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Abstract

One of the most important issues in the development of Advanced Driver Assistance Systems (ADAS)
is the perception of the vehicle surrounding. ADAS systems consist of several layers, from sensors layer,
through the perception layer, to collision-free maneuvers planning layer.

Perception systems are used to describe the surrounding environment of the host vehicle, both dynamic
and stationary. The stationary environment includes all stationary objects, that is, parked cars (which were
not previously detected as moving by the system), buildings, safety barriers, curbs, signs, etc. Numerous
mathematical models representing stationary environment can be found in the literature, starting from
primitive shapes such as a rectangle or circle and ending on complex ones such as occupancy grid or
parametric curve.

In this thesis, the algorithm is proposed to determine and track the boundary of the free space. The
parametric curve in the form of the B-spline is used as the mathematical model, and the occupancy grid
is an input. There are introduced several original improvements of the best at the time of writing state
of the art algorithm for free space boundary tracking. The improvements cover topics like measurement
downselection, measurement to spline association and dynamic adjustment of B-spline control points.
The last improvement uses original indicators of local shape complexity of the B-spline proposed by the
Author.

The advantage of the proposed algorithm over the reference state of the art algorithm is proven based
on a wide set of artificial road scenarios and one real scenario. The metrics used in the comparison of
the proposed and reference algorithms are defined and an in-depth analysis of the comparison results
is conducted. The achieved results clearly show that the proposed algorithm offers a higher free space
boundary approximation quality while reducing the algorithm execution time.

Keywords: parametric curve, B-Spline, automotive, perception system, approximation, stationary envi-
ronment
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Streszczenie

Jednym z najważniejszych zagadnień w rozwoju Zaawansowanych Systemów Wspomagania Kierowcy
jest percepcja otoczenia pojazdu. Systemy składają się z kilku warstw zaczynając od warstwy czujników,
przez warstwę percepcji, aż po warstwę planowania bezkolizyjnych manewrów.

Systemy percepcji służą do opisu otaczającego pojazd środowiska, zarówno dynamicznego, jak i
stacjonarnego. Środowisko stacjonarne obejmuje wszystkie obiekty nieruchome, takie jak zaparkowane
samochody (które system nie wykrył wcześniej jako poruszające się), budynki, bariery ochronne,
krawężniki, znaki drogowe, itp. W literaturze można znaleźć wiele modeli matematycznych reprezentacji
środowiska stacjonarnego, począwszy od prymitywnych kształtów, takich jak prostokąty czy koła, a
kończąc na bardziej złożonych, takich jak siatki zajętości czy krzywe parametryczne.

W niniejszej pracy został zaproponowany algorytm wyznaczania i śledzenia granicy wolnej przestrzeni.
Jako model matematyczny wykorzystano parametryczną krzywą sklejaną typu B-spline, a dane
wejściowe stanowiła siatka zajętości. Wprowadzono kilka oryginalnych usprawnień najlepszego znanego
w czasie pisania pracy algorytmu śledzenia granic wolnej przestrzeni. Uprawnienia te obejmują takie
zagadnienia jak filtracja punktów pomiarowych, asocjacja punktów pomiarowych ze splajnem oraz
dynamiczna modyfikacja punktów kontrolnych krzywej B-spline. Ostatnie usprawnienie wykorzystuje
zaproponowane przez autora oryginalne wskaźniki lokalnej złożoności kształtu krzywej B-spline.

Algorytm proponowany w pracy został porównany z algorytmem referencyjnym na podstawie szerokiego
zestawu sztucznych scenariuszy drogowych oraz jednego scenariusza rzeczywistego. Zdefiniowano
metryki stosowane w porównaniu obu algorytmów, a następnie przeprowadzono dogłębną analizę
wyników porównania. Uzyskane wyniki jednoznacznie wskazują, że zaproponowany algorytm oferuje
lepszą jakość aproksymacji granic wolnej przestrzeni przy jednoczesnym skróceniu czasu wykonania
algorytmu, co stanowi przewagę względem algorytmu referencyjnego.

Słowa kluczowe: krzywa parametryczna, B-Spline, przemysł samochodowy, systemy percepcji,
aproksymacja, środowisko stacjonarne.
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List of abbreviations and mathematical symbols

The following table describes the significance of various abbreviations and acronyms used throughout
the thesis, in the alphabetical order. The page on which each one is defined or first used is also given.
Common abbreviations or acronyms used once are not on this list.

Abbreviations Meaning Page
PFS Parametric Free Space 21
WCS World Coordinate System 56
GRCS Grid Coordinate System 56
OCG Occupancy Grid 101



18 CONTENTS

Marek Szlachetka Freespace detection and examination based on surround occupancy grid



Mathematical notation

The following table lists the mathematical symbols used throughout the thesis.

Symbol Meaning
r(s) 2D parametric spline curve
s free variable correlated with spline s-domain
n spline degree
Nq number of control points
Nm number of measurement points
Ns number of sampled spline points
q state vector (control point positions)
Ω measurement status
τ number of cycles since the measurement status change
κ number of cycles in which the variance of the control point position is high
Λ control point supporting interval
Ψ local shape complexity
∆ distance complexity indicator
Γ corresponding spline point complexity indicator
Θ angle complexity indicator
Ξ host-dependent indicator
Φ approximation error indicator
B

[n]
i

i-th basis function of the n-th degree corresponding to the i-th control point
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1 Introduction

One of the most important problems to solve in the development of Advanced Driver Assistance Systems
(ADAS) is how to accurately reflect the areas of the host car environment that are free from obstacles
belonging to either dynamic or stationary environments.

The dynamic environment describes all moving objects, such as moving cars, pedestrians, etc. The sta-
tionary environment describes all stationary objects, that is, parked cars (which were not detected as
movable before by the system), buildings, crash barriers, curbs, signs, etc.

Virtually all of the driver assistance systems in use today depend on the perception system, which affects
directly such important features as, e.g., emergency braking. Thus, the system has to work under any
circumstances (for instance, in bad weather conditions) without any assumptions regarding the shape of
the environment. Moreover, both the perception system and the layer working above must respect the
restrictions put on them that come from embedded systems. They are time and memory constraints. The
system must react in the predetermined time and be "small" enough to be integrated within the embedded
system.

Vehicle setup can vary from one car to another. It mostly depends on the scope of features offered by
the vehicle. The vehicle can be equipped with sensors like RADAR, LIDAR, camera or ultrasonic. They
need to be combined in different variants. Therefore, the perception system should be independent of the
sensors used and capable of fusion of information provided by various sensors.

In the automotive industry and in other fields like, e.g. robotics, the surrounding environment may be de-
scribed by a variety of mathematical models. There are several models used for describing the stationary
environment in the literature, starting from primitive structures (rectangle, circle, etc.) and ending on the
occupancy grid or the parametric curves. All models are used to define the boundary between free space
and obstacle, but they differ from each other by flexibility (ability to reflect complex shapes), memory
footprint, and application (road scenario for which they are suitable). Moreover, different models have
different computing power demands.

In this thesis, an innovative algorithm for tracking the boundary of the free space boundary modeled by
the parametric curve calculated from an input in the form of an occupancy grid is proposed.

1.1 Objectives

One way to describe the free space boundary is by using a parametric curve, which has been discussed
in the literature. An example of this is the Parametric Free Space (PFS) approach, which utilizes the B-
Spline as the boundary model with a fixed number of control points. However, such approach has some
drawbacks. The PFS cannot adapt control points efficiently to changing shapes when the host vehicle is in
motion. Using too few control points leads to poor approximation quality, while using too many control
points significantly increases the computation time. And despite using a high number of control points,
there is no guarantee of achieving an acceptable approximation quality. Furthermore, the PFS assumes



22 1.2 Author contributions

that the measurement points are evenly distributed, which leads to a semi-equal distribution of control
points. This reduces the flexibility to adjust the control points to areas of higher shape complexity, instead
of being able to focus on areas of low shape complexity. Another aspect regarding measurement points
is the utilization of all measurements without filtering out those that lack supplementary information,
resulting in redundancy.

Free space boundary estimation and tracking has an application in automotive embedded systems, but
these systems have limitations such as processing power, memory, and real-time constraints. Therefore,
algorithms developed for embedded systems need to strike a balance between being fast with minimal
memory consumption and achieving high approximation and tracking quality.

Based on described disadvantages of the Parametric Free Space approach and the requirements of em-
bedded automotive systems, the following thesis is stated:

The downselection of measurement points combined with the dynamic adjustment of the control points
defining the spline curve approximating the free space boundary around the host vehicle in free space
boundary tracking algorithm allows to reduce the computation time and memory footprint simulta-
neously with improved quality of the approximation in relation to the algorithm using all available
measurement points and a fixed number of uniformly spaced spline control points.

1.2 Author contributions

This work contains the following contribution of the Author to the field.

◦ Stationary models comparison — Section 3.3
The comparison of stationary environment models with respect to the set of their features and the
suitability of the models to road scenarios.

◦ Novel free space boundary tracking algorithm — Section 4
The algorithm for tracking the free space boundary containing numerous improvements (listed
below) with respect to the reference algorithm.

◦ Measurement points downselection — Section 4.4.2.2
Set of novel algorithms that perform the downselection of redundant measurement points while
still maintaining high approximation quality.

◦ Local measurement status determination — Section 4.4.4
A novel determination of a measurement status of each control point of the spline curve based on
the association of measurement data.

◦ Local spline shape analysis — Section 4.4.5.1
A novel local spline shape analysis performed based on the introduced set of spline complexity
indicators.

◦ Solving local minima problem of approximation — Section 4.4.5.2
A new way of solving the issue when the approximator stucks in a local minima by introducing a
approximation error indicator calculated for each control point.

◦ Control point adjustment — Section 4.4.6
Set of decision rules to judge when and where a new control point is added or an existing control
point is removed.

◦ Curve approximation metrics — Section 5.2.2.1
Two new metrics used to determine the quality of the curve approximation that give an extended
overview of the algorithm performance.

Marek Szlachetka Freespace detection and examination based on surround occupancy grid
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◦ Detection error metrics — Section 5.2.3
A new way of evaluating the free space boundary approximation from the point of view of vehicle
safety.

◦ Artificial grid generators — Section 5.1.2
Two grid generators (binary grid and occupancy grid) were used for the development of the pro-
posed algorithm and the comparison of algorithms.

◦ Comparison results analysis — Section 5.4
The comparison of the proposed algorithm and the reference algorithm with respect to approxima-
tion quality, detection metrics and footprint.

1.3 Outline

Chapter 2 provides a brief overview of the autonomous driving systems available in the automotive
industry. It sheds light on a history of ADAS systems development and provides information about the
autonomous driving stack starting from sensors and ending up with motion planning.

Chapter 3 is an overview of existing stationary environment models and the way in which they are
identified. It provides a comparison of the models described based on two different indicators. It also
describes the typical flow of the free space determination algorithm. The chapter ends with the choice of
an algorithm used in the thesis as the reference one.

Chapter 4 contains a detailed description of the algorithm proposed by the author. The description starts
with the algorithm interface. Then the fundamentals of the system are defined, including the main as-
sumptions. Next, two major stages of the proposed algorithm are presented: occupancy grid processing
and closed curve estimation, where the B-spline model is incorporated. In the description of the second
stage, the most important inventions proposed by the author are presented.

Chapter 5 contains the performance evaluation proposal in the form of a comparison between the pro-
posed algorithm and the reference algorithm. The entire evaluation methodology is described, starting
from metrics determination, through artificial data preparation and generation, testing and results analy-
sis (incorporating real data as well). Furthermore, some additional analyses of different factors that may
influence the quality of the spline estimation are presented.

Chapter 6 includes the thesis summary together with potential further improvements of the proposed
algorithm.

In Appendix, the definition of a B-spline curve may be found. Appendix also contains extended details
of performed tests such as scenarios visualization or detailed data.

Freespace detection and examination based on surround occupancy grid Marek Szlachetka
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2 Towards autonomous driving

The automotive industry is one of the most dynamically developing fields in the world in recent years.
However, its history goes back several centuries. The first part of this section introduces the history of
cars viewed from the perspective of automated driving development (section 2.1), levels of autonomous
driving defined in J3016 standard (sections 2.2) and automotive standardization requirements (section
2.3). Second part (section 2.4) shows autonomous driving stack starting from the lowest layer i.e. sensors
(section 2.4.1) to the highest one, where most critical decisions are made (sections 2.4.4 and 2.4.5).

2.1 History at a glance

The first ideas of automated mobile date back to 1500s. Leonardo da Vinci invented the self-propelled
cart [Hooper, 2004b] that could move without being pushed or pulled thanks to high-tension springs. The
real pioneer move was taken in 1925. Houdina Radio Control firm developed a radio-operated automobile
[Engelking, 2017], called the American Wonder. A car operator, staying out of the car, could control
via radio small electric motors that directed every movement of the car. They allowed the operator for
cornering, speeding up, slowing down and honking its horn. The car demonstration finished with crashing
into an another car. Despite that, the car industry continued its dream about remote-controlled car.

Figure 2.1. A self-propelled cart replica at
museum Clos Lucé.

In 1939, at World’s Fair, Futurama exhibition [Kröger, 2016]
showed the first self-driving car. They presented electric cars
that were radio-controlled through electromagnetic fields
provided by magnetized metal spikes embedded in the road-
way. This model, more specifically the self-driving car, was
finally deployed in 1958 [pete, 2004]. The car was guided by
changing the electromagnetic fields on the spikes to keep the
car in the designated lane.

At the beginning of the 1960s, cameras were used for the first
time in an autonomous vehicle called Stanford Cart [Earnest,
2012] created by James Adams. Cameras were used to detect
and follow a white line on the ground and to avoid obstacles
placed in cart’s path. After 16 years, in 1977, the University
of Tsukuba’s Mechanical Engineering Lab [Weber, 2014]
improved James’s idea with a camera system. Their first
self-driving passenger vehicle could drive through Japanese
roads at speeds up to 20 miles per hour.

Starting 1984 [Navlab, 2022], the Carnegie Mellon University (The CMU Navlab) began building au-
tonomous cars. They used neural networks for image processing and steering control. Their car, named
NavLab 5, traveled 2797 miles from Pittsburgh to San Diego in 1995 [Todd, 2022]. The Navlab project
achieved 98.2% of autonomous driving.
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There were many international and national projects conducted at the same time. The Prometheus project,
conducted by EUREKA, spent over 1 billion US dollars from 1987 to 1995. In the 2000s, DARPA
(The Defense Advanced Research Projects Agency) started to organize a series of challenges to ex-
pedite development of autonomous cars. The "Grand Challenge" competition is the one dedicated to
autonomous cars. There were 3 organized competitions, in 2004 [Hooper, 2004a], 2005 [Buehler, 2007],
and 2007 [Buehler, 2009], called "Urban Challenge". Then VisLab conceived VIAC, the VisLab In-
tercontinental Autonomous Challenge. Within the challenge, between 20.07.2010 and 28.10.2010, four
vehicles were driving with no human intervention almost 16,000 kilometres (9,900 mi) [VisLab S.r.l.,
2022][Bertozzi et al., 2011] trip from Parma (Italy) to Shanghai (China). By the mid-2010s, major car
companies, as well as rideshare programs, began projects focusing on self-driving technology. However,
true autonomy turned out to be more difficult to achieve than it was initially thought, and many of these
companies eventually went out of business. It is worth to note that in 2020, Uber announced it was
withdrawing from self-driving attempts as a result of safety, lawsuits, and money loss.

Nowadays, there are a lot of cars that reach some autonomous level maturity like 2020 Tesla Model S,
2020 Cadillac CT6, 2020 Nissan Rogue, 2020 BMW X7, 2020 Infiniti QX50, 2020 Volvo XC60, 2020
Mercedes-Benz S-Class, 2021 Toyota RAV4, 2021 Subaru Outback and more that are ongoing in time of
writing of this thesis.

2.2 Levels of autonomous driving

In 2014, SAE organization issued standard J3016 [International, 2021a] that defines 6 levels of
autonomous driving. Since that J3016 started to be the basic one used by wide number of automotive
companies to describe their products. Following autonomy levels have been defined:

2.2.1 Level 0 - no driving automation

It is identified as full manual control. All dynamic driving tasks (DDT) are performed by driver. It means
that the driver is solely responsible for vehicle maneuvering, including accelerating/braking, steering
and any other maneuver necessary to move a car in any direction. Nevertheless, if a car is equipped
with supporting systems such as collision warning, automatic emergency braking, blind-spot warning or
lane-keeping assistance, it is still considered level 0. They don’t control a car and only offer alerts or
mandatory reactions in some cases.

According to the April 2021 revision of SAE J3016, in order to attain a rating above L0 the automated
control must be sustained (not transient/temporary).

2.2.2 Level 1 - driver assistance

Level 1 is distinguished from level 0 by having at least one system that provides steering or brake/accel-
eration feature. The driver is still responsible for driving and must be ready to take control at any time.
An example system could be lane centering or adaptive cruise control. The last one is responsible for
maintaining stable (safe) distance to a car ahead .
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2.2.3 Level 2 - partial driving automation

At level 2, two or more systems work together in order to provide each feature mentioned in level 1 i.e.
steering, acceleration and braking. The difference, with respect to level 1, a requirement to have a car
equipped with both systems instead of only one of it.

2.2.4 Level 3 - conditional driving automation

Starting from level 3 it is assumed that a driver does not drive when automated driving features are
engaged. It is still required to take control by the driver on the system demand. It can happen in such
emergency situation like system failure. Traffic jam pilot (chauffeur) is an example of level 3.

2.2.5 Level 4 - high driving automation

In comparison to level 3, there is no requirement to take control by a driver at level 4. Even in the case
of system failure, a car must stop itself in a safe way. The example can be local driverless taxi.

2.2.6 Level 5 - full driving automation

Level 5 is the highest level of automation. It means that a car can drive itself from point A to point B
without a driver and under any conditions.

2.2.7 Overview

All described levels of driving automation are shortly summarized in below graphic

Figure 2.2. Levels of driving automation. Ref.[International, 2021b]

Freespace detection and examination based on surround occupancy grid Marek Szlachetka
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2.3 Standardization

The area where autonomous cars operate is very demanding as it interferes with human life. To minimize
the probability of failure, a set of standards has been established. The most common are the following.

◦ ASPICE (ISO/IEC 15504) [VDA QMC Working Group 13 / Automotive SIG, 2017]
ASPICE is the industry standard for evaluating software development processes. It helps automo-
tive suppliers implement best practices to point out defects earlier and ensure OEMs’ requirements
are met.

◦ Road vehicles — Safety of the intended functionality (SOTIF/ISO 21448)
[International Organization for Standardization, 2022]
SOTIF is defined as "The absence of unreasonable risk due to hazards resulting from functional
insufficiencies of the intended functionality or by reasonably foreseeable misuse by persons".

◦ Functional Safety (ISO 26262)[International Organization for Standardization, 2018]
ISO 26262 is an international standard that specifies requirements and provides guidelines for the
functional safety of road vehicles.

◦ IEC 61508 [Commission, 2022]
IEC 61508 covers methods for the application, design, implementation and maintenance of auto-
matic safety-related systems.

◦ AUTOSAR [AUTOSAR, 2022]
AUTOSAR stands for "AUTomotive Open System ARchitecture". It standardizes the interfaces
between the software application and the basic functions of the vehicle.

◦ MISRA [MISRA, 2022]
MISRA provides best practice guidelines for the safe use of both embedded control systems and
standalone software.

◦ TISAX [TISAX, 2022]
It is an information security assessment and information exchange mechanism in the automotive
industry.

2.4 Autonomous driving stack

Behind the scene, the self-driving car can be divided into several layers, as is shown in Figure. 2.3. Each
upper layer uses information provided by the lower layers. The most bottom one layer is Sensors, the
host car’s eyes and ears. It is responsible for producing raw information about the host and surrounding
environment. The vehicle state estimation (VSE) utilizes the raw data from the sensors in order to get
most accurate information about the host car, such as its position or speed. The environment perception
provides information about the surrounding environment, both the dynamic world (e.g. moving cars
and pedestrians) and the stationary world (e.g. guardrails). The topmost layers are features and motion
planning. The features are functions, well known for drivers, that supports daily driving like e.g. lane
keeping assistant. The motion planning is responsible for finding a safe (non collision) path from point
A to point B.

2.4.1 Sensors

The basis of autonomous car are sensors. They are equivalent to human eyes and ears (Figure 2.4). This
section is an overview of sensors most commonly used in automotive industry.
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Figure 2.3. Autonomous driving stack

2.4.1.1 RADAR

It stands for Radio Detection and Ranging and consists of at least radio frequency generator transmitter
(76-77GHz range band) and antenna receiver. A transmitter sends scattered waves. They fly out of an
antenna, bouncing off every target they hit. Part of radiations come back to a receiver which, in most
configurations, is located in the same or similar place as the transmitter [Kok and Fu, 2005]. The funda-
mental information provided by radar about a target is [Rahman, 2019]:

◦ range - obtained by recording the round trip time of the pulse
◦ radial velocity - obtained by utilizing the Doppler Effect
◦ azimuth (angular direction) - obtained by antenna rotation or in modern systems by utilizing a

patch antenna with DSP-based pattern beam-forming methodology.

2.4.1.2 LIDAR

LIDAR, or light detection and ranging, uses a light beam, usually generated by an infrared laser diode,
which is reflected from a rotating mirror [Rablau, 2019]. When the light comes across an object that
does not absorb the light, then the light is reflected back to the sensor, which creates a map similar to the
radar. LIDAR’s important parameter is the detection range to an obstacle. The range can be degraded by
wheather conditions (i.e. humidity) and object reflectivity [Ilas, 2013].

2.4.1.3 Camera

Camera absorbs the light as it reflects off an object, just like the human eye. The light beam is split into
3 components red, blue and green and fed to a metal oxide semiconductor or charge coupled sensor.
The light is then converted into an electric charge. The most common way of evaluating distance to an
object is the usage of two cameras called stereo vision. Stereo vision system uses two or more cameras
to provide the depth of objects. A typical configuration uses two cameras separated by a horizontal dis-
tance. There is a correlation between separation distance and the desired depth of field and resolution.
It is similar to human eyes. By giving two different perspectives of the same object, depth can be dis-
tinguished [Ozguner U, 2011] Camera is the sensor, with respect to the others, that has unique abilities
like recognition of flat structures differing only by color or lightness like traffic signs content or road
signs, lanes separating lines and traffic lights. In general the camera image is better suited for object
class determination (distinguish between car, pedestrian, etc.) than e.g. radar data.
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Figure 2.4. An example of car sensing setup. Ref.[Z et al., 2013]

2.4.1.4 Ultrasonic

Ultrasonic utilizes the sound wave that is reflected from various objects within range, and the frequency
of the return pulses is used to estimate the distance. The sound wave is generated by piezoelectric material
that is charged with an alternating electric current, causing its vibration. When it passes through the air,
the sound wave causes the differential pressure and transfers the energy until the wave is dispersed or
reflected [J et al., 2013].

2.4.2 Vehicle State Estimation

Vehicle State Estimation, shortly VSE, is a module responsibly for providing information about the host
car such as position, velocity vector, heading, sideslip and acceleration.

The dead-reckoning is the process of calculating the current position and heading of a moving vehicle
based on previously determined position, speed and direction. It may also be referred as odometry (with
some simplifications). Using only previous position and speed data is not enough to reach high quality
estimation. It is because of things such as slips or sideways movement (sideslip). For this reason, the
Inertial Measurement Units (IMU) are incorporated. The IMU consists of gyroscopes, magnetometers
and accelerometers from which additional information can be used for estimation corrections.

Global Navigation Satellite System (GNSS) utilizes a receiver that gets information from different satel-
lites in order to triangulate its absolute (world) position. The system measures propagation time of radio
signals traveling from the satellites to the receiver. Knowing the speed of the electromagnetic wave and
the exact propagation time, the receiver can calculate the distance from the satellites. The GNSS signal
contains also an information about the placement of satellites and information about their theoretical
path and deviations. The GNSS receiver processes received information and uses it to determine its
distance from individual satellites for which the receiver is within range. Thus, it is possible to esti-
mate position of the GNSS receiver by having distances and positions of satellites using triangulation
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[Schmid, 1974]. The most popular GNSS is GPS (Global Positioning System) [Raju, 2003] developed in
the 1970s. Others well-known GNSS systems are Russian’s GLONASS [Karutin et al., 2021], European
Union’s GALILEO [Rodríguez et al., 2021] or China’s BEIDOU [Betz, 2016a]. Because of estimation
errors caused by many reasons (e.g. satellites’ atomic clock synchronization or receiver noises) followed
improvement of basic GNSS systems was designed: Differential GNSS (DGNSS) [Grewal et al., 2020],
Satellite Based Augmentation System (SBAS) [Betz, 2016b] and Real-Time Kinematic (RTK) [Langley,
1998].

Current vehicle positioning systems are hybrid ones that combine data from various sources such as
odometry, GNSS, LiDAR, RADAR and cameras to obtain best results. Data fusion is usually done by
Kalman Filters [Bersani et al., 2019] or Particle Filter [Zhu et al., 2019][Chu et al., 2015].

2.4.3 Environment perception

The estimation of car surrounding environment is a challenging part of the autonomous driving stack. The
car has to deal with dynamically changing environment, partially occluded road objects or bad weather
conditions. Moreover, environment estimators have to provide feasible world representation, in a form of
mathematical models, based on which upper layers decide for example to stop the host car or not. Thus,
it can save human life.

The environment can be split into two complementary categories: dynamic environment and stationary
environment. The most significant difference between those two is object movability assumption. In
other words, the dynamic environment models provide information only about objects that are currently
moving or have been seen moving in the past.

2.4.3.1 Stationary world

Stationary world estimator provides information about the boundaries of the space within which the
host can maneuver. Stationary obstacles are those that have a constant shape and position on the ground.
There are several models that can represent stationary environment (Figure. 3.2).

Grid maps

Introduced by Elfes in [Elfes, 1989] and Moravec in [Moravec, 1989]. Grid map represents a surrounding
environment in the form of the set of cells of the same size, defined on/over the ground. Each cell
holds information about a part of the surrounding environment. And maps can be discretized in 2 or 3
dimensions (e.g. Octomap [Wurm et al., 2010], multi-level surface [Triebel et al., 2006]). There are also
2.5D maps which hold information about overhanging obstacles or just about the height of obstacles (e.g.
[Gutmann et al., 2005], elevation map [Nam et al., 2017]). The most common grid map is occupancy grid
map [Guerra et al., 2018].

Interval maps

This model can be treated as a one-dimensional special case of a 2D grid map [Weiherer et al., 2013]. It
discretizes surrounding environment along the host car’s longitudinal direction as opposed to grid maps.
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Primitive structures

Primitive structures, as the name suggests, are the simplest models. A surrounding environment can be
represented by primitive structures [Peng et al., 2015], such as circles and rectangles (or quadrilaterals
[T.R. and M., 2019]), or by simple boundaries [Gex and Campbell, 1987a] e.g. lines.

Contours

Contours are yet another way to describe stationary environment. They define a border which is not
drivable/traversable. Contours can be open or closed. An open contour is usually used to describe such
structures like a highway guardrail. Thus, in this case, the open contour is represented by a low de-
gree polynomial (up to 3rd) or by a clothoid [Danescu et al., 2006] (first time introduced to transporta-
tion by Talbot for railways [Talbot, 1901]). More complex are closed contours. If contours are closed,
then a space surrounded by contours defines free space within the host car can move without making
collision with stationary obstacles. There are several ways to model closed contours such as polygons
[Gex and Campbell, 1987b] or closed splines of a degree higher than 1st [Schreier et al., 2016]. The last
one is called "Parametric Free Space" (PFS) in [Schreier et al., 2016].

2.4.3.2 Dynamic world

Knowledge of the stationary environment is not enough to move safely through the world. Stationary
objects do not move at all. In the dynamic environment all objects are movable. Thus, they are more
dangerous and because it is not possible to predict their trajectories over longer time frames. There are
several approaches to work with dynamic objects [Llamazares et al., 2020] called DATMO (Detection
and Tracking of Moving Obstacles). DATMO observes a state of all moving (and temporally stopped)
objects around the host car. Object’s state contains such parameters as position, speed vector, size, class
(car, pedestrian, etc.). State parameters are provided with respect to or compensated by the host state.

There are two main approaches used for determining dynamic world: object-based and grid-based ap-
proaches. There are also other approaches, which are not described in the thesis like deep learning tech-
niques [Pavitha et al., 2021] or more general machine learning [Kraus et al., 2020] (approach supporting
role).

Object-based approach

Object-based approach consists of independent tracking of multiple objects state (properties) in time.
The approach can be decomposed to data association and object tracking.

In association stage new measurements from sensors are assigned to objects, to be used later in mea-
surement update stage. Depending on the method either direct measurements or clustered measurements
may be associated to objects. Association is done based on chosen metric, which describes distance of a
single measurement or cluster of measurements from an object which is already tracked. Various asso-
ciation and clustering methods have been proposed in literature, like e.g. Nearest Neighbor Rule (NNR)
[Hart, 1966][Cover and Hart, 1967], Global Neighbor Rule (GNR) [Konstantinova et al., 2003], Joint
Probabilistic Data Association Filter (JPDAF) [Fortmann et al., 1983][Cox, 1993], Multiple Hypothesis
Tracking (MHT) [Reid, 1979], Density-based spatial clustering of applications with noise (DBSCAN)
[Lim et al., 2018] and more.
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Regardless of the choice of association method, a kind of measurements segmentation (e.g. azimuth-
range based clustering) is needed for new objects initialization. Measurements which are free (not asso-
ciated to any object thus not used in measurement update) are clustered to distinguish groups of consistent
measurement which can indicate the existence of a real object which is not yet tracked. After sufficient
information is collected in a cluster of measurements then new object can be created out of this cluster
and added to the list of tracked objects.

Object tracking is a stage of the object-based approach that deals with object’s mathematical kinematic
model and utilizes measurements associated to the object to update its state. The tracking is usually
performed by a Kalman Filter [Kalman, 1960] or its variants like Extended Kalman Filter [Ribeiro, 2004],
Unscented Kalman Filter [Chen et al., 2018] or information filter [Assimakis et al., 2012]. Another way
is to use non-parametric filter like Particle Filter [Doucet et al., 2000].

Grid-based approach

The grid-based approach uses occupancy grids. Each cell of the grid is tracked independently. Bayesian
Occupancy Filter [Coué et al., 2006][Saval-Calvo et al., 2017] and Dempster-Shafer Theory [Dempster,
2008] are examples of methods that can be employed for this task.

Cellular automaton

A cellular automaton is a mathematical model that can be used to simulate complex systems [Neumann,
1966][Wolfram et al., 2002]. It consists of a grid of cells, where each cell has a finite number of states.
The state of each cell is determined by the states of its neighboring cells and its current state, accord-
ing to a set of predefined rules. These rules specify how the state of each cell should change based
on the states of its neighbors. Cellular automaton is used in the study of car traffic flow and conges-
tion [Nagel and Schreckenberg, 1992][Małecki et al., 2022] as well as pedestrian dynamics simulation
[Burstedde et al., 2001][Wąs and Lubaś, 2014].

2.4.4 Active safety features

This section contains a brief overview of selected active safety features. All described features can differ
between cars providers e.g. in conditions under which the system is active or not. Figure 2.5 presents
usecase example for each described, in the following section, feature.

2.4.4.1 CTA - Cross Traffic Alert

Mostly used in reversing scenarios (Rear CTA). The CTA is intended to support the driver by detecting
vehicles crossing the host car path [Spampinato et al., 2018], for example while leaving parking slot
surrounded by other cars limiting road visibility. The support is done by alarming the driver via sound,
light or on a screen (showing approaching vehicle).

2.4.4.2 AEB - Automatic Emergency Braking

The AEB rule is to stop the host car in order to avoid a collision. Once AEB discovers danger situation,
it tries to warn driver and other road actors. If a driver does not react on time then AEB decides to stop a
car on it own [Guo et al., 2022]
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(a) LKA/LDW features. (b) ACC feature.

(c) LCA feature. (d) BLIS feature.

(e) AEB feature. (f) CTA feature.

Figure 2.5. Examples of features usecase scenarios. Legend: yellow - the host car, red
- interesting object(car or pedestrian), white - extra objects

2.4.4.3 BLIS - Blind Spot Information System

It is a system that detects the presence of another vehicle in so-called blind spot area, which is not covered
by the door mirrors [Liu et al., 2017]. BLIS is also called Blind-Spot Warning (BSW).

2.4.4.4 Lane Assistants system

LA - Lane Assist

Lane Assist is an advanced safety system that warns against unintended changes in lane while driving in
a traffic and can cope with driving for a short time on its own.

LCA - Lane Change Assistant

Lane Change Assistant supports the driver once he wants to change a lane [Roelofsen et al., 2010]. The
LCA looks for potential dangerous obstacles or other road actors approaching in adjacent lanes. There are
two kinds of LCA. One just informs the driver about potential danger. More advanced one can perform
lane change maneuver on its own.
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LDW - Lane-Departure Warning

An active system designed to increase driving safety by warning against unintentionally departing from
its own lane [Chen et al., 2020].

LKA - Lane-Keeping Assist

A system that can be treated as extension of LDW. It warns the driver and, in case of no response, takes
control to ensure the vehicle stays in its lane [Sentouh et al., 2018].

2.4.4.5 ACC - Adaptive Cruise Control

Adaptive cruise keeps a constant distance between the host car and the car in the front, automatically
maintaining a safe distance [Rajamani, 2021]. If traffic slows down, the system stops or slows down the
host car and automatically restores speed when traffic resumes, allowing the driver to focus on lateral
steering only.

2.4.5 Motion planning

The top of the autonomous driving stack is occupied by motion planning. Its responsibility is generating
collision-free trajectory from a start position to a destination position. In details, it consists of three
modules: mission planner, behaviour planner and local planner. Each module incorporates information
provided by previous module (except the mission planner) in its calculations.

2.4.5.1 Mission planner

Mission planner is a first step in motion planning. Its main task is to construct a global path from a start to
destination position. It is similar to well-known google maps or similar navigation systems [Rathnayake,
2018]. Mission planner finds the best possible path based on a cost function. It can be for example the
fastest road (in terms of time) or the shortest (in terms of distance). Most of the algorithms used in mis-
sion planer are graph/tree-based methods. Examples of used algorithms are: Breadth-First-Search (BFS)
[Cormen et al., 2022], Dijkstra’s algorithm [Dijkstra, 1959], [Wenzheng et al., 2019], A* algorithm ("A"
star) [Hart et al., 1968], D* algorithm ("D" star) [Stentz, 1997], Aggressive Heuristic Search (AHS)
[Liu and Li, 2018], Jump Point Search (JPS) [Harabor and Grastien, 2011] and more.

2.4.5.2 Behavior planner

The Behavior planner plans a set of high-level actions/maneuvers to safely complete a driving mission
under various road conditions. It takes into account such constraints as road rules (e.g. speed limit, stop
locations), static and dynamic objects around the vehicle [Sadat et al., 2019]. As a result, the behavior
planner provides a driving maneuver to be executed with a set of constraints including among other the
host’s speed.
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2.4.5.3 Local planner

The local planner is the last step in motion planning system. It consists of a path planner and a velocity
profile generator. The path planner computes the trajectory of the collision-free path [Oliveira et al.,
2018], mostly in short distance horizon. The velocity profile generator is responsible for computing goal
velocity including, among others, comfort constraints.
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3 Stationary environment modeling and estimation

Modeling the stationary environment is a crucial part of the autonomous driving stack. There are several
stationary environment models described in the literature. Each model describes the stationary environ-
ment in a different way. Different implementations are constrained among others by use case, i.e. driving
scenario (e.g. highway, city, parking), type and number of available sensors, or by memory footprint and
computing power demand.

This chapter presents existing models grouped in two categories i.e. parametric (section 3.2) and non-
parametric (section 3.1) ones. The described models are compared at the end of the chapter (Section
3.3). Figure 3.1 is a kind of legend explaining common objects used in Figure 3.2 that presents different
representations of stationary environments described in this chapter.

Figure 3.1. Legend for stationary environment representations shown in Figure. 3.2.
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(a) Occupancy grid map. (b) Interval map.

(c) Primitive structures. (d) Open contours.

(e) Closed contours (polygonal chain)
(f) Closed contours (high degree spline) as outer boundary
and primitives for inner obstacles.

Figure 3.2. Examples of 2D stationary environment representations (ideal-
ized)[Szlachetka et al., 2020].
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3.1 Non parametric models

Typical feature of non-parametric models is a relatively dense discretization of the model domain. Each
cell of this discretized domain stores its own parameters that describe only the matching portion/part
of the model domain. It is quite common that parameter sets are decoupled, that is, the parameters of a
particular cell are independent of those of other cells. Then each cell parameter can be estimated inde-
pendently of the others. The number of domain cells does not change with time (that is, in subsequent
identification of the model or its refinements). An example of a parametric model of a dynamic sys-
tem can be its frequency response obtained by means of the discrete Fourier transform. In the case of
stationary environment modeling, this domain can be either a longitudinal position along the host path
(projected and past), a ground plane, a volume, or an azimuth angle anchored in the middle of the host
vehicle.

3.1.1 Grid maps

Grid maps come from robotics [Urmson et al., 2008] and their basic idea is a dense and uniform dis-
cretization of the environment. In other words, grid maps represent the world in the form of square cells
in 2D grids or cuboids in 3D grids.

3.1.1.1 Occupancy grid

The occupancy grid is the most widely used type of grid map. It can handle a wide spectrum of sensor
types and can support obstacles detection, objects tracking, and the host vehicle localization. Each cell
of the occupancy grid contains information about the probability that the cell is occupied, that is, not
drivable for the host vehicle. A high probability in a given cell indicates that the system is confident
about the existence of a real obstacle in this cell, and thus the host should not move there.

In general, a 2D occupancy grid (Figure 3.2a) can be modeled as follows:

M(t) =
{
mt

i,j

}
(3.1.1)

mt
i,j = Pobstacle (mi,j |(xi, yi)) (3.1.2)

∨
i ̸=a,j ̸=b

: mi,j ∩ma,b = ∅ (3.1.3)

t – time
M(t) – occupancy grid matrix in time t
mt

i,j – nondrivable obstacle probability in (i, j) grid cell in time t
x, y – directions in cartesian grid

i, j, a, b – grid cell indexes

Putting it differently, each cell is independent and describes a small part of the environment. A single
cell (as well as the entire grid) is immobilized to the ground. In this way, information about specific
portions of the stationary environment is well accumulated within the cells over time. In practice, working
with probabilities (3.1.2) is mathematically inconvenient. Therefore, the odds1 are used instead. At each

1The odds are defined as the probability that the event occurs divided by the probability that the event does not occur

Freespace detection and examination based on surround occupancy grid Marek Szlachetka



40 3.1 Non parametric models

iteration of the estimation of the occupancy grid parameters, new sensor measurement data is utilized to
obtain the best possible reflection of the real world. A new measurement z(tn), at iteration tn, is fused
with the prior cell state m

tn−1

i,j to obtain the posterior cell state mtn
i,j . Fusion of measurement data with

the occupancy grid is done with the help of sensor modeling, which transfers as much information as
possible from the detection model to the occupancy grid. There are two families of sensor models known
in the literature, namely forward sensor models [Carvalho and Ventura, 2013] and inverse sensor models
[Andriamahefa, 2017].

The integration of data from various sensors is vital in occupancy grid processing. Through data fusion,
the information obtained from each sensor is combined to create a detailed and precise representation of
the environment. Prior to fusion, inverse sensor modeling is applied to each sensor detection to ensure its
accuracy. This results in the creation of a reliable and accurate occupancy grid, providing autonomous
vehicles with a reliable tool for safe navigation and operation.

The occupancy grid can be defined using one of the three main probability frameworks. They are the
Bayesian probability framework [Parsons, 2006], Dempster-Shafer Theory (DST) [Challa and Koks,
2004] and Dezert-Smarandache Theory [Smarandache and Dezert, 2005]. The Bayesian probability as-
sumes only two states of a cell, i.e. "occupied" and "free". These states are mutually exclusive. This
means that the sum of probables is equal to 1. Once the probability of being "occupied" is decreased,
then the probability of being "free" is increased at the same time. The Dempster-Shafer model extends
the Bayesian probability framework by introducing the "unknown" hypothesis. Thus, there is no direct
connection between the "occupied" and "free" states. The last framework, Dezert-Smarandache Theory
(DSmT), goes even further and introduces the intersection of states, i.e. "occupied and free". The DSmT
is a generalization of the DST.

It is important to note that the utilization of the occupancy grid maps is not done in the same way as is
done in the robotic field. There are several assumptions specific to the automotive field only [Porebski,
2022]:

◦ each cell is an independent Markov stochastic process,
◦ the host vehicle position on the gird is known,
◦ the occupancy grid is a square (and each cell too) map limited only to the host local surrounding

environment,
◦ the occupancy grid map can only be shifted relatively to the fixed world frame without rotation.

3.1.1.2 Multi-dimensional 2.5/3D grids

Two-dimensional (2D) grids naturally expand by adding a dimension in the vertical direction. Early work
on 3D grids can be found in [Moravec, 1996] and [Roth-Tabak and Jain, 1989]. Three-dimensional (3D)
grids are usually composed of cubes (or cuboids) and can contain information similar to that of 2D grids.
The advantage of a 3D grid over a 2D is the ability to see the height of ground obstacles and height
of overhanging obstacles such as bridges or road signalization. It is crucial information for determining
traversability. Cars can drive under bridges and over some low road structures like curbs (if the curb
height is low enough). 3D grid maps are not so popular in ADAS due to significant memory size increase
in comparison to 2D grids. Nevertheless, in the literature, some improvements in optimizing 3D grid
memory size can be found as an octomap [Wurm et al., 2010]. The Octomap model is based on the octree
data structure. Each cell in the octree can be recursively divided into eight subvolumes. This enables loss-
less compression, which significantly reduces memory size. Another way to have an applicable ADAS
model that allows determining traversability is to extend the 2D grid by only height/overhang informa-
tion. An example can be the "elevation map" [Nam et al., 2017] or [Gutmann et al., 2005]. This approach
is good enough to describe an environment that is composed only of grounded obstacles (curbs, stopped
cars, guardrails, dots, etc.). It cannot handle overhangs or vertical structures that are not connected (not
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Figure 3.3. Example of vertical cross-section of a traffic light represented in 2.5D/3D
grid maps. Top left: 3D grid, top right: elevation map (2.5D), bottom left: multi-level
surface map (2.5D), bottom right: Octomap (3D). The occupied area is shown in yel-
low. Ref. [Szlachetka et al., 2020]

touching) to the ground. This drawback can be overcome by approaches such as the "multi-level surface
map" [Triebel et al., 2006]. It allows storage of multiple surfaces in each cell of the grid. It has the ability
to describe overhanging and vertical obstacles with a high level of accuracy while having a low memory
requirement. All grid maps models are illustrated in Figure 3.3.

3.1.2 Interval maps

This model can be treated as a special one-dimensional case of a 2D grid map [Weiherer et al.,
2013][Weiherer et al., 2012]. An example of such a model is shown in (Figure 3.2b). It discretizes the
surrounding environment along the longitudinal direction of the host car. Instead of square cells, there
are intervals (I) of given length and width. This implies that the lateral information is continuous (not
discrete) and thus more precise than the longitudinal information, which is discrete. It is more profitable
for a highway scenario where lateral information is more important than longitudinal information. Within
each interval, information regarding the lateral span of obstacles is stored within this interval. It can use
following forms: a point structure (PC) describing obstacles which vertical span is low (e.g. fence or
guardrail) or an interval structure (IC) describing obstacles which vertical span is significant (e.g. parked
car or building).

I
(t)
i =

[
PC

(t)
1 , ..., PC

(t)
k , IC

(t)
1 , ..., IC(t)

m

]
(3.1.4)

PC(t) =
[
y(t), ϕ(t)

]
(3.1.5)

IC(t) =
[
y
(t)
start, ϕ

(t)
start, y

(t)
end, ϕ

(t)
end

]
(3.1.6)

t – time
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I
(t)
i – i-th interval at time t

PC
(t)
k – k-th point structure at time t

IC
(t)
m – m-th interval structure at time t
y – obstacle lateral position
ϕ – obstacle orientation
x – longitudinal position (used in case of an associated moving object to a cell)

P (o|z) – posterior occupancy probability
nage – the age of the cell

IDobject – the ID of an associated dynamic object

Measurement

Map

Ego compensation

Association & update

Prediction

Feature extraction

Merge

Figure 3.4. The interval map parameters estimation flow diagram.

The authors then extended the basic method by a probabilistic approach that can track the probability
of occupancy in each interval instead of just binary information about occupancy. They introduce an
occupancy interval structure (ICoc).

IC(t)
oc =

[
y
(t)
end, σ

2(yend)
(t), x(t), P (o|z(1:t)), n(t)

age, ID
(t)
object

]
(3.1.7)

x – longitudinal position (used in case of an associated moving object to a cell)
P (o|z) – posterior occupancy probability

nage – the age of the cell
IDobject – the ID of an associated dynamic object

Each interval is divided into cells as shown in Figure 3.2b. A cell is a lateral span that has some probabil-
ity of being occupied. The lateral span of a cell is defined by its two borders represented by continuous
(floating) values. An estimation algorithm for the parameters of the interval map is shown in Figure 3.4.
The estimation starts with the host motion compensation, which compensates for: longitudinal move-
ment, lateral movement, and rotation. In each iteration, if the longitudinal forward host position increase
is greater than the longitudinal span of a single interval, the intervals’ information is shifted toward the
host as in a shift register. A new interval then appears at the front far end, whereas the interval behind the
host is discarded.
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Figure 3.5. Visualization of the PC rotation component [Weiherer et al., 2013].

These cells borders make some state, which is tracked by the Kalman filter. The prediction stage is done
on the basis of cell borders from previous iteration and host movement kinematic model. The predicted
cell borders in a given interval are then updated by new measurements detected in this interval (if any,
Figure 3.6). To avoid too much fragmentation of cells within a single interval, a merging of cells having

Figure 3.6. The extraction of measurement data from raw sensor data into IC repre-
sentation [Weiherer et al., 2013].

similar occupancy probability is performed. The interval map can also utilize information about moving
objects (provided by the moving object tracking system). Once a cell is associated with a moving object,
the object ID is written to the cell.

The interval map model can be extended even further by dynamically bending the entire interval map
according to the curvature of the host trajectory [Li et al., 2018]. This extension makes the model more
suitable for curvy roads.

3.2 Parametric models

A parametric model is characterized by having a limited set of parameters that define the model in its
entire operational domain. Usually, parameters cannot be estimated independently of others.
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3.2.1 Primitive structures

Primitive structures are the simplest models. Structures are geometric shapes such as circles and quadri-
lateral or simple boundaries, for example, lines (Figure. 3.2c). Taking [T.R. and M., 2019] as an example,
an obstacle detection algorithm process is shown in Figure 3.7. LIDAR detections are used as input.

Despite the fact that most modern lidars, installed on car’s roof, provide in each scan a 3D point cloud
describing the environment around the car (full 360 degree view seen at several fixed elevation angles),
the one used in this example is a forward looking only planar lidar. It scans the environment in front of
the vehicle in a single horizontal plane perpendicular to the ground. The lidar is mounted on the front of
the vehicle and provides a single line of detections. Each detection carries information about the azimuth
angle and range r, i.e., the distance to the closest non-drivable obstacle on a given azimuth.

The algorithm starts with temporal-spatial filtering of lidar points by applying a 3x3 median filter:

rt−1
i−1 rt−1

i rt−1
i+1

rti−1 rti rti+1

rt+1
i−1 rt+1

i rt+1
i+1

 (3.2.1)

t – current time
i – lidar scan azimuth index
rti – distance to the closest obstacle on the i-th azimuth

Measurement

Primitive structures

Measurement filtering

Preprocessing

Clustering

Figure 3.7. The interval map parameters estimation flow diagram.

Points, filtered in the preprocessing step, are then grouped into blocks based on the consistency rule,
i.e., the blocks are separated by gaps in the points. These blocks are merged or split afterwords based on
the distance between blocks (i.e., the distance between the border points of neighboring blocks). In the
clustering step, all created blocks are evaluated into one of the following shapes:

◦ circle - if a block has five or fewer points. The center of the circle is the midpoint of the line
that connects the first and last points with a radius equal to the maximum distance between the
midpoint and all points within the block.

◦ line - if a block has more than five points. The line is created at the first and last points. The
distance between the line and each point of the block must be less than 0.1% of the line length.

◦ quadrilateral - same requirements as for a line, but the distance between the line and each point of
the block must be greater than 0.1%. The block endpoints are two of the quadrilateral vertices, and
the two points with the longest distance from the line are the other two points of the quadrilateral.
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3.2.2 Contours

As mentioned in section 2.4.3.1, contours define a non drivable border. They can be open or closed. The
following subsections describe them on the basis of examples.

3.2.2.1 Open contours

Open contours are used to describe road structures distributed/located along the road such as guardrails,
tunnel boundary or anything that limits a road on one or both sides (left and right) (Figure 3.1). Open
contours can be represented by polynomials, a clothoid, or a spline.

In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and
coefficients as follows:

f(x) = ckx
k + ck−1x

k−1 + ...+ c1x+ c0 (3.2.2)

x – variable
ci – coefficients
k – polynomial degree

Usually, the 1D polynomial domain is oriented parallel to the direction of the movement of the host car
to estimate the parameters of road structures such as highway guardrails. From a mathematical point of
view, a polynomial has no limits. In automotive, it is important to specify obstacle size such as guardrail
length. Thus, models like 3.2.2 are limited by xmin (lower bound) and xmax (upper bound). Figure 3.8
shows these limits.

Figure 3.8. Polynomials that approximate the road corridor with their longitudinal
limits.
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A clothoid, also called an Euler spiral, is a curve which curvature changes linearly with its curve length:

x = a
√
π
∫ t
0 cos

(
πt2

2

)
dt

y = a
√
π
∫ t
0 sin

(
πt2

2

)
dt

(3.2.3)

t – parameter t = s
a
√
π

a – coefficient from the equation expressing the proportionality of the curvature κ to the length
of the arc κ = s

a2

s – arc length

A vehicle moving along a clothoid with constant linear velocity has uniform angular acceleration and
uniformly increasing centrifugal force. Therefore, clothoid functions are often used in the design of
highway interchanges and lane markers.

Measurement

Lanes obstacles

Preparing the input data

Side lane localization and
validation

Using the obstacles in
side lane validation

Road lane parameters

Lane detection algorithm

Figure 3.9. The clothoid parameters estimation flow diagram

Taking as an example [Danescu et al., 2006], an estimation of open contour boundaries parameters, in
the form of a clothoid, is shown in Figure 3.10.
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Figure 3.10. The shape of a clothoid.

The algorithm consists of two steps: lane detection where the host car is currently and side lanes (bound-
aries) parameters estimation. Lane detection is done using 3D lane detection system [Nedevschi et al.,
2004b]. The boundaries parameters estimation starts with preparing of 3D points input data. First, all
points that do not belong to the road surface are filtered out. For the remaining points, their lateral pa-
rameters (in the curvilinear coordinate system) are estimated and transformed into the car coordinate
system. This step can be treated as straightening the set of curved points.

Figure 3.11. Point uniformization: a) Original set of points, b) Added grid on points,
c) Evaluated grid based on points, d) Uniformed set of points, Ref: [Danescu et al.,
2006]

The algorithm then obtains uniform points using a simple grid (Figure 3.11). All points are collected in
cells on the basis of the straighten position. Each cell, which contains some points, generates a uniform
point. Uniform points that fall within the search areas of the left and right lane (search areas generated
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by prediction using past results and associated uncertainties) are used to construct two histograms. A
histogram (count histogram) represents the distribution of points versus the lateral position. Another
histogram is a weighted one, where each entry represents the sum of weights of points corresponding to
the lateral position. On the basis of the mentioned histograms, a validation of the side lines is done. A
valid side line can be invalidated by the presence of an obstacle within a 15-30 m longitudinal interval
afterward. An obstacle is detected based on [Nedevschi et al., 2004a].

Another suitable model to describe a contour is a spline curve. It is made up of connected polynomials
of fixed and low degrees (usually up to the third degree). The smoothness of a spline curve depends on
the continuity of its higher derivatives at knots (spline domain points at which two adjacent polynomials
connect). The first degree spline (consisting of polynomials of the first degree, that is, a piecewise linear
spline) is just a polyline (Figure 3.2d). Its segments are continuous, while its first derivative is discontin-
uous at knots (it is piecewise constant), so it is not smooth. The smoothness of the spline increases with
the degree of the spline because a higher order of spline derivatives can be continuous.

The spline is a special type of curve, which is defined in piecewise polynomials. Each polynomial can
have a very simple form, yet a whole spline is flexible and can reflect complex shapes at the same time.
The spline r in one variable s ∈ [a, b] is defined as [Micula and Micula, 2012]:

r(s) : [a, b] → R (3.2.4)

The interval [a, b] can be defined as k ordered, disjoint subintervals:

[ti, ti+1] i = 0, ..., k − 1 (3.2.5)

ti – i-th knot

Thus

[a, b] = [t0, t1) ∪ [t1, t2) ∪ ... ∪ [tk−1, tk) ∪ [tk]
a = t0 ≤ t1 ≤ ... ≤ tk−1 ≤ tk = b

(3.2.6)

Each piece-wise polynomial P can be defined as:

Pi : [ti, tt+1] → R (3.2.7)

By using equation 3.2.7 in equation 3.2.4, we get the following.

r(s) =


P0(s), t0 ≤ s < t1
P1(s), t1 ≤ s < t2
...

Pk−1(s) tk−1 ≤ s ≤ tk

(3.2.8)

Additionally:

◦ The spline r(s) is said to be of degree n when each Pi(s) is at most degree n.
◦ The vector t = (t0, t1, ..., tk) is known as the knot vector. If the values (knots) in the vector t are

equally distributed in the whole s—-interval, then the spline is uniform, otherwise non-uniform.
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3.2.2.2 Closed contours

Closed contours are used to describe the free space boundary enclosing the host car, within the host
car can move without making a collision with stationary obstacles. They can also represent complex
structures mapped around (of known ground-plane intersection shape).

The polygon, also known as the closed polygonal chain, is the basic example of a closed contour (Figure
3.2e). It is just a series of connected line segments. More segments are needed to achieve better accuracy
of complex shape approximation. In most cases, the number of segments is limited, which affects the
accuracy of the approximation. This problem can be solved using a more flexible contour representation,
such as the spline of a second or third degree (Figure 3.2f).

An example of the determination of the polygonal chain algorithm described in [Gex and Campbell,
1987a] and its flow is shown in Figure 3.12.

Measurement

Polygonal chain

Triangle creation

Union with existing chain

Figure 3.12. The polygonal chain parameters estimation flow diagram

The algorithm starts with the creation of triangles. The triangle represents the acoustical cone dispersion
in two dimensions. One of the triangle vertex is located at the sensor position. The space inside the
triangle is free from obstacles. The size of the triangle is the distance to the detected obstacle or the
maximum detection range of the sensor (distance) if no obstacle is detected (distance between point
A and segment CB in Figure 3.13). The triangle is fully determined in absolute coordinates using the
position and heading of the vehicle, the position of the sensor, the direction, and the return. Once the
triangle is ready, it is combined with an existing chain as a union of both. The figure. 3.13 shows the
union example. The ABC triangle has intersections with existing chains 0-14 at points Q and P. As a
result, the boundary is extended between points 6 and 7 by the PBCQ chain.

A more complex approach to describe the surrounding environment, called the "Parametric Free Space"
(shortly PFS), is proposed in [Schreier et al., 2016]. It uses a 2D parameteric uniform periodic B-Spline
(a special case of a spline curve) to model outer boundary of the free space and primitives for interior
obstacles.

The parametric curve r(s) used by the PFS algorithm is defined as follows:

r(s) =

[
x(s)
y(s)

]
=

[
B(s)T 0

0 B(s)T

]
qP (3.2.9)

B(s) = [B0(s)B1(s) ... BNb−1(s)]
T ∈ RNb (3.2.10)

qP = [qx,0 ... qx,Nb−1 qy,0 ... qy,Nb−1]
T ∈ R2Nb (3.2.11)
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Figure 3.13. Polygonal chain union with the sensor triangle. Ref: [Gex and Campbell,
1987a].

x(s) – longitudinal component of the parametric curve
y(s) – lateral component of the parametric curve
B(s) – quadratic basis function used to generate the B-spline curve
qP – control points vector
Nb – number of basis functions (control points)

B-spline periodicity is a feature that allows the curve to be closed while the curve endpoints are joined
as smoothly as all polynomial segments of the curve. The flow of the PFS algorithm is shown in Figure
3.14.

Median filtering

Thresholding

Morphological erosion

Connected components labeling

Free space segment selection

Morphological dilation

Free space boundary tracing

Image processing

B-Spline tracking

Attribution

Shape classification

Primitives bounding

Free space tracking

Figure 3.14. The flow diagram of the PFS algorithm.
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It can be noticed that PFS’s goal is not to estimate free space area parameters (it is already done by the
occupancy grid) but to limit the amount of data provided to a receiver, i.e., information compression.
The size of control points vector defining fully the fee space boundary is significantly smaller than the
size of an adequate occupancy grid. Thus, it is better suited to send over automotive interfaces of limited
bandwidth. The PFS algorithm is described in detail in Section 4.

3.3 Models comparison

All models mentioned so far are not perfect (issues-free). They were invented to solve some specific
problems or to fit specific scenarios and project constraints.

3.3.1 Provided features

Table 3.1 shows a summary of the models mentioned with respect to the features listed below.

◦ SI sensor independence — ability to work with data coming from different sensor types
◦ G granularity — the level of detail to model complex stationary environment
◦ T traversability — the ability to determine passability classes (e.g. underdrivability)
◦ C overall complexity — the memory consumption and computing power requirements of the

model

Table 3.1. Models comparison. Ref. [Szlachetka et al., 2020]

Model SI G T C
Interval map HH L NA L
2D Occupancy grid HH HH NA M
Elevation map M H L H
Multi-level surface M H M H
Octomap M HH HH HH
3D Occupancy grid M HH HH HH
Primitives H L NA LL
Contours H M NA L

LL - very low, L - low, M - medium, H - high, HH - very high, NA - not available
SI - sensor independence, G - granularity, T - traversability, C - complexity

The most sensor-independent models are those based on spatial discretization, but only in 2D. 2.5D/3D
models require sensors that provide height/elevation information. Grids are also the most granulated
models. However, the level of detail depends on the resolution of the grid. In terms of traversability,
only 2.5D/3D grids can provide obstacle height/overhand information. Grids are mostly the best in this
comparison, but their complexity is the highest as well.

3.3.2 Fitting to scenario

Each of the models mentioned can work well in some scenarios, achieving good approximation quality
while presenting bad quality in others. Table 3.2 contains summary information on the feasibility of the
models for three common scenarios, i.e., highway, city and parking. In a highway scenario, the host car
would require information about road limits (usually guardrails or curbstones), as well as information
about lane. Simple geometric shapes which are distributed longitudinally as e.g. highway barriers can
be sufficiently described by polynomials or clothoids. Thus, contours or interval maps are the most
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sufficient choices. In automated parking or urban driving situations, a model that can describe complex
shapes consisting of road dividers, empty parking slots, parked cars, etc. is necessary. For such scenarios,
grids fit the best because they do not make assumptions about the shape of the modeled obstacles. The
models are compared using separate driving scenarios. The host car usually drives through all scenarios
on a daily basis. Having all models integrated at a time is not sufficient approach, for example, due to
memory limitation and model switching issues. Among all models contours seem to be the most universal
choice, good for all considered scenarios if system is limited to handle only one model.

Table 3.2. Feasibility of models to different road scenarios. Ref. [Szlachetka et al.,
2020]

Model Highway City Parking
Interval map HH M M
2D Occupancy grid H HH HH
Elevation map M HH H
Multi-level surface M HH H
Octomap M HH H
3D Occupancy grid M HH H
Primitives L LL H
Contours HH H H

LL - very low, L - low, M - medium, H - high, HH - very high

The extended comparison of different models can be found here [Szlachetka et al., 2020].

3.4 Typical data flow in free space determination algorithms

All mentioned algorithms have similar information flow, i.e. steps required to go through. Four main
steps can be identified (Figure 3.15): measurement preprocessing, host movement compensation, pre-
processed measurement utilization, and post updates. The details of each step strongly depend on the

Measurement 
&

host parameters

Model state

Measurement preprocessing

Host movement compensation

Preprocessed measurement
utilization

Post updates

1

2

3

4

Figure 3.15. Typical data flow consisting of 4 steps.
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type of measurement and the model of stationary environment used.

1. The measurement preprocessing step is characterized by data filtering and/or clustering. The initial
number of measurement data is reduced by eliminating false positives and grouping the remainders
into clusters.

2. Host movement compensation, also known as time update, is apparently not needed for station-
ary environment, which does not change in time. However, the coordinate system of stationary
environment models is usually not anchored to the ground (fixed world coordinates), but is tied
to the host car that is moving. Thus, stationary objects change their host relative position, so the
movement of the host car needs to be compensated for. This step also includes clipping areas of
the model that move out of the sensors’ field of view (areas no longer visible for the sensors).

3. Preprocessed measurement utilization is the step in which preprocessed measurements are used to
update the state of the model with the latest available information. This update is often weighted by
probabilities of current state, and updating measurements using Bayesan Filter or Kalman Filter.

4. Post updates is a last step, in which different bookkeeping operations are usually done. It strongly
depends on the model type. It can be, e.g. merging or splitting of contours, removal outdated parts
of the model, or additional classification of traversability.

3.5 Reference choice

Yet despite the flexibility and advantages of the PFS approach, it has several drawbacks and room for
improvement. Taking into consideration the entire chapter and the information contained therein on sta-
tionary environment models and algorithms used for their identification, the PFS has been chosen as a
reference algorithm and a starting point for the development of an improved algorithm proposed in this
thesis.
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4 Free space boundary tracking by a 2D spline with dynami-
cally adjusted control points

The algorithm described in this section is the main contribution of the author. The proposed algorithm
reflects the free space boundary of the stationary world using a closed 2D B-spline as a mathematical
model. It focuses on the dynamic control points adjustment, making the approximation of the stationary
world more accurate. The form of the algorithm description is as follows. Section 4.1 contains the al-
gorithm interface where the input and output data are described. Then the fundamentals of the system,
such as the description of the mathematical model used, are mentioned in Section 4.2. Section 4.3 de-
scribes the first part of the algorithm, which is the processing of the occupancy grid. The next Section
4.4 describes an iterative estimation of the B-spline curve that includes elements such as the adjustment
of control points. The high-level flow chart of the proposed algorithm is shown in Figure 4.1.
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Spline:
Host movement compensation

Measurement processing
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Figure 4.1. The flow chart of the proposed algorithm distinguishing my contribution
(original ideas) from the prior art.
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4.1 Interface

The interface of the proposed algorithm describes all input data required and defines the output data
(Figure 4.2). In the following sections, both input and output data are described in detail.

Proposed
algorithm Control points

Occupancy
grid

Host car
signals

Configuration

Figure 4.2. The high-level interface of the proposed algorithm.

4.1.1 Input

The proposed algorithm’s input data consists of two parts: host signals and the occupancy grid. It has
been decided to keep the same input signals and parameters used in the PFS to make the comparison of
both algorithms fair. In detail, the input data consists of occupancy grid data and host car data.

4.1.1.1 Occupancy grid data

Configuration:

◦ grid length [m] — longitudinal size of the grid
◦ grid width [m] — lateral size of the grid
◦ cell size [m] — length of a side of the square cell of the grid

Run-time data:

◦ occupancy probability matrix [0-1] - NxM matrix storing occupancy probability of each cell

The input occupancy grid is a squared area that represents the surrounding environment around the host
car. The grid can move only by the integer multiply of the cell size in either the lateral or longitudinal
direction of the grid. The orientation of the grid in the World Coordinate System (WCS) is fixed regard-
less of the varying host orientation in the WCS. It settles during ignition and does not change afterwards
(see Figure 4.3).

4.1.1.2 Host car data

Configuration:

◦ host length [m] - host car length
◦ host width [m] - host car width

Run-time information:

◦ orientation [rad] — host car orientation with respect to the grid longitudinal axis
◦ velocity

• longitudinal [m/s] — longitudinal component of host velocity (parallel to the grid longitu-
dinal axis)
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Figure 4.3. Illustration of how the occupancy grid is shifted in 6 consecutive time
instants while the host is moving and its orientation varies. The grid at time 0 depicts
the initial grid orientation after ignition on.

• lateral [m/s] — lateral component of host velocity (parallel to the grid lateral axis)
• covariance [m2/s2] — covariance matrix of host velocity components

◦ position — position of the host car center
• longitudinal [m] — longitudinal position of the host center in the occupancy grid
• lateral [m] — lateral position of the host center in the occupancy grid

All of the host car signals are provided in GRCS i.e. in the grid coordinate system. The origin of GRCS
is located in the corner of the grid. Figure 4.4 explains some of the input data mentioned. The position
of the host car within the occupancy grid is set around the center of the grid. It is not hardcoded due
to inconsistency between the host shifting and the grid shifting (host movement compensation) between
following cycles.

4.1.2 Output

The output of the proposed algorithm contains the minimum information that the end user needs, suffi-
cient for an unambiguous reconstruction of the free space boundary, i.e. control points position vector.
The other necessary part, i.e. the degree of the B-spline is fixed, known to the user, and thus it is not a
part of the output.

Properties (in GRCS) of each control point in the output vector (Figure 4.5):

◦ position
• longitudinal [m] — longitudinal position
• lateral [m] — lateral position
• covariance [m2] — covariance matrix of control point position
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Figure 4.4. Relationship between different coordinate systems.

GRCS

Lateral

Longitudinal

Spline Control point

Figure 4.5. The output data within GRCS.
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4.2 System fundamentals

The proposed algorithm itself, the input data, the internal data, the output data and all other related
elements such as the configuration together form the whole system. This section presents the information
about the system starting from the assumptions (4.2.1), through the representation of the internal data
structure (4.2.2) and ending with the algorithm initialization (4.2.3).

4.2.1 Main assumptions

The following assumptions were made:

◦ The free space boundary of the stationary environment is modeled by a 2D closed curve using a
B-spline of the second degree.

◦ The whole system works in discrete time. New input data (sensor information and host signals) is
provided at constant rate, that is, each 50 ms.

◦ The model parameters are refined each time the input data is provided.
◦ The host car can rotate within the occupancy grid, but the grid itself does not rotate over time with

respect to the WCS.
◦ Generating the occupancy grid is not part of the proposed algorithm. The occupancy grid (occu-

pancy probability matrix) is part of the input data.

4.2.2 Internal representation

The output data is only a subset of the information that is tracked over time. The minimum information
allowing the user to reconstruct the spline describing free space boundary is the set of spline control
points positions and spline degree. All tracked data is kept in an internal data structure. This section
describes the internal data structure as a mathematical model and its extensions.

4.2.2.1 Mathematical model

The proposed algorithm uses a free space model that combines two 1D B-splines into a single 2D para-
metric spline curve, as follows:

r(s) =

[
rx(s)
ry(s)

]
∈ R2 (4.2.1)

where:

s – free variable, s ∈ ⟨0, 1⟩
rx(s) – longitudinal spline component
ry(s) – lateral spline component

The set of points on the 2D spline curve in a given tracking cycle can be understood as an observation
r(s) of the system output being a transformation of the state q through the observation matrix H(s) as
follows:

r(s) = H(s)q (4.2.2)
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where:

H(s) =

[
H̊(s) 0

0 H̊(s)

]
(4.2.3)

H̊(s) =
[
B

[n]
1 (s) B

[n]
2 (s) · · · B[n]

Nq−1(s) B
[n]
Nq

(s)
]

(4.2.4)

q =



qx,1
...

qx,Nq

qy,1
...

qy,Nq


∈ R2Nq×1 (4.2.5)

H(s) – observation matrix
q – state vector (complete definition of a B-spline of a given degree)

Nq – number of control points
qx,i – longitudinal position of the i-th control point
qy,i – lateral position of i-th control point
B

[n]
i – i-th basis function of the n-th degree corresponding to the i-th control point.

Each control point qi is a point on the Cartesian ground plane, that is, qi =
[
qx,i qy,i

]T . The model
uses closed uniform periodic B-spline. It is a special case of a B-spline (more details in A.1.1) where the
basis functions are wrapped around the entire s-domain and the knots are evenly distributed (Figure 4.6).
Thus, the following takes place:

r(s = 0) = r(s = 1) (4.2.6)

And each basis function follows:

B
[n]
i (s) = B[n](ŝ− 1) +B[n](ŝ) +B[n](ŝ+ 1)

ŝ = s− si
(4.2.7)

si =
i− 1

Nq
(4.2.8)

B[n](s) = B̂
[n]
1,n(s) (4.2.9)

B̂
[n]
i,k(s) =

sNq +D − i+ 1

k
B̂

[n]
i,k−1(s) +

i+ k − sNq −D

k
B̂

[n]
i+1,k−1(s) (4.2.10)

D =
n+ 1

2
(4.2.11)

B̂
[n]
i,0 (s) =

{
1 if 2i−n−3

2Nq
≤ s < 2i−n−1

2Nq

0 otherwise
(4.2.12)

where:

i – basis function index i ∈ 1..Nq

B
[n]
i (s) – i-th basis function of degree n.
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B[n](s) – basis even function of degree n.
Nq – number of control points.

4.2.2.2 Model extension

The basic mathematical model (Section 4.2.2.1) is extended by the following additional parameters:

σ2
x – longitudinal position variance

σ2
y – lateral position variance
Ψ – local shape complexity
Ω – measurement status
Φ – approximation error indicator
τ – number of cycles since the measurement status change.
κ – number of cycles in which the variance of the position is high. Set to 1 each time the variance

drops below the threshold value.

All parameters are described in detail in the following sections.

4.2.3 Before the first call - initialization

Before the proposed algorithm starts to run, it is initialized with a predefined state. The initialization state
consists of twenty control points that form a circle. Its center is located in the host car center.
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Figure 4.6. An example of a closed curve built on uniform periodic b-splines at four
control points, i.e. (0,0), (0,1), (1,1), (1,0).
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4.3 Occupancy grid processing

The occupancy grid processing step is responsible for the extraction of measurement points from the
occupancy grid. The extracted points represent the discrete boundary of the free space. The term "occu-
pancy grid processing" for this step indicates the use of occupancy grid operations. They are applicable
to the occupancy grid, where a cell is treated as a pixel of an image. The occupancy grid processing
consists of 7 steps as shown in Figure 4.7. The final result of the occupancy grid processing is shown in
Figure 4.8.

Occupancy grid

Median filtering

Thresholding

Morphological erosion

Connected components labeling

Free space segment selection

Morphological dilation

Free space boundary tracing

Free space boundary

Figure 4.7. The flow of the occupancy grid processing algorithm.

To make it easier to understand, the following symbols are assumed:

E – E = Z2 = {0, 1}
Go – occupancy grid
Gb – binary grid

c – single cell of a grid
Go(c) – probability of cell c being occupied
Gb(c) – binary value (after thresholding) of cell c occupancy probability
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Figure 4.8. The output boundary (bold curve) on an input occupancy grid - result of
occupancy grid processing.

4.3.1 Median filtering

The first important step in the processing of the occupancy grid is to remove noise (noisy pixels) while
preserving the edges and boundaries of the grid map. It is done by applying in Go the 2D median filter
with window size Imedian. The result of the median filtering is shown in Figure 4.9b. Taking as an
example Imedian = 3, nine elements are taken on the basis of which the median value is calculated, as
shown in the following example.

0.32 0.80 0.75 0.50 0.26 0.14
0.95 0.19 0.28 0.96 0.51 0.15
0.03 0.49 0.68 0.34 0.70 0.26
0.44 0.45 0.66 0.59 0.89 0.84
0.38 0.65 0.16 0.22 0.96 0.25
0.77 0.71 0.12 0.75 0.55 0.81

 →



0.32 0.75 0.75 0.50 0.26 0.15
0.32 0.49 0.50 0.51 0.34 0.26
0.44 0.45 0.49 0.66 0.59 0.51
0.44 0.45 0.49 0.66 0.59 0.70
0.45 0.45 0.59 0.59 0.75 0.81
0.71 0.65 0.65 0.55 0.75 0.81

 (4.3.1)

In this example, the boundary of the occupancy grid is padded symmetrically.

4.3.2 Thresholding

Thresholding is a step in transforming the occupancy grid containing continuous probabilities into a
binary grid (Go → Gb). All cells with an occupancy probability greater than Ithreshold are set to 1 (that
is, occupied), and the rest of the cells are set to 0 (that is, free). The result of thresholding is shown in
Figure 4.9c.

Gb(c) =

{
1 Go(c) ≥ Ithreshold

0 Go(c) < Ithreshold
(4.3.2)
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4.3.3 Morphological erosion

The morphological erosion operation in the area of mathematical morphology is generally applied to
binary images. Erosion of the binary grid Gb by the structure element B is defined by the following:

Gb ⊖B = {z ∈ E|Bz ⊆ Gb} (4.3.3)

Bz = {b+ z|b ∈ B} , ∀z ∈ E (4.3.4)

B – structuring element
Bz – translation of B by the vector z

The consequence of erosion is the reduction of an occupancy grid object, the disappearance of narrow
branches and small occupancy grid objects, the elimination of noise, and the expansion of "holes" in an
inconsistent area (they take the shape of a structural element). The shape of the structural element B is a
disc shape of a radius rerosion equal to the half width of the host car. In this way, the size of the free space
is artificially reduced. Segments through which the host car cannot pass (it just does not fit) are removed.
In addition, larger areas of free space, which are connected to each other only by narrow, impassable
passages, are separated from each other. The erosion result is shown in Figure 4.9d and in more detail in
Figure 4.10.

Figure 4.10. Morphological erosion operation. Ref: [Peterlin, 1996].

4.3.4 Connected components labeling

The Connected Component Labeling (CCL) is an algorithmic application of graph theory in which sub-
sets of connected components are uniquely labeled based on a given heuristic. Graphs contain vertices
with connecting edges. The vertices contain the information needed for comparison heuristics, while
the edges represent the connection between "neighbors". An algorithm traverses a graph and labels
the vertices according to the connectivity and relative values of their neighbors. The connectivity is
determined by the medium, it can be a 4-connected neighborhood or an 8-connected neighborhood.
There are two well-known approaches to do CCL: multipass [Rosenfeld and Pfaltz, 1966][Haralick,
1981], two-pass [Shapiro and Stockman, 2002][He et al., 2009] and one-pass [Johnston and Bailey,
2008][AbuBaker et al., 2007] and two-pass. In the case of the occupancy grid processing step, the free
grid segments are labeled. The occupied segments are treated as background. The CCL result is shown
in Figure 4.9e.

4.3.5 Free space segment selection

Having labeled free space segments, the algorithm chooses the one segment in which the host car is
located.
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4.3.6 Morphological dilation

The morphological dilation is one of the basic operations in mathematical morphology. The dilation of
the binary grid Gb by the structuring element B is defined as

Gb ⊕B = {z ∈ E|(Bs)z ∩Gb ̸= ∅} (4.3.5)

(Bs)z = {x ∈ E| − x ∈ B} (4.3.6)

(Bs)z – symmetric of B

The dilation operation has the opposite effect with respect to erosion. The consequence of dilation is the
enlargement of the occupancy grid object, the disappearance of details, and the filling of "holes" in the
inconsistent area. Multiple dilatation joints are often used to achieve the desired effect. In the case of
the occupancy grid preprocessing step, morphological dilation is performed on the selected free space
segment with the same structuring element as in the erosion operation to bring the reachable free space
back to its original size. The result of the dilation is shown in Figure 4.9g and in more detail in Figure
4.11.

Figure 4.11. Morphological dilation operation. Ref: [Peterlin, 1996].

4.3.7 Free space boundary tracing

The boundary tracing of the segments of the binary occupancy grid, also known as the contour tracing,
can be understood as a segmentation technique to identify the border pixels of the segments of the
occupancy grid. Some examples of boundary-tracing algorithms can be found in [Narappanawar et al.,
2010] or [Suzuki et al., 1985]. The result of the boundary tracing is shown in Figure 4.9h.
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(a) Input occupancy grid. (b) Median filtering.

(c) Thresholding. (d) Morphological erosion. (e) CCL

(f) Selection. (g) Morphological dilation. (h) Boundary tracing.

Figure 4.9. Result of occupancy grid processing steps. Starting from input occupancy
grid (a) and finishing with traced boundary as set of pixels (h).

Freespace detection and examination based on surround occupancy grid Marek Szlachetka



68 4.4 Closed curve estimation

4.4 Closed curve estimation

The main part of the proposed algorithm is the tracking of the boundary of the free space modeled by the
closed B-spline curve of the 2nd degree in the ground plane. Tracking (iterative estimation) of a set of
control points defining the B-spline uses measurement points provided in each tracking cycle (iteration
of the main loop of the algorithm). In the following sections, the single cycle (iteration) of tracking is
explained in detail.

The algorithm starts with host movement compensation along with spline prediction (Section 4.4.1).
Then measurement processing is performed (Section 4.4.2) where the measurement points are extracted
and matched with the predicted spline. It enables the spline update by measurement (Section 4.4.3)
followed by the evaluation of the measurement status (Section 4.4.4). Finally, the adjustment of the
control points is performed (Sections 4.4.5 and 4.4.6).

4.4.1 State prediction

The B-spline model assumes that the shape being tracked is not movable with respect to the ground. Thus,
the state prediction should only impact the state covariance (the state-transition matrix is the identity
matrix). However, in each cycle, the host movement over the ground must be compensated. The host
changes its position with respect to the ground and to stationary obstacles attached to the ground. When
we use the host as the reference frame, then the stationary environment can be seen as moving with
respect to the host. As the free space boundary is tracked in time, its B-spline model needs to be shifted
with respect to the host by the distance traveled since last tracking cycle, taken with a negative sign. The
host pose, that is, its position and velocity, is known with some uncertainty. Thus, the state vector (control
points) and the state covariance must be updated due to the host displacement and pose uncertainties.
There is no need to include rotation in state prediction because the grid orientation with respect to the
ground is fixed and the tracking is performed in the GRCS. Taking into account host rotation and its
uncertainty may be needed only by upper software layers to recalculate free space boundary from GRCS
to the ISO coordinate system (which origin is set to the center of the host’s rear axle while moves and
rotates together with the host). The prediction of the state due to host movement is performed as follows.

q̂k|k−1 = qk−1|k−1 +Buk (4.4.1)

B =


∆t 0
∆t 0
...

...
0 ∆t
0 ∆t


2Nq×2

(4.4.2)

uk =

[
ux,k
uy,k

]
(4.4.3)

P̂k|k−1 = Pk−1|k−1 +Qk (4.4.4)
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Qk =



δ2ux,1
0 · · · 0

0
. . .

δ2ux,Nq

...
... δ2uy,1

. . . 0
0 · · · 0 δ2uy,Nq


∆t2 (4.4.5)

Information filter matrices are calculated as follows:

Υk|k = P−1
k|k (4.4.6)

υk|k = Υk|kqk|k (4.4.7)

where:

k – cycle number
qk|k – state vector

q̂k|k−1 – predicted state vector
qk−1|k−1 – state vector in (k-1)-th cycle

B – control-input matrix
uk – host velocity vector
∆t – cycle time (Section 4.2.1)
Qk – process noise matrix

δ2ux,k
, δ2uy,k

– host velocity variances
Υk|k – information matrix
Pk|k – covariance matrix
υk|k – information vector

To make a prediction, the following equations are applied.

Υ̂k|k−1 = P̂−1
k|k−1 (4.4.8)

υ̂k|k−1 = Υ̂k|k−1q̂k|k−1 (4.4.9)

q̂k|k−1 = Fkqk−1|k−1 = Iqk−1|k−1 = qk−1|k−1 (4.4.10)

where:

Υ̂k|k−1 – information matrix in the k-th cycle predicted base on k − 1-th cycle
P̂k|k−1 – covariance matrix in the k-th cycle predicted base on k − 1-th cycle
υ̂k|k−1 – information vector in the k-th cycle predicted base on k − 1-th cycle
q̂k|k−1 – state vector in the k-th cycle predicted base on k − 1-th cycle

qk−1|k−1 – state vector in k − 1-th cycle
Fk – state transition matrix in the k-th cycle (Fk = I).
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4.4.2 Measurement processing

The measurement processing step focuses on two tasks. They are the extraction of measurement points
from the data provided by occupancy grid processing and the finding of spline points (points on the
spline) corresponding to the measurement points.

4.4.2.1 Measurement extraction

The last step of occupancy grid processing, the boundary tracing, provides a set of measurement points
that form a closed boundary of the free space. It is not guaranteed that the provided set is sorted (it
depends on the algorithm used for tracing). The PFS assumes to get a sorted set of measurement points
(pixels). Thus, sorting is necessary. It is done by looking for any boundary point (from which the sorting
algorithm starts) and then moving through all points similarly to boundary tracing, but this time assigning
an index value to each processed point. Based on the index value, the measurement points are then sorted.
The sorted set still forms a closed boundary that does not have a starting or ending point. The "starting"
point (first point in the set) is arbitrarily chosen.

4.4.2.2 Measurement downselection

The number of measurements provided by occupancy grid processing may be significant. Many of these
measurements (pixels) carry redundant information. They do not add value and can be discarded from
further processing without affecting the quality of the free-space boundary approximation. It also reduces
the computing power demand. This section presents five downselection methods:

1. ray casting,
2. only visible measurments,
3. uniform downselection,
4. line downselection,
5. direction downselection,

Ray casting

The ray casting technique is based on casting a limited number of rays from a specific point (view point)
in directions of interest. Each ray provides information about the distance to an obstacle. In the case of
the proposed algorithm, the rays are cast in all directions with some increment in the azimuth angle.
Once a ray hits a boundary point on the grid, it is recognized as a measurement point (Figure 4.12). In
case of multiple obstacles laying on the same ray, the distance to the nearest obstacle is reported. The
origin of rays is the center of the host.
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Figure 4.12. Measurement extraction using the ray casting technique. Black cells
represent a free-space boundary, and blue cells represent the extracted measurement
points.

Only visible measurements

This approach is the technique similar to ray casting but using an infinite number of rays. As a result, all
visible (from the host point of view) parts of the grid are extracted. Figure 4.13 gives more explanation.

Figure 4.13. Measurement extraction of all visible points. Black cells represent a free-
space boundary, and blue cells represent the measurement points extracted.

Uniform downselection

One of the requirements of the reference PFS algorithm is to have all measurement points evenly dis-
tributed in the s-domain. Based on this, the naive downselection method (called uniform) takes every
k-th point (mx,k,my,k) according to the following formula:

k =

⌊
Nm

Nuniform

⌉
· (i− 1) + 1 i = 1, 2, 3, ..., Nuniform (4.4.11)
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where:

Nm – number of measurements.
Nuniform – arbitrary divider.

The other downselection methods are based on the idea of keeping only characteristic measurement
points, i.e. the ones that provide useful information about geometry.

Line downselection

This method tries to skip (reject) as many collinear measurement points as possible. focuses on points
filtration by involving the linear equation y = ax + b. The goal is to filter out as many collinear points
as possible. The entire boundary length is divided into equal length sections. The ending point of one
section is a starting point for the next section. For each measurement point in a section, its orthogonal
distance to the section line connecting two endpoints of this section is calculated. If the distance is greater
than a threshold, then this measurement point is marked as characteristic (Figure 4.14). The endpoints
of each section are also marked as characteristic. All unmarked (non-characteristic) points are rejected
from further processing.

Section start and end point

Characteristic point

Section line

Bottom threshold

Upper threshold

Maximum distance to line

Figure 4.14. The line downselection method [Szlachetka et al., 2022].

Direction downselection

This downselection method searches for characteristic points, as the line method does. It is limited to
basic operations on pixels. The direction method focuses on checking if the direction of movement from
a previous pixel to a pixel of interest is the same as the direction of movement from a pixel of interest to
a next pixel (Figure 4.15). If they differ, the pixel of interest is marked as characteristic.
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NE

NE
E

NE

Characteristic pointNon characteristic point

Figure 4.15. The direction downselection method [Szlachetka et al., 2022].

4.4.2.3 Measurement association — spline points determination

For each extracted measurement point, we need to know a corresponding spline point, to which the
measurement point is associated to perform the measurement update later. It all comes down to the
calculation of the s value of the corresponding spline point in the s-domain for each measurement point.
This section contains a description of several algorithms that can be used to achieve this goal.

Same distance assumption — original PFS approach

The PFS approach is based on an important assumption, that is, [Schreier et al., 2016]: „all boundary
measurements are treated as equally distributed along s [...] This is a reasonable assumption, because
all neighboring boundary pixels have the same distance from each other”. In other words, since a set
of sorted points is constructed on a closed boundary, the distance between two neighboring points is
assumed to be exactly the same. It implies following the S-vector:

S = (s1, s2, ..., sNm) (4.4.12)

sj =
j − 1

Nm
, j ∈ [1, . . . , Nm] (4.4.13)

where:

sj – value of the j-th point in the s-domain corresponding to the j-th measurement point
Nm – number of measurement points (number of boundary pixels)

This assumption also implies that you have a similar starting measurement point (associated with s1)
position between cycles. It is not guaranteed that the starting point will have a similar position between
the two following cycles. Thus, in each cycle, the new starting point is determined on the basis of the
starting point from the previous cycle. The new starting point determination is done by making the
host movement compensation of the previous starting point and then looking for the closest point (in
terms of Euclidean distance) from the provided set of measurement points to the compensated starting
point from the previous cycle. Having similar starting points between following tracking cycles prevents
from incorrect measurement data association within a single spline tracking cycle. The greater difference
between two starting points from the following cycles results in a poorer approximation quality.

It is worth to mention that the PFS’s assumption is wrong. The distance between two neighboring pixels
can be 1 [unit] (horizontally / perpendicularly) or

√
2 [unit] (slant). Furthermore, the mentioned assump-

tion results in a semiuniform distribution of control points along the spline (in the s-domain). It is one of
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the main PFS problems resolved in the thesis. The requirement of having similar starting point positions
between cycles is another drawback. It can happen that the boundary pixels segment where the starting
point is located can disappear between cycles. As a result, the new starting point will be far from the
previous one. Thus, incorrect data associations can occur within the spline tracking, resulting in a worse
approximation quality.

Scaled distance assumption — PFS extension proposal of the Author

The drawbacks of the main PFS assumption with respect to the measurement points distribution (men-
tioned above) can be fixed and can still follow the idea of using the measurement points distribution. The
PFS approach requires two improvements. The first improvement is to let the measurement points not be
equally distributed but to use the actual distances between the neighboring pixels, that is, 1 or sqrt2. The
second improvement is to allow control points to be distributed depending on the actual needs, not to be
semi-equally distributed along the curve (indirect result of the equal measurement point distribution as-
sumption). Such relaxation of assumption implies recalculation of spline points in the s domain (rescaling
of the S-vector). In a 1D problem the uniform periodic B-spline has equally distributed basis functions
(and control points corresponding to them) in the s-domain. It is no longer true in the 2D case. Figure 4.16
explains the inconsistency of the distribution. The figure consists of a spline built on eight control points
and a set of 100 spline points that are evenly distributed in the s-domain ((0, 0.01, 0.02, ..., 0.99, 1)). The
only difference between the subfigures is the position of one control point. In the left subfigure it is the
point at position (0, 2), in the right subfigure it is the point at position (0, 2.5). The control point is moved
closer to one neighbor and, at the same time, away from another neighbor. A blue circle indicates the
control point which position has been changed. The spline itself remains the same. There is almost no
difference in shape (unnoticeable difference is possible), but the distribution of the spline points along
the curve has changed. The yellow and pink areas indicate parts of the spline that have equal length in
the s-domain but not in the 2D plane. It can be noticed that in the left subfigure both areas have the same
length and the spline points are equally distributed in the 2D plane. In the right subfigure, the spline
points inside the yellow area are more condensed, and in the pink area they are more scattered. Only the
spline points around the moved control points are affected. All remaining spline points remain the same.
Thus, it is a local problem, not a global one.

To overcome this problem, a recalculation of spline points in the s-domain (rescaling of the S vector)
is needed. First, having a set of measurement points, the distances between each neighbor pair have to
be calculated. Compared to the original PFS approach, it takes into account that the distance between
two neighboring points can have two possible values. Once the distances are calculated, the normalized
accumulative distance vector is determined as follows.

di =

{√
(xi − xi+1)2 + (yi − yi+1)2 if i < Nm√
(xNm − x1)2 + (yNm − y1)2 if i = Nm

i = 1, 2, 3, ..., Nm

(4.4.14)

M = (m1,m2, ...,mNm+1) (4.4.15)

mi =

{
0 if i = 1∑k<i

k=1 dk otherwise
(4.4.16)

M̂ = M⊘mNm+1 =

(
0,

m2

mNm+1
,

m3

mNm+1
, , ...,

mNm

mNm+1
, 1

)
(4.4.17)

Ŝ = (ŝ1 = 0, ŝ2, ..., ŝNs+1 = 1) (4.4.18)
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Figure 4.16. An example of spline points distribution inconsistency between the s-
domain and along the spline. Both drawings show spline points and control points that
are equidistant in the s-domain (equation 4.4.25) but not necessarily along the spline.
The original setup is shown on the left side. On the right one can see that after moving
one control point on XY plane, the distances between consecutive spline points along
the curve are compressed in one section while expanded in another one, even though
all control point positions are still equidistant in the s-domain.

S = (s1 = 0, s2, ..., sNs+1 = 1) (4.4.19)

si =
i− 1

Ns
(4.4.20)

where:

M – vector of accumulated Euclidean distances between measurements points;
M̂ – vector of normalized accumulated Euclidean distances between measurements points;
Ŝ – vector of normalized accumulated Euclidean distances between spline points corresponding

to measurement points;
S – vector of expected s-domain corresponding to Ŝ;
di – Euclidean distance between the i-th and (i + 1) -th points;

Nm – number of measurement points;
Ns – number of spline samples.
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The next step is to sample the spline (equally in the s-domain) and estimate the distance of each spline
point along the spline from the beginning of the spline, that is r(0). Then the normalized distance vector
Ŝ is calculated in the same way as for the determination of the measurement points (equation 4.4.17).
The final step is to recalculate M̂ based on Ŝ to obtain a new vector M̃. Then, M̃ is used to determine
the corresponding spline point for each measurement point.

The M̃ is obtained as follows:
M̃ = (m̃1, m̃2, ..., m̃Nm) (4.4.21)

m̃k = (mk − ŝk)
sk+1 − sk
ŝk+1 − ŝk

+ sk if mk ∈ ⟨ŝk, ŝk+1⟩ (4.4.22)

where:

M̃ – transformed M̂ vector.

Figure 4.17 visualizes the recalculation M̂ to M̃.
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(b) M̂ and Ŝ have different distribution.

Figure 4.17. An example of rescaling spline points in s-domain.

Taking m = 0.3, we obtain m̃ = 0.12 as a result of transforming the value from the range (0.0, 0.5) to
(0.0, 0.2) based on the following calculations.

m̃ = (0.3− 0)
0.2− 0

0.5− 0
+ 0 = 0.12 (4.4.23)

The final step is to remove the last element from M̃. This is necessary because the spline used is a closed
spline (Equation 4.2.6).
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Distance to measurement — naive

This and the following approaches focus on the idea of finding a spline point for each measurement point
that is the closest in terms of the Euclidean distance. The naive approach relies on finding an argument s
for which the following function is minimized:

f(s) =
√
(rx(s)− zx)2 + (ry(s)− zy)2 (4.4.24)

where:

rx(s) – longitudinal component of the B-spline (4.2.1).
ry(s) – lateral component of the B-spline (4.2.1).

zx – longitudinal component of the measurement point.
zy – lateral component of the measurement point.

The value of s determines a spline point in the plane. The starting point for minimization of the function
is arbitrarily chosen, that is, s = 0.

Distance to measurement — control points position

This approach extends the previous method by better choosing a starting point for the minimization
algorithm s0. It is determined on the basis of the position of the control point, or more precisely, its
corresponding spline point (C̊i).

To calculate the spline point, its s-domain value is needed. Let us define the s-domain position of a
control point as follows:

si = argmax
(
B

[n]
i (s)

)
(4.4.25)

where:

B
[n]
i (s) – i-th basis function of degree n corresponding to qi control point.

According to Section 4.2.2.1, the basis functions are equally distributed (fixed offset) in the s-domain. It
simplifies equation 4.4.25 to:

si =
i− 1

Nq
(4.4.26)

i – control point index (1, 2, 3, ..., Nq)
Nq – number of control points

Thus, a spline point corresponding to a control point is calculated as follows.

r(si) = r

(
i− 1

Nq

)
(4.4.27)

For example, in Figure 4.18, the 9-th control point is considered (marked by a green circle). Its value in
the s-domain is s9 = 0.88, so the corresponding spline point is calculated as follows r(0.88) (marked by
a teal circle).

In this method, a starting point for the search algorithm is evaluated in two steps:

1. Find the closest (in terms of Euclidean distance) control point to the measurement point of interest.
2. Use the value from the s-domain (si) of the control point found as a starting point.
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Spline
Control point
Spline-point
Correspondence

Figure 4.18. The visualization of a control point and its corresponding foot-point.

Distance to measurement — sampled spline

This method differs from the previous one, based on the distance from the measurement, by perform-
ing spline sampling beforehand. This way, the calculations are faster. For each measurement point, the
corresponding spline point is taken from the sampled set on the basis of the Euclidean distance. The
spline feature, the different distribution of spline points along the curve compared to the s-domain, is an
advantage here. The spline is sampled equally along the s-domain, but the distribution of spline points
along the spline depends on the positions of the control points (Figure 4.16). It is beneficial for more
complex local shape areas to have more control points gathered around them. More control points mean
more spline points that can be used for a better approximation. The same is applicable for the areas with
lower number of control points inside. This time, the local shape is expected to be simple, so there is no
need to have more spline points there.
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Distance to measurement — normalized sampled spline

Compared to the previous method, this once makes the spline samples equally distributed along the
spline. It is done by scaling the s-domain initial vector based on the cumulative distance of the initial
spline points.

Perpendicular line from spline points

All methods mentioned earlier focus on finding the corresponding spline point to each measurement
point. This approach does the opposite. Focuses on finding a measurement point for each sampled spline
point. It starts with the creation of a set of spline samples. Then, for each spline point, the perpendicular
line is created. The line is evaluated on the basis of neighboring spline points. The created line is per-
pendicular to a line defined neighboring spline points and passes the spline point of interest. Figure 4.19
visualizes this method. Once the line is ready, the algorithm looks for the measurement points that are
close to the line. From the subset of measurement points, the closest one is chosen.

spline point
spline

Figure 4.19. The matching between spline points and measurement points is based on
the perpendicular line method.

4.4.3 Measurement update

Measurement update of the spline is the final step of the Information Filter used to refine the spline
parameters. The measurement update in this case is a trivial sum:

Υk|k = Υ̂k|k−1 + Lk (4.4.28)

υk|k = υ̂k|k−1 + lk (4.4.29)

Lk = HT
kR

−1
k Hk (4.4.30)
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lk = HT
kR

−1
k zk (4.4.31)

where:

k – tracking cycle index.
Hk – observation matrix.
Rk – measurement noise covariance matrix (observation noise).
Lk – transformed measurement noise covariance matrix.
lk – transformed measurement vector.
zk – measurement vector in k-th cycle, containing longitudinal and lateral position of the mea-

surement (selected boundary pixel).

zk =



zx,1
...

zx,Nm

zy,1
...

zy,Nm


∈ R2Nm×1 (4.4.32)

In the proposed algorithm, the measurement vector zk contains positions of selected boundary pixels
(which passed measurement downselection). Regarding the measurement uncertainty, expressed by the
measurement covariance matrix Rk, the same position variance is assumed for each measurement, with
one exception. Each measurement point, i.e. a pixel point at the border of the grid, has assigned higher
variance. This is a reasonable assumption, since occupancy grid processing always provides pixels that
form a closed boundary. It is achieved by marking outer pixels of the grid as an artificial obstacle in each
direction in which no obstacle is detected between the center of the host and the border of the grid.

The measurement covariance matrix is defined as follows:

Rk = R =



wx,1 0 · · · 0

0
. . .

wx,Nm

...
... wy,1

. . . 0
0 · · · 0 wy,Nm


∈ R2Nm×2Nm (4.4.33)

wx,j = wy,j =

{
wlow if measurement point is located at the grid border
whigh otherwise

(4.4.34)

where:

wx,j – longitudinal position variance of the j-th measurement.
wy,j – lateral position variance of the j-th measurement.
Nm – number of measurement points.
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The observation matrix, in the k-th cycle, is defined as follows:

Hk =

[
H̊k 0

0 H̊k

]
∈ R2Ns×2Nq (4.4.35)

H̊k =



B
[n]
1 (s1) B

[n]
2 (s1) · · · B

[n]
Nq−1(s1) B

[n]
Nq

(s1)

B
[n]
1 (s2)

...
. . .

...
B

[n]
1 (sNs−1)

B
[n]
1 (sNs) · · · B

[n]
Nq

(sNs)


∈ RNs×Nq (4.4.36)

4.4.4 Local measurement status analysis

One of the control point parameters is its measurement status (Ω). It contains information about the
control point’s age and measurement association. The measurement status can take one of three possible
values: NEW, UPDATED, and COASTED. All control points are initialized with the status NEW. It does
not matter whether the control point was created during algorithm initialization or was added later. A
control point remains in the NEW state for a few cycles (e.g. 5). After this time, the control point can
take only one of the remaining two status values. The status UPDATED of a control point is set when
the spline has at least one measurement point associated within the support interval of this control point,
otherwise the status is set to COASTED (Figure 4.20).

Spline and basis functions, degree 1

Spline and basis functions, degree 2

Measurement point UPDATED control point COASTED control point

Basis functions

Supporting intervals

Spline

Figure 4.20. The control point status determination based on the presence of a mea-
surement point within control point supporting interval.
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The control point support interval is defined as:

Λi =
{
s : B

[n]
i (s) ̸= 0

}
(4.4.37)

where:

Λi – i-th control point supporting interval.
B

[n]
i – i-th basis function of degree n corresponding to the i-th control point.

In case the uniform periodic B-spline is used, equation 4.4.37 can be rewritten as:

Λi =


〈
0, Λ̊i

〉
∪
〈
Λ̂i + 1, 1

〉
if Λ̂i < 0〈

0, Λ̊i − 1
〉
∪
〈
Λ̂i, 1

〉
if 1 < Λ̊i〈

Λ̂i, Λ̊i

〉
otherwise

(4.4.38)

Λ̂i =
i− 0.5n− 1.5

Nq
(4.4.39)

Λ̊i =
i+ 0.5n− 0.5

Nq
(4.4.40)

i – control point index (1, 2, 3, ..., Nq).
n – degree of spline.

Nq – number of control points.

Once a control point leaves the NEW status, it cannot return to it. Its status can only be changed between
UPDATED and COASTED. Taking as an example Figure 4.20, assume that there is no control point
with status NEW and the measurement point is identified at s = 0.48. In the case of a 1 degree spline,
only the 5-th and 6-th control points are affected. Their support intervals are Λ5 ≈ ⟨0.33, 0.56⟩, Λ6 ≈
⟨0.44, 0.67⟩. In case of 2 degree spline, 4-th, 5-th and 6-th control points are affected. Their support
intervals are Λ4 ≈ ⟨0.17, 0.5⟩, Λ5 ≈ ⟨0.28, 0.61⟩ and Λ6 ≈ ⟨0.39, 0.72⟩. All remaining control points
are not affected by the measurement point, therefore, their status is COASTED.

4.4.5 Local spline shape analysis

By working with the PFS algorithm, after a short time, it starts to be obvious that having a fixed number
of control points semi-uniformly distributed along the curve limits the algorithm’s ability to adapt a spline
to any possible shape of the surrounding environment. The fixed number of control points gives an upper
bound above which a complex environment will only be approximated worse. For any assumed number
of control points, we can find an environment that is complex enough to not be approximated with a
satisfactory quality. Furthermore, increasing this number is also limited by hardware resources such as
available memory and computing power. Semi-uniformly distributed control points makes approximation
quality even worse. In the same scenario and at the same time, both complex and simple parts can appear
in the environment being approximated. It is recommended to keep more control points closer to complex
shapes and leave as few control points as possible around simple shapes. Thus, even if the number of
control points is fixed, we can still increase approximation quality by moving some control points to
more complex shape areas.

Control points adjustment is introduced to make the spline approximation more accurate, that is, to
reduce the approximation error of the estimated free-space boundary. It is done by increasing the number
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of control points in areas of high shape complexity while reducing the number of control points in areas
of low shape complexity. Adjustment can be understood as operations such as moving, removing, adding,
or merging control points. They are described in the following sections.

To correctly adjust the control points, several novel parameters are introduced and described in the fol-
lowing sections.

4.4.5.1 Local shape complexity

A stationary environment consists of elements that are independent (not correlated). Thus, performing
a local analysis is more sufficient than performing a global one. To analyze the spline reflecting the
environment, a local shape complicity indicator (LSC) is introduced. The LSC indicator describes the
local spline complexity in the vicinity of a single control point. Its raw value is obtained by performing a
spline characteristics analysis. Then, the LSC is filtered in time by an infinite impulse response low-pass
filter to prevent too aggressive and too frequent adjustments of control points in this area. The LSC can
take a value from -1 to 1. The low value, closer to -1, indicates that the local shape is simple and the
corresponding control point might be removed. The high value, closer to 1, means a complex local shape
and that the number of control points should be increased in this area to improve local approximation
quality.

The LSC is defined as follows:

Ψk,i = (1− cΨ)Ψk−1,i + cΨΨ̃k,i (4.4.41)

k = 1, 2, 3, 4, ...

i = 1, 2, 3, 4, ..., Nq

where:

k – tracking cycle index (iteration).
i – control point index.

cΨ – filter factor.
Ψ̃k,i – raw (instantaneous) value of the shape complexity of i-th control point in k-th cycle.
Ψk,i – final (filtered) shape complexity value of i-th control point in k-th cycle.

The raw shape complexity Ψ̃k,i is calculated based on four components as follows (the k index is skipped
for clarity):

Ψ̃i = min (max (f (∆i,Γi,Θi,Ξi) ,−1) , 1) (4.4.42)

where:

∆i – i-th control point distance complexity indicator.
Γi – i-th control point corresponding spline point complexity indicator.
Θi – i-th control point angle complexity indicator.
Ξi – i-th control point host-dependent indicator.

and

f(∆i,Γi,Θi,Ξi) =

{
Γi +∆i + Ξi for Γi ≤ 0

Θi · Γi +∆i + Ξi otherwise
(4.4.43)

The initial value of the LSC for each control point is neutral, that is, set to zero (Ψ0,i = 0). The use of
the local shape complexity indicator is described in Section 4.4.6.
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Corresponding spline point
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Figure 4.21. The explanation of three shape complexity indicators: AC — angle com-
plexity, DC — distance complexity, CSC — corresponding spline point complexity.

Distance complexity indicator (∆)

The rule of the distance complexity indicator is to prevent the spline sections being too long. Even if
a simple shape is well approximated by a small number of control points, having too long parts may
influence the dynamics (may limit the speed of spline adaptation) of the spline adjustment if a new
complex shape starts to be visible to the host while the host is moving. Distance complexity can take
only positive values and thus can only increase the value of the LSC. An unconstrained distance shape
complexity is a Cartesian distance d() between neighboring control points (between the control point of
interest and the previous control point) as follows:

∆̌i = d(qi,qi−1). (4.4.44)

The unconstrained distance shape complexity is then normalized from the range (∆low,∆high) to the
range (0, 1) with saturation as follows:

∆i =


0, ∆̌i ≤ ∆low(

∆̌i −∆low

)
·
(

1
∆high−∆low

)
∆̌i ∈ (∆low,∆high)

1, ∆high ≤ ∆̌i

(4.4.45)

where ∆low and ∆high are empirically chosen saturation thresholds.

Corresponding spline-point complexity indicator (Γ)

The corresponding spline point (̊qi) is described in section 4.4.2.3. An idea of using the corresponding
spline point is its mutual relationship with the control point. The distance between a control point and its
corresponding spline point describes the local shape complexity. If both points are close to each other,
such as points 4, 6 or 10 in Figure 4.21 then the spline sections around are simple. If both points are far
from each other, for example, points 1, 3, 7 or 10 in Figure 4.21, then the shape might be complex. In
other words, a small distance may indicate a local smoothness of the spline shape and quite often a too
high number of control points around the control point of interest, but not the opposite.

An unconstrained corresponding spline point complexity is defined as

Γ̌i = d(qi, q̊i) (4.4.46)
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The unconstrained corresponding spline point complexity is normalized from the range (Γlow,Γhigh) to
the range (−1, 1) with saturation afterward as follows:

Γ̊i =


−1, Γ̌i ≤ Γlow(

Γ̌i − Γlow

)
·
(

2
Γhigh−Γlow

)
− 1 Γ̌i ∈ (Γlow,Γhigh)

1, Γhigh ≤ Γ̌i

(4.4.47)

Normalization is not the last step in the calculation of the corresponding spline points. Once Γ̊i is calcu-
lated for all control points, an additional pass is made. The final value of the corresponding spline point
indicators is the highest value between the corresponding spline point indicator of the control point of
interest and the corresponding spline point indicator of the previous control point as follows:

Γi = max
(
Γ̊i−1, Γ̊i

)
(4.4.48)

This extra pass is done to mark the spline segments to which new control points will eventually need
to be added. Since shape complexity is a parameter of the control points, it is not possible to define
whether new control points should be added to the left or right of the control points (at high value of
shape complexity indicator). Equation (4.4.48) was introduced to solve this problem.

Angle complexity indicator (Θ)

The angle complexity indicator presents the relationship between three consecutive control points, called
a triplet. The value of Θ is calculated as the angle between two segments defined by the triplet. Angle
values closer to 180 degrees represent smoother shapes, and values closer to 0 degrees represent more
complex shapes.

An unconstrained angle complexity indicator is defined as

Θ̌i = h(qi−1,qi,qi+1) (4.4.49)

The unconstrained angle complexity is then normalized from the range (Θlow,Θhigh) to the range (0, 1)
with saturation as follows:

Θi =


0, Θ̌i ≤ Θlow(

Θ̌i −Θlow

)
·
(

1
Θhigh−Θlow

)
Θ̌i ∈ (Θlow,Θhigh)

1, Θhigh ≤ Θ̌i

(4.4.50)

Host car dependent indicator (Ξ)

The host car distance dependent indicator is introduced to increase the number of control points near the
host car. It is more beneficial to have better approximated the nearest environment than the farthest one.
The parking scenario is the target scenario for this indicator. The algorithms responsible for the automatic
parking maneuver require a precise description of a free parking slot, next to the host car, to which the
host car must be driven. Figure 4.22 shows that the interesting parking space (inside the elliptical area)
is better approximated due to the greater number of control points used for its approximation. The free
parking slot on the left is outside the area, is estimated with a lower number of control points, and finally
has a worse approximation quality. To control the approximation quality in area close to the host car an
elliptic area is introduced. The shape of the elliptical area may be dynamically modified based on the
movement of the host. Figure 4.23 visualizes the relationship between host movement and the elliptical
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control point
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planned host path
area of increased control 
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Figure 4.22. The purpose of introducing host car dependent indicator is to have more
accurate approximation near the host car.

area. The length of the semi-minor axis b is constant, but the length of the semi-major axis a and the
longitudinal offset depend on the host speed. The ellipse orientation is the same as the host orientation.
The dependence of the semi-major axis a and the longitudinal offset is defined as follows:

b = const (4.4.51)

a =


3b if v ≤ −30
b
15 |v|+ b if v ∈ (−30, 30)

3b if 30 ≤ v

(4.4.52)

o =


−0.8

30 a if v ≤ −30

−0.8
30 av if v ∈ (−30, 0)

0.8
30 av if v ∈ ⟨0, 30)
0.8
30 a if 30 ≤ v

(4.4.53)

where:

v – the speed of the host car.
a – semi-major axis of the ellipse.
b – semi-minor axis of the ellipse.
o – offset from the center of the host car toward the center of the ellipse.

It can be seen that in equations 4.4.52 and 4.4.53 if the speed of the host car is zero, the ellipse turns
into the circle centered in the center of the host car. In all other cases, the ellipse follows the host car
towards its movement direction. The higher the host car speed, the longer the ellipse. The value of the
host car-dependent indicator for the i-th control point is calculated as follows:

Ξi =

Ξhigh if
(
qx,i−ex

a

)2
+
(
qy,i−ey

b

)2
≤ 1

0 otherwise
(4.4.54)

where:

ex – longitudinal component of the center of the ellipse.
ey – lateral component of the center of the ellipse.
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Figure 4.23. The construction of the ellipse is based on the position, orientation, and
speed of the host car.

4.4.5.2 Local minima problem

The proposed algorithm focuses mainly on performing the approximation, the best fit, of the provided
measurement points. It is an iterative process with a dynamically changing surrounding environment due
to host movement. During this process, it is possible that the spline "stucks" somewhere between the
measurement points (in a local minimum of approximation error) as shown in Figure 4.24. This result
is unacceptable from the point of view of the user. To solve this problem, the control point parameters
are extended with an approximation error indicator (Φ). It is an indicator filtered in time, providing
information about too high local approximation error persisting for too long. The local approximation
error is estimated on the basis of the distance between the measurement points and the corresponding
spline points that lie within the limited supporting interval of this control point.

Φk,i = (1− cΦ)Φk−1,i + cΦΦ̊k,i (4.4.55)

Φ̊k,i =


0, Φ̌k,i ≤ 0
Φ̌k,i

Φhigh
Φ̌k,i ∈ (0,Φhigh)

1, Φhigh ≤ Φ̌k,i

(4.4.56)

Φ̌k,i =

{
dmax
i if dth < dmax

i

0 otherwise
(4.4.57)

dmax
i = max

j

({
d(r(sj), zj) : sj ∈ Λ̆i

})
(4.4.58)

Λ̆i ⊂ Λi (4.4.59)
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Control point
Spline
Association line

Figure 4.24. An illustration of how the approximation algorithm may stuck in a local
minimum.

Φk,i – i-th control point approximation error indicator in the k-th cycle
Φ̌k,i – i-th control point raw approximation error indicator in the k-th cycle

d(a, b) – Euclidean distance between the point a and b
dmax
i – maximum d(a, b) of the i-th control point

r(sj) – j-th spline point
zj – j-th measurement point corresponding to j-th spline point
Λ̆i – limited supporting interval of the i-th control point; it is subinterval of Λi limited symmet-

rically with respect to the interval center
cΦ – filter factor

The raw approximation error indicator can take a value of ⟨0, 1⟩. Distances are calculated only for mea-
surement points that the corresponding spline points are located within the limited support interval of the
control point of interest (equation 4.4.38) as shown in Figure 4.25. The application of the approximation
error indicator is described in Section 4.4.6.

4.4.6 Control points adjustment

All the techniques mentioned so far, such as local measurement status analysis (Section 4.4.4) and lo-
cal spline shape analysis (Section 4.4.5) provide information about the spline segments that need some
modifications. Modification of the spline segments is performed by one of two operations: the addition
or removal of a control point. These operations are described in the following sections.

4.4.6.1 Control points addition

The control point addition is an operation that adds a new control point to the existing set of control
points. The operation affects only a fragment of the spline surrounding the newly added control point. The
algorithm iterates over control points and creates the list of new control points positions. In other words,
the addition operation is done once for all positions where a new control point is decided to be added.
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Figure 4.25. Illustration of the maximum distance used in calculation of approxima-
tion error indicator. Blue squares indicate measurement points (pixels) that lie within
limited supporting interval and pink dashed line the maximum distance.

The decision of adding a new control point is taken when at least one of the following requirements is
met.

◦ local shape complexity indicator is higher than the addition threshold.

Ψi > Ψaddition (4.4.60)

◦ the approximation error indicator is higher than the addition threshold.

Φi > Φaddition (4.4.61)

The above requirements are control point specific. The local shape complexity and the approximation
error indicators do not describe the specific side of the control point of interest. Thus, if a i-th control
point meets the addition requirements, then two new control points are added on its right and left sides
(Figure 4.26a). If the i-th and (i+1)-th control points satisfy the addition requirements, then new control
points are added before the control point i-th, between the control points i-th and (i + 1)-th, and after
the control point (i+ 1)-th (Figure 4.26b). In this way, the algorithm avoids adding a new control point
twice between i-th and (i+ 1)-th.

(a) One control point. (b) Two neighboring control points.

Figure 4.26. Visualization of control points addition process in the form of the list.
Red — control point that meets addition requirements. Green — new control point.
Black/Blue — control point that does not meet addition requirements.

The parameters of a new control point are established as follows:
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[qx,j , qy,j ] =

[
qx,i + qx,i+1

2
,
qy,i + qy,i+1

2

]
σ2
x,j =

{
σ2
x,icσ if σ2

x,i+1 < σ2
x,i

σ2
x,i+1cσ otherwise

σ2
y,j =

{
σ2
y,icσ if σ2

y,i+1 < σ2
y,i

σ2
y,i+1cσ otherwise

Ψj = 0.0

Φj = 0.0

Ωj = NEW

τj = 1

κj = 1

(4.4.62)

where:

cσ – variance extension factor, cσ > 1.0.

Additionally, an indicator for an i-th control point, corresponding to a met requirement, is reset to an
initial value. In this way, the algorithm forbids adding many control points between the following cycles.

4.4.6.2 Control points removal

The control point removal is an operation to remove a control point from the existing set of control points.
It is a local operation. Only the surrounding of the removed control point is affected by this operation.
The algorithm goes through all control points and creates a list of control points to remove. The decision
to remove a control point is made if at least one of the following requirements is met:

◦ The local shape complexity is lower than the removal threshold.

Ψi < Ψremoval (4.4.63)

◦ variances sum is high for too long

σ2
x,i + σ2

y,i > σremoval

κi > κuncertainty
(4.4.64)

◦ The status is COASTED for a longer period of time.

Ωi = COASTED

τi > τstatus
(4.4.65)

◦ neighboring points are too close to each other (Euclidean distance).

d (qi,qi+1) < dclose (4.4.66)

Furthermore, the position variances of neighboring control points increase by the factor cσ. In this way,
a slight influence of the removal of control points is reflected.
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5 Test and verification

This chapter is dedicated to the testing and verification of the proposed algorithm. This includes a de-
scription of the testing methodology (i.e. framework, performance metrics and test scenarios), test results,
and results analysis. To demonstrate the performance of the proposed algorithm, it has been compared
with the reference PFS algorithm.

5.1 Testing framework

5.1.1 Visualization

During the development of shape tracking algorithms, it is advantageous to have a tool that can visualize
the result of the tracking and additional information. Figure 5.1 shows such a tool created as part of the
PhD research. The central window can display the actual free space boundary, its spline approximation,
and numerous other elements helpful in the development process. The visibility of each element is user
selectable. The following items can be displayed:

◦ host car
• position
• orientation
• size

◦ spline
• predicted (before measurement update)
• updated (after measurement update)

◦ control points
• position
• local shape indicators

◦ measurement points position
◦ spline points position
◦ occupancy grid with free space boundary
◦ lines connecting measurement points with spline points
◦ area of increased control points density (Section 4.4.5.1)

Furthermore, the tool generates lateral and longitudinal spline components at the iteration of interest
(Figure 5.2) and plots the number of control points throughout the loaded scenario (Figure 5.3) as sepa-
rate plots.

5.1.2 Artificial scenario generation

A common way to verify the perception algorithm is the simulation study, that is, running the algorithm
using artificial input data. Such an approach allows for calculation of performance and quality metrics
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Figure 5.1. Graphical User Interface used for visual analysis of algorithm behavior.

based on a known user-defined reference (true value). The simulation study also saves the cost of testing
perception algorithms on real data, which always requires the use of expensive reference measurement
systems. The only drawback of the simulation study is that in many cases the models of the environment
used to generate artificial data are too simple and do not reflect the real physical phenomena sufficiently.
As a result, the evaluation of the algorithms is performed under ideal conditions. In order to overcome
the mentioned limitations of too simple hand-made models, the Driving Scenario Designer was used to
prepare driving scenarios matching as good the real road cases as possible.

5.1.2.1 Driving Scenario Designer

Driving Scenario Designer (Matlab extension) allows to create synthetic driving scenarios to test auto-
mated driving systems [MathWorks, 2023]. It allows fast road scenario prototyping including host car
path planning (waypoints, speed, etc.), obstacle creation, and sensors setup configuration. Figure 5.4
shows all the elements mentioned. In this PhD it was used to create test scenarios for the evaluation of
the performance of the proposed algorithm.
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Figure 5.2. Longitudinal and lateral components of the spline and its control points
positions in the iteration 625 shown in Figure 5.1.

5.1.2.2 Open street map

OpenStreetMap is a tool (with a web interface [OpenStreetMap, 2023]) that provides map data, including
road shapes. OpenStreetMap is developed by a community of mappers who contribute and maintain map
content, such as structures and roads, around the world. It can be used together with the Driving Scenario
Designer to bring artificial scenarios closer to reality (Figure 5.5).

5.1.2.3 Binary grid generator

Binary grid generator is a basic tool used for the generation of binary (containing only binary occupancy
information, i.e., occupied or free) occupancy grids using scenarios created in Driving Scenario Designer
as input. The generator treats the area inside the roads as a free space. Other areas (outside roads) are
treated as occupied. Additionally, any stationary obstacle located on a road is treated as an occupied area.
The snapshot of the generated binary grid is shown in Figure 5.6b.

5.1.2.4 Sensor based occupancy grid generator

It is an advanced generator which is an extension of the binary grid generator (Section 5.1.2.3). It simu-
lates sensors to generate a fully functional occupancy grid. The input to the generator is also a scenario
prepared in the Driving Scenario Designer. The generator allows to model occupancy uncertainties via
sensor configuration. The snapshot of the generated occupancy grid is shown in Figure 5.6c.
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Figure 5.3. Number of control points versus time in scenario shown in Figure 5.1.

5.1.3 Artificial road scenarios

22 scenarios grouped into 5 categories were prepared (reflecting possible circumstances under which the
host car can drive). They are as follows:

◦ highway
◦ parking
◦ city
◦ shapes
◦ mixed case

Each of the categories with proposed scenarios is described in the following sections.

5.1.3.1 Highway

Highway category is characterized by simple shapes (straight or low curvature road) and the high speed
of the host car (around 100 km/h). The highway scenarios used for the tests are as follows:

◦ Highway id 1: smooth part of the A4 road in Cracow.
◦ Highway id 2: smooth part of the A4 road in Cracow with a stopped truck.
◦ Highway id 3: intersection part of the A4 road in Cracow.
◦ Highway id 4: exit lane from the A4 road in Cracow.
◦ Highway id 5: access road to A4 road in Cracow.

Details of each scenario can be found in Section A.2.1.

5.1.3.2 Parking

Parking category describes the situation in which a user tries to find a free parking slot. The parking
scenario is characterized by complex shapes and low host car speed (around 30 km/h). The parking
scenarios used for the tests are as follows:

◦ Parking id 1: parking in an open space with a few cars parked.
◦ Parking id 2: driving into parking area with some empty parking slots - variant 1.
◦ Parking id 3: driving into parking area with some empty parking slots - variant 2.
◦ Parking id 4: driving from one parking slot to another.
◦ Parking id 5: driving through the parking lot with few empty parking slots.

Details of each scenario can be found in A.2.3.
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Host path
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(a) Bird eye view of scenario configurator.
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Sensor 
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(b) Bird eye view of sensor configurator.

(c) Utility visualization feature. (d) Simple visualization feature.

Figure 5.4. An example of a road scenario created in the Driving Scenario Designer
tool.

5.1.3.3 City

In city category the host car moves at a speed of around 60 km/h within a semi-complex surrounding
environment. The field of view of the host car is mostly limited. The city scenarios used for the test are
as follows:

◦ City id 1: driving city roads of Cracow.
◦ City id 2: driving along parked cars.
◦ City id 3: smooth crossroad.
◦ City id 4: smooth crossroad with gaps.
◦ City id 5: roundabout.

Details of each scenario can be found in A.2.2.

Freespace detection and examination based on surround occupancy grid Marek Szlachetka



96 5.1 Testing framework

(a) Screenshot from OpenStreetMap website showing an example of roads
intersection in Cracow.

(b) The map from 5.5a imported to Driving Scenario Designer.

Figure 5.5. An example of road export from OpenStreetMap to Driving Scenario De-
signer.

5.1.3.4 Shapes

This kind of scenario is used to check algorithm performance with unusual shapes of the free space. The
host is stationary and the boundary of the free space is fully known from the beginning of each scenario.

◦ Shape id 1
◦ Shape id 2
◦ Shape id 3
◦ Shape id 4
◦ Shape id 5

Details of each scenario can be found in A.2.4.

5.1.3.5 Mixed case

Mixed case scenarios are prepared to check the performance of the algorithm during the change of the
surrounding environment from smooth to complex and vice versa.

◦ Mix id 1: from highway to city
◦ Mix id 2: from city to highway
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(a) Source scenario.

(b) Binary grid generated directly from the source sce-
nario.

(c) Occupancy grid generated by ray casting from the lo-
cation of moving host.

Figure 5.6. Generation of a grid map.

Details of each scenario may be found in A.2.5.
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5.2 Evaluation of free space boundary tracking quality

In this section, all metrics and performance evaluation methodologies are described in detail.

5.2.1 Reference definition

Both the proposed algorithm and the reference algorithm (PFS) use the occupancy grid data as input. In
order to make the comparison clear and fair, both algorithms are fed with the same input data generated
in the Occupancy processing step (described in Section 4.3) in the form of a set of points (pixels).
These pixels are known reference data, used later to calculate the errors of the free space boundary
approximation by both algorithms.

5.2.2 Approximation error metrics

5.2.2.1 Corresponding spline point approach

To make the evaluation more detailed, a pairing methodology is involved. For each reference point, a
corresponding spline point is determined, creating a set of pairs per iteration. For the approximation
quality evaluation, the following additional metrics are used.

Mean absolute deviation:
εmean
k =

1

N ref
k

∑
i

εi (5.2.1)

Maximum absolute deviation:
εmax
k = max

i
(εi) (5.2.2)

Standard absolute deviation:

εstdk =

√
1

N ref
k

∑
i

(
εi − εmean

k

)2 (5.2.3)

Absolute deviation:
εi = d (r(si),pi) (5.2.4)

where:

i – reference point number i = 1, 2, 3, ..., N ref
k

k – algorithm iteration number
pi – i-th reference point

r(si) – i-th sampled spline point (corresponding to pi), determined by proposed methodologies
N ref

k – number of reference points in k-th iteration
d(a, b) – distance between two points a and b (unsigned)

The corresponding spline point pi may be determined either as the closest spline point or a perpendicular
spline point. Both approaches are explained in Figure 5.7.

The closest spline point defines a spline point as a point that is the closest, in terms of the Euclidean
distance, to the reference point.

The perpendicular spline point defines a spline point as a point that is closest, in terms of the Euclidean
distance, to a perpendicular line created on the reference point of interest.
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Figure 5.7. Spline-points determination [Szlachetka et al., 2022].

5.2.2.2 Hausdorff distance

Hausdorff distance is a metric that measures the distance between two subsets of a metric space
[Kim et al., 2015]. Hausdorff distance may be understood as the longest distance from one set to an-
other. It is defined as:

dHausdorff (X,Y ) = max

{
sup
x∈X

dinf(x, Y ), sup
y∈Y

dinf(X, y)

}
(5.2.5)

where:
dinf(x, Y ) = inf

y∈Y
d(x, y) (5.2.6)

is the infimum distance between the point x and a subset Y and:

X,Y – nonempty subsets.
d(a, b) – Euclidean distance between points a and b.

inf – the infimum.
sup – the supremum.

The Hausdorff distance is calculated as one value per iteration of the algorithm. The sets used in the
metric are the reference points and the sampled spline points (equally distributed along the spline, having
10 times more elements than the number of reference points). The Hausdorff distance is a supporting
metric that is used to show the worst approximation case per iteration.

5.2.3 Detection error metrics

In free space boundary tracking task it may happen some areas in which deviations of the approximating
spline from the actual free space boundary may be unacceptably high. Such areas are referred to as
detection errors. In general free space boundary tracking algorithm spline points may be classified as
follows [Szlachetka et al., 2022]:
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Approximating spline points for which the distance to the reference curve (actual free space boundary)
is below a certain safe threshold (e.g. 50 cm) are called true positives (TP), because these estimates quite
well match the true boundary (obstacle).

Other spline points not matching well the actual reference curve (actual free space boundary) are called
detection errors. There are two possible types of detection error.

Type I error occurs when the approximating spline point distance from the reference boundary (actual
boundary) is above the threshold and the point lays inside the free space area. Such a case is called a
false positive (FP), because the algorithm falsely reports a non-existing obstacle (free space boundary).
This type of error is harmless to the host because it can cause an unnecessary braking or maneuver, but
the host will not hit non-existing obstacle reported by the algorithm.

Type II error occurs when the approximating spline point distance from the reference boundary (actual
boundary) is above the threshold and the point lays outside the free space area. Such a case is called
a false negative (FN), because the algorithm falsely reports that there is no obstacle in place where the
actual obstacle is laying. This type of error may be harmful to the host because it can cause the host to
hit an obstacle which is not reported close enough.

In order to fully evaluate the performance of the tracking algorithm, the following combined metrics are
calculated based on counts, denoted by # symbol, of spline points defined above:

TPR – True Positive Rate — measures the relation of the count of spline points truly classified
as positive to the count of all spline points which were actually positive (i.e. ones either
classified truly as positive or wrongly classified as negative).

TPR =
#TP

#TP +#FN
(5.2.7)

PPV – Positive Predictive Value — measures the relation of the count of spline points truly clas-
sified as positive to the count of all spline points classified as positive (truly or wrongly).

PPV =
#TP

#TP +#FP
(5.2.8)

F1 – F1 score — is a frequently used combined measure of detection accuracy.

F1 =
2 ·#TP

2 ·#TP +#FP +#FN
(5.2.9)

In the case of all of the above metrics the higher the value is the better. Figure 5.8 shows possible types
of spline points.
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Figure 5.8. Illustration of detection errors.

5.3 Algorithm configuration and parameters tuning

With respect to the proposed algorithm, from the list of methods described in Sections 4.4.2.2 and 4.4.2.3,
the following ones were chosen:

◦ Measurement downselection → line downselection
◦ Measurement association → distance to measurement: sampled spline

Furthermore, the values of the parameters of the proposed algorithm were arbitrarily chosen in the begin-
ning and then tuned using the genetic algorithm [Mirjalili and Mirjalili, 2019] to obtain the final values.

5.4 Algorithms comparison

In this section, the cumulative results of the comparison of the proposed algorithm and the reference
PFS algorithm are described. The comparison is made based on the metrics mentioned in Section 5.2
and the assumptions described in Section 5.4.1. Additionally, for each category of scenarios, an example
scenario is chosen and described in detail.

5.4.1 Comparison assumptions

All the data presented in following sections, together with the plots, is prepared on the basis of the
following assumptions:

◦ The number of control points in the reference algorithm is constant over entire log. However, in
the proposed algorithm, the number of control points varies over time. Thus, after running the
proposed algorithm, its average and median number of control points are calculated, and then the
higher value is used as a fixed number of control points in the reference method.

◦ Initial iterations (before achieving a convergence) are not used in the error calculation.
◦ The initial number of control points in the proposed method is set to 20.
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◦ The analysis is done on the set of scenarios described in Section 5.1.3
◦ Approximation metrics are calculated only from relevant elements (i.e. only samples marked as

TP — Section 5.2.3) excluding Hausdorff metric.
◦ The Hausdorff metric is filtered in time (iterations) using moving window size 5 afterwards in order

to filter out pikes affecting the analysis. Such an approach is commonly used in ADAS systems to
achieve a higher confidence in an upper layer (data consumer) about the presence or absence of an
obstacle.

◦ Each artificial scenario is generated to grid with 150x150m size and 0.2m resolution.

Median

75th percentile

25th percentile
Minimum

Maximum

Outlier

Figure 5.9. Approximation errors box plot description.

5.4.2 Artificial scenarios

The performance of both algorithms has been evaluated on 22 scenarios. Figure 5.10 shows the results
accumulated from all scenarios in the form of box plots (explained in Figure 5.9). All subfigures point out
that a better approximation quality is achieved by the proposed algorithm. In general its approximation
error is lower (median absolute deviation is about 31% and mean 28% lower). The box plots shown in the
subfigure 5.10c point to the advantage of the proposed algorithm compared to the reference algorithm.

The results analysis with respect to the detection errors also indicates better performance of the proposed
algorithm (Figure 5.11). The TP count is 20% higher, the FP count is 72% lower, and the FN count is
76% lower.

In terms of execution time, the proposed algorithm is almost two times faster than the reference al-
gorithm, as shown in Figure 5.12. The OCG processing time does not affect the result because both
algorithms use exactly the same OCG processing stage.
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Figure 5.10. Approximation error box plots aggregated from all scenarios.
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Figure 5.11. Detection error counts and metrics aggregated from all scenarios.
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Figure 5.12. Algorithms’ execution time aggregated from all scenarios.

In the following sections, a similar analysis is performed for each category of scenarios. Also, an example
scenario is analyzed in detail. Table 5.1 shows the number of control points used in the simulations for
each of the scenarios taken (the complete list, which contains 22 scenarios, can be found in Table 5.5).
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Table 5.1. Number of control points used in the tests scenarios.

Category ID Proposed Reference
Median Mean Used

Highway 2 18 18,68 19
City 2 20,85 21 21

Parking 4 26,58 28 28
Shapes 2 49,3 50 50

Mix 1 50,19 32 50

5.4.2.1 Highway

The analysis of the results of the highway scenarios does not differ much from the overall results. The
analysis of the approximation error indicates better performance of the proposed algorithm (Figure 5.13).
The mean absolute deviation is 18% and its median is 18% lower (better) than the reference algorithm.
The results of Hausdorff distance analysis point to the advantage of the proposed algorithm compared to
the reference algorithm.
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Figure 5.13. Approximation error box plots aggregated from highway scenarios.

The results analysis with respect to the detection errors shows a 14% higher TP count, a 64% lower FP
count and a 73% lower FN count for the proposed algorithm (Figure 5.14).
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(b) Detection error rates.

Figure 5.14. Detection error counts and rates aggregated from highway scenarios.
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The execution time is similar to the overall results. The proposed algorithm is two times faster than the
reference one (Figure 5.15).
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Figure 5.15. Algorithms’ execution time aggregated from highway scenarios.
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Figure 5.16. An example of approximation error per iteration for highway scenario id
2.

Scenario id 2 is taken as an example scenario to be described in detail. Figure 5.16 shows the means of
the approximation error metrics for each iteration. Most of the time, when a road has a simple shape, both
algorithms have stable approximation errors (still better for the proposed algorithm). Starting from the
280th iteration to the 420th iteration, an obstacle is present inside the occupancy grid. It can be seen that
the proposed algorithm maintains its performance, which cannot be said about the reference algorithm
(Figure 5.17).
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Figure 5.17. The approximation quality of the proposed algorithm and the reference
one (PFS) in case of an obstacle appearance on a road.
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Figure 5.18. An example of F1 score value per iteration for highway scenario id 2.

The advantage of the proposed algorithm is also reflected in F1 score metric (Figure 5.18). The reason
why the proposed algorithm can maintain a high approximation quality is the dynamic adjustment of the
control points. Once the obstacle appears in the occupancy grid, the proposed algorithm adds some con-
trol points around it, making the approximation much better. The increase in the number of control points
can be seen in Figure 5.19. The pick around the 320th iteration is caused by increased shape complexity.
After a few iterations, the proposed algorithm made the decision to decrease this value slightly, but still
maintaining high approximation quality. It is a typical behavior of the proposed algorithm, i.e., adding
more control points around new complex shapes and then after a short time removing some control
points. In this way, the proposed algorithm can reflect a complex shape very quickly.
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Figure 5.19. Number of control points per iteration for highway scenario id 2.
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5.4.2.2 City

The analysis of the results of the city scenarios does not differ much from the overall results. The anal-
ysis of the approximation error indicates a better performance of the proposed algorithm (Figure 5.20).
The mean absolute deviation is 30% and its median is 35% lower (better) than the reference algorithm.
Hausdorff distance values are similar for both compared algorithms (but slightly better for the proposed
algorithm).
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Figure 5.20. Approximation error box plots aggregated from city scenarios.

The results analysis with respect to detection errors shows a 14% higher TP count, 64% lower FP count,
and a 68% lower FN count for the proposed algorithm (Figure 5.21).
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(b) Detection error rates.

Figure 5.21. Detection error counts and rates aggregated from city scenarios.

The execution time is similar to the overall results. The proposed algorithm is two times faster than the
reference algorithm (Figure 5.22).
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Figure 5.22. Algorithms’ execution time aggregated from city scenarios.

Scenario id 2 is taken as an example scenario to be described in detail. Figure 5.23 illustrates the means
of the approximation error metrics for each iteration. All the time, both algorithms maintain stable ap-
proximation quality. It can be said that the proposed algorithm performs twice better here. This is due to
the fact that the scenario does not have as many complex shapes, and the number of control points in the
proposed algorithm does not change significantly over time (Figure 5.25). The value of detection metric,
expressed by F1 score, is better for the proposed algorithm most of the time (Figure 5.24).
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Figure 5.23. An example of approximation error per iteration for city scenario id 2.
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Figure 5.24. An example of F1 score value per iteration for city scenario id 2.
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Figure 5.25. Number of control points per iteration for city scenario id 2.
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5.4.2.3 Parking

The analysis of the parking scenarios results is similar to the overall results. The approximation error
is lower for the proposed algorithm (Figure 5.26). The mean absolute deviation is 33% and its median
is 38% lower compared to the reference algorithm. The outcomes of the Hausdorff distance analysis
suggest that the proposed algorithm has an advantage over the reference algorithm.
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(c) The Hausdorff distance.

Figure 5.26. Approximation error box plots aggregated from parking scenarios.

The analysis of the results with respect to the detection errors shows a 28% higher TP count, 81% lower
FP count and a 79% lower FN count for the proposed algorithm (Figure 5.27).
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(b) Detection error rates.

Figure 5.27. Detection error counts and rates aggregated from parking scenarios.

The execution time is similar to the overall results. The proposed algorithm is two times faster than the
reference algorithm (Figure 5.28).
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Figure 5.28. Algorithms’ execution time aggregated from parking scenarios.

Scenario id 4 is taken as an example, which is described in detail. Figure 5.30 shows the means of the
approximation error metrics for each iteration. For most of the time, the proposed algorithm has better
approximation quality. As may be noticed, the approximation quality of the proposed algorithm starts to
increase around the 30th iteration. It is caused by the delay in adding control points. After some iterations,
the algorithm starts to add some control points (around the 60th iteration). After that, the approximation
quality increases significantly. Changes in the number of control points are reflected in Figure 5.32. The
increase in the number of control points is caused by the detection of an empty parking space. Figure
5.29 illustrates this slot before and after making control points adjustment. Most of the time, the proposed
algorithm tends to have a higher F1 score, indicating a better value for the detection metric (Figure 5.31).
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(a) The spline approximation at 40th it-
eration.

(b) The spline approximation at 75th it-
eration.

Figure 5.29. The empty parking slot shape approximation. Initially the slot is not
visible entirely for the host (self occlusion). After host movement the host can map
and approximate entire slot.
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Figure 5.30. An example of approximation error per iteration for parking scenario id
4.

0 20 40 60 80 100 120 140 160 180 200

Iteration index

0.7

0.8

0.9

1

1.1

V
al

ue

F1 score

Proposed
Reference

Figure 5.31. An example of F1 score value per iteration for parking scenario id 4.
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Figure 5.32. Number of control points per iteration for parking scenario id 4.
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5.4.2.4 Shapes

The results analysis of shapes scenarios are much better compared to the overall results. The approxi-
mation error is lower for the proposed algorithm (Figure 5.33). The mean absolute deviation is 57% and
its median is 64% lower with respect to the reference algorithm (PFS). The findings from the Hausdorff
distance analysis indicate that the proposed algorithm performs better than the reference algorithm.
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(c) The Hausdorff distance.

Figure 5.33. Approximation error box plots aggregated from shape scenarios.

The analysis of the results with respect to detection errors shows a 21% higher (better) TP count, 80%
lower FP count, and 81% lower FN count for the proposed algorithm (Figure 5.34).
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(b) Detection error rates.

Figure 5.34. Detection error counts and rates aggregated from shape scenarios.

The execution time is similar to the overall results. The proposed algorithm is more than two times faster
than the reference algorithm (Figure 5.35).
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Figure 5.35. Algorithms’ execution time aggregated from shape scenarios.

As an example scenario to be described in detail, scenario id 2 is taken. Figure 5.36 shows the means
of the approximation error metrics for each iteration. All shapes scenarios are used to check the algo-
rithms performance from pure approximation point of view. Thus, the host is stopped and the generated
occupancy grid is a constant binary grid (it does not change over time). This is why the approximation
error plots are so stable. In addition, in this case, it can be said that the performance of the proposed al-
gorithm is twice better. Its worse approximation error at the beginning is caused by an initialization time
the proposed algorithm requires to calculate and refine shape complexity indicators etc. The stability of
the approximation error plots is also reflected in the number of control points used in the plot shown
in Figure 5.38. In general, the proposed algorithm outperforms other methods in terms of the detection
metric, with a higher F1 score being the indicator of this superior performance (Figure 5.37).
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Figure 5.36. An example of approximation error per iteration for shape scenario id 2.
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Figure 5.37. An example of F1 score value per iteration for shape scenario id 2.
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Figure 5.38. Number of control points per iteration for shape scenario id 2.
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5.4.2.5 Mix

The results analysis of mix scenarios are better compared to the overall results. The approximation errors
are comparable for the proposed algorithm and the reference one (Figure 5.39). The mean absolute devi-
ation is 5% lower (better) while its median is 7% higher (worse) with respect to the reference algorithm.
Based on the analysis of the Hausdorff distance, it can be concluded that the proposed algorithm has an
edge over the reference algorithm.
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(c) The Hausdorff distance.

Figure 5.39. Approximation error box plots aggregated from mix scenarios.

The results analysis with respect to the detection errors shows 27% higher TP count, 74% lower FP count
and 78% lower FN count for the proposed algorithm (Figure 5.40).
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(b) Detection error rates.

Figure 5.40. Detection error counts and rates aggregated from mix scenarios.

The execution time is similar to the overall results. The proposed algorithm is about two times faster than
the reference algorithm (Figure 5.41).
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Figure 5.41. Algorithms’ execution time aggregated from mix scenarios.
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(a) The approximation results at 698 iteration. (b) The approximation results at 699 iteration.

(c) The approximation results at 702 iteration.

Figure 5.42. The approximation of shapes that are changed significantly between two
following iterations.
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As an example scenario to be described in detail, scenario id 1 is taken. Figure 5.43 shows the means of
the approximation error metrics for each iteration.
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Figure 5.43. An example of approximation error per iteration for mix scenario id 1.

The first part of the example scenario is the highway type. Around 500th iteration, it is changed to the
city type. It can be seen that, starting from the 500th iteration, the approximation quality of the reference
algorithm starts to decrease and is worse and worse until the end of the scenario. The same behavior can
be seen in Figure 5.44 showing F1 score value per iteration. In the highway part, the F1 score is similar
for both algorithms (a little better for the reference one). In the city part, the F1 score for the reference
algorithm drops drastically. The F1 score of the proposed algorithm remains the same level.
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Figure 5.44. An example of F1 score value per iteration for mix scenario id 1.
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(a) The approximation results at 130-th iter-
ation.

(b) The approximation results at 131-th iter-
ation.

(c) The approximation results at 132-th iter-
ation.

Figure 5.45. Vanishing shape influencing approxmiation errors.

The number of control points in the reference algorithm is fixed, and the proposed algorithm iteratively
adds control points (Figure 5.46). The fixed number of control points in the reference algorithm was
enough for the highway type scenario, but not for the city type.
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Figure 5.46. Number of control points per iteration for mix scenario id 1.

Some peaks visible in the proposed algorithm approximation error plots, like those around 520th, 590th
and 700th iterations are caused by the time the algorithm requires to approximate a new long shape that
appears between two following iterations (Figure 5.42). Another reason is the vanishing of the already
approximated shape. Figure 5.45 shows this situation that occurs in the following iterations. The free
space is marked by the blue area. There is a big change in the actual free space between two iterations,
which is reflected by the approximating spline with some delay. The reason for this is the same as
mentioned before, i.e. indicators and some other parameters are filtered in time and thus require some
time to converge.

Compared to the reference algorithm, the goal of the proposed algorithm is not to make a one-time-
instance approximation (low measurement noise), but to balance the approximation quality over time
versus the computing power demand (proportional to the number of control points).
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5.4.2.6 Summary

All presented results prove that the proposed algorithm has a better overall performance (approximation
quality and execution time). It is worth to mention that even though the execution time of the proposed
algorithm is about two times shorter than that of the reference algorithm for a comparable number of
control points, its approximation quality is still much better than that of the reference algorithm. It may
be stated that measurement points downselection combined with the dynamic spline points adjustment
make estimated spline much closer to the reference free space boundary. Table 5.2, Table 5.3 and Table
5.4 contain summary results for the 22 scenarios tested.

Table 5.2. Approximation errors in all scenarios. P — proposed algorithm, R — ref-
erence algorithm (the PFS). "The closest spline point" metric is used.

Category ID Mean Median Deviation
P R P R P R

City 1 0.13 0.18 0.09 0.14 0.10 0.12
City 2 0.15 0.18 0.11 0.14 0.12 0.13
City 3 0.11 0.18 0.08 0.14 0.09 0.13
City 4 0.10 0.17 0.07 0.13 0.08 0.13
City 5 0.13 0.17 0.10 0.13 0.10 0.13

Highway 1 0.10 0.15 0.07 0.11 0.09 0.12
Highway 2 0.10 0.15 0.08 0.12 0.09 0.12
Highway 3 0.12 0.15 0.09 0.11 0.10 0.12
Highway 4 0.13 0.13 0.10 0.10 0.10 0.11
Highway 5 0.13 0.14 0.10 0.10 0.10 0.11

Mix 1 0.13 0.13 0.10 0.09 0.11 0.12
Mix 2 0.12 0.14 0.09 0.09 0.10 0.12

Parking 1 0.14 0.20 0.10 0.16 0.12 0.14
Parking 2 0.11 0.16 0.08 0.12 0.10 0.13
Parking 3 0.11 0.18 0.08 0.15 0.10 0.13
Parking 4 0.07 0.11 0.04 0.06 0.07 0.11
Parking 5 0.12 0.18 0.10 0.14 0.09 0.13

Shape 1 0.07 0.16 0.04 0.12 0.07 0.13
Shape 2 0.08 0.19 0.06 0.15 0.08 0.14
Shape 3 0.07 0.16 0.04 0.09 0.07 0.14
Shape 4 0.09 0.17 0.05 0.14 0.09 0.13
Shape 5 0.06 0.17 0.04 0.12 0.06 0.13

Average 0.11 0.16 0.08 0.12 0.09 0.13
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Table 5.3. Detection error counts in all scenarios. P — proposed algorithm, R — ref-
erence algorithm (the PFS), P/R — ratio (value above 1.0 indicates better performance
of the proposed algorithm in case of TP, while less than 1.0 are better in case of FP
and FN). "The closest spline point" metric is used.

Category ID TP FP FN
P R P/R P R P/R P R P/R

City

1 1349485 1269513 1.06 57317 98649 0.58 51709 90349 0.57
2 231104 199523 1.16 15334 31753 0.48 14919 30081 0.5
3 755750 652669 1.16 13956 60582 0.23 10753 67208 0.16
4 529403 457718 1.16 9057 45255 0.2 6709 42196 0.16
5 842015 682867 1.23 32930 117951 0.28 20829 94956 0.22

Highway

1 739797 588828 1.26 21992 95951 0.23 17085 94095 0.18
2 795306 668414 1.19 19401 73089 0.27 17410 90614 0.19
3 829617 730096 1.14 32518 78716 0.41 26745 80068 0.33
4 880350 803506 1.1 35302 74606 0.47 20420 57960 0.35
5 1130711 1027279 1.1 45552 106591 0.43 23787 66180 0.36

Mix
1 1728450 1356719 1.27 72347 262360 0.28 52415 234133 0.22
2 1632426 1282467 1.27 55886 240981 0.23 47529 212393 0.22

Parking

1 91598 57661 1.59 4828 19929 0.24 5502 24368 0.23
2 864194 712497 1.21 21908 98051 0.22 23667 99221 0.24
3 449632 307658 1.46 17031 89678 0.19 16859 86186 0.2
4 205031 166819 1.23 2043 26368 0.08 1940 15827 0.12
5 496667 399838 1.24 11777 67382 0.17 11617 52841 0.22

Shape

1 730624 601320 1.22 14930 72272 0.21 16350 88312 0.19
2 585257 451256 1.3 9987 72270 0.14 12022 83740 0.14
3 302417 261764 1.16 3673 26737 0.14 5958 23547 0.25
4 844428 756750 1.12 24921 70691 0.35 22443 64351 0.35
5 508313 380355 1.34 7588 66540 0.11 7215 76221 0.09

Average 751026 627978 1.23 24104 86200 0.27 19722 80675 0.25
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Table 5.4. Detection error rates in all scenarios. P — proposed algorithm, R — refer-
ence algorithm (the PFS). The "closest spline point" metric is used.

Category ID TPR PPV F1
P R P R P R

City

1 0.96 0.93 0.96 0.93 0.96 0.93
2 0.94 0.87 0.94 0.86 0.94 0.87
3 0.99 0.91 0.98 0.92 0.98 0.91
4 0.99 0.92 0.98 0.91 0.99 0.91
5 0.98 0.88 0.96 0.85 0.97 0.87

Highway

1 0.98 0.86 0.97 0.86 0.97 0.86
2 0.98 0.88 0.98 0.9 0.98 0.89
3 0.97 0.9 0.96 0.9 0.97 0.9
4 0.98 0.93 0.96 0.92 0.97 0.92
5 0.98 0.94 0.96 0.91 0.97 0.92

Mix
1 0.97 0.85 0.96 0.84 0.97 0.85
2 0.97 0.86 0.97 0.84 0.97 0.85

Parking

1 0.94 0.7 0.95 0.74 0.95 0.72
2 0.97 0.88 0.98 0.88 0.97 0.88
3 0.96 0.78 0.96 0.77 0.96 0.78
4 0.99 0.91 0.99 0.86 0.99 0.89
5 0.98 0.88 0.98 0.86 0.98 0.87

Shape

1 0.98 0.87 0.98 0.89 0.98 0.88
2 0.98 0.84 0.98 0.86 0.98 0.85
3 0.98 0.92 0.99 0.91 0.98 0.91
4 0.97 0.92 0.97 0.91 0.97 0.92
5 0.99 0.83 0.99 0.85 0.99 0.84

Average 0.97 0.88 0.97 0.87 0.97 0.87
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5.4.3 Real world scenario

In the real test case, the vehicle has been equipped with four radar sensors mounted on each corner. These
sensors have the field of view of 150° and can detect objects up to a maximum distance of 100 meters
(Figure 5.47). They use frequency-modulated continuous-wave technology operating in a millimeter-
wave bandwidth. The occupancy grid data has been created using the assistance of [Porebski, 2022] and
has a resolution of 0.2 meters within a 100 x 100 meter grid. Raw data for the scenario were gathered on
the parking with some obstacles present within sensors field of view (Figure 5.48).

Figure 5.47. Radars coverage of the vehicle (depicted as the green rectangle). The
relation between vehicle size and radar range is not kept to improve the clarity.

Host

Proposed
Reference

Figure 5.48. An visualization of one iteration from the real scenario.

The overall results show the advantage of the proposed algorithm over the reference one. The approxi-
mation errors are lower for the proposed algorithm (Figure 5.49). The same happens with the detection
errors (Figure 5.50). The proposed algorithm is about two times faster than the reference (Figure 5.51).
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Figure 5.49. Approximation errors aggregated from real scenario.
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(b) Detection error rates.

Figure 5.50. Detection errors and rates aggregated from real scenario.
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Figure 5.51. Algorithms’ execution time aggregated from real scenario.
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5.4.4 Spline degree influence

The one of the basic spline parameters is its degree. In this test, the influence of the degree of the spline
on the approximation quality is verified. As expected, the higher degree of spline provides a better ap-
proximation quality, while at the same time increasing the execution time of an algorithm (Figure 5.52).
The median values in the box plots are 0.086 (degree 1), 0.079 (degree 2), and 0.074 (degree 3). The
execution time means are, respectively, 0.0833, 0.118 and 0.131 seconds.
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Figure 5.52. The results of the spline degree influence verification — basic metrics.

The same situation may be observed for the results of detection error rates. The TP count is higher for
higher degree, whereas the FP and FN counts are lower (Figure 5.53).
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Figure 5.53. The results of the spline degree influence verification — detection met-
rics.
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5.4.5 Impact of number of control points.

The number of control points has a direct influence on the quality of the approximation. In general, it
can be expected that the higher number of control points improves the quality of the approximation. For
testing purposes, two different simulations are performed to check how the reference algorithm behaves
with a different fixed number of control points. The first test assumes that the number of control points
is set to the maximum number that occurs in the proposed algorithm throughout the scenario. The other
approach takes the so-called "semi-minimum" number of control points. Its value is equal to the rounded
35% of the value taken in the main comparison (Section 5.4.1). Table 5.5 shows the fixed number of
control points used in the reference algorithm.

Table 5.5. The number of control points used in the PFS simulations.

Category ID Basic Maximum Semi-minimum

City

1 117 157 41
2 21 29 7
3 64 75 22
4 36 49 13
5 38 76 13

Highway

1 17 22 6
2 19 32 7
3 23 42 8
4 31 48 11
5 22 44 8

Mix
1 50 145 18
2 55 127 19

Parking

1 33 48 12
2 125 144 44
3 70 116 25
4 28 35 10
5 54 98 19

Shape

1 60 70 21
2 50 58 18
3 38 41 13
4 110 126 39
5 34 49 12

Average 49.77 74.14 17.55

Compared to the proposed algorithm, the semi-minimum version of the reference algorithm is approxi-
mately 2.6 times worse (the median value is 63% greater) in approximation quality with similar execution
time. The maximum version of the reference algorithm has only 5% worse approximation quality with
about 3 times longer execution time. It should be noted that the reference algorithm in its best (the maxi-
mum number of control points) is worse than the proposed algorithm (Figure 5.54). In terms of detection
error rates (Figure 5.55), the proposed algorithm achieved the best results.
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Figure 5.54. Impact of the number of control points on basic metrics.
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Figure 5.55. Impact of the number of control points on detection error metrics.
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5.4.6 Measurement shuffling test

This simple test has been performed to prove that the proposed algorithm can handle unsorted measure-
ment points compared to the reference algorithm, which cannot do that. Once the measurement points are
extracted, the shuffling is performed. As a result, the unsorted set of measurement points is provided to
the spline estimation part. Figure 5.56 shows the behavior of both algorithms. The proposed algorithms
make the shape approximation as expected, while the result from the reference algorithm (PFS) is a total
mess.

Proposed
Reference

Figure 5.56. Shape estimation results with unsorted measurement points.
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6 Conclusion and future work

6.1 Summary

In this thesis, a new free space boundary tracking algorithm is introduced. From a variety of mathematical
models, the parametric B-spline curve is chosen as a model of tracked boundary. The decision was made
based on a comparative analysis of the described models (Section 3.3). The B-spline was chosen mainly
because of its property (ability) to refine local approximation when needed which does not affect other
parts of the curve.

The proposed algorithm consists of two main stages: the occupancy grid processing and the spline pro-
cessing. All innovations are introduced in the spline processing stage only. Several approaches for the
measurement processing are proposed, including measurement extraction and downselection, measure-
ment association, including searching for a spline point corresponding to the measurement point. The
proposed algorithm is also enhanced by the control point adjustment methodology. It focuses on dy-
namic control point adjustment, i.e., adding or removing a control point. The method is based on the
local shape complexity analysis, which employs local shape complexity indicators introduced by the Au-
thor. Additionally, to solve the local minima problem, an approximation error indicator that is introduced.

In the final part of this doctoral dissertation, tests and verification of the proposed algorithm are per-
formed. It is done by comparison of the proposed algorithm with the chosen reference algorithm (here,
the PFS). The comparison is made mostly on artificial data by involving metrics such as the Hausdorff
distance, and two approximation error metrics proposed by the Author i.e. (closest spline point and per-
pendicular spline point) and safety looking metric called detection gaps classifier.

The comparison analysis proves that the proposed algorithm is better in terms of approximation quality
(in all metrics used) and execution time. Moreover, some additional tests were performed that evaluate
impact of spline degree, impact of number control point, and the impact of measurement shuffling on
both algorithms. In all those analyzes the proposed algorithm outperforms the reference one.

6.2 Further improvements

Perfect solutions do not exist in the real word. The same applies to the proposed algorithm. There are
still several areas where the proposed algorithm can be improved.

Control point merging

Mentioned in Section 4.4.6 operations on control points consist of only two operations: addition and
removal. It may be beneficial to extend operations by merging two neighboring control points.
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Raw sensor data input

The current implementation uses the occupancy grid as input. The way in which the proposed algorithm
was written was as general as possible to handle an input from various sensor types and to eliminate the
occupancy grid processing stage in the future. There is still work to be done to achieve 100% separation
from the occupancy grid.

Traversability determination

Nowadays, the autonomous vehicle needs to know not only the boundary of the free space, but also
the traversability classification (i.e. whether the boundary is under, over, or non-drivable). Examples
are road elements like speed bumpers (overdriveble) or bridges (underdravible). The idea is to handle
3-dimensional input and add a third dimension information to the mathematical model.

Maximum number of control points

The autonomous vehicle has limits set on the software due to hardware resource limits (memory and
computing power). Thus, an unlimited number of control points is not an acceptable idea. The maximum
number of control points should be set. As a result, additional logic is required that makes the decision
on what to do in case the maximum number of control points is reached.

Host distance dependent measurement noise

It is known that the algorithm should reflect the closest surrounding environment better than farther in
terms of approximation quality. By relating the measurement position noise of the point to the distance
from the host, one can expect to have better approximation of the nearest environment.

Optimal control point placement when adding

The way how the proposed algorithm place a new control point when adding is not an optimal one. Based
on [Yang et al., 2004], it should be possible to find better way of control point placement that minimize
spline deformation.
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A.1 Parametric curves

A parametric curve is a set of points which position is defined by functions of the same parameter. In
case of the planar (2D) curve we can say that the coordinates (x, y) of the points creating the curve C
are defined by two functions of a parameter s:

C(s) = (x, y) ∈ R2 (A.1.1)

x = f(s)
y = g(s)

(A.1.2)

s – free parameter

A.1.1 B-Spline

The B-spline is a particular representation of a spline. The B-spline can be described as follows: for a
given knots vector t, a B-spline curve b(s) of the n-th degree is defined as a linear combination of basis
functions Bi,n(s). i-th basis function is weighted by the corresponding control point pi:

b(s) =
∑
i=1

piBi,n(s) (A.1.3)

pi – i-th control point

A basis function of the n-th degree is defined using the recursive Cox de Boor formula [de Boor, 1971]:

Bi,n(s) =
s− ti

ti+n − ti
Bi,n−1(s) +

ti+n+1 − s

ti+n+1 − ti+1
Bi+1,n−1(s) (A.1.4)

Bi,0(s) =

{
1, if ti ≤ s < ti+1

0, otherwise
(A.1.5)

A knot vector t is defined as set of non-decreasing values in s-domain where the pieces of polynomial
meet each other.

Figure A.1 illustrates an example of the b-spline with its basis functions and Figure A.2 visualizes a 2
dimensional B-spline.

The most important properties of the basis functions are the following:

◦ Local support
Basis function is non-zero only within its natural domain called its support interval.

Bi,n(s) = 0 s /∈ (ti, ti+n+1) (A.1.6)

◦ Boundary values
Bi,n(ti) = Bi,n(ti+n+1) = 0 (A.1.7)

◦ Continuity
For a given degree n basis function belongs to the highest possible continuity class for a piecewise
polynomial function

Bi,n(ti) ∈ Cn−1 ((ti, ti+n+1]) (A.1.8)
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Figure A.1. An example of 1-dimensional B-spline of degree 2 with
its basis functions. Control points vector: [1, 1, 1, 1, 1], knots vector:
[0, 0.1, 0.5, 0.6, 0.65, 0.7, 0.9, 1]

◦ Derivatives
The derivative of a basis function of degree n is a linear combination of basis functions of degree
n− 1:

dBi,n(s)

ds
= n

(
Bi,n−1(s)

ti+n − ti
− Bi+1,n−1(s)

ti+n+1 − ti+1

)
(A.1.9)

Similar properties, which are presented above, may also be defined for a B-spline:

◦ Domain definition
For a B-spline we can define two domains.
The full domain is the interval

[t1, tk] (A.1.10)

The natural domain is the interval
[tn+1, tk−n] (A.1.11)

Within which, the B-spline is a combination of n+ 1 non-zero basis functions.

◦ Limited influence region of control points
Each control point affects only a limited region of the B-spline. In other words, given control point
pi affects only the following interval of the B-spline:

[ti, ti+n+1] (A.1.12)
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Figure A.2. An example of 2-dimensional B-spline within its natural domain.
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A.2 Artificial scenario details

This section contains extended information on the artificial scenarios used for the performance evaluation
of the proposed algorithm. Details of the scenarios are given in Table A.1. The following figures illustrate
those scenarios:

◦ Highway — Figure A.4
◦ City — Figure A.5
◦ Parking — Figure A.6
◦ Shapes — Figure A.7
◦ Mix — Figure A.8

Table A.1. Each of the tested scenarios in detail.

Category ID Total
iterations

Total
reference points

City

1 480 1458511
2 171 261357
3 252 780459
4 252 545169
5 416 895774

Highway

1 515 778874
2 554 832117
3 521 888880
4 502 936072
5 735 1200050

Mix
1 822 1853212
2 736 1735841

Parking

1 160 101920
2 340 909769
3 267 483522
4 186 209014
5 400 520061

Shape

1 198 761904
2 198 607266
3 198 312048
4 198 891792
5 198 523116

HostObstacle

BarrierRoad/asphalt

Host path

Figure A.3. Legend of elements used in visualization of each scenario.
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A.2.1 Highway

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5

Figure A.4. The visualization of highway scenarios.
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A.2.2 City

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5

Figure A.5. The visualization of city scenarios.
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A.2.3 Parking

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5

Figure A.6. The visualization of parking scenarios.
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A.2.4 Shapes

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5

Figure A.7. The visualization of shapes scenarios.
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A.2.5 Mix

(a) Scenario 1 (b) Scenario 2

Figure A.8. The visualization of mix scenarios.
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A.3 Hardware and software

During the PhD work, all scripts, algorithms, and tools were written in MATLAB R2021b, including the
following.

◦ the proposed algorithm
◦ the reference algorithm
◦ scripts used for performance evaluation
◦ occupancy grid generators
◦ GUI

The simulations were performed on a computer equipped with:

◦ 11th Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz
◦ 64 GB
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