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1. Abstract

Driving is a task that is very difficult to automatize, mainly due to uncertain, often unpre-
dictable behaviors of other road users. Complex interactions between traffic participants, imper-
fections of perception systems, and the need for long-term strategic planning, are all difficult
to address in a deterministic, algorithmic manner. For this reason, motion planning approaches
based on Machine Learning are often proposed as a potentially powerful alternative to previously
utilized methods.

The thesis focuses on challenges related to the design and evaluation of motion planning
systems based on Machine Learning approaches, helping to ensure their reliability and robustness.
To address these challenges, several novel algorithms and solutions are proposed and evaluated.

To enable planning a safe trajectory in particularly challenging uncertain situations, a Mul-
tiple Hypothesis Planning method is proposed. The method allows to plan a set of optimal
trajectories, that take into account several, possibly conflicting hypotheses regarding the future
motion of other road users, as well as regarding the state of the controlled vehicle’s environment.
Several examples of the method’s applications are presented, most notably in fail-safe planning,
where a worst-case emergency trajectory is generated alongside the vehicle’s nominal trajectory,
ensuring the existence of a feasible collision-avoidance maneuver.

The described method is intended to be used in conjunction with a vehicle behavior planning
method based on a Reinforcement Learning approach. Since motion planning systems in such
setups are trained in a simulation environment, they are often susceptible to perception errors
present in real systems. To address this issue, a set of efficient sensor models is introduced for
training and evaluation of such systems. Proposed models are utilized to train a set of driving
policies, that are extensively tested in various simulation environments.

Finally, to ensure the robustness of motion planning systems in rare, challenging scenarios, a
novel method for the automatic generation of test scenarios is proposed. The introduced method
utilizes stochastic optimization techniques to generate a wide set of scenarios that pose a par-
ticular challenge to a tested system, allowing to explore its limitations, and to prepare scenarios
for further training. The effectiveness of the proposed method is demonstrated in the task of

generating adversarial scenarios for machine learning-based driving policies.



2. Motivation

Despite the considerable amount of effort already invested in the development of vehicle
motion planning systems, the field of Autonomous Driving remains an active research area.
Among the proposed approaches, methods based on Reinforcement Learning (RL) emerge as one
of the most promising research directions. RL-based methods typically utilize neural networks
trained in a traffic simulation environment to select the appropriate behavior of the vehicle
and/or generate its motion or control trajectories. Such a machine-learning-based system that
utilizes data from the vehicle’s sensors to plan its future motion can be referred to as a driving
policy.

RL-based driving policies have been demonstrated to achieve promising reliability and effi-
ciency in driving tasks, being able to account for complex interactions between other road users,
plan long-term driving strategies, predict the behavior of other vehicles, and exhibit human-like
negotiation skills on the road.

While the capabilities of RL-based driving policies are promising, integration of such algo-
rithms into commercial vehicles requires solving several challenges related to their safety and
reliability. Most notably, the following issues must be addressed before such algorithms can be

deployed on a large scale.

o Uncertainty handling. RL-based policies often struggle with situations that can rarely be
observed in the simulation environment, especially if they require consideration of several
possible outcomes. Such policies often prioritize the most plausible outcomes of a given
situation, disregarding less plausible ones. To address this issue, a transparent trajectory
planning technique can be used in conjunction with the RL-based driving policy to plan
a trajectory in situations, in which either the future behavior of other road users or the

current state of the environment is uncertain.

o Robustness to perception errors. Performance of perception systems and sensors used in
the automotive industry is limited, and often susceptible to degradation in adverse weather
conditions. For this reason, driving policies trained in a perfect simulation environment may
struggle with generalization to real-life conditions, possibly leading to erratic or unsafe

behavior. Further research is thus needed to evaluate the impact of perception errors on



such driving policies and to efficiently model sensing systems in the simulation environment

used for RL training.

o Validation and verification. Lack of transparency inherent to ML-based methods requires
careful evaluation of their performance in difficult situations. Manual definition of the test
scenarios however is not only tiresome but also may be insufficient to uncover potential
problems in such systems, as erroneous decisions of RL-based driving policies may not
necessarily be correlated with an objective difficulty of the test scenario. For this reason,
further research into automated adversarial testing techniques is needed to ensure a thor-

ough exploration of potential issues in the evaluated systems.

The thesis focuses on addressing these issues, proposing several algorithms that improve the

safety of driving policies and help to evaluate them efficiently.
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3. Research hypotheses

Three main hypotheses were formulated concerning the described issues.

1. It is possible to create a safe driving plan for an automated vehicle that considers several
hypotheses regarding the future state of the vehicle’s surroundings. In particular, reasonably
foreseeable worst-case assumptions regarding the behavior of other road users can be taken
into account in the motion planning algorithm, ensuring the existence of feasible collision

avoidance maneuvers during the execution of the motion plan.

2. The use of stochastic models of perception systems in the training process of a
Reinforcement-Learning driving policy improves the policy’s robustness to perception er-

rors.

3. Optimization-based adversarial scenario generation methods can be used in simulation-
based validation of motion planning algorithms to expose potential weaknesses or issues in

the evaluated systems.



4. Methods and results

The research presented in this thesis spans three interconnected topics, each related to one of
the research hypotheses. The first topic, the Multiple Hypothesis Trajectory Planning is related to
the first hypothesis, and covers a novel algorithm for trajectory planning in uncertain situations,
that can generate a vehicle control trajectory, that takes into account an arbitrary number of
hypotheses regarding current and/or future state of the vehicle’s environment. The second topic
is closely related to the hypothesis, that stochastic models of perception systems can improve an
RL-based policy’s robustness if used in the training process. High-level models were proposed for
systems that perceive both static and dynamic environments of the vehicle, and their usefulness
has been presented in the simulation experiments, where driving policy trained with proposed
models has been compared to policies trained in simpler training environments. The last major
topic covers a novel algorithm for optimization-based generation of adversarial test scenarios,

that can be used to effectively explore deficiencies in an arbitrary autonomous driving system.

4.1. Multiple Hypothesis Trajectory Planning

Handling uncertainties is an inherent part of a driving task. Both human drivers and au-
tonomous driving systems must deal with uncertainty regarding the current state of the vehicle’s
environment (as a consequence of limited perception capabilities), as well as take into account
possible future decisions of other road users, that often cannot be precisely predicted.

Multiple Hypothesis Trajectory Planning algorithm proposed in this thesis is capable of plan-
ning the vehicle’s control and state trajectories while taking into account two or more conflicting
hypotheses regarding the current state and future behavior of other road users. The algorithm
is particularly well suited to be used in conjunction with multi-modal trajectory prediction soft-
ware, which often provides a multitude of plausible predictions of others’ behavior.

The proposed planning algorithm utilizes a numerical optimization library to solve a non-
linear optimization problem, where optimized parameters describe two or more vehicle control
trajectories, each related to a single hypothesis regarding the current or future state of the envi-
ronment. The trajectories, apart from fulfilling constraints related to the physical feasibility of
generated motions, must fulfill a series of constraints, that enforce their equality in a predefined

initial period. As a result, a single optimization problem produces several trajectories, where
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each trajectory constitutes an effective collision-free solution of a short-term planning task, as-
suming that its relative hypothesis is true. As all the generated trajectories overlap for a certain
time, the decision of which one should be executed can be postponed, allowing to gather further
observations that may trivialize such a decision by proving one of the hypotheses.

To illustrate a possible application of the described method, the situation presented in Fig.

4.1 can be considered.

Hypothesis 1: vehicle Hypothesis 2: vehicle
Other road user performs a lane change continues straight motion

Trajectory A

Common part of Trajectory B
(plan for Hypothesis 1)

Ego vehicle planned trajectories (plan for Hypothesis 2)

Figure 4.1. General idea of the multiple hypotheses planning algorithm. Mul-
tiple trajectories are planned simultaneously based on different hypotheses. The
problem is formulated in a way that enforces the trajectories to remain identi-
cal for a certain duration.

In the given scenario, the ego vehicle merges into highway traffic, while another road user
drives on the adjacent lane. The road user is anticipated to change lanes, potentially signaling
this intention using an indicator light. Two hypotheses can be formulated regarding the behavior
of the other road user: either they will successfully change lanes, allowing the ego vehicle to
merge safely (Hypothesis 1), or they will fail to do so, e.g., due to an unsafe situation in the
adjacent lane (Hypothesis 2). Based on these hypotheses, two trajectories are planned: one, in
which Hypothesis 1 is assumed to be true, and the ego vehicle changes lanes (Trajectory A),
and another considering the alternative hypothesis, where the ego vehicle brakes and stays in its
current lane (Trajectory B). Planned trajectories overlap within a certain time frame, allowing to
postpone a decision on which trajectory to execute until more information is gathered. It can be
noted, that this way of planning vehicle trajectory results in the emergence of cautious behaviors
- e.g., in the presented example, while Trajectory A describes an assertive merge-in maneuver, it
is planned in a way that allows the safe execution of an emergency braking maneuver if merge-in

is not possible.

While the hypotheses used for the planning may be provided by an external trajectory pre-

diction module in the form of state trajectories, they can also take the form of spatio-temporal
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8 4.1. Multiple Hypothesis Trajectory Planning

constraints (occupancy sets) that describe areas that the other vehicle may occupy over time
in each hypothesis. Several methods for designing such hypotheses based on the simulation of
plausible behaviors have been presented in the thesis.

To illustrate the possible use of the occupancy sets to describe plausible behaviors of other
road users, the example presented in Fig. 4.1 can be extended to take into account three hy-

potheses formulated in the form of occupancy sets:

Hypothesis 1: other vehicle changes lane
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Figure 4.2. Constraints (occupancy sets) generated for different hypotheses.
The ego vehicle is marked blue, the other vehicle - red, and the constraints -
yellow.

Results of the execution of the proposed trajectory planning method taking into account
these three hypotheses are shown in Fig 4.3.

As shown in Fig. 4.3, the use of the proposed method in a given scenario resulted in a
generation of three trajectories, that overlap in the initial duration of 0.75 s. Each trajectory
remains collision-free for their respective hypotheses. Trajectories generated for Hypotheses 1
and 3, where the other vehicle yields to allow the ego to merge into traffic result in the ego’s
assertive lane change, while the second trajectory constitutes an emergency braking maneuver,
that ensures collision avoidance in case the other road user fails to yield.

The proposed method can also be used to implement a Fail-Safe Planning system. In this
setup, one trajectory (a nominal trajectory) is planned based on the most plausible hypothesis
regarding the behavior of other road users, while another one (a fail-safe trajectory) assumes
that other road users can perform any action within certain limits, effectively describing a rea-
sonable worst-case scenario. Such a control scheme, executed repeatedly in a Model-Predictive
Control scheme allows to ensure, that a collision-free trajectory always exists (assuming accurate

perception data and worst-case assumptions) and can be executed to avoid potential accidents.
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Figure 4.3. Trajectory generation results for the merge-in scenario. Note, that
only the constraints based on Hypothesis 1 were plotted for clarity.
An example of the Fail-Safe Planning application is presented in Fig. 4.4
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Figure 4.4. Trajectories generated for the highway fail-safe planning scenario.
Hypothesis 1 assumes that the other vehicle remains on its lane, resulting in a
straight nominal trajectory of the ego vehicle. Hypothesis 2 covers worst-case
scenario behaviors, in which the other vehicle may perform an aggressive cut-in
maneuver. An emergency maneuver composed of braking and evasive steering
is planned for this scenario.

Unlike existing methods, in the proposed approach all the trajectories are planned simul-
taneously in a single optimization problem, and thus the nominal trajectory is influenced by
the necessity of the fail-safe trajectory existence. In other words, the quality of the nominal
trajectory (measured as a combination of passengers’ comfort, fuel efficiency, and other desired

characteristics) can be partially sacrificed to ensure the existence of a feasible collision avoidance

maneuver.
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10 4.2. Sensor Models for Reinforcement Learning

4.2. Sensor Models for Reinforcement Learning

Autonomous vehicles perceive their surroundings using a set of sensors, such as automotive
cameras and radars. The performance of such sensors is however inherently limited. Errors in
the environment perception that may occur in such systems can be categorized into three main

categories, described below.

o False negative detection errors. Perception systems may fail to detect other road users, traf-
fic signs, lane markers, and other elements of the static environment, e.g. due to adverse
weather conditions, software errors, or occlusions. False negative detection errors are par-
ticularly dangerous, as the subsequent behavior and trajectory planning systems may fail
to plan a collision-free trajectory if the perception system fails to detect a nearby vehicle

or obstacle.

o False positive detection errors. This type of failures refers to situations, where a non-
existing environmental feature (vehicle, lane marker, obstacle, etc.) is reported to exist
by the perception system. This type of errors may occur e.g., when the emitted radar
wave reflected from an object is reflected by other environmental features before being
registered by the radar’s receiving antennas. While less critical than false negatives, false

positive detection errors may trigger potentially dangerous evasive maneuvers.

o State estimation errors. Due to limited resolution and performance, automotive sensors
typically provide only an approximation of other objects’ states. In extreme cases, inaccu-
racies in the state estimation may also result in incorrect decisions of the planning system

that may lead to hazardous situations.

Driving policies based on the Reinforcement Learning (RL) approach rely on extensive train-
ing in simulation environments, that typically provide an accurate description of the vehicle’s
surroundings. Policy trained in such an environment may however struggle in the presence of
realistic errors, that were not encountered in the training. This problem of the discrepancies
between the training environment and the target environment is commonly referred to as "sim
to real gap".

One of the approaches commonly utilized to combat this issue is based on domain random-
ization - i.e., the introduction of random errors to the observations provided as an input to the
neural network that performs key decisions in the RL-based planning system. It is however un-
clear, whether applying simple random errors is sufficient to alleviate this issue, as the errors
produced by perception systems tend to be time-correlated and follow certain characteristics,
that may require special care in the error modeling.

As an alternative to simple error models based on a Gaussian noise applied to state estimates

and random occurrences of false detection errors, a set of high-level sensor models has been
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4.2. Sensor Models for Reinforcement Learning 11

proposed in this thesis. Proposed models can be used to simulate an arbitrary dynamic objects
detection and tracking module as well as a lane markers detection system.

The approach proposed for the dynamic objects implements a state estimation errors model
based on Orstein-Uhlenbeck processes, that result in time-correlated inaccuracies that mimic ones
observed in the radar-based and camera-based perception systems with subsequent tracking and
fusion modules. Additionally, false negative detection errors are modeled as long-lasting events,
with the occurrence probability and duration calculated based on their distance, time since
detection, occlusions, and other characteristics. False positive object detection errors are on the
other hand modeled with the use of kinematic motion models, to achieve error patterns similar to
ones observed in detection systems with tracking or fusion modules based on the Kalman Filter
algorithm, commonly used in such applications.

Lane marker detection errors are also modeled in a simple, yet relatively realistic manner,
taking into account occlusions from other vehicles, dynamically limiting the detection distance,
and modeling the markers’ geometry estimation errors with the use of an Ornstein-Uhlenbeck

noise.

Test scenarios performance of RL-based driving policies

Random lane markers
false positive detections

Random objects false
negative detections

Random lateral position
estimation errors

Random velocity estimation Fa%

errors

Constant velocity estimation
error of a front object

|73%

Late detection of a slow
moving object on a highway

0% 10%  20%  30%  40%  50%  60%  70%  80%
Fraction of failed scenarios

[ Policy trained with [] Policy trained with [ Policy trained in a perfect
proposed sensor models baseline sensor models (ground truth) environment

Figure 4.5. Comparison of the evaluated policies in predefined test scenarios.
The use of the proposed sensor models in the training had a significant positive
impact on the robustness of the trained policy.

Proposed sensor models have been utilized to train an RL-based vehicle control policy, along-
side other policies trained in a perfect simulation environment, and with baseline sensor models
based on commonly used domain randomization techniques. The performance of all the trained

policies has been evaluated in a series of long-driving simulation experiments, as well as in a wide
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12 4.3. Adversarial Scenarios Generation

set of challenging test scenarios. Performed evaluation has shown a significant advantage of the
policy trained with the use of proposed sensor models, compared to the other policies, proving

its usefulness in increasing the robustness of developed algorithms.

4.3. Adversarial Scenarios Generation

Verification and validation of the vehicle behavior and path planning systems are among the
most challenging aspects of their development. A variety of plausible traffic situations, weather
conditions, perception errors, and road geometries result in a practically infinite number of sce-
narios in which the system may need to operate. Ensuring that it will do so is a costly and
difficult endeavor, that typically involves various types of software tests, simulation tests, as well
as on-road vehicle test drives.

Testing the system in real traffic, while providing the most accurate representation of the
conditions in which the system will operate, tends to be extremely costly, and introduces signifi-
cant risks if the tested system is in relatively early stages of development. For this reason, traffic
simulators are often extensively utilized as a testing environment before performing the on-road
tests.

Simulation-based tests may be based on either short, predefined scenarios, or large-scale
traffic simulations, in which the model of the vehicle controlled by the tested system drives for
potentially thousands of kilometers.

The main problem with manually defined test scenarios is the fact, that in Machine-Learning-
based systems, there is no guarantee, that the perceived difficulty of the scenario matches the
actual one from the system’s perspective, i.e. the system may handle objectively challenging
scenarios well, but have issues in specific scenarios that are not necessarily objectively difficult.
For this reason, manually defined scenarios may fail to uncover potential faults in the system.

Large-scale driving tests in simulated traffic, while effectively exploring massive amounts of
possible scenarios, may fail to generate atypical behavior of road users. Since the RL-based policy
is also trained in simulation, this is especially dangerous, as it may fail in situations that are
rarely observed in simulated environments, such as erratic driving of other road users.

To alleviate these issues, an automated adversarial scenario generation is introduced in the
described thesis. The proposed method utilizes stochastic optimization methods to generate
control and state trajectories of one or more road users in the vicinity of the ego vehicle. The
optimization process incentivizes solutions that present a particular challenge to the evaluated
driving policy. This is accomplished by assigning a negative cost value based on safety measures,
such as the minimal distance observed between the ego vehicle and other vehicles within the
simulated scenario.

The described formulation allows for the generation of individual adversarial scenarios. To

expand this to create a wider scenario database, the entire generation process can be executed
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Figure 4.6. General idea of the adversarial trajectory generation method pro-
posed in the thesis.

repeatedly with an additional cost term that promotes the discovery of unique scenarios different
from those already generated. Adding the cost term that incentivizes large FEuclidean distances
between the parameters of the generated scenario and other scenarios in the database, each
subsequent solution to the optimization problem produces a distinct and novel scenario.

The general idea of the proposed method is presented in Fig. 4.6.

Since, as mentioned in previous sections, perception errors may have a significant impact on
planning systems’ safety, an additional extension of the proposed method has been introduced to
generate adversarial error patterns alongside the trajectories of other vehicles. In this setup, the
optimization problem generates not only a state trajectory for each vehicle but also a perceived
trajectory, i.e., a series of possibly erroneous state estimations produced by the tested vehicle’s
perception system. Additional cost terms are introduced to the problem to minimize the dif-
ferences between the actual and perceived trajectory, allowing for the exploration of scenarios
where even tiny errors in state estimation can result in significant safety failures.

Proposed methods were tested in the task of generating adversarial scenarios for an RL-based
vehicle control system. The method generated a varied set of adversarial scenarios, exposing
several issues in the tested system. An example of a generated adversarial scenario is shown in
Fig. 4.7.

The proposed method in the presented example has been able to find a driving pattern of other
road users, that led to an incorrect reaction from the evaluated system, leading to a collision.

Repeated execution of the method produced further critical scenarios, including behaviors such
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Figure 4.7. Example of an adversarial scenario generated by the developed
method. In the scenario, the leading vehicle (Agent B) initiates a drastic braking
action, followed by an acceleration and a sudden lane change to the left. In
response to the abrupt cut-in maneuver, the ego vehicle controlled by the tested
algorithm executed an aggressive steering maneuver, resulting in a collision with
Agent A, which had been accelerating in the left lane.

as late cut-ins, sudden braking, and erratic acceleration and braking patterns that resulted in
erroneous behaviors of the evaluated policy.

It can be noted, that the proposed method can be used to evaluate arbitrary Autonomous
Driving and Advanced Driver Assistance Systems, not necessarily based on Machine Learning.
Produced scenarios can also be used as a base for further training of evaluated RL-based policies,

that would increase their robustness to difficult situations.
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5. Summary and contributions

Interest in Autonomous Driving and Advanced Driver Assistance Systems has been growing
at an exponential rate in recent years, accelerated by revolutionary advancements in the Machine
Learning field. While supervised learning is already widely used in perception systems, unsuper-
vised learning methods, such as Reinforcement Learning (RL), seem to be a promising research
direction from the perspective of vehicle behavior planning systems. RL-based driving policies
can fulfill various Autonomous Driving tasks, being capable of long-term strategical planning
and exhibiting situational awareness, behavior prediction abilities, and generalization skills.

To enable the use of such methods in Autonomous Driving applications, however, several
challenges must be solved. Transparency of Machine-Learning-based solutions is limited, and
thus a special effort is needed to ensure that the resulting system will be operating correctly in
difficult situations, such as in the presence of uncertainties, perception systems errors, or atypical
situations such as erratic driving of other road users in the vicinity of the controlled vehicle.

In this thesis, several issues regarding the robustness and safety of RL-based driving policies

are addressed with novel algorithm proposals. In particular, three main areas are explored.

o Optimization-based trajectory generation for uncertain situations. A novel patent-
protected method is introduced to generate vehicle control trajectories in a way, that al-
lows finding several trajectories based on different hypotheses regarding the current and
future state of the vehicle’s environment, preceded by a common short-term trajectory. The
method can be used in conjunction with RL-based solutions to execute maneuvers planned
by a high-level driving policy in a safe manner, e.g., in a Fail-Safe Planning setup, that

ensures the existence of a collision-free emergency maneuver.

o Models of perception systems intended for training and evaluation of RL-based driving poli-
cies. High-level models are proposed for dynamic object detection, as well as lane markers
detection systems. Proposed models were used to train a driving policy, that exhibited sig-
nificantly better robustness compared to policies trained with simple domain randomization

techniques.

o Automatic adversarial scenario generation. A novel patent-pending method is introduced

for the generation of a database of test scenarios, that pose a particular challenge to the
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evaluated system. The proposed method can be used to generate challenging scenarios, as
well as adversarial perception error patterns, that may expose issues in the tested Machine-
Learning-based driving policies. Generated scenarios can be used for evaluation purposes,

as well as in training of robust RL-based policies.

Described methods answer the stated research hypotheses, offering a way to address uncertainties
in the environment, increasing the robustness of driving policies to the perception errors, as well
as introducing an automated testing method intended for active exploration of the automated

driving systems’ deficiencies.
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