphys(q) ≥ 0

(5.3.1)

where Cj(qo) for j = 1..m denotes the cost terms evaluated based on simulation of the traffic

scenario, where m is the number of cost terms. Cost terms are scaled by heuristically chosen

weights wj for j = 1..m. Rphys(q) describes a set of inequality constraints used to ensure the

physical feasibility of the generated trajectories.

It should be noted that the evaluation of the cost terms requires performing the simulation of

a traffic scenario with the ego vehicle controlled by the tested algorithm. Since movements of the

ego impact the cost values and depend on possibly severely nonlinear and/or stochastic driving

policies, the problem itself may also be stochastic and nonlinear; thus, use of gradient-based

optimization methods is rarely a viable way of solving it. For this reason, the use of stochastic

derivative-free optimization algorithms is advisable.

Wojciech Turlej

128 5.3. Optimization Problem

5.3.1. Cost Terms

The cost terms used for the generation of adversarial trajectories are listed below.

Front collision cost term intended to promote solutions that lead to a collision between the

ego’s front bumper and one of the traffic participants. In particular, the front collision

of the ego is defined as a state in the simulation, where there is an overlap between the

bounding box of the traffic participant and the bounding box of the ego vehicle, and the

ego’s Center of Mass (CoM) position (xego) is behind the other vehicle’s CoM position

(xother), so xlon
ego > xlon

other.

The cost term is evaluated after the simulation, which is terminated at the time of the first

collision observed in the simulated scenario, or at tf if the collision is not observed during

the episode. The time at which the simulation is terminated is denoted tt.

Cfront,collision(q) =
n∑
i=1


−Ccolli(qi) if vs,ego(tt) > vs,tpi

(tt) and fcolli(q, tt) = 1,

−pside,coll if vs,ego(tt) ≤ vs,tpi
(tt) and fcolli(qo, tt) = 1,

0 if fcolli(qo, tt) = 0.

(5.3.2)

where fcolli(q, t) is equal to 1 if the i− th traffic participant collides with the ego at time

t, while the ego’s center is behind the vehicle’s center (in a road-aligned Frenet coordinate

system), and 0 otherwise.

The term Ccolli is defined as:

Ccolli(qi) = pfc,1 ∗ (vs,tpi
(qi, tt)− vs,ego(qi, tt)) + pfc,2, (5.3.3)

where vs,tpi
(q, tt) is the longitudinal velocity of the i-th agent in the Frenet coordinate

system, vs,ego is the longitudinal velocity of the ego vehicle, while pfc,1, pfc,2, and pside,coll

are calibration parameters.

Values of the parameters pfc,1, pfc,2 are chosen in a way that rewards collisions, in which

the ego vehicle moves faster than the relevant traffic participant, following the intuition

that such front collisions are of the greatest importance, as it typically indicates the ego’s

responsibility for the collision. The cost term in this case depends on the longitudinal

velocity difference, to promote solutions in which the accident is more severe.

Front collisions in which other traffic participant moves faster are less plausible, but can still

occur under the proposed definition of the front collision - e.g., when ego’s front bumper

collides with the rear part of the other vehicle during the lane change maneuver, while one

of the vehicles moves laterally. In such situations, a predefined negative cost depending on

the pside,coll parameter is assigned to promote them.

Wojciech Turlej

5.3. Optimization Problem 129

The parameters are chosen in such a way that the 0 value assigned for lack of collisions

is always larger than the values assigned for the collision occurrence, so that the sum

operation will result in assigning the negative cost when any of the traffic participants

collide with the ego.

Rear collision occurrences, while less desirable than front collision, are still promoted by an

additional cost term Crear,coll. Similarly, as in the case of the front collision, the rear col-

lision is defined as an overlap between the rear part of the ego vehicle and another traffic

participant. The cost term Crear,coll is defined as:

Crear,coll(q) =
n∑
i=1

prc,1 if v̇s,ego > 0

v̇s,ego(tt) ∗ prc,2 otherwise,
(5.3.4)

where vs,ego denotes the longitudinal velocity of the ego vehicle, and prc,1, prc,2 are calibra-

tion parameters. prc,1 has a positive value, resulting in the assignment of positive values

when the ego accelerates. This choice discourages solutions in which other traffic partic-

ipants deliberately chase the accelerating ego vehicle, as such situations are implausible.

On the other hand, the deceleration of the ego during the rear-end collision may suggest

that the collision is caused by the sudden braking of the ego, and thus prc,2 has a negative

value, resulting in a negative cost proportional to the ego’s acceleration.

Time to Collision (TTC) is a measure commonly used in ADAS features, expressing the time

in which a collision involving the ego is expected to occur, assuming that all road users

(including the ego) will sustain their current acceleration. If the collision is not expected

to occur under these conditions, the TTC has a ∞ value.

The cost term that promotes the achievement of low TTC values is defined as:

CTTC(q) = min

{
min

t∈[t0,tf]
(fTTC,i(q, t)), pTTC,max

}
for i = 1..ntp, (5.3.5)

where fTTC,i(q, t) denotes i − th agent TTC at time t, while pTTC,max is a calibration

parameter.

The TTC cost term serves as a way to guide the optimization process toward dangerous

situations and promote dangerous low-TTC solutions.

Euclidean distance cost term promotes solutions in which the distance between ego and at

least one of the other traffic participants is small. It should be noted that without this

term, the gradient of the cost function may be zero in potentially large areas of solution

space, i.e. changes in the optimization vector q do not impact the cost for a wide range of

the q values. In particular, cost remains the same for all q that result in lack of collisions

and fTTC,i(q, t) > pTTC,max for i = 1..ntp, t ∈ [t0, tf].

Wojciech Turlej

130 5.3. Optimization Problem

While it is strongly suggested to use gradient-free optimization methods for solving the pro-

posed optimization problem, this situation may still severely impact the performance of the

stochastic solvers, or even render the problem impossible to solve with certain algorithms.

To avoid these issues, the following ced cost term is introduced:

Cdist(q) = min
i=1..ntp

(
min

t∈[t0,ft]

(√
(xlon

ego(q, t)− xlon
i (q, t))2 + (xlat

ego(q, t)− xlat
i (q, t))2

))
,

(5.3.6)

where xlon
ego(q, t),x

lat
ego(q, t) x

lon
i (q, t),xlat

i (q, t) are CoM coordinates of ego and i− th agent

respectively in an arbitrary Cartesian coordinate system at the time t.

The weight assigned to this cost term is relatively small; the main goal of the Cdist term

is to guide the optimization process in its initial stages toward the q values that result in

low TTC with respect to one or more traffic participants.

5.3.2. Constraints

Due to the physical limitations of the vehicles, inequality constraints Rphys(q) ≥ 0 are

needed to enforce limits on the control values. For an arbitrary trajectory encoding method, the

constraints for control values c(q) can be defined in a general way as:

amin ≤ ai(q, t) ≤ amax for i = 1..ntp, t ∈ [t0, tf];

δmin ≤ δi(q, t) ≤ δmax for i = 1..ntp, t ∈ [t0, tf],
(5.3.7)

where amax, amin are acceleration limits that approximate the typical performance of road vehi-

cles, and δmax, δmin denote the steering angle limits typical for vehicles. Constraints are typically

evaluated in discrete time steps.

It should be noted that for certain trajectory encoding methods, the problem of constraining

the control values can be reduced to a trivial problem of limiting the trajectory parameters

themselves - this is the case for the proposed piece-wise linear trajectory encoding.

5.3.3. Iterative Generation of Multiple Scenarios

The method described so far is suitable for the generation of a singular scenario. While the

proposed optimization problem is likely to contain multiple local minima that can be explored

using a suitable optimization algorithm, the generation of multiple dissimilar scenarios may be

troublesome, especially if there is a pronounced global solution.

In order to enable efficient generation of multiple scenarios, additional cost terms can be

added to the optimization problem:

Csim(q) = psim,1

ns∑
j=0

d(qj ,q)

ns
+ psim,2 min

qk∈S
d(qk,q), (5.3.8)

Wojciech Turlej

5.3. Optimization Problem 131

where Sscen is a set of ns previously generated scenarios (parameter vectors), and d(qk,q) is

an Euclidean distance between vectors qk and q. psim,1 and psim,2 are the calibration parameters.

The scenarios in this setup are generated iteratively, and each scenario is added to the set

Sscen, impacting the next execution of the optimization problem. This way an arbitrary number

of dissimilar scenarios can be generated.

The Csim term promotes solutions that are dissimilar to a mean solution qmean =
∑ns

j=0
d(qj ,q)
ns

,

as well as ones that have a large distance to the closest already generated scenario.

5.3.4. State Estimation Errors

As mentioned in the introduction to this chapter, the described method can be extended to

generate scenarios that include dynamic object state estimation errors. The weighted sum of the

state variables’ error integrals in time is included as a cost term of the optimization problem

(5.3.1), enabling the pursuit of situations in which minuscule state estimation errors lead to

critical safety failures.

The general idea of such an extension is presented in Fig. 5.3.

Episode loop

ObservationSimulationControl

RL-based driving
policy

Perception
module

(observation
creation)

Ego kinematic

model

Trajectory
sampling

Agent 1 kinematic
model

Agent 2 kinematic
model

Trajectory
sampling

Partial cost
terms

calculation

Particle Swarm
Optimization update

Action
sampling

Cost

Observation
(with errors)

Agents

state

Ego

state

Actions
distribution

Cost terms

Ctrl

values

Ctrl

values

...
...

State

trajectories

Cost calculation
Params

Scenarios
database

Scenario
novelty

estimation

Scenario
novelty

cost term

State estimation
error

trajectories

Observation errors
encoding

Observation errors

+
+
Perfect obs

Weighted sum

of errors

Errors cost term

Figure 5.3. General idea of adversarial scenario generation with state estima-
tion errors.

The scenario generation problem, in this case, is defined similarly as in 5.3.1:

Wojciech Turlej

132 5.4. Evaluation

min
q,qse

f(q,qse) =

m∑
j=1

wjCj(q,qse) + wseCse(q,qse)

subject to: Rphys(q) ≥ 0

(5.3.9)

where qse is a vector of parameters that describe the state estimates trajectories of traffic

participants ŝ(qse, t) = {ŝsei(qse, t)}i=1..ntp
for t ∈ [0, tsf].

The cost terms Cj(q∀j ∈ {1, ...,m} in the described problem remain identical to the previous

formulation, but a supplementary term Cse(q,qse) is added, defined as:

Cse(q,qse) =

ntp∑
i=1

∫ tf

0
∥s(qo)− ŝ(qse)∥1 dt. (5.3.10)

The cost term (5.3.10) scaled by a weight wse promotes solutions, in which the difference

between the state trajectory s(qo, t) (approximated using numerical integration methods) and

the state estimate trajectory ŝ(qse, t) (defined explicitly as a B-spline parameterized by the vector

qse) is minimal.

It can be noted that the problem can be simplified by using the qse vector to describe a state

estimate error trajectory instead of a state estimate trajectory directly, as outlined in Fig. 5.3. In

addition, in the practical implementation, the integral in the equation (5.3.10) is approximated

using a Riemann sum.

5.4. Evaluation

The described method has been tested in an experimental setup, where the proposed approach

was used to generate a set of challenging scenarios for an AD system controlled by a driving policy

based on Reinforcement Learning (RL).

5.4.1. System Under Test

The driving policy subjected to evaluation using the proposed method in the described ex-

periment is the G-SM or GT policy described in Section 4.5, i.e., a direct control driving policy

based on a neural network trained in RL setup with ground-truth sensor models.

The policy outputs a control vector cego(Oenv) = [δ, a], where Oenv ∈ Rnembd×(1+1+ntp+nlm)

is an observation vector, which includes, as described in Section 4.5.1, the ego’s state obser-

vation oego (sego(t)), description of other road users oobji(stp(t)),∀i ∈ {1, ..., nobj,max}, and the

description of lane markers geometry olmi(sr(t))∀i ∈ {1, ..., nlm,max}.
The observation vector is created based on the environment model Ŝ(t) in a relatively

straightforward manner, where the state of other road users and lane markers is transformed

to the ego’s coordinate system and scaled to [−1, 1] limits.

Wojciech Turlej

5.4. Evaluation 133

As the policy outputs a control vector, and values of the cost terms in the optimization

problem (5.3.1) depend mostly on the ego’s state sego(t), a kinematic model (5.2.6) is used to

derive the ego’s state trajectory.

Observation creation and policy inference are performed every δtinfer = 0.1s, and after the

inference, the ego’s control values are kept constant until the next control update. The entire

simulation loop, i.e., vehicle state updates and calculation of partial rewards, is repeated every

δtsim = 0.05s, and the ego’s state trajectory is, in fact, approximated using numerical integration.

The policy is capable of performing sharp evasive maneuvers, such as braking and steering,

in response to dangerous situations. To demonstrate this ability, a manually-crafted passive test

scenario has been used, as shown in Fig. 5.4.

−40 −20 0 20 40

Longitudinal position relative to a frame
moving with 25.0 m/s longitudinal velocity [m]

−5

0

5

L
a
te

ra
l

p
o
si

ti
on

[m
]

Bird eye view

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [s]

−0.050

−0.025

0.000

0.025

0.050

S
te

er
in

g
an

gl
e

[r
ad

]

Steering angle

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [s]

10

20

V
el

o
ci

ty
[m
s

]

Velocity

Ego Agent A Agent B

Figure 5.4. Successful collision avoidance maneuver executed by the evaluated
policy in a manually-crafted test scenario.

The scenario consisted of the ego vehicle driving in the middle lane of a 3-lane highway, and

two traffic participants, where one (denoted Agent A on Fig. 5.4), driving behind the ego on a

left-most lane, keeps its velocity, while another (Agent B), initially driving on the right lane in

front of the ego, performs a lane change to the ego’s lane, followed by severe braking. All vehicles,

including the ego, start the scenario with an initial velocity of 25ms .

In the described scenario, the ego controlled by the evaluated policy initially kept its lane,

while moderately accelerating. As soon as the adverse agent entered the ego’s lane and started

braking (around t = 2.3s, as seen in the velocity plot), the policy applied severe braking. Since

the agent maintained its severe acceleration, the ego followed its emergency braking with an

evasive lane change maneuver, executed around t = 3.3s, as shown on the steering angle plot in

Fig. 5.4. The maneuvers performed were sufficient to avoid a collision in this situation.

Further details on the environment in which the policy was trained, as well as its performance,

can be found in Section 4.5. The experiment presented in Fig. 5.4 indicates, however, that the

Wojciech Turlej

134 5.4. Evaluation

policy is capable of relatively complex and severe collision avoidance maneuvers, and thus finding

the scenarios that lead to a collision may be a nontrivial task.

5.4.2. Evaluation Examples

A set of experiments was performed to observe the ability of the method to produce adver-

sarial scenarios for the driving policy described in 5.4.1. Initial conditions for the experiments,

as well as the number of adversarial agents, were created manually.

Table 5.1. Weights and parameters used for generation of adversarial scenar-
ios.

Parameter
Name

Value Unit Description

wcoll 15.0 - Collision weight.
pside,coll 0.2 - Side collision multiplier.
pfc,1 0.01 - Front collision velocity cost parameter.
pfc,2 1.0 - Front collision constant cost parameter.
wrc 1.0 - Rear collision weight.
prc,2 10.0 - Rear collision constant cost parameter.
prc,2 1.0 - Rear collision velocity-dependent cost parameter.
wTTC -2.0 - Time to collision weight.

pTTC,max 10.0 [s] TTC saturation parameter.
wdist 0.3 - Euclidean distance cost weight.
amin -4.0 m

s2
Min acceleration of traffic participants.

amax 4.0 m
s2

Max acceleration of traffic participants.
δmin 0.125 - Min steering angle of traffic participants.
δmin 0.125 - Max steering angle of traffic participants.
wsim 1.0 - Weight of the scenario similarity cost term.
psim,1 1.0 - Scenario similarity cost term parameter.
psim,2 1.0 - Scenario similarity cost term parameter.

5.4.2.1. Experiment 1: Highway driving with two adverse agents

The main purpose of Experiment 1 was to evaluate the method’s ability to generate a larger

set of dissimilar scenarios involving multiple agents. The scenario generation in this example did

not involve the state estimate errors.

For the first experiment, a straight three-lane road with four traffic participants (apart from

the ego) was used. The ego vehicle starts the scenario in the middle lane, driving at a speed

of 25ms . Two agents are placed on adjacent lanes: one at the right lane in front of the ego,

at a distance of approximately 40m, and one behind the ego at the left lane, at a distance of

approximately 30m. Both agents move at a speed of 25ms at the beginning of the scenario, and

their trajectories are generated using the described method. In addition, two passive agents are

added on the middle lane in front of and behind the ego vehicle. Passive agents move at a constant

Wojciech Turlej

5.4. Evaluation 135

speed of 25ms throughout the scenario and maintain a steering angle of 0. The maximum duration

of the scenario was set to 9s.

An overview of the initial conditions is presented in Fig. 5.5.

−80 −60 −40 −20 0 20 40 60 80

Longitudinal position [m]

−5

0

5

L
at

er
al

p
os

it
io

n
[m

]

Initial state of the scenario - bird eye view

Ego

Agent C (passive)

Agent A

Agent D (passive)

Agent B

Figure 5.5. Initial conditions for the first experiment. Trajectories of Agents
A and B are generated using the described method, while passive agents C (in
front of the ego) and D (in the rear) maintain zero acceleration and steering
angle. The ego is controlled by the driving policy under test.

The proposed method has been executed iteratively to generate 20 adversarial scenarios.

Examples of the generated scenarios are discussed in the following paragraphs.

5.4.2.1.1 Example 1

In example 1, shown in Fig. 5.6, the front vehicle (Agent B) performed a severe braking maneuver,

followed by an acceleration and a sudden change of lane to the left. In response to the severe

cut-in maneuver, the ego executed an aggressive steering maneuver, which resulted in a collision

with Agent A, which had been accelerating in the left lane.

−40 −20 0 20 40

Longitudinal position relative to a frame
moving with 25.0 m/s longitudinal velocity [m]

−5

0

5

L
at

er
al

p
os

it
io

n
[m

]

Bird eye view

0.0 0.5 1.0 1.5 2.0

Time [s]

−0.050

−0.025

0.000

0.025

0.050

S
te

er
in

g
an

gl
e

[r
ad

]

Steering angle

0.0 0.5 1.0 1.5 2.0

Time [s]

20

30

40

V
el

o
ci

ty
[m
s

]

Velocity

Ego Agent A Agent B

Figure 5.6. Experiment 1, scenario example 1: front vehicle braking with a
late cut-in.

Wojciech Turlej

136 5.4. Evaluation

The method exposed an important vulnerability of the policy. While in many cases lane

change is a viable collision avoidance maneuver, the policy failed to recognize a danger posed by

a fast-moving traffic participant on the target lane. One possible way to address this issue may

be to increase the number of dense traffic scenarios generated during the training.

5.4.2.1.2 Example 2

Example 2 presented in Fig. 5.7 shares certain similarities with Example 1, also consisting of

Agent A accelerating on its lane, and Agent B performing a cut-in with braking. However, the

cut-in is performed in a less severe manner in this scenario, with Agent B only partially entering

the central lane. The policy fails to recognize this as a dangerous situation, maintaining the ego’s

velocity and steering angle.

−40 −20 0 20 40

Longitudinal position relative to a frame
moving with 25.0 m/s longitudinal velocity [m]

−5

0

5

L
at

er
a
l

p
os

it
io

n
[m

]

Bird eye view

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Time [s]

−0.050

−0.025

0.000

0.025

0.050

S
te

er
in

g
a
n

g
le

[r
ad

]

Steering angle

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Time [s]

10

20

30

V
el

o
ci

ty
[m
s

]

Velocity

Ego Agent A Agent B

Figure 5.7. Experiment 1, scenario example 2: partial cut-in.

Significant differences in the policy’s reaction to scenario examples 1 and 2 may be worth

further investigation. While it is not certain why the policy did not react to Agent B’s maneuver

in this case, one possible theory is that the simulation package utilized for the policy’s training

generated only relatively fast lane change maneuvers, and the policy rarely observed situations

in which the other road user drives in between the lanes for prolonged periods of time.

5.4.2.1.3 Example 3

In this example, shown in Fig. 5.8, the front vehicle (Agent B) changed the lane to the central

one and then applied a prolonged severe braking. Agent A did not participate in the scenario,

as it applied severe braking, promptly leaving the ego’s proximity.

The ego reacted by braking, yet failed to apply sufficient braking deceleration to avoid the

accident. At the same time, the ego failed to perform an evasive steering maneuver, though,

Wojciech Turlej

5.4. Evaluation 137

−40 −20 0 20 40

Longitudinal position relative to a frame
moving with 25.0 m/s longitudinal velocity [m]

−5

0

5

L
at

er
al

p
os

it
io

n
[m

]

Bird eye view

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Time [s]

−0.050

−0.025

0.000

0.025

0.050

S
te

er
in

g
an

gl
e

[r
ad

]

Steering angle

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Time [s]

0

10

20

30

V
el

o
ci

ty
[m
s

]

Velocity

Ego Agent A Agent B

Figure 5.8. Experiment 1, scenario example 3: front vehicle braking on the
ego’s lane.

interestingly, its initial reaction consisted of moderate steering to the left but was followed by

returning to the lane’s center.

Although in this case, the initial reaction of the policy was correct, the collision could easily

be avoided by changing the lane to the right. It is not certain why the police failed to perform

such a maneuver - it may be related to Agent B driving at the edge of the lane, similarly as in

the previous example.

5.4.2.1.4 Scenarios distribution

Iterative execution of the method to generate 20 scenarios based on identical initial conditions

produced a varied set of situations that ended in the collision with the ego vehicle. The generated

scenarios can be assigned to several classes depending on the behavior of adversarial agents,

including collisions front agent (Agent B) performing cut-ins to trigger the collision, rear agent

(Agent A) accelerating and cutting in front of the ego, or both agents approaching the ego at

the same time.

To further investigate the scenarios, all of them were manually assigned one of seven arbitrar-

ily chosen classes, listed in Fig. 5.9. A dimensional reduction algorithm t-Distributed Stochastic

Neighbor Embedding (t-SNE) [56] was then utilized to represent the scenarios’ parameters in a

2-dimensional space, as shown in Fig. 5.9.

The scenarios represented on 2-dimensional space after t-SNE dimensionality reduction do

not form easily recognizable clusters related to each scenario class, although two main groups

can be distinguished - one containing mostly scenarios in which the B agent collides with the ego

and one in which Agent A causes the collision.

Wojciech Turlej

138 5.4. Evaluation

−200 −100 0 100 200

t-SNE dimension 1 values

−200

−100

0

100

200

t-
S

N
E

d
im

en
si

on
2

va
lu

es

T-distributed stochastic neighbor embedding of scenarios parameters

A collides with the ego, B accelerates

A collides with the ego, B keeps velocity

A collides with the ego, B brakes

B collides with the ego, A accelerates

B collides with the ego, A keeps velocity

B collides with the ego, A brakes

Both vehicles approach ego (entrapment)

Figure 5.9. t-SNE decomposition of scenarios parameters in Experiment 1.

The lack of smaller, class-related clusters may suggest that the scenarios are relatively varied

even within one class. In most cases, the scenarios in a single class differ in the behavior of one

of the agents, e.g., the agent that did not participate in the collision was performing different

maneuvers, producing variations of the scenario.

5.4.2.2. Experiment 2

Experiment 2 was designed to examine the ability of the method to generate scenarios with

state estimate errors.

In this experiment a relatively common merge-in scenario is explored, in which the ego vehicle

starts on a merge-in lane that closes in approximately 60 meters, as shown in Fig. 5.10, driving

with an initial speed of 10ms . Another vehicle starts the scenario with identical speed on the right

lane of a 2-lane road, to which the ego’s lane merges.

−10 0 10 20 30 40 50 60 70 80

Longitudinal position [m]

−15

−10

−5

0

5

L
at

er
al

p
o
si

ti
o
n

[m
]

Initial state of the scenario - bird eye view

Ego Adversarial agent

Figure 5.10. Initial conditions for the second experiment. Both vehicles start
with an initial speed of 10m

s .

Wojciech Turlej

5.4. Evaluation 139

Similarly, as in the previous experiment, the method is used to generate 20 adversarial sce-

narios, with the difference of also generating the state estimate trajectory of the other vehicle.

The state estimate errors are generated only for the longitudinal and lateral positions of the

vehicle, that is, other state variables remain unmodified. The maximum duration of the scenario

is set to 9 seconds.

5.4.2.2.1 Example 1

In the first example, presented in Fig. 5.11, the adversarial agent applied moderate braking in the

first part of the scenario, while driving near the center of the lane. However, the generated state

estimate trajectory involved a moderate lateral error that started from approximately −1.5m,

and grew to 1m over the duration of the scenario. The error, while relatively insignificant, could

lead to a false interpretation of the vehicle’s motion, suggesting an ongoing execution of a lane-

change maneuver.

0 20 40 60 80 100

Longitudinal position [m]

−15

−10

−5

0

5

10

L
a
te

ra
l

p
o
si

ti
o
n

[m
]

Bird eye view

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time [s]

−0.10

−0.05

0.00

0.05

0.10

S
te

er
in

g
an

gl
e

[r
a
d

]

Steering angle

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time [s]

0

10

20

30

V
el

o
ci

ty
[m
s

]

Velocity

Adversarial agent as perceived by the ego Ego Adversarial agent

Figure 5.11. Experiment 2, scenario example 1: the false assumption of lane
change due to perception errors.

As shown in Fig. 5.11, the driving policy under test in fact reacted incorrectly to the observed

state estimates, performing a lane change maneuver as soon as possible due to the geometry of

the road, leading to a collision with the adversarial agent.

5.4.2.2.2 Example 2

The second example represents a fairly similar situation, in which the other vehicle performs a

braking maneuver on its lane, but with a different perception error pattern produced. As can

be seen in Fig. 5.12, the position of the vehicle is perceived by the ego as closer to the merge-in

Wojciech Turlej

140 5.4. Evaluation

lane than in the actual scenario, potentially leading to an incorrect assumption that the vehicle

is performing a lane change to the right.

0 20 40 60 80 100

Longitudinal position [m]

−15

−10

−5

0

5

10

L
at

er
al

p
o
si

ti
o
n

[m
]

Bird eye view

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Time [s]

−0.10

−0.05

0.00

0.05

0.10

S
te

er
in

g
a
n

gl
e

[r
ad

]

Steering angle

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Time [s]

0

10

20

30

V
el

o
ci

ty
[m
s

]

Velocity

Adversarial agent as perceived by the ego Ego Adversarial agent

Figure 5.12. Experiment 2, scenario example 2.

The ego vehicle reacts to this observation in an improper manner, by performing a sudden

steering maneuver to the left, which directly leads to a collision with the other vehicle. Such

behavior could be caused by a false assumption that the other vehicle will perform a right-lane

change maneuver, in which case a left-lane change maneuver could potentially constitute a viable

collision avoidance maneuver.

5.4.2.2.3 Example 3

The third example exposes another issue in the tested system, not directly related to the merge-in

maneuver. In this scenario, the adversarial agent brakes at the beginning of the scenario, allowing

the ego vehicle to safely merge into the traffic on a main road. The ego vehicle performed a

double lane change, followed by centering on the left lane. The adversarial agent subsequently

accelerated, performing a slow lane change.

The state estimation errors in this case were again relatively small, as the lateral position

estimation error was maintained at approximately −1m, while the longitudinal state estimation

remained almost accurate, with near-zero errors.

The tested policy failed to react to the lane change maneuver of the other vehicle in any way,

resulting in the collision. While the precise reason behind such behavior remains unknown, one

possible explanation is that the lateral state estimation error could lead to a false assumption that

the lane-change maneuver was conducted slower than in the actual scenario. As the adversarial

Wojciech Turlej

5.5. Conclusions 141

0 20 40 60 80 100

Longitudinal position [m]

−15

−10

−5

0

5

10

L
at

er
al

p
os

it
io

n
[m

]
Bird eye view

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [s]

−0.10

−0.05

0.00

0.05

0.10

S
te

er
in

g
an

gl
e

[r
ad

]

Steering angle

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [s]

0

10

20

30

V
el

o
ci

ty
[m
s

]

Velocity

Adversarial agent as perceived by the ego Ego Adversarial agent

Figure 5.13. Experiment 2, scenario example 3

vehicle’s speed was significantly higher than the ego’s during the collision, even a minimal delay

in the lane change execution could result in a safe resolution of the analyzed situation.

This exposes an important issue in the tested policy, as similar state estimation errors could

occur as a consequence of delays or incorrectly calibrated filtering algorithms in the perception

system.

5.5. Conclusions

In this chapter, I presented a novel adversarial scenario generation method intended for

the testing of ADAS / AD systems. The method can be used to generate test scenarios based

on provided or randomly generated initial conditions. The scenario generation process utilizes

stochastic optimization methods that are used to pursue scenarios that pose the greatest challenge

to the system under test.

The optimization problem used to generate trajectories of the traffic participants surrounding

the ego vehicle is formulated in a way that penalizes the generation of scenarios similar to other

scenarios within a certain scenario database. This formulation enables the use of the proposed

method for the iterative generation of multiple dissimilar scenarios, allowing for the exploration

of different failure modes of the tested driving policy.

One of the key features of the proposed method that distinguishes it from the existing ap-

proaches is the ability to simultaneously generate the state trajectories of the traffic participants,

as well as state estimates trajectories intended to mimic the way in which the ego vehicle may

perceive other vehicles. The difference between state trajectories and generated state estimates is

Wojciech Turlej

142 5.5. Conclusions

minimized during the scenario generation, enabling the exploration of minimal perception system

mistakes that may lead to critical safety failures in certain situations.

The use of the presented approach for the validation of an AD system has been demonstrated

in the task of generating sets of adversarial test scenarios for a driving policy based on Rein-

forcement Learning techniques. The algorithm that implements the proposed method was able

to successfully generate a wide variety of test scenarios that exposed several failure modes in

the tested policy. Additionally, the described method has been used to explore the policy’s sus-

ceptibility to perception system deficiencies, generating a set of scenarios with state estimation

errors.

With a growing demand for AD systems, the proposed method can play an important role

in ensuring the safety of the underlying planning and control algorithms, allowing to actively

explore potential issues in the developed systems.

The method is particularly useful in applications that involve machine learning-based tech-

niques, such as driving policies based on Reinforcement Learning. The proposed method can be

used to quickly identify situations in which the developed driving policy struggles to achieve

the desired performance. The scenarios generated by the proposed method can be utilized by

the developers as guidance for the creation of the training sets, or even used directly in policy

training, e.g., in Falsification-Based Robust Reinforcement Learning [192] setups.

5.5.1. Limitations and Further Work

The described method, while functional and applicable for testing purposes in the described

form, can be further improved in several ways, which could significantly extend its applications

and increase its versatility.

5.5.1.1. Initial conditions and static environment generation

All the examples presented in this section were based on manually defined initial conditions.

While workflow in which the user of the proposed method defines the initial conditions is useful

for the exploration of policy’s vulnerabilities in situations that are known to occur frequently or

be challenging, the generation of large scenario databases this way may prove to be a tedious

task. For this reason, one of the important improvement areas of the proposed method is the

automatic generation of initial conditions.

One way to generate initial conditions automatically is to generate the static environment in

a randomized manner, e.g., randomly choosing the presence of various road features (merge-in

lanes, intersections) and their parameters (number of lanes, road curvature, etc.) and then place

the traffic participants on drivable parts of the road using various semi-random heuristics (e.g.,

generate traffic participants on a center of a random lane in a normally distributed distance from

the lane beginning). Most commercially available traffic simulation packages already offer such

random generation capabilities out of the box [14].

Wojciech Turlej

5.5. Conclusions 143

Another approach to the generation of initial conditions is to utilize situations registered

during Real-World User Profiling (RWUP) test drives [103], or naturalistic trajectories studies

[18]. Such an approach can be used to source both static environment information (either in

the form of map data or lane markers detections registered by the test vehicle), and realistic

states of other vehicles. Pairs of static and dynamic environment descriptions can be obtained at

random time instances in the source logs, or various heuristics can be defined to find potentially

interesting configurations, as proposed, for example, in [84].

5.5.1.2. Plausibility of the generated scenarios

Scenarios generated by the proposed method vary significantly in terms of the behavior of

traffic participants, often consisting of atypical or illogical maneuvers of other vehicles. It is

often useful to investigate the behavior of the tested system in such situations, as they may

happen, e.g., in situations where the driver of the other vehicle is intoxicated or incapacitated.

Nevertheless, a large subset of such scenarios is unlikely to happen in real traffic (e.g., situations

that could be interpreted as active and conscious efforts to cause an accident), and investigation

of such scenarios may be counterproductive.

While one of the main ideas behind adversarial trajectory generation is to explore scenarios

that are rarely observed in real traffic, finding plausible situations that trigger critical safety

failures in the tested system is often more desirable than finding scenarios that do so through

complex, implausible series of adverse, illogical maneuvers.

Furthermore, as mentioned in Section 3.3.2, ensuring a complete lack of collisions on the road

is practically impossible, and attempts to do so are suggested to be counterproductive by many

researchers [72, 63, 157]. For this reason, it could be beneficial to focus the adversarial scenario

search on situations in which the responsibility for a collision can be assigned to the driving

policy’s decisions, or which could be reasonably foreseen and avoided through its actions.

The examples described in a previous section already partially utilize this approach, as the

cost values assigned for front and rear collisions are significantly different in the optimization

problem used for trajectory generation. In particular, collisions in which the other traffic partic-

ipant collides with the ego from the back are discouraged by assigning a positive cost value to

them, since in such situations the responsibility for the collision is often considered to be on the

rear-vehicle side [157, 63].

Depending on the priorities of the method’s user, as well as requirements for the validation

efforts in which the method is used, this approach can be further extended to first and foremost

produce scenarios that are most plausible, or in which the ego is responsible for the accident.

Estimation of the trajectories’ plausibility, as well as responsibility assignment, remains, however,

a complex topic, and further work would be needed to apply it in the proposed approach.

As a base for advanced responsibility assignment, the IEEE 2846-2022 standard [63], as well

as frameworks such as the Responsibility-Sensitive Safety [157], or Safety Force Field [128] could

Wojciech Turlej

144 5.5. Conclusions

be used. Knowing which vehicle in an adversarial scenario is responsible for the accident allows

us to adjust the cost value in a way that promotes the generation of scenarios, in which the ego

vehicle causes the accident.

To generate more plausible scenarios, various heuristics can be used to grade scenarios’ plau-

sibility, e.g., during the generation process, scenarios in which adversarial agents perform sharp,

sudden maneuvers may be assigned positive cost values. Various machine learning-based tech-

niques can also be used for this purpose, e.g., autoencoder-based neural networks can be trained

in a supervised manner on naturalistic trajectory databases to recognize plausible trajectories

in setups similar to autoencoder-based anomaly detection and trajectory prediction techniques

[36].

The choice of a particular scenario plausibility enhancement method depends heavily on the

end-user needs. While the current approach may be sufficient for use by engineers seeking to

explore potential deficiencies in a developed policy, use in large-scale validation or verification

endeavors or automated policy performance evaluation may require further work on the adapta-

tion of one of the proposed methods.

5.5.2. Further Applications

One of the most evident applications of the proposed method is in the workflow, where an

engineer developing the driving policy explores the vulnerabilities of the algorithm developed

using this approach and utilizes the insights gained this way to improve the policy, possibly in

an iterative workflow.

Depending on the type of driving policy, this process can be automated, which is especially

apparent in the case of reinforcement learning-based driving policies. Generated adversarial sce-

narios can be used directly in the training process, in which the trained policy will explore

alternative behaviors in a given situation and will be able to learn how to react in such sit-

uations. The generation of adversarial scenarios can be performed alongside the training, in a

setup where new scenarios are generated for each new iteration of the driving policy. Similar

approaches have already been shown to significantly improve the robustness of the trained policy

to difficult situations [192], and novel features of the proposed approach could help to further

immunize the developed policy against perception errors.

Wojciech Turlej

6. Conclusions

Recent advancements in Machine Learning (ML) technology have revolutionized many fields

of science and technology, including the automotive industry. In particular, Reinforcement Learn-

ing (RL) methods have been demonstrated to achieve unprecedented performance in motion

planning tasks, being able to take into account complex interactions between road users, plan

long-term driving strategies, and compensate for the imperfect performance of perception sys-

tems.

Unfortunately, there are several challenges related to the introduction of such systems, in-

cluding limited transparency, lack of safety guarantees, and susceptibility to errors in situations

that were not sufficiently covered by the simulated scenarios used in the RL training. Further-

more, ensuring the sufficient performance of the motion planning module is a challenging task,

as issues in ML-based systems may be triggered by seemingly innocuous road situations and/or

small perception errors.

The research hypotheses investigated in this thesis are related to these problems, aiming to

enable the introduction of RL-based motion planning methods to commercial Advanced Driving

Assistance Systems (ADAS) and Autonomous Driving (AD) systems.

6.1. Summary and Contributions

In this section, I summarize the research presented in each of the chapters in the context of

the research hypotheses formulated in Section 1.4.

6.1.1. Multiple Hypothesis Planning

Research presented in Chapter 3 has been motivated by a need for a trajectory generation

method that could produce safe control trajectories considering multiple hypotheses regarding the

future state of the dynamic environment surrounding the controlled car. Especially in the context

of RL-based behavior planning methods that decide on high-level maneuvers to be performed,

such trajectory planning method could be used to execute said maneuvers in a safe manner, ad-

ditionally taking into account a reasonably foreseeable worst-case scenario hypothesis, effectively

adding additional safety guarantees to the system.

146 6.1. Summary and Contributions

The described considerations led to the formulation of the first research hypothesis that it

is possible to create a safe driving plan for an automated vehicle that considers several hypothe-

ses regarding the future state of the vehicle’s surroundings. In particular, reasonably foreseeable

worst-case assumptions regarding the behavior of other road users can be taken into account in

the motion planning algorithm, ensuring the existence of feasible collision avoidance maneuvers

during the execution of the motion plan.

To investigate this hypothesis, I proposed a novel trajectory generation method that can

be used to generate multiple control trajectories that result in a collision-free movement of the

ego vehicle according to their respective hypotheses. Generated trajectories overlap in a certain

initial time period, allowing formulation of a control scheme in which the planning is repeated

periodically, ensuring a collision-free driving plan as long as at least one of the hypotheses is

accurate at any time.

The main contribution presented in this chapter is the formulation of the optimization prob-

lem used for trajectory generation that enables the simultaneous generation of all the trajecto-

ries. Thanks to this formulation, each of the planned trajectories takes into account the need

for the potential execution of another, potentially less plausible, trajectory. This formulation

distinguishes the proposed approach from the existing methods which either plan only a single

trajectory or perform the planning for several hypotheses in a sequential manner.

Further contribution presented in this chapter is a proposal of a foreseeable worst-case hy-

pothesis generation based on the recently introduced IEEE Standard for Assumptions in Safety-

Related Models for Automated Driving System (IEEE 2846-2022) [63]. While the proposed

method can be used in conjunction with various multimodal trajectory prediction modules,

the proposed worst-case hypothesis generation method allows its use for a fail-safe trajectory

planning task, ensuring the existence of a collision-free emergency maneuver even in reasonably

foreseeable worst-case scenarios.

The effectiveness of the proposed method has been demonstrated in several numerical exper-

iments. The method has been used to generate control trajectories for a simulated ego vehicle in

several typical but challenging road situations, presenting its application with predefined multiple

hypotheses regarding plausible trajectories of other road users, as well as in a fail-safe planning

setup, where a worst-case hypothesis was generated by a proposed algorithm. The method has

been able to generate safe (with respect to formulated hypotheses) and efficient trajectories in

the presented examples, confirming the research hypothesis.

6.1.2. Sensors Modeling

Motion planning systems in autonomous vehicles rely on perception systems that provide a

model of the dynamic environment (including the state of other road users), as well as the static

environment (including the geometry of the road and static obstacles). Due to the limitations

Wojciech Turlej

6.1. Summary and Contributions 147

of the existing sensors and perception algorithms, the accuracy of such systems remains limited,

and they may produce erroneous models of the environment.

Motion planning systems are often susceptible to perception errors, that, depending on their

type, severity, and duration, may lead to safety-critical mistakes. Due to the complexity of the

underlying physical phenomena, it is difficult to predict or model such perception errors in an

accurate manner.

An advantage of RL-based motion planning systems is their generalization ability, which

may potentially help to enable efficient operation even in the presence of perception errors.

Unfortunately, since training such systems is typically performed in a simulation, perception

errors that were not observed in the training environment may hinder their performance and

result in safety-critical errors.

These observations lead to the formulation of the second research hypothesis that the use

of stochastic models of perception systems in the training process of a Reinforcement-Learning

driving policy improves the policy’s robustness to perception errors.

To investigate this research hypothesis, I proposed a set of stochastic sensor models for

modeling errors in both static and dynamic environment perception systems. While many sensor

modeling methods were previously proposed for evaluation purposes, the impact of their use in the

training of RL-based motion planning systems on the final performance of such systems remains

poorly understood. For this reason, the proposal of models designed for use in RL training, as

well as subsequent investigation of the models’ use on the systems’ performance constitutes a

main contribution presented in this chapter.

The models described in Chapter 4 efficiently simulate state estimation errors that occur in

radar-based and camera-based vehicle detection systems, as well as false positive and false nega-

tive detection errors. Additionally, a model of the road markers detection system was proposed,

enabling the simulation of lane markers geometry estimation errors as well as false-negative detec-

tion errors. Proposed models offer performance that exceeds real-time execution needs, enabling

their efficient use in large-scale training of RL-based driving policies.

To investigate the impact of the proposed models on the RL-based motion planning systems,

several driving policies were trained in setups with the proposed error models, without them,

and with simple baseline models. The performance of all the trained policies has been evaluated

both in large-scale driving tests in the simulation, as well as in a set of predefined test scenarios.

Performed experiments have shown that the policy trained with the proposed sensor models

achieved significantly better performance compared to the policies trained without the sensor

models, or with the simpler baseline sensor models, confirming the proposed research hypothesis.

6.1.3. Adversarial Scenarios Generation

Testing and evaluation of motion planning systems is a challenging and expensive task. Ex-

ploring potential problems in the developed system through large-scale driving tests in real traffic

Wojciech Turlej

148 6.2. Perspectives and Further Work

is not only inefficient, but may also be dangerous. Performing similar evaluation in the simula-

tion environment, on the other hand, depends on the traffic simulator’s ability to generate rare,

atypical situations that may happen in the real world, which is often limited.

Although the use of predefined test scenarios is a certain alternative for such testing ap-

proaches, issues in RL-based systems are not necessarily related to the objective difficulty of

road situations, making it difficult to explore issues in such systems using predefined scenarios.

Based on these observations, I formulated the third research hypothesis: optimization-based

adversarial scenario generation methods can be used in simulation-based validation of motion

planning algorithms to expose potential weaknesses or issues in the evaluated systems.

In Chapter 5 I investigated this hypothesis, proposing a novel adversarial scenario generation

method. The method utilizes optimization-based trajectory generation to actively search for

scenarios that are challenging to the evaluated motion planning algorithm and enables iterative

generation of an arbitrary number of dissimilar challenging scenarios.

One of the main contributions that distinguishes the proposed method from the existing ones

is the ability to simultaneously generate the trajectories of the road users surrounding the vehicle

controlled by evaluated policy, as well as perception error patterns that may lead to safety-critical

mistakes of the tested motion planning module. This ability is especially desirable for testing

RL-based driving policies, as it is difficult to predict combinations of trajectories and perception

errors that would be challenging for a particular system.

The method has been used for the generation of adversarial test scenarios for an exemplary

RL-based driving policy, being able to expose several issues in the tested system. Iterative ex-

ecution of the proposed generation scheme allowed the acquisition of datasets of dissimilar test

scenarios that involve dangerous situations. The successful generation of the test scenarios con-

firms the investigated research hypothesis.

6.2. Perspectives and Further Work

The proposed methods open up several areas for further research related to improving the

performance of the methods and the extension of their capabilities and applications.

6.2.1. Multiple Hypothesis Planning

The Multiple Hypothesis Planning method described in Chapter 3 has been demonstrated in

planning applications, where the alternative hypotheses are related to the future behavior of other

road users. Conflicting hypotheses may, however, also be formulated with regard to the current

state of the environment. Thus, further research can be conducted to address uncertainties in the

environment model related to the limited performance of perception systems using the proposed

method.

Wojciech Turlej

6.2. Perspectives and Further Work 149

Similarly as in the described fail-safe planning approach, one could formulate a worst-case hy-

pothesis that encompasses all plausible states of the ego’s environment based on perception data

with known state estimation uncertainties. The use of the proposed method in such cases could

help to ensure the safety of the generated trajectories in the presence of state estimation errors.

The proposed method could also be used in systems with redundant perception systems (e.g.,

camera-based and radar-based perception modules), allowing safe trajectories to be planned,

taking into account potentially conflicting environment models generated by these systems.

Further work on the Multiple Hypothesis Planning method may also include computational

performance improvements. While the observed performance is sufficient to enable re-planning

within the initial trajectories overlap period, the resulting behavior of the ego may be suboptimal

if the state of the environment changes in a rapid and unexpected manner. Several methods can

thus be used to improve computational performance, including, but not limited to, the use of the

collocation-based trajectory generation method, the implementation of the proposed method in

a low-level compiled programming language, the use of the automatic differentiation method to

enable fast estimation of the cost gradient, and the use of the previously generated trajectories

to formulate an initial guess for subsequent iterations of the trajectory generation.

6.2.2. Sensor Modeling

Further research on the sensor modeling methods presented in Chapter 4 may include their

evaluation and calibration using sensor data collected in test drives and ground truth information

based, e.g., on precise reference sensors.

While the use of sensor models in the training process of RL-based driving policies does

not necessarily require precise replication of the sensors’ characteristics, their application in

simulation-based testing may definitely benefit from accurate calibration of the models. Further

research is thus needed to propose a methodology for statistical analysis of pre-recorded percep-

tion data streams that would enable the identification of relevant sensor models’ parameters.

Another potential research area is related to the evaluation of proposed sensor models and

driving policies trained with their use. Both real-world vehicle testing and evaluation methods

based on pre-recorded perception streams can be used to evaluate the safety and performance

of the trained driving policies, as well as ensure that the proposed models correctly reflect the

performance of modeled perception systems.

6.2.3. Adversarial Scenarios Generation

The adversarial scenarios generation method described in Chapter 5 can be used for val-

idation and verification purposes, but also the method can be extended to enable its use for

Wojciech Turlej

150 6.2. Perspectives and Further Work

RL-based driving policies training purposes. Automatic generation of challenging scenarios dur-

ing the training in a Falsification-based Robust Adversarial Reinforcement Learning setup could

significantly improve the robustness of the resulting driving policy.

The method is designed to generate relatively plausible scenarios, with cost terms in the

underlying optimization problem that penalize certain less plausible types of collisions and con-

straints that limit control values applied by other vehicles in a scenario. Still, it is difficult to

define what constitutes a plausible scenario, and the method occasionally produces scenarios that

include the atypical behaviors of other road users.

As described in Section 5.5.1.2, various additional constraints and heuristics can be im-

plemented to increase the credibility of generated scenarios, including machine learning-based

methods, such as discriminative networks known from generative adversarial models (GAN).

Other possible improvements of the proposed approach include automated generation of

initial conditions, as well as extending the method with static environment model generation

capabilities.

Wojciech Turlej

Bibliography

[1] ""Phantom Auto" to Be Operated Here". The Free-Lance Star. 17 June 1932. https :

// news.google.com/ newspapers? id=PthNAAAAIBAJ& sjid=yYoDAAAAIBAJ& pg=

6442%2C3879017 . Accessed: 31-07-2023.

[2] "Mercedes-Benz self-driving car technology approved for use".

https://web.archive.org/web/20211209192401/ https://www.fleetnews.co.uk/news/

manufacturer-news/2021/12/09/mercedes-benz-self-driving-car-technology-approved-for-

use. Archived from the original on 9 December 2021. Accessed 31-07-2023. 2021.

[3] Carnegie Mellon University (1995). "No Hands Across America" home page. https: //

www.cs.cmu.edu/~tjochem/nhaa/ nhaa_home_page.html . Accessed: 31-07-2023.

[4] Official Google Blog. 27 May 2014. "Official Google Blog: Just press go: designing a self-

driving vehicle". https: // blog.google/ alphabet/ just- press- go- designing- self- driving/ .

Accessed: 31-07-2023.

[5] Yasasa Abeysirigoonawardena, Florian Shkurti, and Gregory Dudek. “Generating adver-

sarial driving scenarios in high-fidelity simulators”. In: Proceedings - IEEE International

Conference on Robotics and Automation. Vol. 2019-May. Institute of Electrical and Elec-

tronics Engineers Inc., May 2019, pp. 8271–8277. isbn: 9781538660263. doi: 10.1109/

ICRA.2019.8793740 .

[6] Naveed Akhtar and Ajmal Mian. Threat of Adversarial Attacks on Deep Learning in

Computer Vision: A Survey. 2018. doi: 10.1109/ACCESS.2018.2807385 .

[7] Matthias Althoff. “Reachability analysis and its application to the safety assessment of

autonomous cars”. PhD thesis. Technische Universität München, 2010.

[8] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob

McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et

al. “Learning dexterous in-hand manipulation”. In: The International Journal of Robotics

Research 39.1 (2020), pp. 3–20.

https://news.google.com/newspapers?id=PthNAAAAIBAJ&sjid=yYoDAAAAIBAJ&pg=6442%2C3879017
https://news.google.com/newspapers?id=PthNAAAAIBAJ&sjid=yYoDAAAAIBAJ&pg=6442%2C3879017
https://news.google.com/newspapers?id=PthNAAAAIBAJ&sjid=yYoDAAAAIBAJ&pg=6442%2C3879017
https://www.cs.cmu.edu/~tjochem/nhaa/nhaa_home_page.html
https://www.cs.cmu.edu/~tjochem/nhaa/nhaa_home_page.html
https://blog.google/alphabet/just-press-go-designing-self-driving/
https://doi.org/10.1109/ICRA.2019.8793740
https://doi.org/10.1109/ICRA.2019.8793740
https://doi.org/10.1109/ACCESS.2018.2807385

152 BIBLIOGRAPHY

[9] Aleksandar Angelov, Andrew Robertson, Roderick Murray-Smith, and Francesco Fio-

ranelli. “Practical classification of different moving targets using automotive radar and

deep neural networks”. In: IET Radar, Sonar and Navigation 12.10 (Oct. 2018), pp. 1082–

1089. issn: 17518784. doi: 10.1049/ iet-rsn.2018.0103 .

[10] Szilárd Aradi. “Survey of deep reinforcement learning for motion planning of autonomous

vehicles”. In: IEEE Transactions on Intelligent Transportation Systems 23.2 (2020),

pp. 740–759.

[11] Johannes Bach, Jacob Langner, Stefan Otten, Eric Sax, and Marc Holzapfel. “Test sce-

nario selection for system-level verification and validation of geolocation-dependent au-

tomotive control systems”. In: 2017 International Conference on Engineering, Technol-

ogy and Innovation: Engineering, Technology and Innovation Management Beyond 2020:

New Challenges, New Approaches, ICE/ITMC 2017 - Proceedings. Vol. 2018-Janua. 2018,

pp. 203–210. isbn: 9781538607749. doi: 10.1109/ ICE.2017.8279890 .

[12] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew,

and Igor Mordatch. “Emergent tool use from multi-agent autocurricula”. In: arXiv preprint

arXiv:1909.07528 (2019).

[13] Matthew Robert Justin Baldock, Alexandra Denise Long, Vicki Lee Ann Lindsay, and

Jack McLean. “Rear end crashes”. In: (2005).

[14] Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. “SUMO–

simulation of urban mobility: an overview”. In: Proceedings of SIMUL 2011, The Third

International Conference on Advances in System Simulation. ThinkMind. 2011.

[15] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. “Safe model-

based reinforcement learning with stability guarantees”. In: Advances in neural informa-

tion processing systems 30 (2017).

[16] Keshav Bimbraw. “Autonomous cars: Past, present and future a review of the develop-

ments in the last century, the present scenario and the expected future of autonomous

vehicle technology”. In: 2015 12th international conference on informatics in control, au-

tomation and robotics (ICINCO). Vol. 1. IEEE. 2015, pp. 191–198.

[17] Erik Bochinski, Volker Eiselein, and Thomas Sikora. “High-speed tracking-by-detection

without using image information”. In: 2017 14th IEEE international conference on ad-

vanced video and signal based surveillance (AVSS). IEEE. 2017, pp. 1–6.

[18] Julian Bock, Robert Krajewski, Tobias Moers, Steffen Runde, Lennart Vater, and Lutz

Eckstein. “The inD Dataset: A Drone Dataset of Naturalistic Road User Trajectories at

German Intersections”. In: 2019.

Wojciech Turlej

https://doi.org/10.1049/iet-rsn.2018.0103
https://doi.org/10.1109/ICE.2017.8279890

BIBLIOGRAPHY 153

[19] Mattias Brännström, Erik Coelingh, and Jonas Sjöberg. “Model-Based Threat Assess-

ment for Avoiding Arbitrary Vehicle Collisions”. In: IEEE Transactions on Intelligent

Transportation Systems 11.3 (2010), pp. 658–669. doi: 10.1109/TITS.2010.2048314 .

[20] Silvia Bresug. “Motion Planning of Autonomous Vehicles with Safety Guarantees”. PhD

thesis. Technische Universität München, 2021.

[21] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The DARPA urban challenge: au-

tonomous vehicles in city traffic. Vol. 56. springer, 2009.

[22] Yanpeng Cao, Alasdair Renfrew, and Peter Cook. “Vehicle motion analysis based on a

monocular vision system”. In: (2008).

[23] Alessio Carullo, Marco Parvis, et al. “An ultrasonic sensor for distance measurement in

automotive applications”. In: IEEE Sensors journal 1.2 (2001), p. 143.

[24] Simon Chadwick, Will Maddern, and Paul Newman. “Distant vehicle detection using

radar and vision”. In: 2019 International Conference on Robotics and Automation (ICRA).

IEEE. 2019, pp. 8311–8317.

[25] Shuo Chang, Yifan Zhang, Fan Zhang, Xiaotong Zhao, Sai Huang, Zhiyong Feng, and

Zhiqing Wei. “Spatial attention fusion for obstacle detection using mmwave radar and

vision sensor”. In: Sensors 20.4 (2020), p. 956.

[26] Long Chen, Yuchen Li, Chao Huang, Bai Li, Yang Xing, Daxin Tian, Li Li, Zhongxu

Hu, Xiaoxiang Na, Zixuan Li, et al. “Milestones in autonomous driving and intelligent

vehicles: Survey of surveys”. In: IEEE Transactions on Intelligent Vehicles 8.2 (2022),

pp. 1046–1056.

[27] Simiao Chen, Michael Kuhn, Klaus Prettner, and David E Bloom. “The global macroe-

conomic burden of road injuries: estimates and projections for 166 countries”. In: The

Lancet Planetary Health 3.9 (2019), e390–e398.

[28] Yen-Lin Chen, Yuan-Hsin Chen, Chao-Jung Chen, and Bing-Fei Wu. “Nighttime vehicle

detection for driver assistance and autonomous vehicles”. In: 18th International Conference

on Pattern Recognition (ICPR’06). Vol. 1. IEEE. 2006, pp. 687–690.

[29] Seunghyuk Choi, Florian Thalmayr, Dominik Wee, and Florian Weig. “Advanced driver-

assistance systems: Challenges and opportunities ahead”. In: McKinsey & Company

(2016), pp. 1–11.

[30] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han Lin, Thi Nguyen,

Tzu-Kuo Huang, Jeff Schneider, and Nemanja Djuric. “Multimodal trajectory predictions

for autonomous driving using deep convolutional networks”. In: 2019 International Con-

ference on Robotics and Automation (ICRA). IEEE. 2019, pp. 2090–2096.

[31] Michael A Cusumano. “Self-driving vehicle technology: progress and promises”. In: Com-

munications of the ACM 63.10 (2020), pp. 20–22.

Wojciech Turlej

https://doi.org/10.1109/TITS.2010.2048314

154 BIBLIOGRAPHY

[32] Nachiket Deo and Mohan M Trivedi. “Multi-modal trajectory prediction of surrounding

vehicles with maneuver based lstms”. In: 2018 IEEE intelligent vehicles symposium (IV).

IEEE. 2018, pp. 1179–1184.

[33] Thomas A Dingus, Feng Guo, Suzie Lee, Jonathan F Antin, Miguel Perez, Mindy

Buchanan-King, and Jonathan Hankey. “Driver crash risk factors and prevalence evalua-

tion using naturalistic driving data”. In: Proceedings of the National Academy of Sciences

113.10 (2016), pp. 2636–2641.

[34] Marek Długosz, Michał Brodzicki, Paweł Skruch, Marcin Szelest, and Dariusz Cieślar.

“Intelligent road recognition system for an autonomous vehicle”. In: 2022 20th Interna-

tional Conference on Emerging eLearning Technologies and Applications (ICETA). 2022,

pp. 122–128. doi: 10.1109/ ICETA57911.2022.9974839 .

[35] Anand Dubey, Avik Santra, Jonas Fuchs, Maximilian Lubke, Robert Weigel, and Fabian

Lurz. “A Bayesian Framework for Integrated Deep Metric Learning and Tracking of Vul-

nerable Road Users Using Automotive Radars”. In: IEEE Access 9 (2021), pp. 68758–

68777. issn: 21693536. doi: 10.1109/ACCESS.2021.3077690 .

[36] Albert Dulian and John C Murray. “Multi-modal anticipation of stochastic trajectories in

a dynamic environment with Conditional Variational Autoencoders”. In: arXiv preprint

arXiv:2103.03912 (2021).

[37] Marius Dupuis, Martin Strobl, and Hans Grezlikowski. “Opendrive 2010 and beyond–

status and future of the de facto standard for the description of road networks”. In: Proc.

of the Driving Simulation Conference Europe. 2010, pp. 231–242.

[38] Andreas Eidehall and Lars Petersson. “Statistical Threat Assessment for General Road

Scenes Using Monte Carlo Sampling”. In: IEEE Transactions on Intelligent Transportation

Systems 9.1 (2008), pp. 137–147. doi: 10.1109/TITS.2007.909241 .

[39] “Example Applications of IEEE Std 2846-2022 to Formal Safety-Related Models”. In:

Example Applications of IEEE Std 2846-2022 to Formal Safety-Related Models (2023),

pp. 1–26.

[40] Traffic Safety Facts. “Alcohol-Impaired Driving”. In: National Highway Traffic Safety Ad-

ministration Reports (2014).

[41] Laura Fraade-Blanar, Marjory S Blumenthal, James M Anderson, and Nidhi Kalra. Mea-

suring Automated Vehicle Safety: Forging a Framework. Santa Monica, CA: RAND Cor-

poration, 2018. doi: 10.7249/RR2662 .

[42] Javier Garcıa and Fernando Fernández. “A comprehensive survey on safe reinforcement

learning”. In: Journal of Machine Learning Research 16.1 (2015), pp. 1437–1480.

Wojciech Turlej

https://doi.org/10.1109/ICETA57911.2022.9974839
https://doi.org/10.1109/ACCESS.2021.3077690
https://doi.org/10.1109/TITS.2007.909241
https://doi.org/10.7249/RR2662

BIBLIOGRAPHY 155

[43] Shivam Gautam, Gregory P Meyer, Carlos Vallespi-Gonzalez, and Brian C Becker. “Sdv-

tracker: Real-time multi-sensor association and tracking for self-driving vehicles”. In: Pro-

ceedings of the IEEE/CVF International Conference on Computer Vision. 2021, pp. 3012–

3021.

[44] Anthony F Genovese. “The interacting multiple model algorithm for accurate state es-

timation of maneuvering targets”. In: Johns Hopkins APL technical digest 22.4 (2001),

pp. 614–623.

[45] Simon Genser, Stefan Muckenhuber, Selim Solmaz, and Jakob Reckenzaun. “Development

and experimental validation of an Intelligent Camera Model for Automated Driving”. In:

Sensors 21.22 (2021), p. 7583.

[46] Igor Gilitschenski, Guy Rosman, Arjun Gupta, Sertac Karaman, and Daniela Rus. “Deep

Context Maps: Agent Trajectory Prediction Using Location-Specific Latent Maps”. In:

IEEE Robotics and Automation Letters 5.4 (2020), pp. 5097–5104. doi: 10.1109/ lra .

2020.3004800 .

[47] David González, Joshué Pérez, Vicente Milanés, and Fawzi Nashashibi. “A review of

motion planning techniques for automated vehicles”. In: IEEE Transactions on intelligent

transportation systems 17.4 (2015), pp. 1135–1145.

[48] DH Greene, JJ Liu, JE Reich, Yukio Hirokawa, T Mikami, Hayuru Ito, and A Shinagawa.

“A computationally-efficient collision early warning system for vehicles, pedestrian and

bicyclists”. In: Proc. of the 15th World Congress on Intelligent Transportation Systems.

2008.

[49] Melita Hadzagic, Hannah Michalska, and Alexandre Jouan. “IMM-JVC and IMM-JPDA

for closely maneuvering targets”. In: Conference Record of Thirty-Fifth Asilomar Con-

ference on Signals, Systems and Computers (Cat. No. 01CH37256). Vol. 2. IEEE. 2001,

pp. 1278–1282.

[50] Mordechai Haklay and Patrick Weber. “Openstreetmap: User-generated street maps”. In:

IEEE Pervasive computing 7.4 (2008), pp. 12–18.

[51] T Hanke, N Hirsenkorn, C van-Driesten, P Garcia-Ramos, M Schiementz, S Schnei-

der, and E Biebl. “A generic interface for the environment perception of auto-

mated driving functions in virtual scenarios”. In: Internet: https://www. hot. ei. tum.

de/forschung/automotive-veroeffentlichungen (2019).

[52] T. Hanke, N. Hirsenkorn, B. Dehlink, A. Rauch, R. Rasshofer, and E. Biebl. “Generic

architecture for simulation of ADAS sensors”. In: Proceedings International Radar Sym-

posium 2015-August (Aug. 2015), pp. 125–130. issn: 21555753. doi: 10.1109/ IRS.2015.

7226306 .

Wojciech Turlej

https://doi.org/10.1109/lra.2020.3004800
https://doi.org/10.1109/lra.2020.3004800
https://doi.org/10.1109/IRS.2015.7226306
https://doi.org/10.1109/IRS.2015.7226306

156 BIBLIOGRAPHY

[53] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the heuristic

determination of minimum cost paths”. In: IEEE transactions on Systems Science and

Cybernetics 4.2 (1968), pp. 100–107.

[54] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Identity mappings in deep

residual networks”. In: Computer Vision–ECCV 2016: 14th European Conference, Ams-

terdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14. Springer. 2016,

pp. 630–645.

[55] Stefan Hinterstoisser, Vincent Lepetit, Paul Wohlhart, and Kurt Konolige. “On pre-

trained image features and synthetic images for deep learning”. In: Proceedings of the

European Conference on Computer Vision (ECCV) Workshops. 2018.

[56] Geoffrey E Hinton and Sam Roweis. “Stochastic neighbor embedding”. In: Advances in

neural information processing systems 15 (2002).

[57] Nils Hirsenkorn, Paul Subkowski, Timo Hanke, Alexander Schaermann, Andreas Rauch,

Ralph Rasshofer, and Erwin Biebl. “A ray launching approach for modeling an FMCW

radar system”. In: 2017 18th International Radar Symposium (IRS). 2017, pp. 1–10. doi:

10.23919/ IRS.2017.8008120 .

[58] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural compu-

tation 9.8 (1997), pp. 1735–1780.

[59] Derek Hoiem, Yodsawalai Chodpathumwan, and Qieyun Dai. “Diagnosing error in object

detectors”. In: European conference on computer vision. Springer. 2012, pp. 340–353.

[60] Jonathan Horgan, Ciarán Hughes, John McDonald, and Senthil Yogamani. “Vision-based

driver assistance systems: Survey, taxonomy and advances”. In: 2015 IEEE 18th Interna-

tional Conference on Intelligent Transportation Systems. IEEE. 2015, pp. 2032–2039.

[61] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. “Adver-

sarial attacks on neural network policies”. In: 5th International Conference on Learning

Representations, ICLR 2017 - Workshop Track Proceedings. 2019.

[62] Wu Ling Huang, Kunfeng Wang, Yisheng Lv, and Feng Hua Zhu. “Autonomous vehi-

cles testing methods review”. In: IEEE Conference on Intelligent Transportation Systems,

Proceedings, ITSC. 2016, pp. 163–168. isbn: 9781509018895. doi: 10.1109/ ITSC.2016.

7795548 .

[63] “IEEE Standard for Assumptions in Safety-Related Models for Automated Driving Sys-

tems”. In: IEEE Std 2846-2022 (2022), pp. 1–59. doi: 10.1109/ IEEESTD.2022.9761121 .

[64] ITS IEEE VT. “Literature Review on Kinematic Properties of Road Users for Use on

Safety-Related Models for Automated Driving Systems”. In: Literature Review on Kine-

matic Properties of Road Users for Use on Safety-Related Models for Automated Driving

Systems (2022), pp. 1–35.

Wojciech Turlej

https://doi.org/10.23919/IRS.2017.8008120
https://doi.org/10.1109/ITSC.2016.7795548
https://doi.org/10.1109/ITSC.2016.7795548
https://doi.org/10.1109/IEEESTD.2022.9761121

BIBLIOGRAPHY 157

[65] ISO 26262-1:2018 Road Vehicles: Functional Safety. ISO, 2018.

[66] ISO/PAS 21448:2019 Road vehicles — Safety of the intended functionality. ISO, 2019.

[67] Michał Jasiński. “A Generic Validation Scheme for real-time capable Automotive Radar

Sensor Models integrated into an Autonomous Driving Simulator”. In: 2019 24th Interna-

tional Conference on Methods and Models in Automation and Robotics (MMAR). 2019,

pp. 612–617. doi: 10.1109/MMAR.2019.8864669 .

[68] James Jeffs. A History of ADAS: Emergence to Essential. https://www.idtechex.com/ en/

research-article/ a-history-of-adas-emergence-to-essential/ 25592 . Accessed: 31-07-2023.

2022.

[69] Vijay John and Seiichi Mita. “RVNet: Deep sensor fusion of monocular camera and radar

for image-based obstacle detection in challenging environments”. In: Image and Video

Technology: 9th Pacific-Rim Symposium, PSIVT 2019, Sydney, NSW, Australia, Novem-

ber 18–22, 2019, Proceedings 9. Springer. 2019, pp. 351–364.

[70] Roy Jonker and Ton Volgenant. “A shortest augmenting path algorithm for dense and

sparse linear assignment problems”. In: DGOR/NSOR: Papers of the 16th Annual Meeting

of DGOR in Cooperation with NSOR/Vorträge der 16. Jahrestagung der DGOR zusam-

men mit der NSOR. Springer. 1988, pp. 622–622.

[71] Nico Kaempchen, Kristian Weiss, Michael Schaefer, and Klaus CJ Dietmayer. “IMM ob-

ject tracking for high dynamic driving maneuvers”. In: IEEE Intelligent Vehicles Sympo-

sium, 2004. IEEE. 2004, pp. 825–830.

[72] Nidhi Kalra and David G Groves. The Enemy of Good: Estimating the Cost of Waiting for

Nearly Perfect Automated Vehicles. Santa Monica, CA: RAND Corporation, 2017. doi:

10.7249/RR2150 .

[73] Nidhi Kalra and Susan M Paddock. Driving to Safety: How Many Miles of Driving Would

It Take to Demonstrate Autonomous Vehicle Reliability? Santa Monica, CA: RAND Cor-

poration, 2016. doi: 10.7249/RR1478 .

[74] Nidhi Kalra and Susan M. Paddock. Driving to Safety: How Many Miles of Driving Would

It Take to Demonstrate Autonomous Vehicle Reliability? Santa Monica, CA: RAND Cor-

poration, 2016. doi: 10.7249/RR1478 .

[75] Takeo Kanade, Chuck Thorpe, and William Whittaker. “Autonomous land vehicle project

at CMU”. In: Proceedings of the 1986 ACM fourteenth annual conference on Computer

science. 1986, pp. 71–80.

[76] Dhanoop Karunakaran, Stewart Worrall, and Eduardo Nebot. “Efficient statistical val-

idation with edge cases to evaluate Highly Automated Vehicles”. In: 2020 IEEE 23rd

International Conference on Intelligent Transportation Systems, ITSC 2020. 2020. isbn:

9781728141497. doi: 10.1109/ ITSC45102.2020.9294590 .

Wojciech Turlej

https://doi.org/10.1109/MMAR.2019.8864669
https://www.idtechex.com/en/research-article/a-history-of-adas-emergence-to-essential/25592
https://www.idtechex.com/en/research-article/a-history-of-adas-emergence-to-essential/25592
https://doi.org/10.7249/RR2150
https://doi.org/10.7249/RR1478
https://doi.org/10.7249/RR1478
https://doi.org/10.1109/ITSC45102.2020.9294590

158 BIBLIOGRAPHY

[77] Atsushi Kawasaki and Akihito Seki. “Multimodal trajectory predictions for autonomous

driving without a detailed prior map”. In: Proceedings of the IEEE/CVF Winter Confer-

ence on Applications of Computer Vision. 2021, pp. 3723–3732.

[78] Dominik Kellner, Michael Barjenbruch, Jens Klappstein, Jürgen Dickmann, and Klaus

Dietmayer. “Wheel extraction based on micro doppler distribution using high-resolution

radar”. In: 2015 IEEE MTT-S International Conference on Microwaves for Intelligent

Mobility, ICMIM 2015. Institute of Electrical and Electronics Engineers Inc., June 2015.

isbn: 9781479972159. doi: 10.1109/ ICMIM.2015.7117951 .

[79] Jinhyeong Kim, Youngseok Kim, and Dongsuk Kum. “Low-level sensor fusion network

for 3d vehicle detection using radar range-azimuth heatmap and monocular image”. In:

Proceedings of the Asian Conference on Computer Vision. 2020.

[80] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv

preprint arXiv:1312.6114 (2013).

[81] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. “Semi-

supervised learning with deep generative models”. In: Advances in neural information

processing systems 27 (2014).

[82] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab,

Senthil Yogamani, and Patrick Pérez. “Deep reinforcement learning for autonomous driv-

ing: A survey”. In: IEEE Transactions on Intelligent Transportation Systems 23.6 (2021),

pp. 4909–4926.

[83] Marvin Klimke, Benjamin Völz, and Michael Buchholz. Integration of Reinforcement

Learning Based Behavior Planning With Sampling Based Motion Planning for Automated

Driving. 2023. arXiv: 2304.08280 [cs.RO].

[84] Moritz Klischat, Edmond Irani Liu, Fabian Holtke, and Matthias Althoff. “Scenario fac-

tory: Creating safety-critical traffic scenarios for automated vehicles”. In: 2020 IEEE

23rd International Conference on Intelligent Transportation Systems (ITSC). IEEE. 2020,

pp. 1–7.

[85] Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli. “Kinematic and

dynamic vehicle models for autonomous driving control design”. In: 2015 IEEE Intelligent

Vehicles Symposium (IV). 2015, pp. 1094–1099. doi: 10.1109/ IVS.2015.7225830 .

[86] Paweł Kowalczyk, Paulina Bugiel, Marcin Szelest, and Jacek Izydorczyk. “Fault injection

in optical path - detection quality degradation analysis with Wasserstein distance”. In:

2021 25th International Conference on Methods and Models in Automation and Robotics

(MMAR). 2021, pp. 121–126. doi: 10.1109/MMAR49549.2021.9528441 .

Wojciech Turlej

https://doi.org/10.1109/ICMIM.2015.7117951
https://arxiv.org/abs/2304.08280
https://doi.org/10.1109/IVS.2015.7225830
https://doi.org/10.1109/MMAR49549.2021.9528441

BIBLIOGRAPHY 159

[87] Dieter Kraft. “A software package for sequential quadratic programming”. In:

Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt

(1988).

[88] Robert Krajewski, Julian Bock, Laurent Kloeker, and Lutz Eckstein. “The highD Dataset:

A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation

of Highly Automated Driving Systems”. In: 2018 21st International Conference on Intel-

ligent Transportation Systems (ITSC). 2018, pp. 2118–2125. doi: 10.1109/ ITSC.2018.

8569552 .

[89] Robert Krajewski, Julian Bock, Laurent Kloeker, and Lutz Eckstein. “The highD Dataset:

A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation

of Highly Automated Driving Systems”. In: IEEE Conference on Intelligent Transportation

Systems, Proceedings, ITSC. Vol. 2018-Novem. 2018, pp. 2118–2125. isbn: 9781728103235.

doi: 10.1109/ ITSC.2018.8569552 .

[90] Florian Kraus, Nicolas Scheiner, Werner Ritter, and Klaus Dietmayer. “The Radar

Ghost Dataset – An Evaluation of Ghost Objects in Automotive Radar Data”. In: 2021

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,

2021.

[91] Andreas Kuehnle. “Symmetry-based recognition of vehicle rears”. In: Pattern recognition

letters 12.4 (1991), pp. 249–258.

[92] Anders Kullgren, Anders Lie, and Claes Tingvall. “Comparison Between Euro NCAP

Test Results and Real-World Crash Data”. In: Traffic Injury Prevention 11.6 (Dec. 2010),

pp. 587–593. issn: 15389588. doi: 10.1080/ 15389588.2010.508804 .

[93] Puneet Kumar, Mathias Perrollaz, Stéphanie Lefevre, and Christian Laugier. “Learning-

based approach for online lane change intention prediction”. In: 2013 IEEE Intelligent

Vehicles Symposium (IV). IEEE. 2013, pp. 797–802.

[94] Ying-Che Kuo, Neng-Sheng Pai, and Yen-Feng Li. “Vision-based vehicle detection for a

driver assistance system”. In: Computers & Mathematics with Applications 61.8 (2011),

pp. 2096–2100.

[95] Ray Lattarulo and Joshué Pérez Rastelli. “A hybrid planning approach based on MPC

and parametric curves for overtaking maneuvers”. In: Sensors 21.2 (2021), p. 595.

[96] Steven M LaValle et al. “Rapidly-exploring random trees: A new tool for path planning”.

In: (1998).

[97] Donghan Lee, Youngwook Paul Kwon, Sara McMains, and J Karl Hedrick. “Convolu-

tion neural network-based lane change intention prediction of surrounding vehicles for

ACC”. In: 2017 IEEE 20th International Conference on Intelligent Transportation Sys-

tems (ITSC). IEEE. 2017, pp. 1–6.

Wojciech Turlej

https://doi.org/10.1109/ITSC.2018.8569552
https://doi.org/10.1109/ITSC.2018.8569552
https://doi.org/10.1109/ITSC.2018.8569552
https://doi.org/10.1080/15389588.2010.508804

160 BIBLIOGRAPHY

[98] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy, Philip HS Torr, and

Manmohan Chandraker. “Desire: Distant future prediction in dynamic scenes with inter-

acting agents”. In: Proceedings of the IEEE conference on computer vision and pattern

recognition. 2017, pp. 336–345.

[99] Suzanne E Lee, Eddy Llaneras, Sheila Klauer, and Jeremy Sudweeks. “Analyses of rear-end

crashes and near-crashes in the 100-car naturalistic driving study to support rear-signaling

countermeasure development”. In: DOT HS 810 (2007), p. 846.

[100] Stéphanie Lefèvre, Dizan Vasquez, and Christian Laugier. “A survey on motion prediction

and risk assessment for intelligent vehicles”. In: ROBOMECH journal 1.1 (2014), pp. 1–

14.

[101] Kamil Lelowicz. “Camera model for lens with strong distortion in automotive applica-

tion”. In: 2019 24th International Conference on Methods and Models in Automation and

Robotics (MMAR). IEEE. 2019, pp. 314–319.

[102] Kamil Lelowicz, Michał Jasiński, and Adam Krzysztof Piłat. “Discussion of novel filters

and models for color space conversion”. In: IEEE Sensors Journal (2022).

[103] Guanpeng Li, Yiran Li, Saurabh Jha, Timothy Tsai, Michael Sullivan, Siva Kumar Sastry

Hari, Zbigniew Kalbarczyk, and Ravishankar Iyer. “Av-fuzzer: Finding safety violations in

autonomous driving systems”. In: 2020 IEEE 31st international symposium on software

reliability engineering (ISSRE). IEEE. 2020, pp. 25–36.

[104] Qiang Li, Ranyang Li, Kaifan Ji, and Wei Dai. “Kalman filter and its application”. In: 2015

8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS).

IEEE. 2015, pp. 74–77.

[105] You Li and Javier Ibanez-Guzman. “Lidar for autonomous driving: The principles, chal-

lenges, and trends for automotive lidar and perception systems”. In: IEEE Signal Process-

ing Magazine 37.4 (2020), pp. 50–61.

[106] Anders Lie and Claes Tingvall. “How do Euro NCAP results correlate with real-life injury

risks? A paired comparison study of car-to-car crashes”. In: Traffic Injury Prevention 3.4

(Dec. 2002), pp. 288–293. issn: 15389588. doi: 10.1080/ 15389580214632 .

[107] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge

Belongie. “Feature pyramid networks for object detection”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2017, pp. 2117–2125.

[108] C. Liu, S. Liu, C. Zhang, Y. Huang, and H. Wang. “Multipath propagation analysis

and ghost target removal for FMCW automotive radars”. In: IET International Radar

Conference (IET IRC 2020). Vol. 2020. IET, 2020.

[109] Rong Liu, Jinling Wang, and Bingqi Zhang. “High definition map for automated driving:

Overview and analysis”. In: The Journal of Navigation 73.2 (2020), pp. 324–341.

Wojciech Turlej

https://doi.org/10.1080/15389580214632

BIBLIOGRAPHY 161

[110] Wansong Liu, Danyang Luo, Changxu Wu, and Minghui Zheng. “Vehicle-Human Inter-

active Behaviors in Emergency: Data Extraction from Traffic Accident Videos”. In: Pro-

ceedings of the American Control Conference. Vol. 2020-July. 2020, pp. 2526–2531. isbn:

9781538682661. doi: 10.23919/ACC45564.2020.9147923 .

[111] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-

Yang Fu, and Alexander C Berg. “Ssd: Single shot multibox detector”. In: Computer

Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October

11–14, 2016, Proceedings, Part I 14. Springer. 2016, pp. 21–37.

[112] Oren Longman, Shahar Villeval, and Igal Bilik. “Multipath Ghost Targets Mitigation in

Automotive Environments”. In: IEEE National Radar Conference - Proceedings 2021-May

(May 2021). issn: 10975659. doi: 10.1109/RADARCONF2147009.2021.9455253 .

[113] Haitong Ma, Jianyu Chen, Shengbo Eben, Ziyu Lin, Yang Guan, Yangang Ren, and Sifa

Zheng. “Model-based constrained reinforcement learning using generalized control barrier

function”. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE. 2021, pp. 4552–4559.

[114] Jing Ma, Xiaobo Che, Yanqiang Li, and Edmund M.K. Lai. Traffic scenarios for auto-

mated vehicle testing: A review of description languages and systems. 2021. doi: 10.3390/

machines9120342 .

[115] Adrian Macaveiu and Andrei Câmpeanu. “Automotive radar target tracking by Kalman

filtering”. In: 2013 11th International Conference on Telecommunications in Modern Satel-

lite, Cable and Broadcasting Services (TELSIKS). Vol. 02. 2013, pp. 553–556. doi: 10.

1109/TELSKS.2013.6704439 .

[116] Silvia Magdici and Matthias Althoff. “Fail-safe motion planning of autonomous vehi-

cles”. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems

(ITSC). IEEE. 2016, pp. 452–458.

[117] Gustav Markkula, Ola Benderius, Krister Wolff, and Mattias Wahde. “A review of near-

collision driver behavior models”. In: Human Factors 54.6 (2012), pp. 1117–1143. issn:

15478181. doi: 10.1177/ 0018720812448474 .

[118] Aarian Marshall. "Uber Gives Up on the Self-Driving Dream".

https://www.wired.com/story/uber-gives-up-self-driving-dream/. Accessed 31-07-2023.

2020.

[119] Enrique Marti, Miguel Angel De Miguel, Fernando Garcia, and Joshue Perez. “A review

of sensor technologies for perception in automated driving”. In: IEEE Intelligent Trans-

portation Systems Magazine 11.4 (2019), pp. 94–108.

Wojciech Turlej

https://doi.org/10.23919/ACC45564.2020.9147923
https://doi.org/10.1109/RADARCONF2147009.2021.9455253
https://doi.org/10.3390/machines9120342
https://doi.org/10.3390/machines9120342
https://doi.org/10.1109/TELSKS.2013.6704439
https://doi.org/10.1109/TELSKS.2013.6704439
https://doi.org/10.1177/0018720812448474

162 BIBLIOGRAPHY

[120] Pallavi Mitra, Apratirn Choudhury, Vimal Rau Aparow, Giridharan Kulandaivelu, and

Justin Dauwels. “Towards Modeling of Perception Errors in Autonomous Vehicles”. In:

2018 21st International Conference on Intelligent Transportation Systems (ITSC). 2018,

pp. 3024–3029. doi: 10.1109/ ITSC.2018.8570015 .

[121] Sajjad Mozaffari, Omar Y Al-Jarrah, Mehrdad Dianati, Paul Jennings, and Alexandros

Mouzakitis. “Deep learning-based vehicle behavior prediction for autonomous driving ap-

plications: A review”. In: IEEE Transactions on Intelligent Transportation Systems 23.1

(2020), pp. 33–47.

[122] Stefan Muckenhuber, Eniz Museljic, and Georg Stettinger. “Performance evaluation of a

state-of-the-art automotive radar and corresponding modeling approaches based on a large

labeled dataset”. In: Journal of Intelligent Transportation Systems: Technology, Planning,

and Operations (2021). issn: 15472442. doi: 10.1080/ 15472450.2021.1959328 .

[123] Wassim Najm, Mary Stearns, Heidi Howarth, Jonathan Koopmann, John S Hitz, et al.

Evaluation of an automotive rear-end collision avoidance system. Tech. rep. United States.

Department of Transportation. National Highway Traffic Safety . . ., 2006.

[124] Demin Nalic, Hexuan Li, Arno Eichberger, Christoph Wellershaus, Aleksa Pandurevic,

and Branko Rogic. “Stress Testing Method for Scenario-Based Testing of Automated

Driving Systems”. In: IEEE Access 8 (2020), pp. 224974–224984. issn: 21693536. doi:

10.1109/ACCESS.2020.3044024 .

[125] Nina Narodytska and Shiva Kasiviswanathan. “Simple Black-Box Adversarial Attacks

on Deep Neural Networks”. In: IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition Workshops. Vol. 2017-July. 2017, pp. 1310–1318. isbn:

9781538607336. doi: 10.1109/CVPRW.2017.172 .

[126] Christian Neurohr, Lukas Westhofen, Tabea Henning, Thies De Graaff, Eike Mohlmann,

and Eckard Bode. “Fundamental Considerations around Scenario-Based Testing for Auto-

mated Driving”. In: IEEE Intelligent Vehicles Symposium, Proceedings. 2020, pp. 121–127.

isbn: 2005.04045v2. doi: 10.1109/ IV47402.2020.9304823 .

[127] Johannes Nguyen, Simon T Powers, Neil Urquhart, Thomas Farrenkopf, and Michael

Guckert. “An overview of agent-based traffic simulators”. In: Transportation research in-

terdisciplinary perspectives 12 (2021), p. 100486.

[128] David Nistér, Hon-Leung Lee, Julia Ng, and Yizhou Wang. The Safety Force Field. Tech.

rep.

[129] David Nistér, Hon-Leung Lee, Julia Ng, and Yizhou Wang. “The safety force field”. In:

NVIDIA White Paper (2019).

Wojciech Turlej

https://doi.org/10.1109/ITSC.2018.8570015
https://doi.org/10.1080/15472450.2021.1959328
https://doi.org/10.1109/ACCESS.2020.3044024
https://doi.org/10.1109/CVPRW.2017.172
https://doi.org/10.1109/IV47402.2020.9304823

BIBLIOGRAPHY 163

[130] Ryosuke Okuda, Yuki Kajiwara, and Kazuaki Terashima. “A survey of technical trend of

ADAS and autonomous driving”. In: Technical Papers of 2014 International Symposium

on VLSI Design, Automation and Test. IEEE. 2014, pp. 1–4.

[131] World Health Organization. Global Status Report on Road Safety 2018: Summary. Tech.

rep. 2018.

[132] Mateusz Orłowski, Tomasz Wrona, Nikodem Pankiewicz, and Wojciech Turlej. “Safe and

Goal-Based Highway Maneuver Planning with Reinforcement Learning”. In: Advanced,

Contemporary Control. Springer, 2020, pp. 1261–1274.

[133] Vyshakh Palli-Thazha, David Filliat, and Javier Ibañez-Guzmán. “Trajectory Prediction

of Traffic Agents: Incorporating context into machine learning approaches”. In: 2020 IEEE

91st Vehicular Technology Conference (VTC2020-Spring). 2020, pp. 1–6. doi: 10.1109/

VTC2020-Spring48590.2020.9128848 .

[134] Xinlei Pan, Daniel Seita, Yang Gao, and John Canny. “Risk averse robust adversarial

reinforcement learning”. In: Proceedings - IEEE International Conference on Robotics and

Automation. Vol. 2019-May. 2019, pp. 8522–8528. isbn: 9781538660263. doi: 10.1109/

ICRA.2019.8794293 .

[135] Frederik Pasch, Fabian Oboril, Bernd Gassmann, and Kay-Ulrich Scholl. “Vulnerable Road

Users in Structured Environments with Responsibility-Sensitive Safety”. In: 2021 IEEE

International Intelligent Transportation Systems Conference (ITSC). 2021, pp. 270–277.

doi: 10.1109/ ITSC48978.2021.9564554 .

[136] Sujeet Milind Patole, Murat Torlak, Dan Wang, and Murtaza Ali. “Automotive radars: A

review of signal processing techniques”. In: IEEE Signal Processing Magazine 34.2 (2017).

[137] Margie M Peden. World report on road traffic injury prevention. World Health Organiza-

tion, 2004.

[138] Praveena Penmetsa, Pezhman Sheinidashtegol, Aibek Musaev, Emmanuel Kofi Adanu,

and Matthew Hudnall. “Effects of the autonomous vehicle crashes on public perception

of the technology”. In: IATSS research 45.4 (2021), pp. 485–492.

[139] R. Pepy, A. Lambert, and H. Mounier. “Reducing Navigation Errors by Planning with

Realistic Vehicle Model”. In: 2006 IEEE Intelligent Vehicles Symposium. 2006, pp. 300–

307. doi: 10.1109/ IVS.2006.1689645 .

[140] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. “Robust adver-

sarial reinforcement learning”. In: 34th International Conference on Machine Learning,

ICML 2017. Vol. 6. 2017, pp. 4310–4319. isbn: 9781510855144.

Wojciech Turlej

https://doi.org/10.1109/VTC2020-Spring48590.2020.9128848
https://doi.org/10.1109/VTC2020-Spring48590.2020.9128848
https://doi.org/10.1109/ICRA.2019.8794293
https://doi.org/10.1109/ICRA.2019.8794293
https://doi.org/10.1109/ITSC48978.2021.9564554
https://doi.org/10.1109/IVS.2006.1689645

164 BIBLIOGRAPHY

[141] Philip Polack, Florent Altche, Brigitte DAndrea-Novel, and Arnaud De La Fortelle. “The

kinematic bicycle model: A consistent model for planning feasible trajectories for au-

tonomous vehicles?” In: IEEE Intelligent Vehicles Symposium, Proceedings. 2017, pp. 812–

818. isbn: 9781509048045. doi: 10.1109/ IVS.2017.7995816 .

[142] Philip Polack, Florent Altché, Brigitte d’Andréa-Novel, and Arnaud de La Fortelle. “The

kinematic bicycle model: A consistent model for planning feasible trajectories for au-

tonomous vehicles?” In: 2017 IEEE intelligent vehicles symposium (IV). IEEE. 2017,

pp. 812–818.

[143] Aris Polychronopoulos, Manolis Tsogas, Angelos J Amditis, and Luisa Andreone. “Sensor

fusion for predicting vehicles’ path for collision avoidance systems”. In: IEEE Transactions

on Intelligent Transportation Systems 8.3 (2007), pp. 549–562.

[144] Louis B Rall. Automatic differentiation: Techniques and applications. Springer, 1981.

[145] Paul Rau and Christopher Becker. “Approach for Deriving Scenarios for Safety of the

Intended Functionality”. In: Esv (2019), pp. 1–15.

[146] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You only look once:

Unified, real-time object detection”. In: Proceedings of the IEEE conference on computer

vision and pattern recognition. 2016, pp. 779–788.

[147] Gintux Market Data Report. "Driverless Car Accident Statistics And Trends in 2023".

https://blog.gitnux.com/driverless-car-accident-statistics/. Accessed 15-08-2023. 2023.

[148] Maximilian Schäfer, Kun Zhao, Markus Bühren, and Anton Kummert. “Context-aware

scene prediction network (caspnet)”. In: 2022 IEEE 25th International Conference on

Intelligent Transportation Systems (ITSC). IEEE. 2022, pp. 3970–3977.

[149] Paul Schroeder, Mikelyn Meyers, Lidia Kostyniuk, et al. National survey on distracted

driving attitudes and behaviors–2012. Tech. rep. United States. National Highway Traffic

Safety Administration. Office of . . ., 2013.

[150] Robin Schubert, Eric Richter, and Gerd Wanielik. “Comparison and evaluation of ad-

vanced motion models for vehicle tracking”. In: 2008 11th international conference on

information fusion. IEEE. 2008, pp. 1–6.

[151] Robin Schubert, Eric Richter, and Gerd Wanielik. “Comparison and evaluation of ad-

vanced motion models for vehicle tracking”. In: 2008 11th International Conference on

Information Fusion. 2008, pp. 1–6.

[152] Karin Schuler, Denis Becker, and Werner Wiesbeck. “Extraction of Virtual Scattering

Centers of Vehicles by Ray-Tracing Simulations”. In: IEEE Transactions on Antennas

and Propagation 56.11 (2008), pp. 3543–3551. doi: 10.1109/TAP.2008.2005436 .

Wojciech Turlej

https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/TAP.2008.2005436

BIBLIOGRAPHY 165

[153] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. “High-

dimensional continuous control using generalized advantage estimation”. In: arXiv preprint

arXiv:1506.02438 (2015).

[154] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. “Prox-

imal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347 (2017).

[155] Matthew Schwall, Tom Daniel, Trent Victor, Francesca Favaro, and Henning Hohn-

hold. “Waymo public road safety performance data”. In: arXiv preprint arXiv:2011.00038

(2020).

[156] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. “On a Formal Model of

Safe and Scalable Self-driving Cars”. In: (Aug. 2017).

[157] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. “On a formal model of safe

and scalable self-driving cars”. In: arXiv preprint arXiv:1708.06374 (2017).

[158] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. “Safe, multi-agent, rein-

forcement learning for autonomous driving”. In: arXiv preprint arXiv:1610.03295 (2016).

[159] Lei Shao, Han Wu, Chao Li, and Ji Li. “A Vehicle Recognition Model Based on Improved

YOLOv5”. In: Electronics 12.6 (2023), p. 1323.

[160] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-scale

image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[161] Santokh Singh. Critical reasons for crashes investigated in the national motor vehicle crash

causation survey. Tech. rep. 2015.

[162] Pawel Skruch, Marek Dlugosz, Wojciech Mitkowski, and Marcin Szelest. “A Model-Based

Approach to Testing Software Control Systems Described by Linear Differential Equa-

tions”. In: Proceedings of the XXI Polish Control Conference. Springer. 2023, pp. 215–

224.

[163] Pawel Skruch, Marek Dlugosz, Wojciech Mitkowski, and Marcin Szelest. “Software Sys-

tem Testing as an Optimization Problem”. In: Proceedings of the XXI Polish Control

Conference. Springer. 2023, pp. 205–214.

[164] Paweł Skruch, Wojciech Mitkowski, Piotr Bania, and Marek Długosz. “Systemy dynam-

iczne i teoria sterowania w nowoczesnej automatyce”. In: Jan. 2022, pp. 33–41. isbn:

978-83-67427-00-5. doi: 10.7494/ 978-83-67427-00-5_2 .

[165] Paweł Skruch, Marcin Szelest, Marek Długosz, and Dariusz Cieślar. “Safety of Perception

Systems in Vehicles of High-Level Motion Automation”. In: Oct. 2022. doi: 10.1109/

ICETA57911.2022.9974838 .

Wojciech Turlej

https://doi.org/10.7494/978-83-67427-00-5_2
https://doi.org/10.1109/ICETA57911.2022.9974838
https://doi.org/10.1109/ICETA57911.2022.9974838

166 BIBLIOGRAPHY

[166] Anthony Stentz. “Optimal and efficient path planning for partially-known environments”.

In: Proceedings of the 1994 IEEE international conference on robotics and automation.

IEEE. 1994, pp. 3310–3317.

[167] Andrea Stocco, Brian Pulfer, and Paolo Tonella. “Mind the Gap! A Study on the Trans-

ferability of Virtual vs Physical-world Testing of Autonomous Driving Systems”. In: (Dec.

2021).

[168] Johan Strandroth, Matteo Rizzi, Simon Sternlund, Anders Lie, and Claes Tingvall. “The

Correlation Between Pedestrian Injury Severity in Real-Life Crashes and Euro NCAP

Pedestrian Test Results”. In: Traffic Injury Prevention 12.6 (Dec. 2011), pp. 604–613.

issn: 15389588. doi: 10.1080/ 15389588.2011.607198 .

[169] Tomasz Sulkowski, Paulina Bugiel, and Jacek Izydorczyk. “In Search of the Ultimate Au-

tonomous Driving Simulator”. In: 2018 International Conference on Signals and Electronic

Systems (ICSES). 2018, pp. 252–256. doi: 10.1109/ ICSES.2018.8507288 .

[170] Ardi Tampuu, Tambet Matiisen, Maksym Semikin, Dmytro Fishman, and Naveed

Muhammad. “A survey of end-to-end driving: Architectures and training methods”. In:

IEEE Transactions on Neural Networks and Learning Systems 33.4 (2020), pp. 1364–1384.

[171] SAE Taxonomy. “Definitions for terms related to driving automation systems for on-road

motor vehicles”. In: SAE: Warrendale, PA, USA 3016 (2018).

[172] Nikola Tesla. Method of and apparatus for controlling mechanism of moving vessels or

vehicles. U.S. Patent No. 613809 (1898). 1898.

[173] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei Aron,

James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann, et al. “Stan-

ley: The robot that won the DARPA Grand Challenge”. In: Journal of field Robotics 23.9

(2006), pp. 661–692.

[174] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter

Abbeel. “Domain randomization for transferring deep neural networks from simulation

to the real world”. In: 2017 IEEE/RSJ international conference on intelligent robots and

systems (IROS). IEEE. 2017, pp. 23–30.

[175] Joshua P Tobin. Real-World Robotic Perception and Control Using Synthetic Data. Uni-

versity of California, Berkeley, 2019.

[176] U.S. Department of Transportation. “Drowsy Driving - A Brief Statistical Summary”. In:

National Highway Traffic Safety Administration Reports (2011).

[177] Apostolia Tsirikoglou, Joel Kronander, Magnus Wrenninge, and Jonas Unger. “Procedural

modeling and physically based rendering for synthetic data generation in automotive

applications”. In: arXiv preprint arXiv:1710.06270 (2017).

Wojciech Turlej

https://doi.org/10.1080/15389588.2011.607198
https://doi.org/10.1109/ICSES.2018.8507288

BIBLIOGRAPHY 167

[178] Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito, and James Kapinski.

“Simulation-based Adversarial Test Generation for Autonomous Vehicles with Machine

Learning Components”. In: IEEE Intelligent Vehicles Symposium, Proceedings. Vol. 2018-

June. Institute of Electrical and Electronics Engineers Inc., Oct. 2018, pp. 1555–1562.

isbn: 9781538644522. doi: 10.1109/ IVS.2018.8500421 .

[179] Wojciech Turlej. “High-Level Sensor Models for the Reinforcement Learning Driving Pol-

icy Training”. In: Electronics 12.1 (2022), p. 71.

[180] Wojciech Turlej, Mateusz Orlowski, Tomasz Wrona, and Nikodem Pankiewicz. Method

and system for planning the motion of a vehicle. US Patent 11,584,393. 2023.

[181] Wojciech Turlej and Nikodem Pankiewicz. “Adversarial Trajectories Generation for Au-

tomotive Applications”. In: 2021 25th International Conference on Methods and Models

in Automation and Robotics (MMAR). IEEE. 2021, pp. 115–120.

[182] Wojciech Turlej and Nikodem Pankiewicz. “Adversarial Trajectories Generation for Auto-

motive Applications”. In: 2021 25th International Conference on Methods and Models in

Automation and Robotics, MMAR 2021 (2021), pp. 115–120. doi: 10.1109/MMAR49549.

2021.9528492 .

[183] Christos Tzomakas and Werner von Seelen. Vehicle detection in traffic scenes using shad-

ows. Inst. für Neuroinformatik, Ruhr-Univ., 1998.

[184] Berthold Ulmer. “Vita ii-active collision avoidance in real traffic”. In: Proceedings of the

Intelligent Vehicles’ 94 Symposium. IEEE. 1994, pp. 1–6.

[185] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances in

neural information processing systems 30 (2017).

[186] Maria Vegega, Brian Jones, Chris Monk, et al. Understanding the effects of distracted driv-

ing and developing strategies to reduce resulting deaths and injuries: a report to congress.

Tech. rep. United States. Office of Impaired Driving and Occupant Protection, 2013.

[187] Akifumi Wachi. “Failure-scenario maker for rule-based agent using multi-agent adversar-

ial reinforcement learning and its application to autonomous driving”. In: IJCAI Inter-

national Joint Conference on Artificial Intelligence 2019-August (2019), pp. 6006–6012.

issn: 10450823. doi: 10.24963/ IJCAI.2019/ 832 .

[188] Christian Waldschmidt, Juergen Hasch, and Wolfgang Menzel. “Automotive Radar —

From First Efforts to Future Systems”. In: IEEE Journal of Microwaves 1.1 (2021).

[189] Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial Hebert. “An uncertain future:

Forecasting from static images using variational autoencoders”. In: Computer Vision–

ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14,

2016, Proceedings, Part VII 14. Springer. 2016, pp. 835–851.

Wojciech Turlej

https://doi.org/10.1109/IVS.2018.8500421
https://doi.org/10.1109/MMAR49549.2021.9528492
https://doi.org/10.1109/MMAR49549.2021.9528492
https://doi.org/10.24963/IJCAI.2019/832

168 BIBLIOGRAPHY

[190] F Wang, Jun Zhang, and G Lu. “Vehic YOLOv4: Optimal Speed and Accle Information

Detection and Tracking System Based on YOLO”. In: Ind. Control. Comput 7 (2018),

pp. 89–91.

[191] Jiankun Wang, Tianyi Zhang, Nachuan Ma, Zhaoting Li, Han Ma, Fei Meng, and Max

Q-H Meng. “A survey of learning-based robot motion planning”. In: IET Cyber-Systems

and Robotics 3.4 (2021), pp. 302–314.

[192] Xiao Wang, Saasha Nair, and Matthias Althoff. “Falsification-Based Robust Adversarial

Reinforcement Learning”. In: (July 2020).

[193] Tim A. Wheeler, Martin Holder, Hermann Winner, and Mykel J. Kochenderfer. “Deep

stochastic radar models”. In: IEEE Intelligent Vehicles Symposium, Proceedings (2017),

pp. 47–53. doi: 10.1109/ IVS.2017.7995697 .

[194] Carsten Wiecher, Sergej Japs, Lydia Kaiser, Joel Greenyer, Roman Dumitrescu, and

Carsten Wolff. “Scenarios in the loop: Integrated requirements analysis and automotive

system validation”. In: Proceedings - 23rd ACM/IEEE International Conference on Model

Driven Engineering Languages and Systems, MODELS-C 2020 - Companion Proceedings.

Association for Computing Machinery, Inc, Oct. 2020, pp. 199–208. isbn: 9781450381352.

doi: 10.1145/ 3417990.3421264 .

[195] Wei Xiao, Noushin Mehdipour, Anne Collin, Amitai Y Bin-Nun, Emilio Frazzoli, Radboud

Duintjer Tebbens, and Calin Belta. “Rule-based optimal control for autonomous driving”.

In: Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical Sys-

tems. 2021, pp. 143–154.

[196] Han Xu, Yao Ma, Hao Chen Liu, Debayan Deb, Hui Liu, Ji Liang Tang, and Anil K. Jain.

Adversarial Attacks and Defenses in Images, Graphs and Text: A Review. Apr. 2020. doi:

10.1007/ s11633-019-1211-x .

[197] Yajue Yang, Jia Pan, and Weiwei Wan. “Survey of optimal motion planning”. In: IET

Cyber-Systems and Robotics 1.1 (2019), pp. 13–19.

[198] Hairi Zamzuri, Umar Zakir Abdul Hamid, Konstantin Pushkin, Djahid Gueraiche, and

Mohd Azizi Abdul Rahman. “Current collision mitigation technologies for advanced driver

assistance systems–a survey”. In: Perintis eJournal 6.2 (2016), pp. 78–90.

[199] Shuqing Zeng. “Performance evaluation of automotive radars using carrier-phase differ-

ential GPS”. In: IEEE Transactions on Instrumentation and Measurement 59.10 (2010),

pp. 2732–2741.

[200] FK Zhang, Feng Yang, and Ce Li. “Fast vehicle detection method based on improved

YOLOv3”. In: Computer engineering and applications 55.02 (2019), pp. 12–20.

Wojciech Turlej

https://doi.org/10.1109/IVS.2017.7995697
https://doi.org/10.1145/3417990.3421264
https://doi.org/10.1007/s11633-019-1211-x

BIBLIOGRAPHY 169

[201] Ding Zhao, Yaohui Guo, and Yunhan Jack Jia. “TrafficNet: An open naturalistic driving

scenario library”. In: IEEE Conference on Intelligent Transportation Systems, Proceedings,

ITSC. Vol. 2018-March. 2018, pp. 1–8. isbn: 9781538615256. doi: 10.1109/ ITSC.2017.

8317860 .

[202] Ding Zhao, Yaohui Guo, and Yunhan Jack Jia. “TrafficNet: An open naturalistic driving

scenario library”. In: IEEE Conference on Intelligent Transportation Systems, Proceedings,

ITSC. Vol. 2018-March. Institute of Electrical and Electronics Engineers Inc., Oct. 2018,

pp. 1–8. isbn: 9781538615256. doi: 10.1109/ ITSC.2017.8317860 .

[203] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. “Sim-to-real transfer in

deep reinforcement learning for robotics: a survey”. In: 2020 IEEE symposium series on

computational intelligence (SSCI). IEEE. 2020, pp. 737–744.

[204] Zeyu Zhu and Huijing Zhao. “A Survey of Deep RL and IL for Autonomous Driving Policy

Learning”. In: IEEE Transactions on Intelligent Transportation Systems (2021), pp. 1–23.

doi: 10.1109/TITS.2021.3134702 .

[205] Marc Rene Zofka, Florian Kuhnt, Ralf Kohlhaas, Christoph Rist, Thomas Schamm, and

J. Marius Zollner. “Data-driven simulation and parametrization of traffic scenarios for the

development of advanced driver assistance systems”. In: 2015 18th International Confer-

ence on Information Fusion, Fusion 2015. 2015, pp. 1422–1428. isbn: 9780982443866.

Wojciech Turlej

https://doi.org/10.1109/ITSC.2017.8317860
https://doi.org/10.1109/ITSC.2017.8317860
https://doi.org/10.1109/ITSC.2017.8317860
https://doi.org/10.1109/TITS.2021.3134702

List of Figures

1.1 SAE levels of automation. 2

2.1 Example of the ADAS/AD sensor stack and mounting positions. 11

2.2 Azimuth determination in automotive radar. 13

2.3 Radar data processing workflow. 15

2.4 Multipath errors in automotive radar. 16

2.5 Wheelspin velocity estimation error in radar. 17

2.6 Simplified camera hardware model. 18

2.7 Camera operating scheme. 19

2.8 High level fusion architecture. 23

2.9 Low level fusion architecture. 25

2.10 AD system architecture. 26

3.1 Multiple hypothesis planning algorithm - general idea. 41

3.2 Fail-safe planning - general idea. 42

3.3 Road model. 46

3.4 Driving corridor - use for maneuver planning. 47

3.5 Bicycle model of the vehicle. 49

3.6 Worst-case occupancy set generation. 51

3.7 Maneuver-based occupancy set. 53

3.8 Single-lane fail safe planning example. 54

3.9 Lane change example. 57

3.10 Trajectories generated for the highway fail-safe planning scenario. 66

3.11 Trajectories generated for the highway fail-safe planning scenario with two other

vehicles. 66

3.12 Urban intersection scenario overview. 67

3.13 Trajectory generation results for the urban intersection scenario. 69

3.14 Constraints generation example. 70

3.15 Merge-in scenario results. 71

LIST OF FIGURES 171

4.1 Direct control network architecture. 97

4.2 Simulation environment . 100

4.3 Training progress. 107

4.4 Performance of the trained policies in OU-SM environment. 109

4.5 Performance of the trained policies in different test scenarios 110

5.1 Adversarial trajectory generation - general idea. 121

5.2 Kinematic model of the vehicle. 127

5.3 General idea of adversarial scenario generation with state estimation errors. . . . 131

5.4 Successful collision avoidance maneuver executed by the tested policy. 133

5.5 Initial conditions for adversarial scenario generation Experiment 1. 135

5.6 Adversarial trajectory generation: Experiment 1, Example 1. 135

5.7 Adversarial trajectory generation: Experiment 1, Example 2. 136

5.8 Adversarial trajectory generation: Experiment 1, Example 3. 137

5.9 t-SNE decomposition of scenarios parameters in Experiment 1. 138

5.10 Initial conditions in the second adversarial scenario generation experiment. 138

5.11 Adversarial trajectory generation: Experiment 2, Example 1. 139

5.12 Adversarial trajectory generation: Experiment 2, Example 2. 140

5.13 Adversarial trajectory generation: Experiment 2, Example 3 141

Wojciech Turlej

List of Tables

2.1 Comparison of common types of automotive sensors. 12

3.1 Vehicle parameters. 64

3.2 Calibration parameters used in the urban intersection scenario 65

3.3 Calibration parameters used in the urban intersection scenario 68

3.4 Calibration parameters used in the merge-in scenario. 71

4.1 Values of sensor models calibration parameters used in the experimental setup. . 90

4.2 Calibration values used for lane markers perception model. 95

4.3 Calibration parameters related to the direct control network. 98

4.4 Values of reward components weights for the direct control driving policy training. 99

4.5 Proximal Policy Optimization training hyperparameters. 100

4.6 Parameters of baseline sensor models (G-SM). 103

4.7 Scenario A parameters distributions. 104

4.8 Scenario B parameters distributions. 105

4.9 Scenario C parameters distributions. 105

4.10 Scenario D parameters distributions. 105

4.11 Scenario E parameters distributions. 105

4.12 Scenario F parameters distributions. 106

4.13 Highway driving key performance indicators. 108

4.14 Single timestep computation time of different components (in seconds). 111

5.1 Weights and parameters used for generation of adversarial scenarios. 134

