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Multi‑state MRAM cells 
for hardware neuromorphic 
computing
Piotr Rzeszut1*, Jakub Chȩciński1, Ireneusz Brzozowski1, Sławomir Ziȩtek1, 
Witold Skowroński1 & Tomasz Stobiecki1,2

Magnetic tunnel junctions (MTJ) have been successfully applied in various sensing application and 
digital information storage technologies. Currently, a number of new potential applications of MTJs 
are being actively studied, including high‑frequency electronics, energy harvesting or random number 
generators. Recently, MTJs have been also proposed in designs of new platforms for unconventional or 
bio‑inspired computing. In the current work, we present a complete hardware implementation design 
of a neural computing device that incorporates serially connected MTJs forming a multi‑state memory 
cell can be used in a hardware implementation of a neural computing device. The main purpose of 
the multi‑cell is the formation of quantized weights in the network, which can be programmed using 
the proposed electronic circuit. Multi‑cells are connected to a CMOS‑based summing amplifier and 
a sigmoid function generator, forming an artificial neuron. The operation of the designed network is 
tested using a recognition of hand‑written digits in 20 × 20 pixels matrix and shows detection ratio 
comparable to the software algorithm, using weights stored in a multi‑cell consisting of four MTJs or 
more. Moreover, the presented solution has better energy efficiency in terms of energy consumed per 
single image processing, as compared to a similar design.

Unconventional computing architectures such as artificial neural networks (ANN) have superior properties 
over conventional CMOS-based circuits in solving a number of computational problems, e.g., image or voice 
recognition, navigation, optimization and  prediction1–5. As a concept, neural networks have been proved to be 
fast, flexible and energy-efficient. However, their digital implementation uses large amount of  resources6, which 
leads to high area needed to implement them. An alternative solution, opposite to the digital implementation, 
is to use analog-based circuits, where signals are represented as continuous voltage values rather than quantized 
 bits7–10. In such implementations, a key component is a programmable resistive element, such as  memristor11, 
which can act as a weight in an artificial neuron. While using a solely digital implementation of a neural network 
may lead to high resource and energy consumption, using mixed digital and analog electronic circuits may 
enable more compact and energy-efficient solutions. In a number of the proposed analog ANN implementations, 
neuron behavior was mimicked by a resistive RAM (RRAM)  element12, which changed its resistance due to the 
conductor/insulator  transition7. However, cells based on resistive or phase-change technology suffer from limited 
durability and may degrade over time and subsequent programming  cycles13. On the contrary, spintronic ele-
ments such as memristors, nano-oscillators14 or probabilistic  bits15, based on magnetic tunnel junctions (MTJs), 
which rely on magnetization switching or dynamics, do not have such endurance issues, are compatible with 
the CMOS technology and have been already shown to exhibit superior biomimetic  properties16. In addition, 
recent theoretical works have predicted that neural networks are able to work efficiently not only with weights 
represented by real numbers, but also with binary or quantized  values17–19.

Recently, we have proposed a design of multi-state spin transfer torque magnetic random access memory 
(STT-MRAM)  cells20,21, which may be used in neuromorphic computing schemes as  synapses22–27 or as a stand-
ard multi-state memory unit. In this paper, we present a fully functional hardware implementation design of a 
neural network, which needs no additional components for operation, except for input and output devices. The 
design of a single synapse is based on multi-bit STT-MRAM cells forming quantized weights, interconnected 
with a minimal set of transistors forming amplifiers in the conventional CMOS technology. The entire network 
is made of neurons arranged in four layers. The operation principle of the proposed neural network is validated 
using handwritten digits recognition task utilizing  MNIST28 database. We show that the multi-cell consisting 

OPEN

1Institute of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, 
Poland. 2Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 
Al. Mickiewicza 30, 30-059 Kraków, Poland. *email: piotrva@agh.edu.pl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-11199-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7178  | https://doi.org/10.1038/s41598-022-11199-4

www.nature.com/scientificreports/

of four MTJs is sufficient for the network to achieve a recognition error rate below 3%, while providing better 
energy efficiency per operation than circuit presented by Zhang et. al.29.

Experimental
Mulltibit‑cell based artificial synapse. A key element of the design of the ANN is a spintronic memris-
tor, which involves serially connected MTJs. Each of the MTJs may be characterized by a R(V) curve (Fig. 1a), 
where two stable resistance states can be observed, as well as critical voltages (cN and cP), for which the switch-
ing occurs. By serially connecting N of such  MTJs20, a multi-state resistive element is obtained (Fig. 1b), for 
which N + 1 resistance states are observed.

The concept of the multi-cell was experimentally confirmed using up to seven MTJs connected in series. For 
the simulation of the network, we introduce a model of the multi-cell based on the following protocol. A typi-
cal R(V) loop of an MTJ may be approximated using four linear functions (resistance vs. bias voltage depend-
ence in each MTJ state) and two threshold points (switching voltages) as presented in Fig. 1a. In addition, in 
the case of a real MTJ the following parameters are related to each other: a1n = −a1p = a1 , b1n = b1p = b1 , 
a0n = −a0p = a0 and b0n = b0p = b0 . Moreover, a current resistance state (high or low resistance) has to be 
included. Using such a model of the R(V) curve allows also to calculate other transport curves, including V(I). 
The proposed model corresponds to all MTJs that were investigated during the study. Parameters obtained from 
the experimental part, and further used in the simulation, are presented in Tab. 1. MTJs with perpendicular 
magnetic anisotropy were patterned as pillars 100 nm in diameter and interconnected using metalization layers 
and vias (Fig. 2).

The model was used to simulate serially connected MTJs and a representative comparison between simula-
tion and experiment is presented in Fig. 1b. Moreover, simulations of up to seven MTJs were carried out, where, 
additionally, a spread of parameters was taken into account. This allowed for defining distribution of stable 
resistance states as well as voltages used for writing. The results of such simulation as well as representative 
experimental data are presented in Fig. 3.

Electronic neuron. After the analysis of the multi-cell, which may be used as a programmable resistor for 
performing weighted sum operation for many input voltages, we turn to the artificial neuron design. A sche-

Figure 1.  (a) Experimental R(V) dependence (solid points) and the model consisting of four lines and two 
critical points (stars) presenting a single MTJ behaviour. (b) A representative simulation result of three serially-
connected MTJs (solid line) together with a series of example measurements (gray-scale lines) of a two-bit 
multicell. Parameters of a single MTJ were used to model the multi-cell characteristics. Arrows indicate voltage 
sweep direction.
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matic diagram of the proposed neuron is presented in Fig. 4. The circuit is powered by a bipolar power supply, 
where inputs and output ( VINm , VOUT ) are provided as bipolar analog signals. To enable positive and negative 
weights, each of the signal inputs uses a pair of programmable MTJ multi-cells ( MmP and MmN ). In the case 
when the multi-cell resistances meet the condition MmP < MmN , a positive weight is achieved, whereas for the 
case of MmP > MmN a negative weight value is obtained. An alternative design with multiple MTJs connected 
in series with a separate select transistors has been proposed recently in Ref.30. For equal multi-cell resistances, a 

Figure 2.  Microimage of the experimental setup: (a) three and (b) seven serially connected MTJs (dots) with 
vias (squares) marked.

Table 1.  Expected values and standard deviation of parameters obtained from experiment.

Param. Unit µ σ

a1 A−1 −310 3

b1 � 665 12

a0 A−1 −30 3

b0 � 360 12

cN A −3.1e−4 1.5e−5

cP A 8.0e−4 1.5e−5

TMR % 84 –
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zero weight is obtained, which is equivalent to the situation when an input is disconnected from the synapse. The 
resistive summing circuit architecture is being used in order to implement an addition operation while reducing 
the footprint of the synapse. A differential amplifier converts differential voltage to a single bipolar signal, which 
is transformed using a non-linear sigmoid function. This voltage may be used as the input of the next synapse, 
or as the output of the network. Additionally, to provide a constant bias, a standard input with constant voltage 
may be used, where the level of this constant bias is determined in the same way as weights for other functional 
inputs.

Neural network circuit. The electrical circuit implementing the proposed neural network was designed in 
a standard CMOS technology—UMC 180 nm. To program the demanded resistance of seven serially connected 
MTJs, a voltage of about 3.25 V is needed, so input/output (I/O) 3.3 V transistors were used to design a circuit for 
MTJs programming purpose, while for other circuits, a standard 1.8 V transistors were used. An individual neu-
ron circuit is composed of three parts. At the input, two resistive networks consisting of memristors implement 
a multiplication of input voltages by coefficients and summing of these products (Fig. 4a). Next, the obtained 
voltages are subtracted and amplified to the demanded value in a differential amplifier (Fig. 4b). Voltage follow-
ers are used to separate stages of the circuit and eliminate unwanted loading (Fig. 4d). Finally, the third part is 
a sigmoid function block, which implements the activation function (Fig. 4c). It is based on an inverter and has 
negative transfer characteristic, thus appropriate polarizations of signals are required.

The differential voltage Vd generated by the divider network (Fig. 4a) connected to a pair of voltage followers 
(Fig. 4d) can be expressed as:

Vd = −
1

Gsum

(

m
∑

i=1

VINi(GiP − GiN )

)

,

Figure 3.  Simulation and experimental results for seven serially connected MTJs with a given parameter 
spread. (a) Spread of readout resistances for the simulation. (b) Representative write-read-erase curves. Red 
line represents full write-read-erase cycle, while black ones represent write-read cycles while programming 
subsequent values. (c) Experimental data for seven serially connected MTJs. MTJs in this case come from 
another batch, characterized by higher RA product of around 20Ømega µm2 , which results in approximately 
three times higher resistance of the multicell and slightly higher switching voltages. (d) Spread of all write 
voltages for the simulation.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7178  | https://doi.org/10.1038/s41598-022-11199-4

www.nature.com/scientificreports/

where:

It can be assumed that sums of all memristors’ conductances in both positive and negative branch are nearly 
equal, and can be well approximated by the average of minimum ( Gmin ) and maximum ( Gmax ) conductances of 
memristors used, multiplied by the number of inputs (m) in the neuron.

Results
To evaluate the performance of the multi-bit MTJ cell-based ANN, a set of classification tasks using the MNIST 
dataset of handwritten digits (Fig.5a) was prepared. The conceptual architecture used for the network is shown 
in Fig. 5b and consists of the input layer, two hidden layers containing N neurons each and the output layer. A 
benchmark software network was trained using the standard scaled conjugate gradient method and cross-entropy 
error metrics, with tanh activation function for every layer except the last one, where the softmax function was 
used. Then, its performance was evaluated on a testing subset that has been drawn randomly from the input data 
and has not participated in training. This procedure was repeated 50 times in total, with training and testing 
subsets being redrawn each time, leading to an average error estimate for each network size.

Having established the performance of the benchmark software network, the evaluation of our MTJ-based 
design was performed. The original float-accuracy weights between different neurons were replaced by their dis-
crete versions corresponding to our multi-state MTJ synapses. The new weights were calculated using simulated 
conductance data (as described in Sec. “Multibit-cell based artificial synapse”) and rescaled by tuning amplifier 
gains to match the desired value range for the neurons. Then, the performance of the network was re-evaluated 
on the testing data subset. The results are presented in Fig. 5c. It can be seen that, as long as the number of MTJs 
used per multi-state cell exceeds three, the performance of the MTJ-based solution is comparable to the original 
software version, with differences being only incremental in character. Due to a relatively shallow structure of 
our network, the total number of individual MTJ elements necessary to perform the calculation is thus remark-
ably low and ranges from around 200 to around 700, depending on the assumed tolerance for error. This is one 
order of magnitude lower than the number previously reported for quantized neural networks based on MTJs 
with comparable  performance19.

The neural network shown in Fig. 5b, using 7 MTJs per memristor, was also described and simulated electri-
cally in Hspice for the same data as computer simulations mentioned above, assuming 7 MTJs per memristor. 
Input voltages (with maximum amplitude of 0.2 V) corresponding to hand written MNIST digits were changed 

GiX =
1

MiX

Gsum =m ∗ Gave = m ∗
Gmin + Gmax

2

Figure 4.  The proposed neuron design with multi-cells. The circuit consists of (a) a set of memristors serving 
as a quantized weight, (b) a differential amplifier with voltage followers (d) at input and (c) a sigmoid function 
block.
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to a next image every 4 µs . The circuit gave the same results as theoretical calculations—for a given subset of 
cases the same error rate was achieved. The circuit had a latency of approximately 1 µs and to process one picture, 
only 37.4 pJ of energy were needed. It is therefore a significant improvement compared to the work by Zhang et. 
al.29, where processing of a 10 by 10 pixel area (4 times smaller area than our 20 by 20 pixel images) consumed 
194 pJ. The power consumption of our network could be further decreased, and speed could be increased at the 
expense of the output voltage. Also, the total resistance of each synapse might be increased by connecting addi-
tional resistances as well as by careful optimization in the MTJ structure such as using devices with higher RA 
 product31 and by further miniaturization of the MTJ pillar size below 100 nm in  diameter32. However, it could 
also lead to deterioration of the reliability of the ANN.

Figure 5.  Simulated neural network based on multi-bit MRAM cells. Handwritten digits from MNIST database 
(a) are recognized by a standard neural network with architecture shown in (b), where black lines represent 
network weights and yellow circles represent individual neurons. After training, weights calculated by software 
are replaced by discretized values corresponding to 1–7 serial MTJs MRAM cells, which affects the network 
performance (c).
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Discussion
The presented architecture of full hardware artificial neural network proves to be an effective way of perform-
ing neuromorphic computing. Compared to other solutions, it utilizes standard MTJs that are compatible with 
STT-MRAM technology, which has been recently developed for mass production. Additionally, MTJs in such 
application are very stable over time and they exhibit high endurance in terms of reprogramming, comparing 
to low-energy barrier MTJs used in probabilistic computing. To validate the circuit, the artificial CMOS-based 
neuron was designed, consisting of multi-cell based synapses, differential amplifiers and sigmoid function gen-
erator. It was shown that the quantized-weight approach enables the development of a functional artificial neural 
network, capable of solving recognition problems with accuracy level similar to the benchmark software model. 
Moreover, the electronic simulations additionally proved low latency of the operation of the order of µs as well 
as low energy consumption per recognized picture.

Methods
Circuit details. The operational amplifier, presented in Fig. 6 was designed as a two stage circuit consisting 
of a differential pair M1, M2 with a current mirror load M3, M4 biased by M5 with a current of 1 µA . The output 
stage M6, M7 provided appropriate amplification and output current. The total current consumed by the opera-
tional amplifier is about 12 µA and amplification with an open loop of around 74 dB. Dimensions of transistors 
were chosen in such a way to obtain the smallest area possible while meeting the required electrical parameters 
(width of M1 and M2 is 0.7 µm , M3 and M4 is 0.45 µm , M5 and M8 is 0.96 µm , M6 is 7.48 µm , and M7 is 
7 µm , capacitance of C0 is 100fF).

The final stage of the neuron is a circuit, which performs activation functions and has negative hyperbolic 
tangent transfer characteristic, presented in Fig. 7b. It is designed as a modified inverter, which has voltage-to-
voltage transfer in contrast to other solutions, such as resistive-type  sigmoid33. Transistors M2 and M3 work as 
resistors, moving operating point of transistors M0 and M1 to the linear region. Finally, the circuit implements 
the transfer characteristic shown in Fig. 7a. Minimum length of channels were used (180  nm, except for M3, 

Figure 6.  Operational amplifier circuit used in the design.
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which uses 750nm), while their width was chosen to obtain required characteristics and output current neces-
sary to drive the next stage. Therefore, the width of M0 and M3 is 60 µm , M1 is 228 µm , and M2 is 56 µm.

Using Cadence Virtuoso, layouts for amplifier and sigmoid were designed. Dimensions of each circuits are 
17.1× 17.4 µm for op-amp and 17.5× 32 µm for sigmoid. Netlists with parasitic elements were extracted for 
further simulations performed in Hspice.

Programming of the synapse. The important part of the design involved a circuit for memristors pro-
gramming. The overview of the programming circuit is presented in Fig. 8. The switches are controlled from 
the digital circuit in such a way that the memristor to be programmed is connected with one terminal to the 
programming voltage input and the other terminal to the ground. After the selected elements are connected, the 
required voltage value is applied to the programming input in order to program the chosen memristors. Those 
elements that are not programmed with a given voltage are disconnected from the programming input. In the 
next cycle, another set of memristors is connected for programming and another voltage is applied. In such solu-
tion, all memristors may be programmed in a number of cycles corresponding to the number of stable quantized 
states of used memristors (e.g., for 7 MTJs per memristor the programming may be completed in only 8 cycles; 
if the programming voltage spread is too high, additional cycles might be introduced or adaptive programing 
scheme can be used, however state-of-the-art MTJ industrial fabrication technology can meet requirements with 
accepted write voltage  distribution34). The purpose of the digital control circuits to connect the desired compo-
nents to the programming voltage and ground lines or to switch to normal operation. The state of the switches is 
stored in serially connected flip-flops. Therefore, additional AND gates controlled by the “enable” signal are used 
to disconnect all memristors while entering information about elements for programming. Then, after setting 
the appropriate programming voltage, the enable signal goes high for the duration of programming. The flip-flop 
and the AND gate are placed as close to the switches as possible, to save connection length. Digital components 
placed close to the sensitive analog circuit do not have influence on them, because during the operation of the 
ANN the digital circuitry is inactive, remaining in a static state (no clock signal) while providing the connection 
of memristors to the analog circuit.

Figure 7.  (a) A transfer function of a sigmoid-generating inverter implemented by (b) the proposed inverter 
circuit.
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Figure 8.  (a) Schematic of connection of programming switches and (b) the design of the programming 
switches.
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