List of publications

[1] B. Sikora and A. Piłat, "Interdisciplinary identification of the six-pole axial active magnetic bearing prototype," Mechatronics, vol. 92, p. 102 982, 2023. DOI: https://doi.org/10.1016/j.mechatronics. 2023.102982.
[2] B. Sikora and A. Piłat, "Analytical modeling and experimental validation of the six pole axial active magnetic bearing," Applied Mathematical Modelling, vol. 104, no. 1, pp. 50-66, Jun. 2022. DOI: https://doi.org/10.1016/j.apm.2021.10.024.
[3] A. Piłat, B. Sikora, and J. Źrebiec, "Investigation of lateral stiffness and damping in levitation system with opposite electromagnets*," in 2019 12th Asian Control Conf., vol. 2029, Jun. 2019, pp. 1210-1215. DOI: 10.1063/1.5066519.
[4] A. Piłat, J. Źrebiec, and B. Sikora, "Neural velocity observer trained with experimental data supporting stabilization of magnetically levitating sphere," in 2019 12th Asian Control Conference (ASCC), 2019, pp. 214-219.
[5] B. Sikora and A. Piłat, "Numerical model of the axial magnetic bearing with six cylindrical poles," Archives of Electrical Engineering, vol. 68, no. 1, pp. 195-208, Jun. 2019. DOI: 10.24425/aee. 2019.125990.
[6] A. Piłat, B. Sikora, J. Klocek, et al., "Set-up of active magnetic bearings for control of flexible shaft," AIP Conference Proceedings, vol. 2029, no. 1, p. 020 058, Jun. 2018. DOI: 10.1063/1. 5066520.
[7] A. Piłat and B. Sikora, "Design and initial study of porous core electromagnet for levitation applications," AIP Conference Proceedings, vol. 2029, no. 1, p. 020 057, 2018. DOI: 10.1063/1.5066519.
[8] B. Sikora and A. Piłat, "Hybrid axial active magnetic bearing - design, modelling and prototype," Aug. 2018.

