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Streszczenie

Wykrywanie i identyfikacja uszkodzen duzych maszyn wirnikowych jest jednym z najwazniejszych
zagadnien diagnostyki maszyn energetycznych duzej mocy. Czynnikiem stwarzajagcym duze przeszkody
w analizie tak duzych obiektéw badawczych jest ztozonosc¢ ich odpowiedzi drganiowej dla linii watow,
sktadajacej sie z kilku czesci. Istnieje szereg procedur i metod pozwalajgcych wykrywac i identyfikowac
anomalie podczas pracy w stanach ustalonych maszyn energetycznych. Wazniejsza pod wzgledem
diagnostyki uszkodzen jest jednak analiza standw przejSciowych tych maszyn. Zasadniczg wadg
obecnego podejscia jest koniecznos¢ angazowania ekspertdw z duzym doswiadczeniem, co jest bardzo

kosztowne i pracochtonne.

Celem pracy byto zaproponowanie kompletnego systemu automatycznej diagnostyki uszkodzen
duzych maszyn wirnikowych na bazie ich odpowiedzi w stanach przejsciowych — w szczegdlnosci

podczas zmiany predkosci obrotowe;j.

Problem badawczy, to jest detekcja i identyfikacja uszkodzen podczas uruchomienia lub odstawienia
turbozespotu duzej mocy zostat rozwigzany poprzez analize szeregu badarn diagnostycznych
wykonanych przez autora na obiektach zainstalowanych w elektrowniach zawodowych oraz symulacje
konkretnych niesprawnosci na stanowisku laboratoryjnym. Bazy danych z badaniami diagnostycznymi
zawieraty zaréwno odpowiedzi turbozespotéw wolnych od uszkodzen, jak i z konkretnymi
uszkodzeniami zweryfikowanymi w trakcie badan diagnostycznych na obiektach. Autor w ponizszej
pracy uzywat danych pochodzacych z przenosnego urzadzenia diagnostycznego. Autor opracowat i
zaproponowat dwie metody: Operating Envelope — OpEn (do automatycznej detekcji uszkodzen
podczas stanéw przejsciowych) oraz Multidimensional Data Driven Decomposition — MD3 (do
automatycznej identyfikacji niesprawnosci). Ustalenie danych referencyjnych jak i przygotowanie
danych z aktualnego stanu przejsciowego jest oparte na interpolacji Cubic Spline (w celu ujednolicenia
interwatéw, dla ktérych bedzie przeprowadzana analiza wszystkich danych). W metodzie detekcji
uszkodzen (OpEn) autor wykorzystat koncepcje zblizong do obwiedni sygnatu (Spectrum Envelope) w
celu okreslenia regionu akceptacji poprawnosci odpowiedzi turbozespotu. Do automatycznej
identyfikacji parametréw dekomponowanych funkcji, zostat wykorzystany algorytm Differential
Evolution (DE), ktéry wywodzi sie z rodziny algorytmdéw genetycznych Genetic Algorithms (GA).
Pozostatymi narzedziami sktadajgcymi sie na caty zaproponowany system sg: dla metody detekcji: dwu-
i trojwymiarowy rejon akceptacji dla kazdego z czujnikéw poszczegdlnych czesci turbozespotu, a dla
metody identyfikacji: zbiér trzech scenariuszy z odpowiednio zmodyfikowanymi funkcjami
dekompozycji wraz z miarg ich dopasowania. Wszystkie metody zostaty przebadane na danych
pochodzgcych z symulowanego sSrodowiska na stanowisku laboratoryjnym oraz na danych z obiektéw

rzeczywistych.

Stowa kluczowe: maszyny energetyczne, wykrywanie uszkodzen, dynamika wirnikéw, przetwarzanie

sygnatéw, dekompozycja sygnatu, algorytmy genetyczne, Differential Evolution.



Abstract

Detection and identification of malfunctions in large rotating machines are among the most critical
subjects in the diagnostics of utility power generation machinery. The factor that creates significant
obstacles in analyzing such large research objects is the complexity of the vibration response for the
entire shaft line train, composed of several parts. There are several procedures and methods to detect
and identify anomalies during the steady-state operation of turbomachinery. More important in fault
diagnosis is the analysis of transient states of these machines. Key disadvantage of these methods is

involvement of human experts with strong experience.

The aim of the research was to propose a complete system of automatic fault diagnosis of large
rotating machines based on their responses in transient states - particularly during changes in

rotational speed.

The research problem, i.e., the detection and identification of failures during the commissioning or
shutdown of a high-power turbine set, was solved by analyzing a number of diagnostic tests performed
by the author on facilities installed in utility power plants and simulating specific malfunctions at a test
rig. The databases with diagnostic tests contained both the responses of fault-free turbine sets and
those with specific damages confirmed during diagnostic tests on objects. The author used data from
a portable diagnostic device. The author developed and proposed two methods: the Operating
Envelope - OpEn method (for automatic fault detection during transient states) and the
Multidimensional Data Driven Decomposition - MD3 method (for automatic fault identification).
Determining the reference data and preparing the data from the current transient state is based on
the Cubic Spline interpolation (to standardize the intervals for which all data will be analyzed). In the
failure detection method (OpEn), the author used a concept similar to the signal envelope (Spectrum
Envelope) to determine the region of acceptance of the correctness of the turbine set response. In his
analysis, the Differential Evolution (DE) algorithm was used to automatically identify the parameters
of the decomposed functions derived from the Genetic Algorithms (GA) family of genetic algorithms.
The remaining tools that make up the entire proposed system are, for the detection method: two- and
three-dimensional acceptance regions for each of the sensors of individual parts of the turbine set,
and for the identification method: a set of three scenarios with appropriately modified decomposition
functions along with a measure of their matching. All the methods were tested on data from a

simulated environment on a laboratory stand and data from real turbo generators.

Keywords: power generation machinery, fault detection, rotor dynamics, signal processing, signal

decomposition, genetic algorithms, Differential Evolution.
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1. Introduction

Large sets of turbogenerators are the main contributors to the world’s electric generation. Although
in last years renewable energy sources are rapidly increasing, large utility power plants with large
turbogenerators will play the overwhelming role in the industry. Such a scenario, according to
forecasts, will remain for at least a few decades. Turbines coupled with generators are the primary
machines in every large nuclear and fossil fuel utility power plant worldwide, and their ability to
operate is critical for the power generation process. Such necessary units are called “critical machines”
because their unavailability can degrade the operation of the national electric grid system, which can
be harmful to the national industry. Therefore, their malfunctions should be detected to avoid

catastrophic failures and unplanned shutdowns.

To show the perspective, utility power plants are large-size facilities. The turboset plays a central role
as it is a unit that converts mechanical energy into electrical energy. A turbine hall can be as long as
0.5 km or even 1 km in extreme cases. Figure 1 shows two types of turbine hall arrangement. Top of
the figure depicts an old type of machine hall. This arrangement is characterized by many smaller units,
typically eight to twelve, located parallel to each other. The power output of a single unit usually is up
to 230MW. Figure 1, bottom, shows a new arrangement of the power generating units. It is
characterized by a small number of turbine sets, usually one or two, located one after the other. These
are high-power units, as the unit's output power is often close to 1GW, which is four to five times

greater than old types of turbine sets.
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Figure 1. Power plant machine hall: top — old arrangement; bottom — new arrangement.

Figure 2 illustrates an example of a 13K215 type turbine hall (top of Figure 2) and the turbine part

cross-Section (bottom of Figure 2). These units are the most popular turbine type in Poland’s power
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generation industry. These machines were mostly manufactured in the 1980s. They have been
successively repaired and modernized to meet the operational requirements and increase their

availability.

Figure 2. Turbine hall of 13K215 units installed in a power plant (top) and cross- sectlon of the turbine type
(bottom).

Figure 3 shows two opposite steps of the process of replacement of one of the key machine
components - the Intermediate Pressure (IP) rotor. The top part of the figure shows the old rotor after
it has been disassembled. The bottom part shows the new rotor installation in the IP cylinder body.
Such regular modernizations allow extending the life of machines for many years. However, it must be
supported by appropriate supervision of the device's safety. Together with increased electricity
demand, new challenges arise both for the machines that are expected to be more reliable and for
monitoring systems to diagnose malfunction without expert knowledge in a reliable way. These
machines are expected to operate for long periods without the necessity of being shut down. From
start-up to coast down, intervals between transient states can be measured in months or, in some
cases, even longer. They are operated in varying conditions such as load change from 40% up to the
nominal load, different steam temperatures, and pressures. This type of operation can introduce a

large amount of stress, which eventually can lead to fatigue and, in extreme cases, to a failure.
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Figure 3. Intermediate Pressure (IP) turbine rotor:

top - disassembly of the old one; bottom - new one assembly.
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To put this into perspective, the Figure 4 presents the smallest and the largest part of the turbine
drivetrain. The smallest of the turbogenerator rotors is the high-pressure rotor (HP). It is about four
meters long and weighs about five tons. Figure 4 (a) shows the on-site assembly of an HP cylinder with
a rotor. On the other hand, the largest part of the turbine is the rotor of the low pressure (LP) cylinder.
It measures about 10 meters in length and weighs above 100 tons. Figure 4 (b) and (c) presents the LP

part (cylinder and rotor) assembly process.

These types of equipment have to be robust, and their assembly must be extremely exact. For such
large elements to run smoothly, they must be assembled with very high precision. Usually, the
alignment of the particular shaft axis has to fall into a +/- 0.015 mm tolerance. The process of alignment
of each shaft is complicated in terms of the logistics of cumbersome objects and constraints that have
to be met. In addition, it can last for 72h for a single coupling. These operations make the overhaul
activities long-lasting and tedious for both the contractor and the machine’s owner. Turbine sets are
equipped with vibration monitoring and supervision systems to avoid unplanned outages and
unwanted repairs.

(a)
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(b)

Figure 4. Steam turbine parts: (a) — HP cylinder assembly; (b) — 200MW class LP rotor assembly; (c) — two LP
rotors of +450MW class unit in situ.

Steam-powered turbogenerators still play an important role in the worldwide electrical power
generation. The survey by Xiao et al. [1] presents the main components of a fossil-fuel power plant and
its importance and share in the world power generation industry. Although renewable energy each

year takes a bigger and bigger share in the power generation market, the safety of the power grid
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requires large units in the system to balance the renewable sources in case of lack of wind or sun.
Another important use of steam plants is suppling steam required by numerous industrial processes
(e.g. chemical or paper plants). In such cases, renewal energy fails to provide such a media as was

presented in the report [2].

Large turbomachinery like steam and gas turbogenerators should operate as long as possible without
stoppage or interruptions of power generation. This approach forces a new monitoring standard for
steam and gas turbogenerators. Monitoring and assessment of their technical condition are carried
out using signals from vibration sensors. There are three basic types of sensors measuring turbine
vibrations. These sensors are: accelerometers, velocity sensors, and eddy current sensors. Their
designs and principles of operation vary from one type to another. In the next sections the main

differences between these sensors will be presented.

Acceleration sensors are usually small and light, as can be seen in Figure 5 top. They can measure wide
range of frequencies. Depending on size and dimensions their frequency response usually starts from
3Hz and spans up to 120kHz. Figure 5, bottom, presents typical components of accelerometer. The
main element is a piezoelectric element sandwiched between base of the sensor and the seismic mass.
Stress applied to the piezoelectric element causes an electric charge to be generated. The sensor's
electrical response is directly proportional to the vibration’s acceleration to which it is subjected. The
force acting on piezoelectric element is obtained by the mass and preload spring configuration in the
sensor. Often, they have integrated preamplifiers to rectify and enhance the signal output. Also, they

need an external power supply to work.
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Preload Spring

Piezoelectric element % %//% Electrical output

Sensor base . I - Fixing place

I Vibration source

Figure 5. Typical accelerometer sensor: top — real sensors examples; bottom — sensor components schematic.

Due to their high-frequency bandwidth, these sensors are often used to monitor rolling bearings and
planetary gears.
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1.2.2. Velocity sensors

Velocity sensors are generally the biggest and the bukliest of all types of vibration measurement
sensors. They measure absolute velocity of the stationary structures. Due to the moving mass, i.e.,
permanent magnet, the usable frequency sensor output range spans from approximately 10 ~ 15Hz
up to 1500Hz, and they are sensitive to the mounting orientation. Figure 6, top left, presents examples
of velocity sensors used to monitor turbine ‘s bearing pedestal casings, and top right — velocity sensor
mounted on the bering pedestal on-site. The components of the typical velosity sensor are presented
in Figure 6. The signal is generated by the permanent magnet moving inside a coil. The signal output is
proportional to a velocity of vibration to which the sensor is subjected. They generate signal output

without external power supply.

Velocity sensor

Electrical output

Connector
Sensor case

Coil | Coil
Damping fluid

Spring Permanent magnet

Sensor base
1 Vibration source

Figure 6. Typical velocity sensor: top left — real sensors examples, top right — on-site velocity sensor assembly;
bottom — sensor components schematic.

Velocity sensors are often used in large turbomachinery monitoring and diagnostics as a suplementary

measurements to eddy-current probes.

19



Shaft‘s motion in relation to the bearing casing in fluid-film bearings is the vital monitoring parameter.
This motion is used in diagnostic purposes as the most important source of information. Eddy-current
probes can measure both static and dynamic motion of the shaft. It measures the gap between rotor
and sensor. Static part of the signal is a rotor positon in the bearing and the dynamic part is the relative
motion from actual static position. Critical machines are equipped with eddy current probes that
measure the shaft's vibration inside a journal bearing in two perpendicular axes (relatively to one
another). In the large turbomachinery equipped with fluid-film bearings, relative bearing-to-rotor
displacement measurement provides essential information about the behavior of the rotor . Figure 7,

top left, presents a schematic of their arrangement, and Figure 7 bottom depicts the field assembly.
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— — Probe body (threaded)

—
- Probe tip

.g_.-. T
/ Lok Coil

Displacement signal output

I Probe-to-shaft distance

Figure 7. Arrangement of eddy-current probes in the bearing housing; top— schematic, middle left — physical
sensors example, middle right — typical sensor components; bottom — field assembly on a journal bearing.

There are several different applications of eddy-current probes in the turboset measurements apart
from vibration measurements. One of the most important is the measurement of the turbine's axial
displacement. It measures the position of the turbine shaft to the reference point, often found inside
the thrust bearing pedestal. This measurement is critical and is part of the machine safety system.
Other measurements that use such sensors are the relative expansion of the rotor to the turbine

21



cylinder body, as depicted in Figure 8. Another measurement is the rotational speed, phase angle, and

eccentricity (or mechanical runout of the shaft in front of the rotor in a radial direction) measurements

used for diagnostic purposes.

Figure 8. Relative expansion sensor assembly.

In Chapter 6 of [3], Eisenmann describes various types of sensors, including eddy-current sensors, for
machine health monitoring and protection systems. Figure 9 top shows the arrangement of shaft axial
position, reference one-per-revolution point (called Keyphasor by Bently [4]), and relative vibrations
sensors. The bottom part of Figure 9 depicts the real-life assembly and placement of the probes in the

thrust bearing pedestal.
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Figure 9. Eddy-current probe installation example; top — schematic arrangement by Eisenmann [3], bottom —
physical assembly of the eddy-current sensors inside thrust bearing pedestal for different type of
measurements.

Performing a vibration analysis involves considering several parameters, e.g. broadband features,

frequency selective features, and harmonic vectors. The most critical parameters to be assessed are
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the natural frequencies of a shaft line. Vo and Ton-That [5] present an extensive study in this respect.
The monitoring and protection systems of most large rotating machinery equipped with sliding fluid-

film bearings typically use two types of sensors, namely eddy current and velocity sensors.

As assessed following ISO 20816-1, the technical condition of rotating machinery should fall within the
10-100Hz frequency range. Due to the features of the sensors presented in Sections 12-15, eddy
current sensors are the primary sensors for monitoring and protection systems of turbogenerators.
Each bearing of the machine is equipped with this type of measurement. It is the main quality
parameter determining the technical condition of the machine. In addition, the data from vibration
velocity factors are often used as supplementary ones. Unfortunately, turbo-sets are often not
equipped with velocity sensors in a repeatable and unambiguous manner due to economic reasons.
This fact disqualifies measurements from these sensors for automatic evaluation and implementation

on the entire machine park.

To extract diagnostic information from the vibration signal, a set of two parameters can provide the
best results. These are the amplitude and frequency of a vibration component of a known frequency.
For example, in rotating machinery with sliding bearings, the critical feature in signal extraction is the
phase lag of signal components. This parameter determines the timing difference between pre-defined
events. The example of the physical arrangement for this type of sensor is depicted in Figure 9.For
example, the one-per-revolution mark determines the 360° of rotation, and the time between the
consecutive marks determines the angular speed of the machine presented in Figure 10. The once-per-
revolution mark is one of these events, and the second one is the closest distance between the sensor
probe and rotor present in the figure. A diagnostic system uses an eddy-current sensor to produce this

reference point.

Keyphasor event

Transducer signal

Trigger level

Keyphasor
transducer

J

Figure 10. Once-per-revolution event. Timing difference and rotational speed measurement [4].

It becomes a reference point for the whole shaft-line vibration measurements. All features from the

vibration probes across the machine train reference to this signal. This reference enables obtaining
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specific characteristics of the dynamic response of the shaft-line. Bently and Hatch [4] presented these
concepts in an easy and straightforward way. Figure 11 depicts extracting a phase lag and amplitude
from a simple vibration signal. The top chart presents "the raw" vibration signal from the sensor. The
middle part of the figure describes a one-per-revolution reference point from the lag angle sensor
(called Keyphasor by Bently [4]). The bottom chart shows the combination of the upper two to produce

the wanted vibration feature. Time T is the time between the reference mark events.

=250

Figure 11. Phase lag angle, angular velocity, and amplitude extraction procedure [4].

The difference t; — t, is the time between the reference point and the highest point in the waveform
since the reference point occurred. It is the amplitude Ds of the vibration vector represented by the

Equation (7), and depicted in Figure 11. Equation (1) presents the phase angle s derivation.
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Figure 12. Reference mark and vibration signal during field measurement.

An example of extracting the characteristics of a vibration signal during field measurements is shown

in the Figure 12.

In this thesis, the author focuses on determining the baseline behavior of the machine in a healthy

state, detecting an anomaly when it occurs during the transient state, and identifying the malfunction

— when detected. To introduce the reader into the subject, the key notions from the field of

rotordynamics will be presented in the following section.

The most fundamental concept of estimation of rotating machinery is the model of the Jeffcott rotor
described by Vance et al. [6] and presented in Figure 4. Starting from this model, Ehrich [7] presents

the response of the rotor-bearing system to excitation by response for the synchronous excitation, i.e.,

imbalance during a transient state, in his in-depth study of rotordynamic topics.

Thus the equations of motion for the Cartesian coordinate for the rotor model in Figure 4 can be listed

as follows [6].
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Figure 13. The Jeffcott rotor model (a) [6]; End view of the Jeffcott rotor and its coordinates (b) [6].
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Equations (6) and (7) can be drawn for the angular speed of the rotor ®. Such graphs will provide
helpful information on the behavior of the rotor during transient state operation. Figure 14 presents

the solution to equations presents the solution to the equation (2) and (3) depicted visually throughout

the transient state. Analyzing Figure 14, well below critical rotor speed (w = \/k/_m), phase angle
(phase lag Ss) is in phase with the unbalance force. The shaft behaves like a rigid body within this zone,
i.e., it does not deflect. As a rotor approaches its critical speed, whirling amplitude Ds approaches its
maximum with a phase angle reaching 90°, and the rotor deflection reaches the maximum value. With
increasing rotation speed, phase lag will increase from 90° up to 180°, which will cause whirling

amplitude to reduce after its critical speed range.

Response
amplitude

®
8

VKM

Figure 14. Bode plots of the rotor response phase (top described by equation (5)) and amplitude (described by
equation (3), (4), and (6)) [8].

Similar behavior of the system is observed during measurements with portable instruments connected
to eddy current sensors. Figure 15 presents an example of a Bodé plot from a single eddy-current (i.e.,

relative vibration) sensor obtained during field measurements.
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Figure 15. Bodé plot of the real system.

The upper diagram shows the change in phase lag, and the lower chart shows the amplitude for
individual revolutions. The graphs for Figure 15 show the amplitude-phase response of the system, at

the measuring point, to the variable synchronous excitation, which is the centrifugal force.

The most common malfunction in rotating machinery is the unbalance of one of its rotors. The force
that generates the unbalance on the rotor is related to the centrifugal force shifting the center of mass
of the rotating rotor away from the inertia axis of the rotor. For example, in Figure 13, marked as point
C, the radius r on which the unbalance mass u acts with rotational speed w creating a rotating
centrifugal force. The force creates rotor lateral movement perpendicular to the rotor axis inside the
bearing. It can be approximated by the simple equation, i.e., F = mrw?. The force generated by the

rotor imbalance is proportional to the square of the rotational speed at which the rotor spins.
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Figure 16. (a) — centrifugal force simulation; (b) — real data example of the unbalance rotor system response.

Figure 16 (a) shows an exemplary diagram of the centrifugal force acting on the rotor during a change
in rotational speed, i.e., during a transient state and the Table 1 summarize the simulation basic values

together with their description.

Table 1. Rotational speed simulation parameters.

Description of the unit used in the simulation Unit Value
X 3000rpm
The highest rotational speed value during simulation
ap 300
Centrifugal force acting at the highest rotational speed value
X 500

Centrifugal force entry point (since when centrifugal force
contributes to the system response)

The similar nature of the system's response to excessive imbalance force has been confirmed many
times by the author's research on real objects. Figure 16 (b) shows an example of the system response

in the form of a relative shaft vibration measured at one end of an unbalanced rotor.

The centrifugal force from imbalance only makes a significant contribution starting from 900RPM due
to the rotor transient's nature, as shown in Figure 16 (b). From around 400RPM to around 900RPM,
the rotor passes through its resonance speed range. During transient states, the rotors of steam and

gas turbine sets go through at least one, and sometimes even two, regions of resonant speed intervals.
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After presentation of the basics of the large rotating machines and an outline of the nature of the

response of their transient states, we can define the motivation for the actions taken in the thesis.

Fault detection and identification is not an easy task for condition monitoring of the large rotating
machinery. The reliable vibration measurements of high-power energy machines requires an advanced
signal processing system, including spectral analysis and order analysis. Tracking filters are used during
start-ups and coast downs, which set the synchronous component to the current rotational speed of
the turbine set. Due to fluid-film bearings used as the supporting structures of the machine, the
complexity of the rotor-to-stationary part relations is even more complex. One can find an excellent
introduction to the subject in the widely recognized book by Bently and Hatch [10]. Interested readers
can also refer to the work of Vance et al. [6], who presents the entire course of rotordynamic analysis.
In-depth and very detailed rotor modeling examples, in turn, can be found in the books of Muszyriska
[8], Kicinski [9], and Eisenmann [3].

Along with regular rotor models, they propose and explain several malfunctions, such as fluid induced
instabilities presented in [8] and [10]. Complex and accurate models, mainly focused on 200MW class
turbines, were proposed by Kiciiski in [9] and [10]. These advanced models were based on the FEM
(Finite Element Method) to analyze a rotor's behavior. On the other hand, a rotor rub fault requires a
different approach to modeling, and the measurement of torsional vibration appears to be very helpful
in this process. Interested readers can refer to the work of [11], where the author presents the study

in a very detailed manner.

According to the works of Muszyniska [8], Bently and Hatch [4], Adams [11], and Eisenmann [3], the

primary and most common malfunctions are:

e unbalance,

e misalignment,

e rotor rub,

e oil-related and steam-related instabilities in bearings and seals, respectively,
e  bearing overload/ underload.

Even though these failures are the most frequent to be encountered, it is tough to distinguish them
without extensive experience and expert knowledge. Some of them can exhibit similar features during
steady-state operation. In such cases, transient signal analysis is the best way to analyze vibration data
to produce a reliable outcome. The raw vibration signals are very complex, and the measurement

database size is enormous.

A few types of signal features describe machine dynamic state, such as overall level of vibration, both
relative (measured in peak to peak or 0 to peak, respectively) and absolute (measured in RMS — Root
Mean Squared, or 0-pk — zero-peak). Other commonly used features are synchronous system response
(1X), second super synchronous system response (2X), and sub-synchronous, as Bently and Hatch [4]

and Eisenmann [3] described. It is important to track both amplitude and phase for the harmonic
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features. Eddy-current sensors provide all the necessary information to obtain the aforementioned

features.

Due to the rarity of transients in the machine's life cycle, the author had a limited amount of them
collected. Although the author could label some transients from his measurements as defective, they
did not account for even five percent of all measurements collected throughout the author's career.
This made it impossible to use machine learning and artificial intelligence methods that need training

and test data to train the models. It is especially important regarding the data from faulty states.

To overcome this problem, the collected data were used to create the foundations of a system based

on data-driven methods that turned out to be effective and robust.

The system proposed by the author will operate in the background, using the data from the turbine
set monitoring system. It is activated after every coast down or start-up. The system will automatically
assess the data. It will allow further operation, as long as vibration response during transient will be
qualified as correct. In the other case, it will perform the fault identification and inform about possible

cause of a problem.

The methods proposed in the dissertation below are relatively simple. This is because it should be used
in practice by non-experts. There is a theoretical disadvantage that system may not be able to detect
the smallest changes and deterioration of dynamic state and will send alerts only when the condition
of the machine deteriorates noticeably. The simplicity (and hence resistance to disturbances) and
robustness are decisive advantages of the proposed approach. The system will be able to report the
dynamic state change and to avoid false alarm indications. This will contribute to the increased trust

to the indications of the proposed FDI (Fault Detection and Identification) system.

Let us first focus on the main component of the authors research — the transient state. During a change
of the rotating speed, excitation force (centrifugal, synchronous force) will vary, changing the stiffness
and damping relations of the system. These changes are an inherent part of the flexible rotor design.
Machines in a correct state also experience the same mechanisms, although their vibration response
is very different. If we assume a rotor-to-bearing system without malfunctions, the transient curve will
have a set of parameters to reflect its behavior. This set will include the peak of the resonance
response, width of the critical speed interval, vibration amplitude at Full Speed No Load (FSNL) state,
etc.. That same system with developing malfunction will produce a different response, and the

parameters reflecting its behavior will have different values.

The majority of methods available in the literature consider only steady-state operation of the
machine. Brito et al. in [12] showed advantages in unsupervised learning and its incorporation in
rotating machinery fault pattern detection and diagnosis. It constitutes a methodology to detect a fault
mode and predict its trend. In fault diagnosis, they used the black-box model approach and shapely
additive explanations method. He used unsupervised classification and root cause analysis to produce
a diagnosis. They present several advancements in fault detection, diagnosis, and prognosis in rotating
machinery. From this perspective, automatic detection of common malfunctions can become an

interesting complement to standard monitoring equipment.
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In large turbomachinery, this is not the case. Machine Learning approach is very hard to apply. The
major problem is that fault mode data are often not available. Furthermore, there is no available
training data set due to the low rate of transient states during the machine's lifetime (and even less
with a fault). Additionally, a few state-of-the-art anomaly detection algorithms are examined. Thus,
there is a shortage of techniques dealing with the transient states, especially for large turbogenerators,
for which the transient data sets become very large both in terms of data points and in terms of time,

depicted in Section 2.1 and shown in Figure 19 as coast down, and in Figure 20 as start-up.

The author in [13] and in [14] proposed foundations and the basic considerations of automated
turbomachinery fault detection and identification, respectively. The concept was proposed for a single
channel only with unprocessed data and without any severe malfunctions. For such a relatively simple
case, one probe is sufficient. However, taking into account the whole turbogenerator shaftline relying
on a single sensor often lacks essential information. Further-more, different malfunctions can exhibit
itself in different parts of the machine during different circumstances. Therefore, for large
turbogenerator sets, multichannel analysis is a necessity. Analysis should use different features from
a single sensor (i.e. overall vibration amplitude, its first harmonic and phase, second harmonic,
subharmonics, and others). Also, the investigation can incorporate different sensors from the same
bearing (oriented orthogonally in the bearing plane). Finally, the research can use sensors at different
axial locations along the shaftline. The above-described analysis challenges are why the original

method, proposed in [13] and [14] for a single sensor, must be extended to a multidimensional case.

A maintenance strategy that enables detecting malfunctions at the early stages of their evolution
should play a crucial role in facilities using these types of machinery. The best data source for assessing
the technical condition is the transient data measured during start-ups and coast downs. Most of the
automated methods proposed in the literature are applicable to small machines with a rolling element
bearing, during a steady-state operation with a shaft considered a rigid body. Large power
turbomachinery express a very different behavior. They operate above their first critical rotational
speed interval, and thus their shafts are considered flexible. To make the case more complex, these
turbines are equipped with hydrodynamic sliding bearings. Such an arrangement introduces significant
complexity to the analysis of the machine behavior, and consequently, analyzing such data requires
advanced rotordynamics knowledge and field experience. Typically, after each transient machine data
should be investigated to check whether the dynamic state is satisfactory and the machine can be
operated safely. Such a step requires advanced measurement equipment, which is not always
accessible, and availability of a skilled expert, which is costly and must be scheduled according to the

availability.

The goal of author’s dissertation was the research of a method to diagnose large rotating equipment
in an autonomous way, so that the load on experts can be reduced to really important cases. In the
dissertation the author proposes the anomaly detection method which he named the Operating
Envelope (abbreviated as OpEn) and the fault identification method, which he named the
Multidimensional Data Drive Decomposition (abbreviated as MDDD or MD3). Combination of both
methods extend the single sensor concepts proposed in [13] and [14] to a functional and autonomous

multi-channel fault detection and identification system.
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Some works heading in the same direction were published in recent years. For instance, Bielecki et al.
in [15] proposed a simple yet effective method for unsupervised monitoring of rotating machinery for
failure detection in the early stages. Lei et al. in [16] incorporated unsupervised feature learning on big
data set to diagnose the motor and locomotive bearing faults patterns. Wang and Sun [17] used the
combination of wavelet decomposition sparse filtering networks and a support vector machine to
establish fault diagnosis in the motor bearings. Authors adopted the decomposition concept to their
research. All these works consider smaller machines during their steady-state operation. There are lack

of works that take into account transient states of a large turbomachinery.

The data-driven methods (OpEn and MD3) developed in this dissertation for the analysis and automatic
diagnostics of failures are driven by the type and nature of data obtained during large turbomachinery
measurements. Therefore, the methods proposed by the author in the doctoral dissertation are a
compromise of the amount of available data and the accuracy/repeatability of the results. The
dissertation is also a result of over 13 years of industrial practice combined with experience and expert

knowledge in the field of signal processing, rotor dynamics and sliding bearings.

Data-driven methods have advantages and disadvantages. The advantage of the methods proposed in
this work are their simplicity. The advantage of simplicity is clarity in interpreting the results and a
straightforward implementation process. No expert knowledge is required to read the method's
indications contrary to, for example, FEM methods, where expert knowledge is essential for diagnosis.
The disadvantage of simplicity is the possibility of "insensitivity" and overlooking the nuances of the

early changes in the behavior of the turbine set.

Such a limited set of data available for analysis makes it impossible to use artificial intelligence methods
and algorithms and advanced novelty detection algorithms. Nevertheless, the methods proposed by
the author turned out to be robust and were positively validated on both laboratory data and data

from real objects.

The main scientific goal of the dissertation is proving of the statement:

It is possible to detect and identify faults of the large turbomachinery by an automated algorithm
using analysis of transient data.

This goal was achieved by dividing the whole work into several steps, which are listed below:

e Development and proposal of system architecture.

e Development of data preprocessing methods.

e Analysis of the correct dynamic state databases and selecting reference data for baseline evaluation.

e Invention, creation, and development of the fault detection (OpEn) method.

e  Establishing the upper and lower values for the OpEn 2D case and the ellipsis axis values for the OpEn 3D
case.

e  Establishing the severity parameters for the OpEn 2D and 3D cases.

e Invention, creation, and development of the fault identification (MD3) method.

e Proposition the algebraic representations of the decomposed functions.
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e Defining the fitness functions for the Differential Evolution algorithm.

e  Estimation of parameters of decomposed functions (adopting Python’s DE algorithm code to find the
decomposed function parameters).

e Implementation of the complete system in Python.

e Planning, preparation and execution of experiment on a test rig.

e Validation of proposed methods on laboratory data.

e Validation of proposed methods on real object data.

As a result, the dissertation aims to create the foundation framework, methods, and procedures of
automated vibration data assessment to enhance maintenance reliability. Automatic fault detection
and identification (FDI) tool can help maintain the reliability and safety of equipment in industrial

plants.

In addition, such a tool will facilitate work of operating personnel in turboset dynamic state
assessment. It can also enable them to react faster to changes in the dynamic response to avoid critical
failure and reduce the downtime to a minimum. Furthermore, information on the dynamic state of
operation and its condition based on transient response can help management personnel plan
essential repairs ahead. As a result, it can minimize the risk of long unplanned stand-still, overhaul, and
repair. Such a situation can reduce the company's financial results and make the enterprise non
profitable. Last but most important, increasing the reliability resulting from information from the
procedures and methods contained in this doctoral dissertation may increase the safety of devices and

people operating these devices by minimizing catastrophic damage to machines.

The doctoral dissertation is structured as follows. The first chapter introduces the subject of large
utility rotating machines. It includes a guide to vibration measurements of large rotating machines.
Then, the most important values for assessing the dynamic condition of turbine sets are presented and
described. It also includes an introduction to selected aspects of rotor dynamics needed for the
research. The chapter ends with the formulation of the problem and the thesis, and the aim of the

doctoral dissertation.

The second chapter describes the work research object in greater detail. It shows the subjects on which
the author performed the research. The specificity of the measurement of vibrations of large rotating
machines and its influence on the selection of measuring equipment is discussed. Also presented are

instruments used in measuring large turbine sets in the industry.

The third chapter describes the process of collecting and processing transient data points. First, the
measuring equipment used during diagnostic tests is described. Then, the entire configuration of the
measuring equipment is presented and discussed. Next, the transient data points sampling rates are
described in detail. The chapter also covers the most critical data structures that are needed and used
in automatic fault detection and identification systems. The last part of this chapter discusses the issue

of interpolation and its use in the data preprocessing process.

In chapter four whole fault identification system is laid out. First, the author describes essential aspects

of an automatic fault detection system. Then, the term Operating Envelope (OpEn) method is

35



introduced. This chapter describes the transient selection method for baseline measurements from
which the acceptance region is calculated. Next, the term OpEn 2D is introduced, the OpEn method,
which applies to only one vibration signal feature. Next, the severity parameters for the OpEn 2D
method are given and entered. Then the author introduces the concept of OpEn 3D as an OpEn method
for vibration signals consisting of two features. Finally, the method of obtaining baseline
measurements for this case and severity parameters, which are used to assess the severity of the

detected malfunction, are given.

In chapter five, the entire system for identifying malfunctions is presented. In the beginning, the author
introduces the method of parameter identification. Then the methods of identifying inequalities are
discussed. Next, the concept of the Multidimensional Data Driven Decomposition (MD3) method is
described. Finally, the author presents the application of the Differential Evolution (DE) algorithm to

identify the parameters of decomposed functions.

The sixth chapter describes the architecture of the automatic detection and identification system for
large rotating machines proposed by the author. First, the author proposes a place for his system in
the monitoring and diagnostics systems of the existing power plant systems. Then the pseudo-codes
of the most important modules of the whole system are presented and explained. Then, the Python

code for all the most essential functions and procedures is presented and described.

The seventh chapter describes the validation of the OpEn method for both the 2D and 3D cases. First,
the baseline measurement is presented. The baseline measurements are a prerequisite for validating
the results of both methods. There are tables with baseline values for the entire turbo set consisting
of high-pressure (HP), intermediate-pressure (IP), and low-pressure (LP) cylinder and the generator
rotors. Then the OpEn method validation process for the 2D case is presented. Finally, the OpEn 3D
method is validated on another dataset used in the identification method's validation process to

validate the entire diagnostic system.

Chapter eight describes the entire MD3 method validation process. First, the author used the method
validation on test-rig model data. In the first part of the chapter, the author discusses the model data
in detail, as well as the simulation results and method testing. Then he used the validation data of the
OpEn 3D method from the previous chapter. Finally, the author gives a set of function parameters of
decomposed functions. For this case, a scenario is indicated, i.e., a set of parameters of decomposed

functions that best match the real transient.

In the ninth chapter, the author presents the conclusions of the following work. Detailed conclusions
regarding the OpEn as well as MD3 methods are presented. Finally, the author outlines the directions

for further research and potential improvement of the system.
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2. Measurement data of large turbomachinery

The vibration data taken at large turbomachinery are very specific. The data acquisition equipment is
highly specialized and is seldom used for any other machinery, due to high cost, set of functionality
and required reliability. It also has several features, which requires specialized pre-processing before

further data processing methods can be applied. These aspects will be presented in this chapter.

The research subject is a steam turbine rigidly coupled to a generator of high output power. The
research in this doctoral dissertation focuses mainly on machines of the +200MW class. To validate the

author's proposed method +500MW class turboset research was also included.

The share of large turbomachines in professional power sector markets varies depending on a specific
country and grid settings. As far as Poland is concerned, an essential part of the turbogenerators are
units of +200MW type (the 13K215 with 13MPa live steam pressure, 535°C of live steam temperature,
condensate operation unit, and 215MW of power output and its modifications up to the 13K242 — the
same parameters, but almost a 15% increase in power output). This unit type is the most common
large turbo-set found in Poland's power generation industry. More than 50 units of this type operate
until now, and they contribute to almost half of the national power production capabilities. The 18K360
are the second most crucial type of turbo-sets. There are 16 such units in Poland. Additionally, a few
units were built in the last several years with a very high-power output ranging from 800MW to
+1,000MW. Due to the Polish power generation structure, my objective is to focus on +200MW units

at first, and afterwards extend to units with a similar transient behavior.

Figure 17. The layout of a 200MW type turbo-set. The bearings are numbered from the HP side (the figure
prepared by the authors).

A typical 200MW class turbogenerator consists of three cylinders (HP for high pressure, IP for
intermediate pressure, and LP for low pressure) and one generator Figure 17 presents the entire setup
of this type of machine. The author based the validation of the method on a turbines with a power
output of +500MW. They have a similar kinematic scheme and the dynamic behavior. Figure 18

presents the layout of its arrangement.
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Figure 18. The layout of a +500MW type turboset.
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Turbines of this type have one HP cylinder, one IP cylinder, and two LP cylinders. They are also rigidly
coupled with a generator. Despite the extension of the shaft line with an additional LP cylinder, the
nature of the generator rotor response is very similar. The author confirmed the similarity of their
transient responses throughout over 13 years of research on these two types of devices. The validation
of the MD3 method results was performed on the responses of the unbalanced rotor of the + 500MW

turbine generator set.

In the power generation critical machinery such as turbogenerators are assumed to run smoothly for
the whole lifetime period — often more than 30 years. Especially in large units, which are equipped in
oil lubricated hydrodynamic bearings, vibration severity criterion is one of the most essential
monitoring parameter as for the machine’s mechanical condition. Mechanical vibration is the source

which contains most information about the health of the component.

Unambiguous data are needed for comparison, to determine the baseline measurements, perform the
anomaly detection task, and identify the parameters of the decomposed functions. The best data that
defines the correct condition of the turbogenerator are vibrations of the shaft journal in the bearing
bushing. The data for these machines' research is characterized by substantial changes during the
operation of the device. Therefore, they can take different values depending on the machine's
operation point. For example, during an idle run, i.e., Full Speed No Load (FSNL), the turbo-set may
have a different vibration response than in the full-load operation of the generator. This is because the
turbine's rotational speed is at its nominal value on the idle run. Still, the generator does not produce
electricity (the generator is not synchronized with the power grid yet). Therefore, the turbine can move
relatively freely because of moderate steam-related forces only. Finally, when the turbogenerator
works at full load, the shaftline is subjected to maximum forces (the generator rotor load, steam-
related thrust force, temperature vector, etc.). To the contrary, during the coast down the turboset is
unaffected by any forces other than the inertia. Figure 19 shows the coast down curve of a 200 MW
class turbogenerator. As shown in the picture, the duration of the coast down may exceed 120 minutes
(time from 19:28 to 21:52).
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Figure 19. Shaftline inertia curve (coast down example) of the 200MW class unit.

Similarly, when starting the machine (i.e., during run-up), the forces from the steam are also not
significant. Therefore, in the author's opinion, based on the experience gathered during many years of
research on energy machines, transients’ states (i.e., both run-ups and coast downs) are the best ways

to assess the correctness of the technical condition of high-power energy devices.
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Figure 20. Start-up curve of the 200MW class unit

There are several methods to measure vibration during the transient state. Each turbo-set is equipped
in an online monitoring system. Such systems continuously measure vibration and calculate simplest
features (peak amplitude, rms, gap, etc.). When vibration level exceeds configured level of alarm, the

monitoring system will send the trip signal to the turbine controller, which will cut off the steam and
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cause the turbine to trip. Although they may bring some help to analyze the machine condition,
measurements from the monitoring systems do not provide much diagnostic information. For
example, they often do not calculate vibration features, despite having such capabilities. Neither, they
do not store the history of operation, nor raw vibration signals for a more thorough analysis. Therefore,
there is another method used to collect the data for transient analysis, namely advanced portable data
collection systems. Measurements with portable diagnostic equipment are widely used for in-depth

analysis and diagnostics of the technical condition.

The experience in configuring the equipment of monitoring systems in power plants in Poland and
abroad allows the author to assume that with a small amount of work on the part of the devices' users,
it will become the basis for the implementation of the proposed autonomous FDI system. The system
proposed in this dissertation can work as extension of the standard monitoring system. Furthermore,
the FDI system will become an invaluable help during unexpected shutdowns during which no
measurements by portable devices are gathered. Finally, such an arrangement will help assess the

machine's condition on an ongoing basis and indicate places of the evolution of potential malfunctions.

The prerequisites to the work in research of autonomous algorithms are access to real life data and
extensive experience in the field of transient data analysis. During the author’s 13 years of experience
in research on large rotating machines, he developed plans and schedules for the commissioning of
power equipment and diagnostic tests in terms of measurement, vibration analysis, and evaluation of
the dynamic state of turbine sets. He carried out diagnostic tests by analyzing data from portable
equipment. The data was collected after a previously prepared and agreed plan for conducting
measurements and plant operation. This is worth to emphasize, as such plans may affect a country
power generation system and must be agreed upon with the plant and the grid management

authorities. Thus, the author has a unique position and ability to undertake the dissertation task.

In the second scenario, the automated FDI methods can be used on the data collected by portable
equipment. Then, with implementation of automated analysis of transient data, collected by portable
diagnostic equipment, manual analysis by a human expert can be limited to only vital examinations.
This also helps to reduce the time and costs associated with planning and diagnostic measurements,

reducing the maintenance costs.

Since the dissertation is based on data collected by portable systems dedicated for large
turbomachinery, it is important to present the specifics of these data acquisition and analysis systems.
There are several companies worldwide who manufacture advanced portable data collection systems,
suited for large turbomachinery. Figure 21 shows examples of data acquisition units offered by several

market-leading companies.

The acquisition unit should be configured according to the ISO standards (ISO 20816-1). This standard
defines only the fundamental frequency range for assessing the technical condition of a machine based
on its vibrations of shafts and bearing caps. To perform full diagnostics of shaft lines and bearing

supports, more advanced and detailed settings of the measuring equipment are often needed. In this
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Section, the author gives the complete Digital-to-Analog Interface Unit (DAIU) configuration for the full

diagnostics of large rotating machinery.

The measuring instruments, used in the diagnostics of large rotating machines, are industrial
computers with specialized signal conditioning and high-end data acquisition. These are expensive
devices that can cost over 100kUSD. These DAIUs are equipped with fully configurable analog-to-digital

converters. The inputs of these devices can measure various signals:

e  Static signals - values from temperature, pressure, and valve position sensors.

e  Dynamic signals - coming from all types of sensors (described in Section 1.2). In addition, some DAIU’s
input cards have built-in accelerometer sensor power supplies.

e They can collect more than 20 dynamic signals simultaneously.

e They are equipped with tacho sensor inputs. They can determine the rotational speed of the machine. It
is used to synchronize all the sensors features to the first harmonic of rotational speed and its factors.
Additionally, these inputs can be used to set the tracking filter, calculating the harmonic components. The
tacho inputs are fully configurable, and they can handle outputs from different sensors like eddy-current
probes, laser and optical sensors.

Along with the device, an advanced software for configuration and analysis of rotor dynamics is

delivered, dedicated to a given unit, as depicted in Figure 21, top left and right.
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Figure 21. Examples of DAIUs from leading manufactures. The top: left — Siemens [18], right — Meggitt [19]; in
the middle: left - Bently Nevada [20], right — OROS [21]; in the bottom: left — Emerson [22], right - Bruel and
Kael [23].

Depending on the equipment's configuration and needs, measurement data can be saved concerning
time or the change of rotational speed increment or two of these parameters simultaneously and
independently. These computers can write substantial amounts of data to their internal disks. They
can also convert the necessary diagnostic features on-the-fly and present them. In addition, depending

on the software, the tacho input and analog-to-digital converter inputs can be used for modal analysis.

The author works for a company equipped with measuring equipment from Bently Nevada. Hence, the
author has the most experience with such equipment. However, each of the other companies listed in

Figure 21 offers comparable products.
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3. Transient data preparation and preprocessing

This chapter describes the various steps of data preparation that will be used by the automatic fault
detection and identification system. First, it contains the structure of diagnostic data used in the
system. Then, it presents the individual stages and results of data processing.

3.1. Portable equipment used for data collection

After each diagnostic measurement, the data are saved in the acquisition unit memory as a database.
Then the database has to be downloaded from Digital-to-Analog Interface Unit (DAIU). DAIU is an
industrial computer capable of acquiring, processing, and presenting collected dynamic signals, as
presented in Section 2.2. In addition, it can export processed data as text files. This operation enables

further analysis of vibration features.

Figure 22. An example of the vibration measurements setup — acquisition units (two DAIUs) connected to the
stationary monitoring system in the control room.
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The DAIU unit is connected to a stationary monitoring system to collect data from eddy current
sensors. Figure 22 presents an exemplary setup of DAIU during the measurement course. DAIU is

connected to buffered outputs of a stationary monitoring system.

In this section the configuration and preparation of measurements with portable instruments is
presented. The software for configuration, acquisition, processing, saving, and presentation of data
used by the author is a part of the measuring equipment supplied. This program is the ADRE Sxp.
However, any other apparatus, described in Section 2.2, with the same settings can reproduce the
author's research repeatedly. This section is quite technical but is necessary to fully understand the

structure of the data used for further analyses..

Figure 23 and Figure 24 presents the dynamic channel and one-per-revolution reference mark setup
details used during each measurement course, respectively. Table 2 and Table 3 summarize the most

important configuration steps and options set up by the author during his research.

First, in the General tab window, one can set the general properties for all the sensors participating in
the measurement. Next, the "Location" column describes the placement of each sensor on the rear
panel to be easily identified. "B" letter stands for the Box in this column, i.e., an acquisition unit. Letter
"S" - means slot, i.e., this identifies the dynamic sampling card in the Box. The best-equipped boxes
can hold three "slots" (i.e., three dynamic sampling cards). Each card can contain eight channels.
Finally, "C" is the channel number on the "slot". Finally, the "Channel Name" column specifies a unique
sensor name during the measurement course used in the analysis process. The "Machine Name"
column is not obligatory but describes the placement of the sensor. In the example presented in figure
2, the 1X sensor measures HP vibration. The values in the " Keyphasor " column are the most important
ones to set up in this tab. It assigns the reference one-per-revolution mark sensor described in Section
3 to a dynamic sampling channel that measures vibrations. Only the reference mark sensor enables
vibrations feature extraction that the author uses in this dissertation. Finally, the "Transducer
Orientation" column sets up the angular orientation of the sensors to an arbitrary reference direction
- in this case, "Up". For example, suppose we set the value in the "Direction" column to "45-Right-
Radial". In that case, the sensor location is 45 degrees from the vertical axis in the right direction,
perpendicular to the shaft axis. The "Transducer" tab sets all the sensor properties up, like Transducer
type, type of the measurement, the minimal and maximal value measured by the sensor, its sensitivity,
coupling, the sampling mode, and the bandwidth filter properties. Next, the "Variables" tab configures
the low and high frequencies for the bandpass filters and the number of its poles on the input. The NX-
1, NX-2, and NX-3 columns set up the sub-synchronous feature of the system response to 0.5 times the
whirling frequency, super synchronous features of the three and four times, respectively. In the final

step, one can configure different types of waveforms.
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A Dynamic Channel Configuration — O X
General | Transducer | Variables | W. |
Location Keyphasor Transducer Orientation
B [S [C | Active Channel Name Machine Name Primary | Secondary | Ref | Shaft Rotation | Angle (deg) | Direction | Axis
111 IE X WP Kph 1 (None)  Up cw 45 Right Radial
U [ 2 1Y’ WP Kph 1 (None) Up cw 45 Left  Radial
113 2X WP/SP Kph 1 (None)  Up cw 45 Right Radial
1|14 2y WP/SP Kph 1 (None) Up cw 45 Left  Radial
1[1]|5 3X SP Kph 1 (None) Up cw 45 Right Radial
1]1]6 3y SP Kph 1 (None) Up cw 45 Left  Radial
1(1]7 4X NP Kph 1 (None) Up cw 45 Right Radial
1]1(8 4y NP Kph 1 (None) Up cw 45 Left  Radial
1)2][1 5X NP Kph 1 (None)  Up cw 45 Right Radial
1(2|2| @ 5Y NP Kph 1 (None) Up cw 45 Left  Radial
1(2]|3 6X Generator Kph 1 (None) Up cw 45 Right Radial
1124 6Y Generator Kph 1 (None) Up cw 45 Left Radial
1/2|5| @ 7X Generator Kph 1 (None) Up cw 45 Right Radial
1|2(6 Y Generator Kph 1 (None) Up cw 45 Left  Radial
OK Cancel Apply Help
| p
» Dynamic Channel Configuration = a X
General Transducer IVaid)lesI Waveforms |
Full Scale Range Scale Factor Sampling Bandwidth ol
Channel Name Transd Type | Min | Max | Units | Display Pref Units| Value | Units | Coupling| Mode | Filter (rpm) | Auto-Switch
X 00 v Displacement 0.000 500 um pp um 7870 mVium AC High Wide (120)
1Y 3300 8mm Displacement 0.000 500 um pp um 7870 mVium AC High Wide (120)
2X 3300 8mm Displacement 0.000 500 um pp um 7870 mVium AC High Wide (120)
2Y 3300 8mm Displacement 0.000 500 um pp um 7870 mVium AC High Wide (120)
» Dynamic Channel Configuration - a X
General | Transducer Variables IWavdormsl
Bandpass NX 1 NX2 NX3 Nxs 2
Channel Name High | Low | Filter Poles | Name | Active] Frequency | Waveform | Name |Acﬁve[ Frequency | Waveform | Name | Active [ Frequency | Waveform | Name ] A
1X 10 1000 2 nX-1 0.50 c Waveform nX-2 3.00 c Waveform nX-3 4.00 c Waveform nX-4
1Y 10 1000 2 nX-1 0.50 c Waveform nX-2 3.00 c Waveform nX-3 4.00 c Waveform nX-4
2X 10 1000 2 nX-1 0.50 ¢ Waveform nX-2 3.00 ¢ Waveform nX-3 4.00 c Waveform nX-4
2y 10 1000 2 nX-1 v 0.50 c Waveform nX-2 ) 3.00 c Waveform nX-3 4.00 c Waveform nX-4
»" Dynamic Channel Configuration = [m] X
General | Transducer | Variables Wavefoms |
Synchronous Time Sg;cal;rem Asynchronous Spectrum Zoom Spectrum A
Channel Name | Waveform Type | Active | Sample Rate | Kph | Enabl | #Aver | #Revs | Freq Span | Sample Rate | Window | Spectral Lines | Free Run Mode | Factor | Begin Freq (Hz) | Ce
| Asynchronous i O 2500 6400 1600 (|
| Synchronous 128 Primary [J 4 3 1024 (]
LX) Unused [J O Ll
| Unused [] O |
Raw Conti O O O
| Asynchronous O 2500 6400 800 L1
| Synchronous 128 Primary [J 4 3 1024 O
L 1Y(112) Unused [ O O
| Unused [J O m|
Raw Continuous  [] O O

Figure 23. ADRE Sxp dynamic channels setup.

After years of experience in research and analyzing the machines in question, the author decided to

introduce asynchronous and synchronous waveform settings to the measurement procedure. It allows

additional accuracy in the spectrum and orbits analysis and becomes the foundation to formulate the

baseline values as the turbine reference behavior.

Setting up a one-pre-revolution reference mark configuration is similar to that for dynamic channels.

The eddy current sensors described in Section 4 are used for the reference mark measurement.

General tab configuration extends only by the maximum value of the measured rotational speed. In

the "Transducer" tab, the sensor type, measurement unit of the sensor, its sensitivity, and Coupling

and Sampling are set. Using DC coupling for the constant synchronizing measurement for the eddy

current sensor produces finer results.
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x¢ Keyphasor Channel Configuration

= [m] X
General | Transducer | Signal Condtioning | Variables | Wavefom | Events Setup | Buffered Output |

Location Transducer Orientation Synchronous

B [S [C | Active Channel Name Input Source | Machine Name | Reference | Shaft Rotation | Angle (deg) | Direction | Axis | Max RPM
1(4(1 vE Kph 1 Kph 1 Up cw 0 (None) Radial 3300
1/4/2| O Kph2 Kph 2 Up Ccw 0 (None) Radial 6500
143 [0 Keyph Channel 3 yphasor Channel 3 Up cw 0 Left Radial 10000

1 4 4| [ DerivedKeyphasor Channel 1 (None) Up cw 0 Left Radial 10000

1 45| [ DerivedKeyphasor Channel 2 (None) Up cw 0 Left  Radial 10000

1 4 6| [] DerivedKeyphasor Channel 3 (None) Up cw 0 Left Radial 10000

OK Cancel Apply Help
o] | |
General Transducer | Signal Condtioning | Variables | Wavefom | Events Setup | Buffered Output |
Full Scale Range | Scale Factor Sampling

Channel Name Transducer Measurement | Input Source | Max | Units | Value | Units | Coupling | Mode

Kph 1 x Voltage  -25to 0 Vdc Vpp 100.000 mVNV DC High

Kph 2 I Speed Input - BN Prox Voltage  -25to 0 Vdc Vpp 100.000 mVV DC High

Keyphasor Channel 3 ] Speed Input - BN Prox Voltage  -25t0 0 Vdc Vpp 100.000 mVV DC High

General | Transducer  Signal Conditioning | Variables | Wavefom | Events Setup | Buffered Output |

Clamp Control (Volts) Threshold | Hysteresis Level
Channel Name Gain | Invert | Lower | Upper | Trigger Edge | Auto | Volts |  Volts Value | Units
Kph 1 m] -25.00 0.00 Notch 12
Kph 2 10 O -25.00 0.00 Notch 12
Keyphasor Channel 3 1.0 O -25.00 0.00 Notch 12

General | Transducer | Signal Conditioning | Variables | Waveforn  Events Setup | Bufered Output |
~Kph 1

IEverts per Rev

=l
Events;:aerRevIl|

General | Transducer | Signal Conditioning | Variables | Wavefomn | Events Setup ~Buffered Output |

Channel Name Output
Kph 1 S
Kph 2 None
Keyphasor Channel 3 None

Figure 24. One-per-revolution reference mark configuration tabs.

In the "Signal Conditioning" tab, the minimum and maximum voltage configuration, the type of edge
that will trigger the measurement, and the threshold hysteresis can be set.

Usually, large turbogenerators have only one notch on their circumference. That is why "Event per
Revolution" is set up to one.
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Table 2. Dynamic card configuration table.

Dynamic Channel Configuration Notes
General Relative sensor name: 1-7XorY depending on the sensor direction
Machine Name: HP, IP, LP or Generator depending on the relative sensor placement
Mandatory for feature extraction
Assigning the relative sensor to one-per-revolution-mark
Keyphasor: Name fo theone-per-revolution mark sensor (confirured separately)
Transducer Orientation Reference: Up
Shaft Rotation CW (Clockwize)
Angle (deg) 45
Direction Right or Left depending on the relative sensor placement
AXis Radial Perpendicular to the shaftline axis
Transducer Transducer 3300 8mm Type of the relative sensor
Measurement type Displacement Type of transducer measurement
Full Scale Range Max 500 Maximum expected sensor's value
Units umpp Unit of measurement (micrometers peak-to-peak)
Scale Factor Value 7.87 Sensor sensivity
Coupling AC Sensor coupling
Sampling 128 or 256 samples per revolution depending
Mode High onwaveform configuration
Bandwidth Filter (rpm) Wide (120) Wide Bandwidth filter
Variables Bandpass High 10 High bandpass filter frequency
Low 1000 Low bandpass filter frequency
Filter poles 2 Numner of Poles for the bandpass filter
NX 1 Name nX-1
Active yes Activates this signal feature
Feature frequency
Frequency 0.5 Coeficient times whirling seed
Waveform 1# Sync Waveform Waveform to obtain the signal feature from
NX 2 Name nX-2
Active yes Activates this signal feature
Feature frequency
Frequency 3 Coeficient times whirling seed
Waveform 1# Sync Waveform Waveform to obtain the signal feature from
NX 3 Name nX-3
Active yes Activates this signal feature
Feature frequency
Frequency 4 Coeficient times whirling seed
Waveform 1# Sync Waveform Waveform to obtain the signal feature from
Waveforms Waveform type Synchronous
Active Yes
Synchronous Sample Rate 128
One-per-revolution mark sensor
Keyphasor synchronizing the Waveform
Time Synchronois Average |Enable Yes
#Aver 4 Averaging 4 consecutive Waveforms
#Revs 3 Number of revolutions to be averaged
Spectrum Spectral Lines 192 Number of spectral lines
Waveform type Asynchronous
Active Yes
Asynchronous Frequency Span 1000Hz According to ISO standards
Sample Rate 2560 Sampling rate for the asynchronous Waveform
Spectrum Spectral Lines 1600 number of lines in the asynchronous spectrum

The last tab is used when using other portable equipment. It is not used during this research. Other

tabs are not significant for the type of research the dissertation considers. Therefore, the "Variables"

and "Waveform" tabs are left in default modes.
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Table 3. Configuration of one-per-revolution reference mark.

One-per-revolution Marker Channel Configuration Notes
General Relative sensor name: 1-7 XorY depending on the sensor direction
Machine Name: HP, IP, LP or Generator |depending on the relative sensor placement
Mandatory for feature extraction
Name fo theone-per- Assigning the relative sensor to one-per-revolution-mark
Keyphasor: revolution mark sensor (confirured separately)
Transducer Orientation |Reference: Up
Shaft Rotation CW (Clockwize)
Angle (deg) 0
Direction None Default settings
AXis Radial Perpendicular to the shaftline axis
Synchronous Max RPM 3300 Maximum rotational speed expected during research
Transducer Transducer Displacement sensor Type of the relative sensor
Measurement Voltage Type of measurement received from sensor
Input Source -25Vdc to Ovdc Negative polarity sensor
Full Scale Range Max 500 Maximum expected sensor's value
Units Vpp Unit of measurement Volts peak-to-peak)
Scale Factor Value 1000 mV/V Sensor sensivity
Coupling DC Sensor coupling
Sampling 128 or 256 samples per revolution depending onwaveform
Mode High configuration
Signal Conditioning Gain 1.0 Default settings
Invert No Trigger acts at the falling edge of the notch
Clamp Control (Volts) minimum value of sensor voltage - sensor passes on the
Lower -25VDC notch
maximum voltage of sensor voltage - sensor in contact with
Upper 0VDC the metal
Trigger Edge Notch
Treshold Automatic selection of thershold selection on the notch
Auto Yes slope
Volts Default settings
Hysteresis Volts 1.2 Hysteresis for the theshold level

Thanks to the measurement equipment's configuration and setting summarized in Table 2 and Table
3, the author obtained the vibration features used in the following dissertation. Data collected with
the portable equipment are a much richer source of information than only a single parameter used by
monitoring systems in the control room. The power plant's monitoring and protection systems use an
overall vibration amplitude. As a result, they miss most of the critical signal components used for
diagnostic purposes. On contrary, portable systems can calculate much broader set of features. Typical

list of these features is given below:

e Rotational speed of the shaft;

e  Probe-to-shaft average distance in DC voltage (called Gap)

e  Overall vibration amplitude (called Direct);

e The amplitude of the first harmonic of the signal (called 1X_Amplitude);

e The phase angle of the first harmonic (called 1X_Phase);

e  The amplitude of the second harmonic of the signal (called 2X_Amplitude);

e The phase angle of the second harmonic (called 2X_Phase);

e The amplitude of the sub&super-harmonic of the signal (called nX_Amplitude);
e The phase angle of the sub&super-harmonic (called nX_Phase).

Figure 25 presents vibration features during measurements course in tabular view window. There is a
brief summary of measurement configuration and status in the upper part of the tabular view. It
describes channels, their name, location, the sensor's status, location and angular orientation, the
timeframe of the measurement, the unit of speed, and units in which the amplitude and phase lag are

shown in the table window below.
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Figure 25. Portable equipment diagnostic features capabilities.

CH# [ Channel Name [Machine Name[Status [Angle| Direction|Run Type|[ Date [ Speed Units(P) [ Speed Units(S) [ Amp Unit[Phase Unit |

1 1y oK a5 Left 0omar202L ~174 To 03mar2022 pm rpm m pp deg

21X oK 45 Right 09mar2021 rpm rpm um pp deg

3 2y oK 450 Left 09mar2021 rpm rpm um pp deg

4 2x oK 45 Right 09mar2021 rpm rpm um pp deg

5 3v oK a5 Left 09mar2021 rpm rpm um pp deg

13 3X 0K 45 Right 09mar2021 rem rpm um pR. deg

7 4y 0K 45 Left 09mar2021 rem rpm um PR deg

8 ax oK 45° Right 09mar2021 rem rpm um PR deg

] 5Y oK 45° Left 09mar2021 rpm rpm um pp deg

10 5% oK 45° Right 09mar2021 rpm rpm um pp deg

1moex oK 450 Right 03mar20z1 rpm rpm umpp  deg

12 ev oK 45" Left 03mar20z1 rpm rpm umpp  deg

TR oK 450 Left 03mar20z1 rpm rpm umpp  deg

14 ™ oK 45 Right 0Smar2021 rpm rpm um pp deg

CHg | C..]| Samples | Date | Spe... | Direct |Avg Gap | 1xAmpli... |1X ... | 2XAmpli... nX-1Amplitude | nX-1 Phase | nX-2amplitude | nX-2 Phase | nX-3Amplitude | nX-3 Phase | Bandpass |
1 1y 1 3001 29.10 358 8.560 1.686 266FNX 1.249 153BMA .438 255BMA 38.51
2 1 1 3001 24,6 17.17 159 3.936 0.774 T4BMA 0.421 302BMA 0.712 39BMA 23.74
3 2y 1 3001 38.45 25.62 192 10.28 3.176 3LOFNX 1.787 MEN; 1.582 333FNX 36.30
4 2X 1 3001 40.82 27.43 295 13.12 1.508 LOLFNX 0.937 181BMA 1.473 125BMA 39.06
5 3Y 1 3001 40.72 34.21 248 7.965 78 0.018 270BMA 1.994 4FN; 0.437 139BMA 39.07
PR 1 3001 36.64 29,11 341 5.256 190 0.253 134804 1244 1998MA 0.446 1488MA 3418
7 v 1 3001 118 97.0 302 23.21 353 2514 163FNX 3.916 125FNX 3.377 203FNX 15

s ax 1 3001 33.80 24.00 22 5,971 119 0.526 1s5BMA 0.675 2098MA 0.018 2708MA 3185
5 [s5v T 3001 95.3 0 22.35 351 1658 340FNX 2.380 230FNX 1.229 3178MA 102
10 sx 1 3001 63.4 58.5 132 12.23 101 0.963 3088MA 0.979 3288MA 1197 3088MA 6L.9
FER 1 3001 39.82 29,68 75 2104 345 0.679 220808 0.520 2668MA 0.786 224808 37.26
12 e 1 3001 60.0 3.997 o 4811 s 2.106 50FNX 2.594 227FNK 1.942 T7FNX 59.6
13y 1 3001 63.8 55.6 244 15.73 37 0.877 2L58HA 2.880 B7FNX 1407 2358HA 613
EVIRE 1 3001 53.7 36.19 347 20,63 309 0.735 128 1.034 1748MA 0.640 1598HA 46.19

Finally, the lower part of the tubular window presents the essential features collected by the system

and listed above. Thera is one more column called Bandpass. It presents the overall vibration

amplitude within the bandpass filter range. This filter is set during configuration procedure depicted
in Figure 23 in the third step (the Variable tab) and summarized in Table 2 in the Variables and

Bandpass rows.

Figure 26 provides an overview of all the most important parameters needed to assess the technical

condition of a machine during a transient state. Evaluation of such a complex object is not a trivial task.

The analysis results are often displayed in the form of trends or graphics. They illustrate the behavior

of the total vibrations, or they can be depicted as a graph of vibration vector composed of individual

vibration features.
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5 New Tabular List Plot Group - Plot Group [New Tabular List Plot] == o]
Date | Speed(P) | Avg Gap | Channel Name | Direct | IXAmplitude | 1X Phase | 2Xamplitude | 2X Phase | Bandpass | nX-1Amplitude | nX-1 Phase | nX-2Amplitude | nX-2 Phen |
2511p2020 13:02:48.947 1408 -8.602 MADLOCY021 30.22 25.39 3 1,945 1098MA 29.36 1.642 1798MA 27 B
2511p2020 13:02:48.947 1408 -9.060 MADL0CY022 25.71 21.29 54 1.362 2868MA 25.22 1.310 2288MA 1.792 2968¢
2511p2020 13:02:48.947 1408 -8.601 MAD20CY021 110 92.6 8 3.502 309 107 4.313 257FNX 1.744 2998¢
2511p2020 13:02:48.94 1408 -9.254 MAD20CY022 54.5 38.28 184 2.945 198 50.9 2.220 353FNX 2.150 248

511p202 1408 -8.025 MAD30CY021 72.1 5.9 193 7.822 322 71 4124 3ENX 1617 1068
2511p2020 13:0: 1408 9.617 MAD30CY022 31.89 25.71 320 7.431 130 31.58 1.431 14884A 2.508 7
25192020 1 1408 -8.282 MAD40CY021 29.53 17.16 324 8.086 48 28.87 0.734 16584A 4.727 19
2511p2020 1408 -9.634 MAD40CY022 34.78 26.20 92 9.067 237 34.79 1.123 2638MA 5.201 25
2511p2020 1408 -8.290 MADS0CY021 29.58 22.08 9 6.592 26 29.69 1.443 2778MA 3.069 184 =
2511p2020 1408 -9.924 MADSOCY022 23.36 .84 247 5.165 202 .04 1.002 828MA 3.415 9
2511p2020 1408 -7.862 MKDLOCY021 22.51 15.73 171 3.569 85 21.86 1301 3308MA 2.480 68
511p2020 1408 -9.955 MKDL0CY022 26.08 17.11 321 2.586 232 25.03 1.321 1408MA 1.911 148
2511p2020 1408 -7.892 MKD20CY021 22.48 6.131 1 9.520 263 22.23 0.646 213844 0.862 2938
2511p2020 1408 -10.546 MKD20CY022 22.75 10.97 188 4.094 62 22.23 0.464 126MA 1.178 1778¥
2511p2020 1408 MADLOCY020 0.453 0.116 3458MA 0.041 11844 0.393 0.021 221844 0.013 3338
2511p2020 1408 MAD20CY020 0.267 0.103 348MA 0.006 2888MA 0.186 0.010 10184A 0.006 728¥
2511p2020 1408 MAD30CY020 0.497 0.280 19284A 0.041 1158MA 0.431 0.043 218MA 0.040 768¢
2511p2020 1408 MAD4OCY020 0.415 0.106 2498MA 0.174 S0BMA 0.322 0.002 BHA 0.008 28481
251ip2 : 5 1408 MADS0CY020 0.393 0.136 7BMA 0.174 65BMA 0.338 0.031 2278MA 0.028 32681
2511p2020 13:02:48.9 1408 MKDL0CY020 0.377 0.069 6784A 0.124 268MA 0.311 0.035 2798MA 0.016 3538¢
2511p2020 13:02:48.947 1408 MKD20CY020 0.186 0.047 17384A 0.035 1778MA 0.109 0.008 135844 0.007 21488 v
< >
« |»] Pagel @O -0 4-F0

= From 25JUL2020 12:54:38 10 25JUL2020 14:29:58 From 22JUL2020 12.54:36 To 25JUL2020 14,2958
23 (:an”voz =] /45 Let X 25JUL2020 13:02:48.947 65.90 umpp /193 1408 rpm

From 25JUL.2020 12:54:38 To 25JUL2020 14:29:58

1
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Figure 26. Coast down chart examples.

The top figure shows the tabular view with all available vibration features. The selected data point
taken at speed of 1408RPM is synchronized across all the charts below. Red values in the tabular
window describe the analyzed sensor. The coast down curve with the currently analyzed rotational
speed instance is depicted in the middle-left figure. The right-hand side graph in the center shows the
phase lag trend (upper, red chart) and both the overall and synchronous vibration trend (blue and red,
respectively). The bottom charts are the Nyquist and Bode charts on the left and right. The Bode plot
represents the amplitude and phase response of a system vibration signal separately during a transient
state. The response is strictly related to rotational speed. The Nyquist plot shows the system response
during a transient as a trajectory of the vibration vector in polar coordinates. The vector consists of
the first harmonic amplitude and the corresponding phase lag. The set of these values for individual

rotational speed increments is the trajectory of the vibration vector during coast down.

Each monitoring and acquisition system records data with different resolutions in terms of time and

rotational speed intervals. It is a result of the design of monitoring systems used in the field, and
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numerous datasets have such a feature. This data were already taken in the past and it is not possible
to repeat these measurements. Since the data is essential for the algorithm preparation, the data

sampling must be tackled in the first place.

Portable measurement system configuration has two different triggering options, according to the
change of speed and according to the elapsed time. Typical values are 20-60 s for time intervals and
5-50 RPM for the rotational speed change. Depending on the trip time instance, the measurement
systems record the transient process at different points in time and speed. Therefore, direct
comparison of the transient vibration parameters in an automated way is not possible and the data

must be preprocessed to allow automated processing.

The following assumptions must be introduced in terms of sampling and triggering data to collect

transient data properly:

e sample after each A,.,,,,= +10rpm (since the trigger is activated by each change in the rotational speed
of +10 revolutions per minute, the data will be stored in the acquisition unit. It does not matter when the
trigger was activated along the rotational speed span regardless of the time elapsed between the
samples),

e sample after each A= 20sec (after every 20 seconds, samples are to be stored regardless of the
rotational speed change).

Due to the type of the tested object, which is a turbine set, the transition time is very long. The entire
shaft line of the largest vessels can weigh over 500 tons, and their run-on time, as shown in Section
1.1, may take more than 120 minutes. Due to the shaft line inertia during a transient state (coast-
downs especially) depicted in Figure 19, the data from 3,000 RPM to approximately 1,300 RPM will
often be collected by Agpy trigger, and from 1,300 RPM to the turning gear (which is activated at
Wrpm<20 RPM) the main trigger will be Az, As a result, the data is not evenly distributed in terms
of both time and RPM value. Several issues must be overcome to use the actual data from the

measurement:

e The “raw” data points are unevenly spread (the reason is the configuration of the sampling which is
explained in the previous paragraph),

e Due to the operational reasons, the start-point and end-point of the measurement are not always the
same,

e Depending on the type of a transient (start-up or coast-down), the data is not shown in order (the
rotational speed vector may start from the lowest rotational speed or the highest one).

Even if the nature of the transient is the same, the starting point of triggering each transient is not
always the same, particularly for the rotational speed. The most important aspect is whether the
starting point varies between particular measurements. Such complicated trigger procedure generates
a different set of samples every time a transient is recorded. Data points are placed close to each other
RPM-wise (comparing transient-to-transient), but not identically with respect to rotational speed

mark.
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Due to the fact that acquired data are field measurements and also that we measured many machines
(of the same type, but still different units), the noise reduction was also an important matter. The data

noise reduction considerations are presented in Section 3.5.1.

The data collected by DAIU, which are needed for the analysis has a complex structure. It is similar to

a three-dimensional matrix. Figure 27 presents the structure of the transient data matrix.

(X 1]

Rotational speed instances

Vibration signal feature
Figure 27. Transient data structure.

On the first axis (vertical), there are i-rows of subsequent rotational speeds for which data has been
collected. There are j-columns with vibration signal features on the second axis (horizontal), and the

third k axis (depth) contains the set of all sensors.

Each transient has 500 to 750 data points and up to 15 features per a single data point. Figure 28 shows
a fragment of the data points matrix (rotational speed vs. signal features) from a single sensor during
a transient state. This is the i and j axis of the transient data matrix. The third, k axis of the matrix

includes all vibration sensors. In this example dataset there are 14 sensors.
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Channe]... | Date | Speed(P) | Direct | Avg Gap | 1XAmplitude | 1X Phase | 2XAmplitude | 2X Phase | nX-lAmplitude | nX-1 Phase | nX-2Amplitude | nX-2 Phase | nX-3Amplitude | nX-3 Phase | nX-4Amplitude | nX-4 Phase |
1y 2511p2020 16 7.423 3000 66.0 -8.611 63.2 20 1.088 166BMA .506 2.095 14 2.063 313 2.035 2
1y 251ip2020 16 3000 7.1 -8.611 39 1.014 152BMA 203BMA 2.030 15 2 313 1.984 206BMA
1y 2997 .9 -8.610 38 2.182 145 198BMA 2.074 14 2 312 2. 206
1y 2992 .6 -8.603 38 2.525 145 2228MA 2.101 13 2. 314 2. 207
1y 2987 3 -8.598 38 2.511 149 2108MA 2.120 12 2 314 2 205
1y 2982 -8.594 38 2.461 154 2088MA 2.105 12 2. 313 2.07 205
1y 2977 -8.591 38 2.650 156 2098MA 2.105 12 2! 314 2. 204
1y 2972 -8.589 38 2.757 154 1968MA 2.076 12 2.085 314 2 203
1y 2967 -8.589 38 2.581 154 198FNX 2.093 12 2.036 315 15 204BMA
1y 2962 -8.589 37 2.502 151 209BMA 2.060 13 2.088 315 1 205BMA
1y 2957 -8.590 37 2.265 149 206BMA 2.063 13 2.114 315 2.07 5
1y 2952 -8.592 37 2112 150 205BMA 2.080 14 2.131 315 2. 3
1y 2947 -8.594 36 1.929 1498MA 2188MA 2.095 14 2.166 314 1 2048MA
1y 2942 -8.595 36 1.732 152BMA 218BMA 2.119 14 2.167 313 2. 7
1y 2937 -8.597 36 1.574 156BMA 2148MA 2.122 14 2.140 314 2
1y 2932 -8.599 36 1.625 174BMA 2138MA 2.157 14 2.175 315 1 205BMA
1y 2927 -8.601 36 1.908 174BMA 208BMA 2.182 12 2.140 314 2. 5
1y 2923 -8.602 36 1.888 1828MA 2148MA 2.216 12 2.175 314 % 206BMA
1y 2922 -8.603 36 1.989 184BMA 205BMA 2.189 12 2.166 315 1; 204BMA
1y 2917 -8.604 35 2.328 180 207BMA 2.159 9 2.140 315 £ 204
1y 2912 -8.606 35 2.475 180 2088MA 2.163 10 2.133 313 2. 206
1y 2907 -8.608 35 2.580 187 2108MA 2.170 9 2.187 312 2. 206
1y 2902 -8.610 35 2.687 183 2088MA 2.166 3 2.159 312 2 207
1y 2897 -8.611 35 2.625 188 2128MA 2.182 9 2.188 311 15 2038MA
1y 2892 -8.613 35 2.905 186 197BMA 2.187 7 2.198 311 2. 06
1y 2887 -8.614 35 3.010 184 208BMA 2.150 8 2.186 312 (7 207
1y 2882 -8.616 35 2.948 191 201BMA 2.154 8 2.126 312 2. 204
1y 2877 -8.618 35 3.263 188 2018MA 2.1a7 7 312 2, 203
1y 2872 -8.619 35 3.386 189 2018MA 2.161 7 313 2. 203
1y 2867 -8.620 35 3.597 186 2098MA 2.131 6 313 2. 204
1y 2862 -8.621 35 3.617 182 215BMA 2.108 6 313 2. 206
1y 2857 -8.623 35 3.579 185 204FNX 2.102 8 312 23 206
1y 2511p2020 16: 2852 -8.624 35 3.644 183 198FNX 2.147 7 313 1 206BMA
LR X J
1y 2511p2020 17 746 142 31.30 325 4. 7a 9.110 118FNX 29 226 5.540 92
1y 2511p2020 141 31.48 325 4. 79 9.528 115FRX 30 229 5.320 72
1y 2511p2020 137 30.98 324 4. 80 9.230 114FNX 21 226 6.550 43
1y 251ip2020 137 31.49 325 4. 80 9. 114FNX 27 225 5.697 53
1y 25112020 134 30.97 324 4. 79 9. 114FNX 30 223 6.276 a7
1y 2511p2020 132 30.93 324 4. 80 9. 113FNX 28 224 6.483 32
1y 251ip2020 131 30.01 324 5. 80 9. 113FNX 28 227 6.110 27
1y 2511p2020 128 30.57 323 4. 80 9. 112FNX 29 221 6.039 26
1y 2511p2020 127 30. 323 4. 77 9. 111FNX 25 223 6.385 19
1y 2511p2020 125 30.96 322 4. 76 9. 110FNX 26 225 6.149 1
1y 2511p2020 122 31.13 322 4. 77 9. 109FNX 27 223 5.399 6
1y 251ip2020 122 31.13 322 4. 77 8. 109FNX 26 226 5.403 7
1y 2511p2020 119 31.74 320 a. 75 8. 106FNX 27 226 5.368 356
1y 25112020 17 31.21 321 4. 76 8. 107FNX 2 226 4.952 352
1y 25112020 116 31.44 321 4. 76 8. 105FNX 27 227 5.205 352
1y 2511p2020 114 31.45 320 4. 74 8. 104FNX 26 228 5.058 345
1y 2511p2020 112 31.42 320 4. 76 8. 103FNX 22 226 4.793 341
1y 2511p2020 et 31.41 319 4. 73 8. 103FNX 26 228 4.821 336
1y 2511p2020 108 29.69 318 4. 74 8. 100FNX 30 225 4.466 336
1y 2511p2020 107 29.46 318 4. 75 8. 99FNX 25 232 4.056 330
1y 251ip2020 106 29.28 318 4. 75 8. 100FNX 2.5 28 231 3.908 332
1y 25112020 103 29.00 317 4. 74 8. 97FNX 2.499 26 232 3.644 328
1y 25112020 102 28.35 318 4. 77 8. 99FNX 2.614 25 233 3.841 325
1y 2511p2020 101 28.03 317 4. 72 5. 97ENX 2.374 2 233 3.59 319
1y 2511p2020 98 27.95 317 4. 73 8. 98FNX 2.389 26 233 3.588 322
1y 2511p2020 o7 27.44 316 4. 72 7. 9SFNX 2.455 26 230 3.514 320
1y 2511p2020 96 27.18 316 4. 74 7. 94FNX 2.264 25 231 3.466 316
1y 2511p2020 250 9% 26.79 5 315 4. 76 91FNX 2.412 29 233 3.102 316
v 2519p2020 17 2.445 92 25.94 19.16 315 4. 72 7. S1FNX 2.236 27 233 3.203 308

Figure 28. Transient data points for one sensor.

Figure 29 shows the j and k axes of the transient matrix at one point of the rotational speed instance.
The rotational speed column called “Speed(P)”, depicted on the figure shows fixed value but sensor
column called “Channel” presents all sensors during the measurement course. On average, one

transient matrix consists of about 70,000 elements per analysis.

| Channel... | Date Speed(P) | Direct | Avg Gap | 1XAwplitude | 1X Phase | 2XAmplitude | 2X Phase | nX-1amplitude | nX-1 Phase | nX-2Amplitude | nX-2 Phase | nX-3Amplitude | nX-3 Phase | nX-4Amplitude | nX-4 Phase |
Y 2511p2020 16:53:37.423 3000 6.0 -5.611 63.2 4 1.088 1668M 1.906 226BMA 2.095 14 2.063 313 2.035 204
x 2511p2020 16:53 23 3000 7 - 39.28 121 1.574 3498MA 0.821 3228MA 318 2.112 288 2.022 298
2y 2511p2020 16:53 23 3000 48.60 229 S0BMA 1.348 359BMA 305BMA 2.577 228 1.813 0BMA
2 2511p2020 16:53 23 3000 18.79 308 185 0.729 1108MA 2508MA 3.150 228 1.728 89BMA
3y 2511p2020 16:53 23 3000 45.03 131 322 0.989 3188MA 1238MA 1.348 8BMA 1.388 2668MA
3% 2511p2020 16:53 23 3000 37.10 256 142 0.759 728MA 2 1.414 188MA 1.510 356BMA
ay 2511p2020 16:53 23 3000 23.94 6 64 1.028 165BMA 122 0.912 311BMA 4.290 48
4x 2511p2020 16:53 23 3000 24.03 103 239 0.761 2738MA 5.360 25 0.780 3148MA 4.075 79
sy 2511p2020 16:53:37.423 3000 9.788 213 47 0.205 738MA 4.056 205 1.131 288BMA 0.735 0BMA
5% 2511p2020 16:53:37.423 3000 10.38 340 211 0.383 1308MA 2.503 113 1.617 296BMA 0.912 121844
&Y 2511p2020 16:53:37.423 3000 7.936 173 83 0.191 3108MA 1.204 SGBMA 0.593 3228MA 1.715 2708MA
X 2519p2020 16:53:37.423 3000 16.63 302 200 0.711 10184A 2.255 4 0.819 35BMA 1.225 121
7 2511p2020 16:53:37.423 3000 3.198 70 304 0.663 12BMA 1.980 221844 1.710 164BMA 1.042 178BMA
7 2511p2020 16:53:37.423 3000 9.608 184 72 0.140 1058MA 1.110 2238MA 1.470 1738MA 0.993 2318MA

Figure 29. Transient data points for all sensors at single rotational speed instance.

Next, data is exported to a CSV file using the ADRE Sxp software. Then a Python program (developed

by the author) opens, selects, and processes the data.

The measurement data should be appropriately acquired and preprocessed before the diagnostic
system can use it to properly assess the condition of the turboset during transients’ states. Different
portable systems measure and collect/obtain data differently. They might have another sampling
resolution (it especially applies to the rotational speed increments). Therefore, the vibration data the

DAIU system collects cannot be directly compared and need preprocessing.

One can compare transient data amplitude-wise (comparing amplitudes from one transient with
another). However, implementation of this method is impractical in our case. Transient data records
vary significantly depending on the trigger setting, especially RPM tags. If one compares the amplitudes
from different RPMs, such an analysis will be misleading. A more advanced (and valuable) type of
analysis is to assess transient data signals, but for a reference mark which is the same for all analyzed

transient states. Author assumes that such a mark is the rotational speed. Choosing a rotational speed
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mark as the reference signal enables us to compare data repetitively and reliably. Data prior, during,
and past critical speed can be unequivocally identified and compared. Resonance peaks and shaftline
unbalance response depend heavily on rotational speed and should be appropriately compared

independently on a trigger setting.

Gathering a sufficient amount of data during transient states requires using two kinds of triggers: one
is rotational speed-depended, and the other one is time-depended. Both triggers are independent
from each other. Figure 19 presents the inertia of the system during a typical coast down. It depicts
revolutions per minute versus time elapsed. Typical coast down of the large turbomachinery can last
more than an hour. Rotational speed starting from the trip point (at the full rotational speed of the
machine) down to approx. 1/6 of nominal speed (500 revolutions per minute) changes quickly
compared to the time elapsed. The RPM-dependent trigger is needed during this first stage of a coast
down. During the second stage, rotational speed changes are much slower. At that stage, the time-
dependent trigger will provide more samples (i.e., information). Such a trigger procedure (widely used
in engineering practice) generates a different set of the database every time a transient occurs. Data
points are placed close to each other (comparing transient-to-transient) but not identically concerning

the rotational speed mark.

Unequally spaced data points along the rotational speed axis can introduce difficulties in implementing
processing algorithms. Figure 30 presents an example of data shown for one sensor with ten transient
states. Each transient has a different scatter color. The data from the transients have different
rotational speed values, making the comparison of signal amplitude values inaccurate and
cumbersome, and direct automatic evaluation of such transients is impossible. To tackle this issue, a

preprocessing method is required. Such a method is part of this dissertation.

Transient data (shaft’s relative vibration in bearing #1, 45° left from vertical axis)

175 + Real Live Data - reference transient U2, transient no. 01
Real Live Data - reference transient U2, transient no. 02
Real Live Data - reference transient U2, transient no. 03
Real Live Data - reference transient U2, transient no. 04
Real Live Data - reference transient U2, transient no. 05
Real Live Data - reference transient U2, transient no. 06
Real Live Data - reference transient U2, transient no. 07
Real Live Data - reference transient U2, transient no. 08
Real Live Data - reference transient U2, transient no. 09
Real Live Data - reference transient U2, transient no. 10

150

125

100

Displacement in um peak-peak

0 500 1000 1500 2000 2500 3000
rpm (revolution per minute)

Figure 30. Non-equidistant spaced transient data points.
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Measurements of transients in large machines are not frequent events. Transient states cannot be
repeated at will, due to cost-related, time, and stress for the machine. Therefore, interpolation is

needed to find function values at places not specified in the transient data point matrix.

To start with, the algorithm which converts the measured data to the RPM-equidistant data is
necessary. At first, a function creates an equally spaced vector of rotational speeds and each particular
transient. In other words, the first step is resampling the speed vector to generate a data vector having

the same RPM values for all the transients.

Figure 31 presents set of “raw transients” data points of one signal feature with the data obtained
throughout one of the field measurement courses performed by the author. Upper plot shows the
whole four transients recorded during one of the measurement course. The bottom figure presents
the zoom for an example part of the rotational speed interval of [1820, 1900] RPM. The zoom reveals
that not all the data points are collected for the same RPM values. It creates a significant problem in
analyzing and comparing transients data with respect to rotational speed increments. In order to

correctly compare values between transients, the values for individual transients must be interpolated.

There are various interpolation methods. The trivial, linear interpolation introduces significant errors.
Trigonometric interpolation is used to approximate periodic functions. However, the transient curve is
not a periodic function, so the interpolation task cannot use this method. Polynomial interpolation
such as first and higher-order is used to find function values at points beyond the points collected
during measurements. However, the polynomial of interpolated a function has a degree one lower
than the number of points in the data set. For a single signal feature during a transient, the collection
of points averages 500-700 data points. The extremely high order of the polynomial makes this
approach impractical for this application. An interesting solution is spline interpolation, especially its
variation - a third-degree polynomial called cubic spline (CS). This interpolation fits the third degree
(cubic) polynomials between each of the two consecutive data points in data set. This process produces
third degree polynomials of one less than the data points in the data set. Each of the spline function
from this set has a first and the second derivative specified fit the piecewise function without breakage
of its continuity. The third degree polynomial assures that the line connecting all the data points will

be continuous and will have smooth non-erratic shape.
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Figure 31. Raw transient data example: top — whole transient data point set; bottom —zoom of the transient
representative interval.

Thus, the author decided that the most suitable method for this application will be cubic spline
interpolation. CS interpolate the transient data points and helps to generate the data points for the
same rotational speed points for each analyzed transient. Additionally, it also handles “cropped”
transients, i.e., transients which do not start at “0” RPM and finish at the FSNL (Full Speed No Load)
point, i.e. at 3000 RPM. Finally, the CS interpolation applied to any new analyzed transient ensures
that all the data points are located in the same places on the rotational axis as from the baseline
transient. This operation enables data to be compared reliably. Schumaker [24] and Dyer [25] presents

the advantages of equally spaced points/knots in polynomial spline functions.
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The Cubic Spline interpolation is a type of interpolation that handles the problem of oscillating edges
of intervals with equally spaced interpolation points when using higher-order polynomial

interpolation. Gerald and Wheatley described theoretical considerations and applications in [26].

Schumaker in [24] formulated a set of four general properties for a centerline of the cubic spline

function s in the Carteisan plane for a set of points (x;, y;),i = 1,2, ..., k:

s is a piecewise cubic polynominal with knots at xy, ..., x;
s is a linear polynomial for x < x; and x = xy;

s has two continuous derivatives everywhere;

s(x)=y;, i=12,....k

A W N PR

Such a function produces more minor errors and improves accuracy. Schumaker in [24] and Gerald and
Wheatley in [26] describes the theory, together with a process of creating and using spline
interpolation. Finally, [25] shows a few examples of spline interpolation as a curve fitting method. The
main idea of cubic spline is presented by Schumaker in [24]. The goal is to produce a set of the third-

degree polynomial functions s; (x) that satisfy:

s;(x), if x; <x < x
So(x),if x; S x < x4
®)
S(x) =
Sn—l(x)r lf Xn-1 =x< Xn
Where polynomial to be fitted across each interval x; < x < x;,4, is given by equation:
s5;(x) = a;(x —x)3 + b;(x — x)% + ¢;(x —x;) + d; 9
wherei = 1,2, ...,n — 1, and respectively, the first and the second derivative is given by:
si(x) = 3a;(x —x)* + 2b;(x — x)) + ¢; (10)
(11)
si'(x) = 6a;(x — x;) + 2b;
forthesamei=1,2,..,n—1.
The matrix equation for the cubic spline interpolation is given by:
— IW1
1 4 10 0 00 oy Mz [ V1272t Ys
01 4 1 000 0f Ms Y2 = 2y3+ s
0 0 1 4 0 00 Off Mo | g Ys=2Ya+Ys (12)
0 0 0 O 4 1 0 0f(M,_3 h? Yn-4 — 2Yn-3 + Yn_
0 0 00 1410 Mn—z Yn-3 — Z.Vn—z + Vn-1
00 00 0 141 Mn—l -yn—z_zyn—1+yn—
| M,

where: M; = s"(x;),and h = x; — x;_1.
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This is an under-determined system (n — 2 rows by n columns). To find unique solutions for the matrix

equation (5) the following assumptions has to be made:
M1=2M2_ M3 (13)

My = 2My_1 — My—; (14)

This boundary conditions let us reduce the system matrix to an — 2 by n — 2 dimensions:

6 0 0 0 0 o[ M2 [ V1= 2yt Y3

1 4 1 0o 0 ofl Ms Y2 =23+ s

01 4 0 0 0| Ma| 6| Ys—2Ya+tYs (15)
: Pl= :

0 00 4 10 Mn—3 h Yn-4 — 23/11—3 + Yn—-2

0 00 1 41 Mn—z Yn-3 — ZYn—Z + Yn-1

0 00 0 0 6 -Mn—l- L Vn—2 — ZYn—l + Yn

Solving (6) yields the sought equally distanced interpolated data points.

When applying the interpolation of the data, it is important to properly select the data spacing
parameter. During research work for the dissertation, the author tested different settings of the
spacing parameter, i.e., spacing between consecutive rotational speed values, for the CS interpolation.
He performed these tests with 25, 25, 100, and 150 RPM between data points and applied it to the

OpEn procedure. Figure 32 shows the OpEn method for each value of this parameter.

The spacing parameter value of 25, Figure 32 (a), gives outstanding results in replicating the transient
function shape. Unfortunately, it consumes a lot of time and computing power. As shown in Figure 13,
for a rotational speed of about 2600RPM OpEn center line and acceptance region recreate the
disturbance in the form of a sudden decrease in the amplitude value. This drop indicates that using

this parameter value will be potentially sensitive to data noise.

Figure 32 (c) and Figure 32 (d), respectively shows the OpEn method output for spacing parameters
100 and 150. It takes much less time to complete the entire procedure than for 25 RPM parameter. It
is less sensitive to data interference, which is shown in Figure 3. Unfortunately, the graphs also show
that the method for these parameters is not able to correctly replicate the shape of the transient
between 1750RPM and 2250RPM. This range is the most important part of the transient, which
disqualifies the 100 and 150 RPM parameters for the OpEn method .
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Figure 32. Examples of different settings of the spacing parameter interval between the consecutive rotational
speed instances: (a) spacing: 25RPM; (b) spacing: 50RPM; (c) spacing: 100RPM; (d) spacing: 150RPM.

The best ratio of the data quality, i.e., reconstruction of the shape of the transient function, to the time
and computing power has a value of 50RPM between samples. Setting the spacing parameter to 50
RPM allowed to reduce the susceptibility to the data noise with the correct reproduction of the shape

of the transient curve in the entire rotational speed range.
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4. Fault detection method

After the data are acquired and preprocessed, as proposed in the previous section, the algorithms for
fault detection and identification can be executed. Fault detection is the first step of the proposed set
of algorithms. Fault detection is checked as the first one and should check whether there is any change
in the data. The ultimate application of the method is to check every transient state that the machine
experienced. After implementation in an online system, the system would run in the background by
default in parallel with the monitoring system. After each transient is stored in memory, the fault
detection algorithm would be executed and screen the data whether a human expert should

investigate the data.

The automated assessment of complex technical systems was the subject of numerous research.
Demetgul et al. in [27], highlight the fact that most industrial systems are non-linear and require
appropriate analysis methods. Each such an attempt must include feature extractor and classifier. The
authors have analyzed multiple generic methods for the diagnostic of the pneumatic systems of the

material handling systems, starting from dimension reduction to clustering for classification.

In recent years, novelty detection algorithms for small machines equipped with rolling element bearing
have gained more and more popularity. Dworakowski et al. in [28] test novelty detection algorithms.
The principles of their operation are based on Artificial Neural Networks (ANN), feature space distance,
and probability distribution. Their study included a healthy state of operation, different damage
scenarios, and various feature vectors for elliptical gearboxes' autonomous and multidimensional
monitoring. Wang et al. [29] sophisticated fault diagnostic scheme for planetary gearboxes. They use
three vibration signal domains, i.e., frequency, time, and time-frequency, to extract fault features. A
new method, incorporating a multi-objective evolutionary and decomposition algorithm, is proposed
to enhance fault feature subsets. In addition, Dezert-Smarandache rules are applied to improve
robustness and fault classification rate. Lis et al. [30] proposed an interesting approach to the novelty
detection method. Their method used data over-hung centrifugal pump vibration data in the time
domain. The data for the analysis is based on accelerometers. They introduced pump diagnostics based
on the nearest-neighbor method reinforced by the new data preprocessing method. The proposed
method has been validated on on-site pumps used in the industry. They argue that data-driven
methods can be used in predictive maintenance strategies. The above methods and algorithms are
very effective for small rotating machines equipped with rolling bearings. Unfortunately, large turbine
sets have slide bearings, in which the wedge film suppresses a significant part of the vibration signal.
As a result, it creates a barrier to high-frequency vibrations propagation, used for the analyses

presented above. This makes the methods mentioned above ineffective.

Zhangetal.in [31], [32] presented an interesting approach to "the next level" of data-driven machinery
diagnostics. He proposed a method that joins the domain gap across varying operating conditions.

Although, his work implies to be effective in applications for the rolling element bearing in the train
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industry, it can produce proper cross-domain fault diagnosis only with a balanced amount of different

fault modes data available.

The author also analyzed the literature on rotating machines equipped with slide bearings. New
condition monitoring strategies for these machines were well described by Jabtonski and Barszcz in
[33] and Capelli et al. [34]. This new approach requires new ways of monitoring the turbines.
Banaszkiewicz in [35] showed a concept lifetime assessment system for steam turbines that considers
a wide range of operating condition changes in the scope of creep-fatigue damage. Zagorowska et al.
[36] presented an interesting concept of exponential trend approximation with shape adaptation to
monitor performance degradation during operation. Hanachi et al. [37] presented an interesting
approach to improving prognostic accuracy in the compressor section of gas turbines by taking into
account the effects of humidity, and Zohair et al. [38] proposed a modified Weibull distribution as a
reliability estimator for gas compression turbines to reduce the failure risk. These works are of great
value and present an improved way of monitoring the rotating machines; however, they are missing
much information on machine dynamic conditions. This information comes from a transient state of
the turbogenerator. New diagnostic technologies are being developed, e.g. state-of-the-art thermal
and flow diagnostic of steam turbines (described by Gtuch in chapter 3 of [39]) and introduced to
power plants, still vibration response of the unit remains the fundamental method to assess the
technical state of turbo-sets. In [40] authors perform analysis of a complex case of Gas Turbine
vibrations. They confirm the fact that tedious analysis work and availability of experts is required for
proper detection and identification of a large turbomachinery fault. These works are of great value and
present an improved way of monitoring the rotating machines; however, they are missing a significant
portion of the information on machine dynamic conditions. This information comes from a transient

state of the turbogenerator.

The authorsin [41] showed that such a method will be beneficial and can be beneficial in two ways: as
a “health monitoring” parameter for the maintenance personnel and the planner and management
personnel — to properly plan and execute machine inspections and overhauls. Bornassi et al. [42]
highlight the importance of analysis of transients states in the case of large turbomachinery blades.
The authors of the paper presented a combination of the 1DOF model with real blade vibration

measurement data to identify the vibration parameters of blades during transient state.

The review of the state-of-the-art showed that there is a lack of the method to help the maintenance
personnel quickly assess the state of machinery during turbine coast-downs and start-ups, ideally in
an automated way. Therefore, creating a method to define a healthy pattern, i.e., reference or
baseline) is of great value. Having such a pattern, together with some acceptance boundaries, can
compare each transient to whether it represents a healthy condition. Due to the lack of skilled
personnel, it should be reiterated that the method should be automated. The author proposed such a
method and coined the name of Operational Envelope (OpEn). This idea is based on an envelope
wrapped around a particular signal feature for the 2D case or features for the 3D case during the

transient state of the machine.

The author proposed a method to detect an anomaly in transient behavior called Operational Envelope

(OpEN). The method, depicted in Figure 33, consists of the following steps. First, the transient state
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data are collected from the turbogenerator, i.e., real-object. Then the baseline transient is determined.
Next, the CS interpolation is applied to these reference transients. Afterward, the baseline selection is
established. The baseline determination procedure is described in Section 4.4 and 4.7. Next, the CS
interpolation distributes the data points equally across the rotational speed range. This operation
establishes the center points of the OpEn. In the following stage, the upper and lower values for OpEn

are defined.

The proposed name of the "operational envelope”, comes from the meaning of the actions involved.
However, this term should not be mistakenly mixed with the concept of the "signal envelope," and its

spectrum called the "Envelope Spectrum."

Table 4. Differences between OpEn and standard Spectrum Envelope.

Operational Envelope Envelope Spectrum
Function domain RPM/CPM (revolutions/cycles per minute) Hz
Rotational speed Varying across large span Constant
Number of 15t harmonic across whole RPM range N spectral lines (each refers to different
amplitudes (system’s response to the centrifugal force) | frequency/amplitude)

It contains sub-harmonics, harmonic and
multiple of harmonic, and all between
(depending on spectral resolution)

Tacho-sensor Essential Unnecessary
Attitude/lag angle Used n/a
Envelope’s Center of envelope + arbitrary value(s) n/a
setpoints

These are two different methods, and there are several significant differences between the spectrum
envelope and the OpEn proposed by the author. Table 4 summarizes the main differences between

these two concepts.

As one can see, both methods are very different. OpEn uses a speed sensor to track changing RPM
during transients. On the other hand, Envelope Spectrum assumes that the machine's revolutions are

stable, i.e., the method is used for evaluating the machine's condition in the steady-state operation.

The first step in an automated anomaly detection method during transients of large turbomachinery
is to collect data to create a baseline transient. For this purpose, the author analyzed over 150
databases with records recorded during 13 years of professional work. Next, from among evaluated
transients, the author nominated approximately 25 to define the baseline transient. After that, the
transient data must be CS interpolated to obtain strictly defined points in the field of rotational speed.
Without interpolating the functions at predetermined points, it would not be possible to reliably

compare transients due to the hurdles described in Section 3.5.
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Transient state data acquisition

Reference data-set selection
(establishing the baseline measurement
from both live and construction data)

Cubic Spline
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algorithm
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values' determination

Expert
knowledge
needed

Data preparation
to fit all possible transient data

Verification of the OpEn
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Does real
yes data fell no
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(no further actions needed)

Potential malfunction

severity determination

Data presentation,
End-user Parameter’s description
interface &

Suggestions for further actions
End of Procedure

Figure 33. Automatic anomaly detection flowchart method.

Data presentation

This Section describes the Operational Envelope (OpEn) method in detail. The content of this Section
was published by the author in paper [13]. The following description is only valid for one sensor. For
the entire turbine set to be included in anomaly detection, each analyzed sensor must undergo this
procedure. For example, this procedure will be performed six times for a turbine set equipped with
three bearings with two eddy-current sensors for each bearing. On the other hand, for a nine-bearing

turbine set with two sensors per bearing, 18 iterations of this procedure are required.

The method consists of several steps. The author collected real data from the transient state of the
turbogenerator set. Then he used the acquired data and data from the turbine’s design, i.e.,
engineering department where he works, to determine the baseline transient which suits the design
best. Afterwards, the baseline transient is subjected to the CS interpolation to have equally distributed
data points across the rotational speed range. Next, the center of OpEn and its upper and lower values
are established.
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Figure 34. OpEn and its upper and lower values.

The upper and lower values of OpEn for individual rotational speed values constitute the acceptance
region for that specific rotational speed. This is represented by red and green line values in the points
of CS (orange scatter points) on Figure 34. A set of values for every rotational speed in which the
turboset transient states are defined creates a 2D or 3D OpEn for a particular sensor. Now, for every
rotational speed instance defined by CS interpolation, a new data can be quickly verified if it is inside
the OpEr region. No further improvement actions are required if the OpEn contains all the data from
a new transient state; however, if the data or even a few points from the transient lay outside the

OpEn, further actions should be suggested to assess the severity of the malfunction.

After that, the amplitudes of reference transients are summed up for the consecutive rotational speed
increment values (from RPM = 100 to RPM = 3000 every 50RPM). This operation gives 60 places where
the algebraic mean of all amplitudes at each point is taken. Figure 35 shows an example of the
reference data (for clarity, only five transients were used). Points for baseline transient are summed

at specific places on the x-axis.

64



CS of transient data (Bearing #1, 45° left from vertical axis) -

175 —— Upper level of OpEn

—— Lower level of OpEn
e CS on dataset from U2, and transient no. 05
® CS on dataset from U2, and transient no. 06
e CS on dataset from U2, and transient no. 07
e CSon dataset from U2, and transient no. 08
e CS on dataset from U2, and transient no. 09

150

125

Displacement in um peak-peak

500 1000 1500 2000 2500 3000
rpm (revolution per minute)

Figure 35. Example of reference transient data set with OpEn values given.

The next level of development of the OpEn method is to include additional vibration signal features.
For example, applying the OpEn acceptance values concept to a vibration vector results in the OpEn
acceptance region as an ellipse. Next, the ellipsis acceptance region is broadcasted on a predefined
baseline transient vector for every rotational speed increment. In this way, the OpEn 3D defines the

next level of acceptance region for complex vibration vectors.

In order to correctly detect an anomaly during transient, a reference transient is essential. However,
selecting a single transient as the reference curve is not a good idea during the transient of large
rotating machinery equipped with plain bearings. The turboset transient response under different
operating conditions will have different values. An essential aspect is the oil temperature at the
entrance to the bearings. In the author's experience, the transient of the same unit in winter and

summer may differ significantly.

With this in mind, the author analyzed and made selections of the most representative transients from
the set of all databases he had. The author analyzed over 250 databases of transient measurements.
From among them, he selected and ranked transients according to the criterion of his methodology.

He classified data included in the analysis into the following categories:

e dynamic condition: correct - helpful in the research,

e dynamic condition: acceptable but useless to define the baseline,

e data from runs with excessive misalignment of the HP-IP part,

e data with excessive unbalance, data with bearing oil instability 3,

e unusable data - from data points not covered by the test, with wrong sensor orientations.
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He analyzed the correct dynamic state databases and selected reference data for baseline evaluation
from them. The set of reference transient data set included approximately 25 transients containing all
turbo-set’s displacement vibration sensors, i.e., 14 sensors per transient, and all of the vibration signal
features.

The author checked several averaging methods such as the median filter, standard deviation method,
and the arithmetic mean. Due to the small amount of transient data points and a good results'

correctness to the implementation ratio, he used the arithmetic mean.

The data used to create the baseline is described in Section 4.3. A single feature of the vibration signal
is used to create the baseline measurements. Figure 1 shows the flowchart of the method for

calculating the baseline value for one sensor.
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Transient reference data set
(k-transients)

Transient reference data set
(1 vibration feature; i transient)

CS interpolation on i-th transient data
(n amplitude points on predefined
rotational speed axis instances)

k by n matrix

Arithmetic mean from all values in the
j column

Set of n points;
baseline reference

Figure 36. OpEn 2D baseline measurements flowchart.

First, the reference signal set is interpolated CS to determine the values of the individual reference
transients in a predefined set of rotational speeds. The first part of this procedure creates a matrix of
the k-rows of transients and the n-columns of rotational speed instances. Next, the arithmetic mean is
performed column-wise, i.e., for each rotational speed instance. Finally, all values of the means create
the baseline vector.

The procedure described above and presented in Figure 36 should be repeated as many times as
sensors are included in the analysis to determine the baseline values for the entire turbine set. The set
of all baseline values creates a matrix with dimensions [ by k, where [ is the number of sensors included

in the analysis and k is the rotational speed increment. The result of the complete procedure is the
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OpEn 2D Baseline Upper and Lower Limit matrix (OpEn BULL). It contains all acceptable values for

individual sensors in all rotational speed instances.

Setting up an upper and lower bound for the OpEn is not a trivial task. The bounds mean the actual
Operational Envelope above and below the centerline calculated as described in the previous section.
We expect transients measured on healthy machines to stay within the area between lower and upper

bounds.

Vance et. al. throughout their book [6] studied how different setups of the bearing applied to the same
machine can produce dramatically different results. Eisenmann in [3] well described and explained
how damping and stiffness affect response of the system during transient states. Thus, one needs to

be aware of large effects caused by small changes.

The upper value should be set up higher, because of the non-linear nature of damping in bearing-rotor
system. Non-linear nature of the rotor-to-bearing response is explained in by the numerous authors
like Muszynska [8], Eisenmann [3], Kicifski [9], Adams [11]. For instance, having properly aligned and
balanced rotors on the same machine, different state of initial conditions (such as rotor and/or steam
temperature, time of stand-still, etc.) can cause higher amplitudes, especially when whirling speed
approaches to the resonant speed. Similarly, differences in inlet oil temperatures can produce

differences in resonant peak amplitudes, and this is directly related to the oil damping properties.

The lower values are also important to analyze. The behavior of both static and dynamic response of
rotor system changes together with crack propagation. Bachschmid described these phenomena in
detail in [43]. Setting up lower value of OpEn can be a great help with shaft crack detection. As was
presented in the report by Allianz[41] and Bently and Hatch [4] during evolution of a crack in the shaft
its stiffness deteriorates. Such a phenomenon causes resonance frequency move to the direction of

lower frequencies.

Based on the authors’ experience, reinforced with suggestions from General Electric’s engineering

department fallowing values were set up:

e The OpEn 2D case: The upper value is 24umpp, and the lower value is 13pumpy.
e The OpEn 3D case: The amplitude value is 30umyp, and the phase value is 20°.

The core of the method is the detection of anomalies during transient states. The anomaly detection
method can create two vectors having the same rotational speed values and different amplitudes in
values. These vectors define the upper and lower bounds of the OpEn. In addition, they define the
acceptance threshold of a new transient. Several norms are incorporated to automatically measure a
distance between vector data points outside the OpEn for a new transient vector. The threshold will
classify new vectors as they are measured. Only then can the method be proposed to machinery

operators, and they will be able to use it without specialist knowledge and experience.
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There is no single "silver bullet" method in order to appropriately assess the "good" or "bad" transient
state. The author proposes a few metrics and compares their performance. The following metrics has

been proposed for the OpEn 2D:

e RMSE —Root Mean Square Error from the whole transient;

e  KURT - Kurtosis from the whole transient;

e MAX_Oo_OpEn—maximum distance above the OpEn upper value;
e MIN_Oo_OpEn — maximum distance below the OpEn lower value.

RMSE is a root mean square, as defined by Leon-Garcia in chapter 4 in [44], between the cubic spline
interpolation of the reference transient (the OpEn centerline) and cubic spline interpolation of the
actual data measured by a portable data acquisition system in the field on the same rotational velocity

points. Figure 37 visualizes this norm. Equation defines RMSE norm.

(16)
u (y y )2
f_t; — JVlive_t;
RMSEq,z, = Z e l
OpEn ' T
i=l
Where:
®  RMSEqp,gy, —root mean square error of given transient
® V¢ — “healthy” value (reference transient data — center of OpEn)
®*  Yive + —Observed value (newly acquired, real transient data)
e [l,u] —rotational speed interval, common for y,.; ; and Yy ¢
e T —number of common data points (samples at the same rotational speed points)
In the example on fig. 5 above RMSEqpen would be:
2100 2
RMSEopEn — [ (yreffti _7yli‘l]€ti) (17)
i{=1800

RMSE describes how far, on average, the newly acquired transient is from the OpEn, where only the

centerline is considered. Thus, it measures the general average distance between these vectors.

KURT parameter is defined as the fourth standardized moment:

X —#ﬂ _ _E[X -] (18)
(

KURTpppa[X] = E [( P E[(X — 1)?])?

Where:

e X -—isavector of real data;
e u—isthe mean of X;
e o —isthe standard deviation of X.

The KURT parameter represents a distance between the two vectors with a higher weight of peaks,

which should be detected automatically. For example, if a transient differs by a high value at only a
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few data points, it cannot bring sufficient weight to the RMSE factor, but the KURT parameter detects

it.

Equation (19) describes MAX_0Oo_OpEn (abbreviation from Maximum Out of OpEn). It measures the

highest distance above the OpEn upper value. This parameter measures and compares vector values

at rotational speed like the previous ones.

. (19)
MAXOO?OPETI = max ({abs (yOPEnu,,i - yliveti) | LE [l: u])})

e  Where:

®  Yopen_uv; — OPEN upper bound

*  Vivet;~ observed value (real transient data acquired during transient)

e i € [l,u] - common rotational speed interval

In order to illustrate the above severity parameters, sample data from the real object transient will be
presented below. The data comes from a +200MW class turbine set measured during commissioning
after the outage. As shown in Figure 37 (top), the maximum value for this transient is 162umpp, and
the upper value of the OpEn in this rotational speed instance is given as 107.9umpp. So, it equals
51.1umpp. MAXy, open Stays at zero as long as no point from the observed vector protrudes above
the upper bound of the OpEn. Thus, it is a quick detection tool. It reacts to any violation of the upper

bound.
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Figure 37. Severity parameter visualization versus real data values: top — RMSE norm; bottom — “Min Out of
OpEn” and “Max Out of OpEn” values.

On the other hand, equation (20) describes the MINy, open Parameter (abbreviation from Minimum

Out of OpEn). It is symmetrical to the previous measure but has a different value. The parameter

measures and compares data at a common rotational speed interval.

MINOo,OpEn = max ({abs(yOpEn,lvi - yliveti) | i €[l u])}

Where:

Yopen_w; — OPEN lower value;

(20)
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* Vivet;~ observed value (real transient data acquired during transient);

e [ € [l,u] — mutual speed rotation interval.

It is a measure of the highest distance below the OpEn lower value. The parameter measures and
compares data at a common rotational speed interval. Figure 37 (bottom) presents the upper and

lower values of the OpEn.

Due to the nature and the vibration response during transient states well described by Bachschmid et
al. [43] and by Hajnayeb et al. [45] MAX_Oo_OpEn and MIN_Oo_OpEn parameter can help to detect a

change in the bearing damping parameters, and developing of rotor cracks.

Together with the OpEn algorithm, the author proposes a set of parameters which can be used in order
to automatically diagnose the transient. These parameters can be used in a conjunction with each

other and other process data for better and more in-depth diagnostic purposes.

Baseline measurements for the 3D configuration are different from those for 2D. Two vibration signal
features must be combined into a vibration vector to determine the baseline value. The values of the
vectors are the amplitude and phase of the individual harmonics described in section 1.2.4, describing
vibrations in the complex plane. An example of such a vibration vector is the system's response to
excitation with a synchronous force. The first coordinate for this vector is the signal amplitude, and
the second is the phase lag value. A set of vectors for all predefined rotational speed instances creates
a transient 3D vector response. The structure of the vector is similar to the n by two matrices. Each
row in this matrix corresponds to a predefined rotational speed increment. Columns are amplitude
and phase features of vibration signal, respectively. Figure 38 presents the flowchart of the method

for calculating the baseline vector for the one sensor.

First, the two sets of transients composed of appropriately selected signal features are picked. Next,
the CS interpolated is applied to each signal feature transient to obtain equidistant data points on the
rotational speed axis. These operations create two matrices of k by n dimensions. One matrix describes
points related to the amplitude and the second one - phase lag. Both matrices described above form
the OpEn 3D Baseline Ellipsis Acceptance Region matrix (OpEn BEAR). These matrices are used to

describe the acceptance region for the OpEn 3D method.
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Figure 38. OpEn 3D baseline measurements flowchart.

Then, the amplitude and phase matrices of the vibration signal are converted to Cartesian coordinates.
Each of the Cartesian coordinate matrix has the same dimensions as the r and fi matrices. Matrix rows
correspond to individual transients and columns - rotational speed increments obtained after CS
interpolation. Each of the matrices obtained is subjected to the arithmetic mean operation performed
on all rows in a given column. The operation is performed for all columns of the matrix, that is, for all
rotational speeds. The results of the above operations are two sets of Cartesian coordinates of the
baseline vector. Each pair of the obtained coordinate sets is closely related to the corresponding
rotational speed value. Associating Cartesian coordinate sets with the rotational speed domain creates
a 3D vector. Figure 39 depicts two examples of baseline vectors obtained after procedure described
above.
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Baseline 3D vector example
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Figure 39. Baseline vector examples.

The point on the XY plane corresponds to the amplitude and phase of the vibration signal. The transient
rotations are arranged on the Z-axis. This system creates a baseline vector trajectory for a particular

sensor.

One-feature only analysis may not be sufficient to diagnose potential malfunctions correctly. For this
purpose, the author extends feature analysis on the vibration vector. This vector contains information

about the amplitude and phase of the synchronous component.
When considering the overall vibration signal only, much information about the object is lost. For
example, one can only tell if the vibrations are high or low. By extending the analysis of other features,
the assessment of the machine state can be significantly improved. For example, information about
the synchronous component and its phase lag is a significant dynamic parameter of the turbine set.

Their change from one coast-down to another coast-down may indicate that evolution of malfunction
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is taking place. Changing of the synchronous vector may indicate the appearance of additional force
from unbalance and the need to take corrective actions. In turn, the change in the value of the second

synchronous vector may be the symptom of the shaft crack propagation described in detail in the book
[43] and research by Hajnayeb et al. in [45].

All rotational speed instances use an ellipse as an acceptance region for a given transient. The ellipse
center is the baseline value described in Section 4.7. An exemplary set of ellipses constituting the
acceptance region throughout the whole transient is shown in Figure 40. The top of the figure depicts
the whole ellipsis set with its middle points as the baseline. The bottom chart presents these ellipses
related to their rotational speed instance. This exemplary set refers only to one eddy-current sensor.
Finally, to represent the baseline behavior of the shaftline fully, 13 more sets are defined.
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Figure 40. Example of OpEn 3D ellipsis set: top - mean baseline and ellipse at each speed point during transient;
bottom - 3D view (including turbogenerator rotational speed) of the ellipse set for the whole transient state for
one sensor only.

75



The severity parameter to evaluate the vibration vector analysis is the value of the shortest distance

between actual data and the OpEn 3D of the ellipse acceptance region.

The acceptable values of the amplitude and phase of the vibration vector form an ellipse. The ellipse

area defines the OpEn acceptance region and the edge of the ellipse - the limits of OpEn 3D.

| ﬁS_tr

Figure 41. OpEn 3D acceptance region and severity parameter definition.

The OpEn3Dp;e; severity parameter to evaluate the vibration vector analysis, mark in the Figure 41 by
the purple line, is the value of the shortest distance between actual data and the OpEn 3D of the ellipse
acceptance region. The acceptance ellipse middle point, defined as the intersection point of the semi-
axis of the ellipse, lies at the baseline point defined for each rotational speed value. This is the green
point, i.e., the end of the vibration vector, which in the polar system has the coordinates (Ds p;, fs p1),
respectively depicted in Figure 41. The acceptance region for vibration vectors proposed by the author
was determined thanks to the author's many years of experience in analyzing transient states of large
rotor machines. The ellipsis semi-axes are the acceptable amplitude, and the phase marked in Figure
41 as OpEn3Dgmp and OpENn3Dypese, respectively. The actual transient vector is described by
(Ds_¢r»Bs_¢r) coordinates and marked in Figure 41 and Figure 42 in red. The new transient data is
compared to the OpEn3D acceptance region. In addition, the actual vibration vector is compared with
its corresponding ellipse for each rotational speed separately for the current transient. The set of
acceptance ellipsis for the whole transient for one sensor is depicted Figure 40. Figure 42 depicts an

example of applying this parameter. When transient data are within the OpEn 3D acceptance region,

76



the shaftline is considered to be in good condition (Figure 42 — top). The OpEn3Dp;s; distance from

the OpEn 3D acceptance region is equal to 0. Therefore, no further actions are undertaken.
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7X Synchronous response amplitude (1X-Amp) and phase lag (1X-Phase) at 2600.0rpm
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Figure 42. OpEn 3D ellipse severity parameter visualization: top — actual data inside of an ellipse; bottom —
actual data outside of an ellipse.

On the other hand, if the data fell outside the OpEn 3D acceptance region, the distance of the vibration
vector from the ellipse is calculated. Figure 42, bottom, presents an example of determining the
severity parameter as the distance of the vibration vector from the ellipse. At 2600RPM, the vibration
vector point is outside the acceptance region. Next, the severity parameter is calculated and defined.

It is the closest distance from the point outside the ellipse to the ellipse.
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5. Fault Identification method

The first part of the FDI algorithm is the fault detection method, which was proposed in the previous
section. If a fault is detected, it is very useful to learn what was the reason for a deviation from the
baseline. To answer this question, one needs to perform the fault identification. This operation
constitutes the second part of the method proposed in this dissertation. This section presents the
details of this method.

The vibration response of the unit remains the fundamental method to assess the technical state of
turbo-sets. Sometimes the interval between shutdowns can last up to a year without intermission.
During this period, the turbo-set is operated in varying conditions such as significant load change,
different steam temperatures and pressures, and many more. These conditions can cause a large
amount of stress, which eventually can lead to fatigue and, in extreme cases, to failure. The automated

assessment of complex technical systems was the subject of numerous research.

After a series of total machine destruction cases, German insurance company Allianz carried out
extensive research [41]. It concluded that without a proper turbomachinery diagnosis, the
consequences could be fatal to the equipment and very dangerous to the people who operate them.
Since this report, a significant amount of research and effort has been invested in inventing and
implementing new and more precise methods of technical condition assessment. Demetul et al. in [27]
highlight the fact that most industrial systems are non-linear and require appropriate analysis
methods. Each such attempt must include a feature extractor and classifier. The authors have analyzed
multiple generic methods to diagnose the pneumatic systems of the material handling systems,
starting from dimension reduction to clustering for classification. Zagorowska et al. [36] presented an
interesting approach and new insights to track the evolution of malfunction during steady-state
operation with a novel approach to trend tracking technic. Gtuch, in chapter 3 of [39], describes a state-
of-the-art thermal and flow diagnostic of steam turbines in great detail. Duan et al. in [46] presented
several attempts at tracking turbogenerator degradation with Deep Neural Networks. However, the
features were calculated from turbo-set operation data, not during transient states. Akhtar et al. [40]
perform an analysis of a complex case of Gas Turbine vibrations. They confirm that tedious analysis
work and the availability of experts are required to detect and identify a large turbomachinery fault
correctly. Sachin et al. [47] present an interesting approach to bearing diagnosis. They propose
reducing the number of features. Paper claims that proper feature ordering and selection could
significantly improve classification accuracy, especially for machines equipped with modern CMS,

which acquire and calculate many features.

The above methods and research improve the quality of assessing the technical condition of machines.
However, they do not consider the transient states of high inertia machines, which can last up to two
hours, as depicted in Figure 19. Therefore, there is a lack of a method to help the maintenance
personnel quickly assess the state of machinery during turbine cast-downs and start-ups, ideally in an

automated way. Data from these states are as important as the steady-state ones, but the amount of
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transient data is incomparably smaller than that of steady-state operation. This makes this data an
invaluable source of information. The amount of information about the dynamic state obtained from
them determines the need to introduce supervision, assessment, and diagnostic system during coast

downs and start-ups of the above devices.

The main quality indicator of rotating machines is the bearing vibration. Therefore, there are many
works dedicated to bearings' fault diagnosis. Wei et al. [48] use an adaptive approach to extract
features from faulty bearings with success. Kun et al. [49] have also proposed an interesting approach
to bearing faults classification. The paper presents the use of Ensemble Empirical Mode Decomposition
(EEMD) and Singular Value Decomposition (SVD) to extract fault features, and then an advanced
clustering method is used for fault pattern recognition. Wang et al. [29] also use ML technics and

incorporate them into planetary gearbox malfunctions detection. [28]

The papers mentioned above studied only machines with rolling element bearings or planetary gears
during their steady-state operation conditions. There is a lack of papers concerning assessing the
behavior of fluid-film bearings in large rotating machinery during transient states. The availability of
machines equipped with rolling bearings or planetary gears is significantly greater than that of large
rotor machines. Therefore, examining small rotor devices is not associated with a large financial outlay
and workload. There are many small rotor machines in the industry. Often, due to their redundancy,
they can be freely tested without significantly increasing the company's production costs. The available
data makes the ML idea and any Al-based algorithms justified in these cases. Moreover, large amount
of data increases the probability of detecting damage and recognizing a fault pattern, and also gives a

better training-to-testing data ratio.

Unfortunately, there is a lack of papers concerning assessing the behavior of fluid-film bearings in large
rotating machinery during transient states. The author of this dissertation aims to reduce this gap by

introducing a method of automatic anomaly detection during transient states.

Large turbogenerators exhibit a highly non-linear response during transient states due to various
factors, such as passage through its resonances, lube oil damping, fluid forces (e.g., steam), rubbing,
and other factors. The author proposes decomposing each transient response into a set of signals to
deal with such a complex response. He utilizes the signal structure known “a priori”, and such
decomposed signals can be interpreted separately, thereby facilitating the analysis. Nonlinearity in
transient response, even in respect of a single rotor supported by two bearings, can cause some

difficulties regarding its description in a mathematical sense.

The transient state data points of a rotor have a highly nonlinear nature. The author proposed
decomposing a transient curve into a few known and less complex signals to address a particular
malfunction of complex behavior. The advantages of decomposition on nonlinear stochastic signals
were thoroughly described by Chui and Mhaskar [50], Cicone [51]. Chui and Mhaskar, and Cicone
researched the enhancements and improvements of the decomposition of nonstationary time signals.

Chui and Mhaskar proposed a new mathematical theory behind their method that performs better
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than the synchrosqueezing transform method. Cicone presented a detailed analysis of the methods
for decomposing nonstationary signals. He also presented a detailed methodology for composing the
signal into individual, simpler components. The methods used do not require "a priori" assumptions.
He also analyzed the most popular decomposition methods, indicating their advantages and

disadvantages.

Each decomposed signal represents a different rotor behavior during the transient. The author offers
three types of functions to approximate the transient signal curve. Equations (21)—(23) represents the

analytic form of the decompose type of the functions.

(x—by1)?
fi=ae @ (21)
_ X — X \?2
f=a, (xk - xo) (22)
f3=bs
(23)

Where:
f1 — Gauss function with a;, by, c; parameters respectively,
f> — parabola with a, parameter and b, as a bias term respectively,
a, —amplitude of the Gauss function,
b; —placement of the resonance peak along the rotational speed axis,
¢; —width of the resonance,
a, — factor related to synchronous response,
X, — starting point of centrifugal force response,
X — rotational speed range (in given transient),
b; — bias constant (electrical/mechanical runout).

Based on assumption above, numerous function combinations with different sets of parameters can

be superposed to fit the measured data.

Hence, the complex function described by the equations (6) and (7) can be represented as a sum of
the simple functions described by the equations (21)-(23), similarly to the procedure described by Chui
[50] and Rao [52]:

n
Papprox = P1 Tt P2 + -+ @ = Z Pi (24)
i=1

where:
¢@; —decomposed function described by the combination of equations (21)-(23).

The MSE (Mean Square Error) and the MAE (Mean Absolute Error) are used as a measure of accuracy
concerning the decomposition approximation. MSE;,,, has been defined as a sum of the squares,
whereas MAE;,,, has been defined as a sum of the absolute values between real function ¢,.,; and

our approximation @up,rox Within the space of all the samples throughout the transient in the
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equations (7) and (8), respectively. Consequently, the MSE;,,, and the MAE;,,,, are used to assess a
fit of the decomposed parts to the actual data which was obtained during the measurements:

2

N n
MSE¢rqn = Z Prear(w) — Z @i(w) (25)
w=1 i=1
N n
MAEqn = Z Orear(@) — Z @i(w) (26)
w=1 i=1

where:
w —revolution per minute (rotational speed).

The malfunction identification method proposed in the doctoral dissertation consists of a tournament
between three scenarios involving different variants of decomposed functions approximating a given
transient. The simplest scenario proposes an approximation with three partial functions, i.e., one
Gaussian function with a parabola and bias. Six parameters describe the partial functions of this
scenario. The most complex variant consists of five partial functions, i.e., three Gaussian functions, a
parabola, and a bias function. Twelve parameters are used to describe the partial functions for this

scenario.

The proposed method can yield up to 12 parameters describing a single transient with three resonance
peaks, unbalance, and run-out. Each resonance is described by three parameters that can be
monitored independently: the resonance peak, its placement, the rotational speed interval, and the
width related to damping in a bearing. In addition, rotor unbalance response is monitored with two
parameters of a single parabola. According to the tests carried out during the author's research, a set
of the 12 parameters described above should suffice to correctly model and monitor the transients

and their most essential parameters.

Multidimensional Data Driven Decomposition (MD3) is an extension of a concept presented by authors

in [14]. This method consists of two main parts listed below:
1. Real data preparation and preprocessing,
2. Identification of decomposed function parameters.

The first step is required to transform very different data sets into unified vectors, which can be a
subject of comparison. The content of data sets measured on the physical objects is often different.
Each transient can vary depending on a large number of external factors, which are not recorded in
the vibration response of the system. For instance, there happen to be processed depending
conditions, e.g., lousy quality vacuum in the condenser, which can cause a machine to stop much
quicker than during normal coast-down. In addition, there are transients when the Full Speed No Load
(FSNL) state cannot be achieved during the start-up. There are no turbine-related issues (common ones

are vacuum-related problems, lube oil-related problems, boiler-related issues, or others.). Even if the
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whole RPM span transient is recorded, it is evident that the vibration data are not stored at the same

rotational speed instances.

Each monitoring and acquisition system records data with different resolutions in terms of time and
rotational speed intervals. It is a result of design of monitoring systems used in the field and numerous
datasets have such a feature. This data already exists and it is not possible to repeat these
measurements. Portable measurement system configuration has two different triggering options,
according to the change of speed and time. Typical values are 20-60 seconds for time intervals and 5-
50 RPM for the rotational speed change. Depending on the trip time instance, the measurement
systems record the transient process at different points in time and speed. Therefore, direct

comparison of the transient vibration parameters in an automated way is not possible.

As afirst step, the vibration data need to be preprocessed to have the same set of RPM values. A cubic
spline interpolation was introduced as the preprocessing procedure to solve this problem. It allows
defining a set of equally spaced rotational speed values at which the vibration values shall be
interpolated. Later, the fitness functions of the decomposed functions will be evaluated. Barszcz and
Zabarytto [13] describe the usage of cubic spline interpolation and its benefits in transient state
analysis. Dyer and Dyer in [25] and Barszcz and Zabaryto in [13] present the advantage of using the
equally spaced knots for the polynomial spline function (i.e., equally spaced rotational speed
increments during transient). De Boor, in his book [53] in chapter XIV shows that the advantage of
cubic spline interpolation is to smooth the interpolation function in the points of interest. In our
research, the points of interest at which the cubic spline is calculated are the rotational speed instances
from the following {rpm,, rpm,, rpms, ..., rpm,,4, }. Typically, the set consists of equidistant values,
e.g., 200 RPM ending at 3,000 RPM (for European power plants) with a 50 RPM distance between

points.

The second step of the procedure decomposes a preprocessed transient into essential components.
Finally, the procedure relates a set of function parameters and coefficients to physical phenomena
occurring during the coast-downs and start-ups across the shaft line when a fault is present. Thus, the
input transients are decomposed into more straightforward base functions. These functions are used
as a measure of particular malfunction. Based on experience and research, the authors took a set of

three decomposition base functions into account:

1. One Gaussian function, one parabola, and one constant/bias function. It produces a set of six

parameters. This scenario can identify one critical speed and unbalance.

2. Two Gaussian functions are considered, one parabola and one constant/bias function. It
produces a set of nine parameters. This scenario can identify rotors with two critical speed zones

and unbalance.

3. Three Gaussian functions are considered, one parabola and one constant/bias function. This

scenario can identify rotors with up to three critical speed zones and unbalance.

Each scenario is qualified based on that same quality performance parameter, namely MSE. Mean
Squared Error (MSE) measures the fitness function to be minimalized. Equation 1 presents the

definition of MSE, as defined by Leon-Garcia in chapter 4 in [44].
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Figure 43 presents the flowchart of the MD3 method divided into particular operations.

The first four blocks refer to step 1, as described at the beginning of the section. The MD3 method
starts with detecting an anomaly in the OpEn procedure. After detecting a potential malfunction, the
data in a set of features for individual rotational speed increments are passed for preprocessing. There
are several steps in the newly received data preprocessing procedure. The first step is to sort the data
samples according to the rotational speed value. This step is essential when there are different
transient conditions con-figured. For example, during coast-down, the recording of the rotational
speed would start at the highest one. The situation reverses when the start-up is recorded, and the
rotational speed will start at 0 RPM. The procedure sorts the data in ascending order to rotational
speed values to analyze the data systematically. Next, the samples with the same rotational speed tags
are removed from the dataset. Further on, the speed range for the currently analyzed transient is
determined, and the range is divided into equidistant points on the rotational speed axis. The Cubic
Spline interpolation establishes equidistant points from the current transient as the last operation in

this step.

The latter operations in Figure 43 belong to the second step. For each transient, three scenarios are
evaluated based on the MSE quality index. First, the scenario with the best-decomposed functions
fitting parameters, i.e., the smallest value of the MSE index, is chosen to represent the current
transient state. These parameters can be used in malfunction identification, and they are stored for

future reference.
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OpEn detected a fault condition

Input data (data from real object)

Data preparation and pre-processing
(Cubic Spline interpolation, removing the same

samples, sorting data, etc. )

Uniformly spaced transient data

Model selection based on MSE

Scenario #1: Scenario #2:

Gl1+P+B Gl1+G2+P+B

6 parameters to identify 9 parameters to identify

MSE_1 MSE_2

min(MSE1, MSE2, MSE3) = best Scenario

Identified parameters list

Figure 43. The MD3 method flowchart.

Scenario #3:

G1G2+G3+P+B

12 parameters to identify

MSE_3

Estimating the values of the proposed functions is the heart of the method. The author uses

Differential Evolution (DE) algorithm to determine these parameters. The algorithm finds the best fit

of the assumed model vs. real-object data. Equation 2 presents how the decomposed functions are

combined to form the final transient function. Finally, Equations 3+5 present the analytical

representation of individual decomposed functions.

n
wirpm) = ) Gauss; (rpm) + Pu(rpmy) + ByCrom,)

j=1

2

(romy—pg )?
- 2wy
Gauss; j(rpm) = ag e

2
My — X, )

P;(rpm) = ap, (Tpmmax ~x,

B; = const,

Where:

(27)

(28)

(29)

(30)

rpm, - particular rotational speed from equally spaced rotational speed increment set where

rpmy € {rpmy, Tpm,, TPMy, ..., TPMupay};
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TPMyy 4, — Maximum rotational speed in the transient set;

@rea; — Cubic spline interpolation of real data in w instances;

@; - cubic spline interpolation of real data in w instances;

n - a number of Gaussian functions chosen for the decomposition;

j€{1,2,3,...,n} - particular Gaussian function in n set;

Gauss; j(rpm) - j-th Gaussian function;

P; - parabola function (2nd-degree polynomial);

B; - bias function with its parameter (constant not dependent on rpm);

ag; = amplitude of j-th Gaussian function at the top of its critical speed (resonant speed);

Pg; - the peak of the j-th Gaussian function in terms of rotational speed;
Wg]_ - width of the resonant zone of the j-th Gaussian function;
Ap, = amplitude of i-th parabola function at the end of the recorded transient;

X, - point of start of the parabola in terms of rotational speed (rpm);
const, - constant term taking into account initial vibration indication of the shaft.

The benefit of the method is physical interpretation of the aforementioned parameters. This is
important advantage over methods, which yield parameters without clear connection to physical

features of particular faults.

Based on the assumption described in Section 5.2, the author proposes that several decomposed
function combinations can be applied to fit the transient curve. In addition, different sets of functions

and Identification scenarios can be applied to fit the measured data in the best way.

The complex transient function behavior described by the equations (4)-(7) can be represented as a
sum of the simpler functions described by the equations (21)-(23) and (28)-(30), similarly to the
procedure described by Chui and Mhaskar [50] and by Rao [52].

The first decomposed type of function is the Gaussian probability distribution function described by
the equation (21) and depicted in Figure 44. It can approximate the resonance behavior of the rotor.
Its parameters define amplitude at the resonance peak, placement along the rotational speed axis, and
the resonance width, which in the example in the Figure 44 are 1850, 100 and 700, respectively. These
parameters are essential when analyzing the rotor response in the critical interval. Changes can
indicate a potential issue with the bearing parameters and a start or evolution of a bearing degradation
process. Further, parameter change of resonance peak amplitude can indicate a potential imbalance
problem. When combined with the change width parameter, it can indicate the deterioration of the
bearing damping parameters. Finally, the placement of the resonance peak change can indicate rubs
during the transient state or, in combination with the change in 2X amplitude response, can be a

symptom of shaft crack propagation.

The second one is the parabola depicted in Figure 44 by red dotted line, and described by the equation
(22). It can represent the centrifugal force related to the unbalance response. Changes in these
function parameters indicate that some imbalance to the rotor was introduced. There can be several

reasons for that. According to the author's experience, the most common change in imbalance
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response is the circumferential mass reduction caused by a sudden event (falling off the blade's tip) or
erosion-induced reduction of the bade mass. In both cases, centrifugal force changes, and the

imbalance response of the rotor affects the parameter of the parabola function.

Superposition of decomposed signals
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Figure 44. Example of the decomposed signals simulating runout, resonance and unbalance and their
superposition.

The third one is the constant function described by the equation (23). It can represent the initial

mechanical runout of the shaft. It can also account for the measurement noise.

The fundamental question is how to properly adjust the parameters of the functions proposed in the
previous sections. The method should be based on the data available after each transient. After

analysis of literature and initial tests, the Genetic Algorithms were selected for this task.

Genetic Algorithms (GA) are parallel mathematical algorithms that transform each population (i.e.,
individual parameters of mathematical objects) into a new set of parameters based on a fitness
function. The fitness function is a way of evaluating the cost of an individual and population to adapt
to the environment related to each population and its parameters. They are based on Darwin’s theory
of evolution, which stated that only the best-adapted individuals (the fittest ones) will survive to
reproduce and create a new population that would be better adapted to the natural conditions. The
DE algorithm is part of the Genetic Algorithms (GA) family. GA are based on the concept of population
evolution in a natural habitat. The idea of finding the best solution to a given problem (goal function)
was described by Koza and Poli in Chapter 5 [54]. Finding the solution starts with some initial set of
solutions with different parameters (called population) and using the quality parameter (called fitness
function) to determine the best solutions from the solutions’ pool (the fittest individuals from the

particular population, called parents). Then, another set of solutions based on the parents (called
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children) is produced. Children inherit many properties from their parents, but they can also be
subjected to modifications in their parameters (called mutation and genes’ crossover). Then, the new
solution set of the next evolution is ready to be evaluated. This can go on until the quality parameter
is met or for an arbitrary number of evolutions. Throughout their book they describe the basics of GAs
and deliver an extensive discussion on its advantages and limitations of GAs. The main advantage of

the GA is its possibility to adapt to different problem-solving tasks.

GA algorithms are used extensively across many fields of science and engineering. For example, Roetzel
et al.,, in chapter 6 in [55], described the heat exchanger networks design using GA with network
parameters like total annual cost, target temperatures hot and cold temperatures with good results.
Furthermore, Li et al. in [56] present a GA enhancement and reinforcement to feature an extraction
and classification algorithm based on the neural network used to diagnose electrocardiogram signals.
They argue that GA feature optimization and Back Propagation Neural Networks could be applied in
cardiac arrhythmia automatic identification due to dimension reduction. It can yield a classification

accuracy of 99.33%.

The Differential Evolution (DE) is an evolutionary algorithm, which constitutes part of the GA family.
The DE is a stochastic search algorithm based on the population. What is more, the DE is based on
Darwin’s theory of evolution, where the strongest (i.e. fittest) and therefore the best individual has
the best chance to survive and reproduce. The “fittest” parents from the population pass on their
genes (qualities) to the next population, which has a greater chance of survival, accommodation, and
reproduction, even higher than their parents have in a given environment. An example of such an
approach was described by Storn and Price [57]. Further implementations and enhancements of the

DE algorithm are presented in Qin et al. [58] and Das et al. [59].

Muratoglu [60],[61] presents an interesting application of the DE algorithm to optimize rotating
machinery, namely hydro turbines. In the paper, five different primary hydrofoil families were
optimized and scaled. The optimized hydrofoils were found to deliver successful performance for

hydrokinetic turbines.

The aforementioned algorithm is used in the so-called “derivative-free optimization”. The DE algorithm
finds a minimum of a function f(x): R™ — R, where it is hard to approximate the derivatives of an
analytical function (which may be complex or non-derivative), or it is impossible to identify the
analytical form of a target function to be optimized and therefore the derivatives cannot be computed

easily.
The DE algorithm has the following steps (visual description is shown in Fig. 8):

1) Create a population with a N,, individuals. Each individual has a set of parameters x,. Each
parameter vector corresponds to an objective function. Select a target and base vector.

2) Randomly select two population members.
3) Compute a weighted difference vector from the previously picked two-parameter vectors.

4) Add a computed weighted difference vector to the base vector, thereby creating a mutant
vector. Use the target vector and mutant vector for a crossover (trial vector).

87



5) Select from the two vectors, i.e., the target vector or trial vector (selection is based on the cost
function).

6) Consequently, a new population is created.
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Figure 45. Differential Evolution (DE) algorithm scheme.

Where:
g — generation counter (increases every algorithm cycle)

X(Np—ig) — Parameter vector for the Np — i, i€{0,1,2 ... Np} population member
f(pr_i,g) — objective function value for the parameter vector x(yp_; g)
V(np—ig) — Parameter vector for the Np — i,i€{0,1,2 ... Np} mutant population member

f(va_i,g) — objective function value for the mutant parameter vector v yp—; g)-

In the doctoral dissertation, the author used the DE algorithm to find the parameters of partial
decomposed analytical functions expressed by equations (21)-(23), which, when summed, best reflect
the currently studied transient response. The DE algorithm is the backbone of the MD3 method,
described in more detail in section 5.3, to determine the parameters of the partial functions of the
individual scenarios. The best scenario is determined based on the results of its calculations.

The MD3 method, and in particular the DE algorithm used to search for the parameters of decomposed
functions, is the essence of the automatic identification part of the FDI system.
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6. Architecture of the automated FDI system

This chapter presents the architecture of the proposed automated FDI system. Then, the flow of data
necessary for detecting and identifying malfunctions will be described. Finally, the critical elements of

the executive program are presented and explained.

The architecture of monitoring and protection (M&P), and diagnostic systems (DS) may differ

significantly depending on the production plant.

Figure 46 shows typical data flow in a power plant. Some plants may only have a M&P system, depicted
in the Figure 46 by the red dashed rectangle. Others have expanded their systems architecture with a

DS, presented by the black dashed rectangle in Figure 46.

In the case of power plants, the monitoring system collects, displays and saves data. The security
system, which comes as a part of a monitoring system, watches over the device's safety. This layer
operates without any human intervention and is able to automatically initiate the coast down
procedure of the power generation unit. The diagnostic system is a separate layer, which analyzes the
current state of the machine. It can perform advanced diagnostics procedures to facilitate an expert in

diagnosing the machine's malfunctions.

Dynamic measurements

Figure 46. Basic monitoring and diagnostic system arrangement.

The data from the sensors go to the M&D system (black line in Figure 46). The monitoring system saves
and displays the data collected from the object in the control room. The protection system uses the
data collected by the monitoring system and compares them with the upfront threshold values. If the
instantaneous values measured by the monitoring system exceed the threshold - the machine is turned

off by the protection system. It is the most straightforward system, marked in Figure 46 with a red
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dashed line. However, this approach does not guarantee conscious management of the machinery and
the optimal organization of repairs. Having only the overall data and not processing the vibration data
for diagnostic features, the personnel cannot determine the machine's technical condition correctly.

This strategy often leads to unforeseen outages.

The DS is an extension added to the M&D system. It can extract diagnostic features necessary for the
correct analysis and diagnostics of rotating machines. This system uses measurements provided by the
M&D system. Raw data from the M&P system is passed to DS (red line in Figure 46), where appropriate
tools are used to extract diagnostic features (yellow line in Figure 46). These characteristics can be
computed in flight or a posteriori as the need arises. The diagnostic systems used in utility power plants
do not work automatically. Unfortunately, this involves little checking of the technical condition of the
device. Usually, an expert is only hired when the problem is so severe that the safe operation of the
equipment is jeopardized. This approach leads to unnecessary and increased expenses and reduces
the device's expected life.

The author during his research proposed, developed, and tested the automated FDI tool. The flowchart
of the system is shown in Figure 47. It consists of two main parts - the OpEn module and the MD3
module. OpEn is a module for automatic failure detection, which uses the concept of the acceptance

region wrapped around the modeled baseline.

Transient state
occurrence
f!
Transient
data input

Data preparation
and preprocessing

I

Anomaly detection

Present Data

Store Data

module
iy
No Anomaly ] A Anomaly identification |
|| detected Il module I
No actions are Severity parameter Malfu_nctio_n_par_ameters
taken calcu[_ation Identlfllcatlon

| L

Severity parameter Malfunction

preser;tation parameters

Severity Malfunction
parameter parameters

Severity Further action
parameter suggestions

End of the OpEn End of the MD3

module module

Figure 47. Flowchart of the proposed system.

The OpEn module runs in the background during each transition state. If the data in the transient does
not exceed the acceptance area, the module does not perform actions visible to the operator. When
transient data exceed acceptance values, the module calculates the severity parameters and passes

them to the device operators. Then the transient data preprocessed in the OpEn module is passed to
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the MD3 module. The MD3 module identifies basic malfunctions without expert intervention. The
parameters of individual malfunctions are identified for the decomposed functions and optimized to
fit the input transient best. Each of the decomposed functions of the MD3 module has its mechanical

meaning.

Both the methods were implemented in the Python environment. The software tool was proposed,

designed and validated. The complete system was tested on laboratory and real turbine data.

The automatic fault detection and identification (AFDI) system proposed by the author is part of the
DS of power plant devices. Therefore, it can be a simple diagnostic and operational support system.
Figure 48 depicts proposed structure and arrangement of M&D and DS equipped in AFD&I system in

power plants.

Simple automatic system

N S

OpEn & MD3
based system I Automatie and manual

dlagnostic system

FaTe £ o s e i D el 7T e

Dynamic measurements

Figure 48. Monitoring-protection and diagnostic systems in power plants supported by the automated FDI
system (OpEn & MD3 modules).

The AFD&I system can operate autonomously without the DS layer. In Figure 48, this is shown as a blue
line. In this case, it will be the first line of supervision of the baseline condition of the machine. If
properly implemented, it will detect the beginnings of the evolution of malfunctions, giving the owners
time to prepare for possible repairs. For systems equipped with DS, the AFD&I system can become a
support for diagnostic teams indicating the beginnings of the malfunctions evolution in an automated
manner. This system will eliminate the need to constantly check the technical condition of all devices

and limit the process of checking to those that actually show faults origins.

The system consists of two stages: first step is fault detection, described in Section 3 and the second
step is fault identification, described in Section 4. The preparatory process includes activities such as
loading reference transient data sets and processing them, leading to the determination of baseline
measurements and OpEn values. The enforcement proceedings include activities related to data
processing from a given transient state, an anomaly detection module, and a basic malfunction

identification module. Loading data and CS interpolation modules are common to both paths.
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In the following sections of the chapter, the individual modules of the proposed AFD&I system will be
presented. The author used Python version 3.8 libraries and Google Collaboratory as the scripting

environment to implement the system.

In following paragraph, the main algorithms for the anomaly detection and malfunction identification
are presented. First a pseudocode for the reference data import module is depicted. Depending on
arbitrary chosen option for the OpEn method it returns matrices with baseline acceptable region values
for the OpEn 2D and 3D case. Afterward, OpEn algorithms for current transient are laid out for 2D and
3D case, respectively. Next the MD3 method is explained and its pseudocode is presented. At the end

of the chapter the python code for the most important function is given and explained.

First pillar of the entire system is the data import module for the baseline values calculation presented
in the Algorithm 1. This module retrieves the given transient data from the transient data sets given
location. All set of transients are analyzed for one sensor individually. Each transient data set contains
all vibration features provided by the measuring system — in this case the portable data acquisition
unit. The module then cleans the data matrix by removing the rows with the same RPM values. Then
it sorts the data in ascending order with respect to the RPM. The module is used for iterative data input

into the algorithm.

Algorithm 1. Data Import and CS module for the baseline measurement

Input: sensor list, set of transient data in given location, OpEn 2D Upper Value, OpEn 2D Lower Value, OpEn 3D Amp
Value, OpEn 3D Kph Value, mode (BULL/BEAR or both)

Result: CS interpolated transient data vibration values for all turboset probes in given location, OpEn 2D Baseline Upper

and Lower Limits (OpEn 2D BULL) matrix, OpEn 3D Baseline Ellipsis Acceptance Region (OpEn 3D BEAR) matrix

Procedure:
for every probe in probe set:
for every transient in given transient location
Open file
Select vibration features applicable to given analysis and given probe
Remove and clean duplicated data
Sort data in ascending order (RPM-wise) all the vibration data and all of its features
Probe transient vibration data matrix
minimal and maximal RPM
CS interpolation for all vibration feature
end (all transients for one probe)

OpEn centerline matrix for one probe (arithimetic mean of non-zero values RPM-wise)
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end (all transients for all probesin given location)
if mode = BULL
OpEn centerline matrix + Upper value = OpEn 2D Upper Value matrix
OpEn centerline matrix — Lower value = OpEn 2D Lower Value matrix
from OpEn 2D Upper Value matrix and OpEn 2D Lower Value matrix create OpEn 2D BULL matrix
if mode = BEAR
from OpEn 3D Amp Value, OpEn 3D Kph Value and OpEn centerline matrix create a OpEn 3D BEAR matrix
if mode = both
Perform mode = BULL
Perform module = BEAR

end

Module returns the acceptable region of OpEn matrices. Depending on the system capabilities it can
produce OpEn 2D Baseline Upper and Lower Limit matrix (OpEn BULL) or OpEn 3D Baseline Ellipsis
Acceptance Region matrix (OpEn BEAR), or both.

Algorithm 2 and Algorithm 3 presents the process of collecting and processing the current transient to
detect anomalies in the case of OpEn 2D and the OpEn 3D method, respectively. This is the second
pillar of the system. In the beginning, each module takes matrices with reference data for itself. In the
case of the OpEn 2D module, it is the OpEn 2D BULL matrix, visible in Algorithm 2, where each element
contains two values of a given sensor at a given rotational speed. On the other hand, the OpEn 3D
module uses the OpEn 3D BEAR matrix, shown in Algorithm 3, in which each matrix element is a set of
ellipse coordinates for a given sensor at a given rotational speed. Then, each module opens the current
file with the current transient from the indicated location. In the next step, vibration signal features
are selected. In the case of OpEn 2D, only one vibration signal feature is selected, e.g., total vibration
amplitude (Direct) or the amplitude of the first component (1X Amplitude). The OpEn 3D case analyzes
the vibration vector as a whole, i.e., the combination of the amplitude and phase of the first
component (1X Amplitude and 1X Phase).

Algorithm 2. Data Import and CS module for the current transient processing using OpEn 2D
method.

Input : sensor list, transient data set, OpEn 2D BULL matrix
Result : Set of OpEn versus CS interpolated transient data values for all turboset probes in transient
Procedure

Upload OpEn BULL matrix for whole probe set
Open actual transient data set file:

Select vibration features applicable to given analysis
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Remove and clean duplicated data
Sort data in ascending order (RPM-wise) all the vibration data and all of its features
Set common CS domain with OpEn 2D BULL matrix (equidesant spaced rotational speed increment)
for every probe in probe set:
CS interpolation of given vibration feature
for each, common, rotational speed value in current transient
Compare CS vector element with the respective OpEn 2D BULL matrix element
if OpEn Lower value <= current data value and current data value <= OpEn Upper value
No actions are taken — behavior on this RPM is considerate as correct
Standby
else
Set MD3 method triggered active (save probe name, RPM value)
Apply RMSE procedure to the given transient data
Apply Kurtosis procedure to the given transient data
Apply MIN and MAX procedures to the given transient data
end
Save the OpEn 2D severity parameters (MIN / MAX, RMSE, Kurtosis)
end
if MD3 trigger active == True
Display the OpEn 2D severity parameters
Go to MD3 method
else

Standby

The next step for both OpEn 2D and OpEn 3D, as in the case of Algorithm 1, is the cleaning and sorting
of the data to perform the CS interpolation correctly. Then, the algorithm determines a mutual
rotational speed domain for the actual transient data set and the baseline matrices. This operation is
vital from the point of view of the principle of operation of the OpEn method. It enables a suitable
comparison of the baseline values with the current transient. The mutual rotational speed comparison
approach also makes it possible to compare baseline transients with those that are not fully registered
—i.e., that do not start or end in a known machine state (turning or FSNL operation). The next step is
to perform CS interpolation in order to obtain the signal features values in the predefined rotational
speed domain with an interval identical to that in the OpEn BULL and OpEn BEAR matrix for the 2D and
3D case, respectively. Then, a nested loop follows. It iteratively takes each sensor and compares
element by element of the current transient's value with the baseline values for all the elements in the

common domain.
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In the case of OpEn 2D, presented in Algorithm 2, the current transient value in a particular rotational

speed instance is compared with the corresponding maximum and the minimum acceptable values. If

the vector value goes beyond the assigned baseline interval (OpEn BULL) for any point in a given vector,

the sensor data and its name is saved. The transient from the sensor and the severity parameters are

calculated and saved. MD3 trigger is activated to switch to the MD3 method and identify the

malfunction.

Algorithm 3. Data Import and CS module for the current transient processing using OpEn 3D

method.
Input: CS data points matrix of probe set for the current transent, OpEn 3D BEAR matrix
Result: Anomaly detection and advisory for furgther actions or standby
Procedure

Upload OpEn 3D baseline values for whole probe set

Open actual transient data set file

Select vibration features applicable to given analysis (1X Apmlitude and 1X Phase)
Remove and clean duplicated data

Sort data in ascending order (RPM-wise) all the vibration data and all of its features

Set common CS domain with baseline measurements (equidesant spaced rotational speed increment)

CS interpolation of given vibration features
for every probe in probe set:
for each, common, rotational speed value in current transient
Compare if the CS vector fell within the OpEn 3D BEAR)
if current data vector element fell within OpEn 3D BEAR element values
No actions are taken — behavior in this RPM is considerate as correct
else
Distance from the ellipsis is calculated
Set MD3 method triggered active (save probe name, RPM value)
Save the severity parameters (distance from the ellipsis)
end
if MD3 trigger active == True
Display and store distance form the Ellipsis
Go to MD3 method
else

Standby
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In the case of OpEn 3D, presented in Algorithm 3, the current transient vector (amplitude and phase)
in a particular rotational speed instance is compared with the corresponding baseline ellipsis
acceptable region (OpEn BEAR). If the vector falls out of the assigned baseline ellipsis for any point in
a given vector, the sensor data and its name is saved. The transient from the sensor and the severity
parameter as the distance from the ellipsis is calculated and saved. MD3 trigger is activated to which
to the MD3 method and identify the malfunction.

At the end of the procedure, the MD3 trigger status is checked. If it is active, severity parameters are
displayed and sensor names with values outside the baseline interval are passed to the MD3 method.
If the MD3 trigger is inactive, the system remains in standby mode - no messages or values are

displayed (the program remains in the background).

Third pillar is the malfunction identification module named MD3 method. Algorithm 4 pseudocode for
the MD3 method. After the OpEn method has nominated the individual sensors for the identification
procedure, the MD3 method is activated. In the beginning, it gets CS interpolation of previously
processed transients from the indicated sensors. This shortens the time and saves the computational
power required to complete the entire identification procedure. Then, three weight vectors for the
different scenarios are created. The ranges of the weights of these vectors are predefined. The limit
values search range of the weight vectors were determined in the accordance with author's knowledge

and experience in the transient analysis.

Algorithm 4. MD3 method algorithm.

Input: CS data points matrix for probe names nominated by OpEn method in current transent (applicable vibration

feature(s) for the analysis), number of evolutions (evol), population size (pop_size)

Result: Malfunction identification parameters

Procedure:

Upload CS data points matrix obtained in OpEn method

Generate a 6x1 weight vector with a set of random values (for scenario no. 1) — w1

Generate a 9x1 weight vector with a set of random values (for scenario no. 2) — w2

Generate a 12x1 weight vector with a set of random values (for scenario no. 3) — w3

for each probe indicated by MD3 trigger in OpEn method:
Establish the upper bound of the search for maximal number of identification parameters
Establish the lower bound of the search for maximal number of identification parameters
set number of evolutions
set number of population size
for every scenarioli]

Run DE algorithm for w(i] weights and with fitness_func[i] as a fitness function
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Establish the best evolution number and individual based on RMSE norm
best solution = identification parameters = fittest individual
Add the best solutions to the scenario_weights[i] vector
end
Best scenario = min(RMSE(scenario_1), RMSE(scenario_2), RMSE(scenario_3))
display and save the best scenario number
display and save the best scenario weight vector parameters
display and save the best scenario RMSE value
plot a chart of the best scenario function versus CS of real data

end

In the further part, for each of the sensors indicated for identification, the algorithm determines the
upper and lower limits of the search for identification parameters. Then, three scenarios are calculated
using the established evolution quantity and population size parameters. Each scenario is based on
parameter identification using the Differential Evolution (DE) algorithm. DE algorithm searches for
weight vectors that best approximate a given objective function. The qualitative parameter describing
the adjustment of the identified parameters to the objective function is the RMSE standard. The
scenario with the smallest RESE value is nominated as the best representation of the malfunction
transient. The best scenario weight vector parameters are saved. The CS transient of the nominated
probe is plotted against the decomposed function described by the best scenario identification

parameters.

In the research during the doctoral dissertation, the author used Python 3.x and developed Google
Colaboratory scripts for the research and data analysis. The latter allowed for the combination of
functions written in the Python programming language and allowed access to data stored in the cloud.
Table 5 lists the most important Python 3.x libraries that were used in the detection and identification

system:

Table 5. Python libraries used in research.

import os

from google.colab import drive

from glob import glob

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

from scipy.stats import norm, kurtosis
from scipy.interpolate import CubicSpline
import shapely

from shapely.geometry import Point, LineString, Polygon

from shapely.affinity import scale, rotate
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import shapely.geometry as geom

from shapely.ops import nearest points

Library os, google.colab and glob were used to handle the cloud resources such as transient data file
loading and writing the baseline measurements. Numpy and Pandas libraries facilitated the faster data
numerical operations. Large SciPy library and its sub-library such as Interpolate.CubicSpline,
Stat.Norm, and Stat.Kurtosis and were used to perform cubic spline interpolation and calculate the
severity parameters, respectively. Whole Shapely library together with its sub-libraries were used to

process the OpEn 3D anomaly detection part of the system.

Table 6 presents the list of access paths to resources located in the cloud. First on the list is the access
path to the baseline data calculated by the program and ready to be downloaded each time a new
transient is analyzed. Then, the access path to the reference measurements is used to determine the
baseline values. There are also various modes of malfunction coming from the machines studied by
the author. Finally, multiple malfunction modes originate from the machines tested by the author with
confirmed diagnoses. The last two paths on the list are data from the laboratory test rig. These data
describe in a controlled manner simulation of the rotor unbalance. Validation of the results was
conducted on the data described above was used both on the laboratory stand and on the data from

real models tested by the author.

Table 6. Cloud resources used in the research (uploaded by the author from his portable data acquisition unit).

# google drive mount
drive.mount ('/content/drive/")
# particular mode filepaths

bl pth = "/content/drive/My Drive/Colab/Baseline transient/"

ref trans = "/content/drive/My Drive/Colab/Transient/Ref trans/"

rub_trans = "/content/drive/My Drive/Colab/Transient/Rub HP Rear/"

pru_trans = "/content/drive/My Drive/Colab/Pru/"

mor trans = "/content/drive/My Drive/Colab/Mor/"

koz trans = "/content/drive/My Drive/Colab/Koz/"

rot kit = "/content/drive/My Drive/Colab/Rot Kit/"

rot kit 2 = "/content/drive/My Drive/Colab/Rot Kit 2/"

# dict combining both, names of modes and their acces paths to all
files

pth = {"base 1":bl pth, "ref":ref trans, "rub":rub trans, "pru":pru trans, "mor":
mor trans, "koz": koz trans, "rk": rot kit, "rk2": rot kit 2}

Table 7 lists the function that loads data from a given location. It is a universal module that selects
signal features and cleans up and sorts data. The procedure is used when determining baseline

measurements and for the OpEn method, both 2D and 3D.

Table 7. Function retriving and preprocessing the transient data set from given location.
def transient data load(f path, probe id):

mman

Function retriving the data from location f list
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it preprocessed it in terms of remowing doubled rotational speed

Sorts it by "Channel Name" (which is passed to it as probe id)

and returns following dict with a name of transient and df with i
ts speed

X — pre-processed rotational speed vector

y — 1XAmpl vector

kph - 1Xkeyphasor (Pase Lag vector of the first charmonic)

use data = pd.read excel (f path, header = 2)

use data = use data[["Channel Name","Speed(P)", "1XAmplitude", "1X
Phase","Direct"]].loc[use data['Channel Name'] == "{}".format (probe
_id)]

use data.drop duplicates (subset ="Speed(P)", keep = False, inplac
e = True)

use data.sort values("Speed(P)", ascending = True, inplace = True

use data.set index("Speed(P)", inplace=True)

# use data name = all files pth["ref"][0].split ("™ ") [-
1] .split(".") [0]

return use data

An essential procedure from the point of view of comparing transients is the procedure presented in
Table 8. The current rotational speed vector returns the ordered rotational speed vector. The output
vector of the function is defined at identical instances of rotational speed and with the same
equidistant interval. This procedure enables the correct domain determination and points of

determining the amplitudes of CS interpolation for transients

Table 8. Lowest and highest RPM value in transient.
def x start stop(x,delta RPM):

mwwawn

Funkcja zwraca uporzadkowany przedzial max i min predkosci obroto
we]j

dla danego przebiegu wejsciawego x i rdéznicy obrotdédw delta RPM
if x[0] - delta RPM < O:

X startowy = 0
else:

for 1 in range(delta RPM) :

X _temp = x[0] + 1

if x temp % delta RPM == 0:
X startowy = x[0] + 1
break

else: continue

if x[-1] + delta RPM >10000:
x _koncowy = 10000
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else:
for i in range(delta RPM):
X temp = x[-1] - 1
if x temp % delta RPM ==
x_koncowy = x[-1] - 1
break
else: continue
x0 = np.arange (x startowy,x koncowy+l,delta RPM)

return x0

The procedure for creating a CS interpolation with data points set is presented in Table 9. The function
uses the functions described in Table 7 and Table 8 to obtain data set points in specific rotational
speed instances. In this case, the procedure returns two vectors consisting of CS interpolating the
vibration amplitude and phase. This function is an example used in the OpEn 3D method. In this case,

the RPM measurement is also accompanied by the amplitude and phase of the vibration signal.

Table 9. CS interpolation procedure.
def cs amp kph df (trans pth, probe):

# zaczytanie danych z konkretnego czujnika "probe id"

raw trans df = transient data load(trans pth, probe)

# obroty w danym przebiegu

X raw = raw_trans df.index

# tworzenie operatora CS dla 1XAmplitude

cs_y oper = CubicSpline(x raw, raw trans df["1XAmplitude"])
# Dziedzina dla interpol CS

X cs _domain = x start stop(x raw,50)

# interpolacja CS na dziedzinie x cs domain

amp _Ccs = Ccs_y oper(x cs domain)
amp_cs_df = pd.DataFrame (data=amp cs, index=x cs domain)
amp cs _df.columns = ["{}".format (probe) ]

# tworzenie operatora CS dla 1X Phase

cs_kph oper = CubicSpline(x raw, raw trans df["1X Phase"])
# interpolacja CS na dziedzinie x cs domain

kph cs = cs_kph oper (x cs domain)

kph ¢cs df = pd.DataFrame (data=kph cs, index=x cs domain)
kph cs df.columns=["{}".format (probe) ]

return amp cs df, kph cs df

Searching and returning access paths to all files from a given location in the cloud function is presented
in Table 10. The program goes through the selected folder with subfolders and returns a list of access

paths as an iterable list. This procedure allows access to many files in an automated manner.

Table 10. Fnction returning list of all transient data set file names within the folder.
def file root (cont pth):

mwwawn
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Function returns a list to all files within praticular folder

mwwan

p £ =[]
dir files = []
# direct = []

for root, dirs, files in os.walk(r"{}".format (cont pth), topdown
= True) :
for name in files:
p_ f.append(os.path.join(root, name))
for 1 in range(len(p f)):
if p £li].split(".") [-1] == "xlsx":
dir files.append(p f[i])
else:
pass

return dir files

Examples of the two partial functions for generating the decomposition function are shown in Table
11. They are used in the MD3 method described in section 5.2 by the formulas (21) and (22),
respectively. The function called gauss is used to represent both the area of the critical revolutions of
the machine and to model the non-linearity of the rotor response in situations of very large amplitudes.
The function described as "parabola" is used to model the rotor responses related to unbalance. Due
to the nature of the phenomenon, it was necessary to introduce the centrifugal force input threshold

as an additional identification parameter.

Table 11. Parabola and Gaussian functions- the decomposed functions.

def gauss(x, amp, peak, wide):

return amp*np.exp (- (x-peak) **2/ (2*wide**2))

def parabola(x, a,x0):

if x0<x:
parabola = a* ((x-x0)/(4200-x0))**2
else: parabola = 0

return parabola

Table 12 show the three scenarios for decomposed functions. The first function consists of only three
partial functions: term bias described by equation (23), parabola described by equation (22), and one
gaussian function (21). The function model described in this way has six parameters that the DE
algorithm should identify. The second and third models are an extension of the most straightforward
model, and they have two and three gauss functions, respectively. Nine and twelve parameters

describe and identify the second and third MD3 method scenarios.

Table 12. Three models used in MD3 method “tournament”.
def fmodel 1(x,w):
y = []
for i in range(len(x)):
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y.append (gauss (x[1], w[0], w[l], w[2]) + parabola (x[i],w[9],w]
10]) +wi[l1l1l])
return y

def fmodel 2 (x,w):
y = [1
for 1 in range(len(x)):
y.append (gauss (x[1], w
, w[5]) + parabola(x[i],w][
return y

(0], w[l], w[2]) + gauss(x[i], w[3], w[4]
91,w[10]) +w[11])
def fmodel 3 (x,w):
y = []
for i in range(len (x)
y.append (gauss (x[1]
, w[5]) + gauss(x[i], w
wlll])
return y

) :
, wlO w[2]) + gauss(x[i], w
[6] ] [

Table 13 shows the function's implementation for assessing the fitness of the particular model
parameters to the current transient function. This function is the norm applied for every function from
the MD3 method scenario. The outcome of this procedure is the fitness parameter which determines

the best scenario function, i.e., parameters describe the current transient.

Table 13. The MD3 method the fitness function quality parameter.

def rmse (w) :
y_pred = fmodel (x, w)
return np.sqrt(sum((y - y pred)**2) / len(y))

The heuristic limits of the search for the parameter values of partial functions are presented in Table
14. These values are determined anew for each transient. However, all the scenarios used to identify

the current failure have the same search values.

Table 14. Upper and lower search limits boundries for the DE algorithm.

1b = [min(y), x[0], 10, min(y), 1/3*x[-1], 10, min(y), 2/3*x[-1],
10, 0, -x[-1], O]

ub = [max(y),1/2*x[-1]1, x[-11/5, max(y), 3/4*x[-1]1, xI[-

11/5, max(y), x[—l], x[-11/5, max(y), x[-1], max(y)/4]

bounds=[ (1b[i], ub[i])for i in range(len(lb))]

Table 15 shows the functions used in the system for creating baseline measurements from reference

transients. The detailed process is described in section 4.2.

Table 15. Baseline measurements functions.
def probe baseline(cold stt trans, probe id, whole RPM, prb):
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X _cs _domain, y cs, kph c¢s, curr trans name, whole ref set Ixamp,
whole ref set 1xkph = trans CS(cold stt trans, probe id, whole RPM,
prb)
x stat = np.zeros(len(whole RPM))
y_stat = np.zeros(len(whole RPM))
whole ref set x = np.zeros((len(cold stt trans),len(whole RPM)))
whole ref set y = np.zeros((len(cold stt trans), len(whole RPM)))

for trans in range(len(cold stt trans)):
# print ("trans no = ",trans)
for RPM in range (len(whole RPM)):
whole ref set x[trans][RPM] = whole ref set lxamp[trans] [RPM]
*np.cos (np.deg2rad(whole ref set 1lxkph[trans][RPM]))

whole ref set y[trans] [RPM] = whole ref set lxamp[trans] [RPM]
*np.sin(np.deg2rad(whole ref set 1lxkph[trans][RPM]))
# print ("RPM no = ",RPM)
x_stat = np.sum(whole ref set x,axis=0)/np.count nonzero(whole re

f set x,axis=0)

y stat = np.sum(whole ref set y,axis=0)/np.count nonzero (whole re
f set y,axis=0)

kph stat = np.rad2deg(np.arctanZ(y stat,x stat))

r stat = np.sqrt(x_stat**2 + y stat**2)

for RPM in range (len(kph stat)):
if kph stat[RPM] < O:
kph stat[RPM] = kph stat[RPM] + 360
return x stat, y stat, kph stat, r stat, whole ref set Ilxamp, who
le ref set 1xkph

def trans CS(cold stt trans, probe id, whole RPM, probe):

# tworzenie pustego zboru dla wszystkich przebiegdw z danego kata
logu

whole ref set lxamp
))).T

whole ref set 1xkph = np.zeros((len(whole RPM),len(cold stt trans
))) . T

np.zeros ((len(whole RPM), len(cold stt trans

# wyliczam CS dla U3 - stan zimny oraz dla probe id[2]
#t xy=1[]
]
]
[]
x_cs_domain = []
# v gbc spln oper =[]
y_cs = []
# kph gbc spln oper = []
kph cs = []

X _raw =
y _raw =

[

kph raw
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curr trans name = []
for 1 in range(len(cold stt trans)):

# t x y.append(("trans {}, x raw {}, y raw{}, kph raw {}, x cs_
domain {}, y gbc spln oper {}, y cs {}, kph gbc spln oper {}, kph c
s, curr trans name {}".format(i,i,i,i,i,i,1i,1i,1i,cold stt trans[i]))
.split (", "))

# dane z poszczegblnych przebiegdw

# trans {}

_, temp x raw, temp y raw, temp kph raw = transient data load(c
old stt trans[i],probe id[probe])

# x cs domain {}
x cs_domain.append(x start stop(temp x raw, 50))

# tworzenie operatora cubic spline (CS) dla y raw w punktach x
raw

# y gbc spln oper {}

cs y oper = CubicSpline(temp x raw, temp y raw)

# tworzenie wartosci funkcji CS dla punktdéw w miejscach x cs do

main (t x y[i][2]) 1 ampl. y raw
# y_cs_{}
y Ccs temp = cs y oper(x cs domain[i])
y cs temp[0] =y cs temp[1l]

y cs temp[-1] =y cs temp[-2]
y_cs.append(y_cs_ temp)

# tworzenie operatora cubic spline (CS) dla kph raw w punktach
X _raw

# kph gbc spln oper {}

cs_kph oper = CubicSpline(temp x raw, temp kph raw)

# tworzenie wartosci funkcji CS dla punktéw w miejscach x cs do

main (t x y[i][2])
# kph cs
kph cs temp = c¢s kph oper(x cs domain[i])
kph cs temp[0] = kph cs temp[1]
kph cs temp[-1] = kph cs temp[-2]

kph cs.append(kph cs temp)

# curr trans name {}

curr trans name = "{}".format (cold stt trans[i])
# pdb.set trace()
indx RPM = np.where(whole RPM == x cs domain[i][0]) [0][0]

# Przypisywanie wartos$ci do poszczegdlnych indeksow
# odpowiadajacej konkretnej predkosci obrotowe]
for k in range(len(x cs domain[i])):
whole ref set lxamp[i][indx RPM + k] =y cs[i] [k]
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whole ref set 1xkph[i][indx RPM + k] = kph cs[i] [k]
return x c¢s _domain, y cs, kph cs, curr trans name, whole ref set

lxamp, whole ref set Ixkph

Table 16 shows the calculation of baseline measurement values and the behavior of the calculation
results at a specific location on the virtual disk for a single sensor. The author used the PyDrive,
google.colab, and oauth2client.client libraries from Google Colaboratory resources to carry out these
operations. Performing the procedure n times, where n corresponds to the number of sensors or

sensors included in the data point set matrix, allows obtaining baseline data for the entire shaftline.

Table 16. Baseline measurements procedure: calculating and saving in the cloud.
probe no x stat = []
[]
probe no kph stat = []
probe no r stat = []

probe no y stat

for prb in range (len(probe id)):

x stat temp, y stat temp, kph stat temp, r stat temp, whole ref s
et lxamp, whole ref set 1lxkph = probe baseline(cold stt trans, prob
e id, whole RPM, prb)

probe no x stat.append(x stat temp)

probe no y stat.append(y stat temp)

probe no kph stat.append(kph stat temp)

probe no r stat.append(r stat temp)

print ("probe no: ", prb)

'pip install -U -g PyDrive

from pydrive.auth import GoogleAuth

from pydrive.drive import GoogleDrive

from google.colab import auth

from google.colab import files

from ocauth2client.client import GoogleCredentials

auth.authenticate user()

gauth = GoogleAuth ()

gauth.credentials = GoogleCredentials.get application default()
drive = GoogleDrive (gauth)

stat CS r = pd.DataFrame (data=probe no r stat, index=probe id, colu
mns=whole RPM)

stat CS kph = pd.DataFrame (data=probe no kph stat, index=probe id,
columns=whole RPM)

stat CS x = pd.DataFrame (data=probe no x stat, index=probe id, colu
mns=whole RPM)

stat CS y = pd.DataFrame (data=probe no y stat, index=probe id, colu
mns=whole RPM)

stat CS r.to csv('stat CS r.csv', sep='\t')
files.download('stat CS r.csv')

stat CS kph.to csv('stat CS kph.csv', sep='\t')
files.download('stat CS kph.csv')
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stat CS x.to csv('stat CS x.csv', sep='\t')
files.download('stat CS x.csv'")
stat CS y.to csv('stat CS y.csv', sep='\t')
files.download('stat CS y.csv')

Table 17 presents the procedure for downloading baseline data from virtual resources and creating
baseline ellipses, which they will use to detect anomalies for the OpEn 3D case. First, baseline data is
read from the cloud and entered into an appropriately named matrix instance. Next, the vibration
feature data is transformed into the form of a polar and Cartesian coordinate system. The name of the

matrix's rows is multi-level, which easily defines the properties of a specific sensor.

Table 17. Baseline data load (for the OpEn 3D case) and creating baseline ellipsis coordinates.

# dict with all filepaths
# key - specyfic data
# value - root of all data in the folder
all files pth = {}
for key in pth:

temp = {key : file root (pth["{}".format (key)])}

all files pth.update (temp)

# CS domain - in which we will compare our results
# (fix rotational speed increment - delta = 50RPM)
# and a all probes across the system

whole RPM = np.arange (0,3001,50)

probe id = ['ly', '1X', '2y', ‘'2x', '3y', '3x', '4y', '4x', '5y', !
5x', 'ey', 'ex','7y', '"I7X']
B o

# OpEn acceptance region
OpEn_amp, OpEn kph = 30, 25

# dict contains all baseline maesurements
baseline data = {}
for 1 in range(len(all files pth["base 1"])):
bl data temp, bl name temp = beseline data load(all files pth["ba
se 1"]1[1i])
bl temp = {bl name temp.split(" ") [-1]: bl data temp}
baseline data.update (bl temp)

# df for all baseline data - name of df is its property

x df = pd.DataFrame (data=baseline data["x"], index=probe id, column
s=whole RPM)

y _df = pd.DataFrame (data=baseline data["y"], index=probe id, column
s=whole RPM)
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r df = pd.DataFrame (data=baseline data["r"], index=probe id, column
s=whole RPM)

kph = pd.DataFrame (data=baseline data["kph"], index=probe id, colu
mns=whole RPM)
# _________________________________________________________________

# df as a matrix of a vectors with ellipsis co-
ordinates for each sensor and each RPM

fy = pd.DataFrame (data=None, index=probe id, columns=whole RPM)
fx = pd.DataFrame (data=None, index=probe id, columns=whole RPM)
# populating df with a ellipsis co-ordinates
for 1 in range(0,baseline data["x"].shape[0]):
for k in range(0,baseline data["x"].shape[l]):

x = baseline data["x"] [baseline data["x"].columns[k]] [baseline
data["x"].index[i]]

y = baseline data["y"] [baseline data["y"].columns[k]] [baseline
data["y"].index[1]]

f x,f y=xy ell(x,y,OpEn_amp,OpEn_kph)

fx[fx.columns[k]] [fy.index[i]] = £ x

fylfy.columns[k]] [fy.index[i]] = f y

# fx[nazwa czujnika] [predkos¢ obrotowal], czyli fx[0][0], pierws

zy czujnik (1Y) dla pedk. obr = 0
# fylnazwa czujnika] [predkos¢ obrotowal

The OpEn procedure for the 2D case is presented in Table 18:

1. The current transient data points set is retrieved from the file with the specified location.

2. Loaded data are preprocessed and prepared for CS interpolation.

3. CSinterpolation follows. Data from every probe in the current transient are compared with
their OpEn BULL values. If any point exceeds the OpEn BULL matrix values assigned to them -
severity parameters are calculated, and MD3 mode is set to 1.

4. The corresponding graphs and severity parameters values are presented.

Table 18. OpEn procedure with severity parameter calculation and charts plotting (for the OpEn 2D case).
cold = np.arange(0,12)
hot = np.arange (12, len(ref trans U3))
cold stt trans = [ref trans U3[i] for i in cold]
hot stt trans = [ref trans U3[i] for i in hot]

# wyliczam CS dla U3 - stan zimny
t xy =[]
for 1 in range(len(cold stt trans)):
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t x y.append(("trans {}, x {}, v {}, x cube {}, y spline temp {},
y cube {}, {}".format(i,i,i,i,1i,1i,cold stt trans[i])) .split(","))

# dane z poszczegblnych przebiegdw

t x y[i][0], t x y[i][1l], t x y[i][2] = transient data load(cold
stt trans[i])

t x y[i][3] = x start stop(t x y[i][1l], 50)

# tworzenie operatora cubic spline (CS)

o

t x y[i][4] = CubicSpline(t x y[i][1], t x y[i][0]["1XAmplitude"]
)

# _______________________________________________________________

# tworzenie wartosci funkcji CS dla punktdéw w miejscach x cube

t x y[i][5] = t_x_ yl[i][4](t_x_y[i][3])
t x y[i][5]1[0] = t x y[i][5][1
t x y[i1[51[-1] = t_x y[i]1[5][-2]
ub = 30
1b = 15
whole RPM = np.arange (0,3001,50)
whole ref set = np.zeros((len(whole RPM),len(cold stt trans))).T

for 1 in range(len(cold stt trans)):
# wspblne obroty

indx RPM = np.where(whole RPM == t x y[1][3][0]) [0][O]
for k in range(len(t x y[i][3])):
whole ref set[i][indx RPM + k] = t x y[i][5] [k]

Whole ref = pd.DataFrame (whole ref set.T)
# pozbycie sie wartos$ci brzegowych - gdzie interpolacja nie zachowu
je sie stabilnie

Whole ref.set index(whole RPM, inplace=True)

# Nazwanie kolumn wg ich nazwy pliku

cols = []

for 1 in range(len(cold stt trans)):
cols.append(cold_stt_trans[i].split("/")[—1])

Whole ref.columns = cols

RMSE = []

KURT = []

MIN MAX MAX
MIN MAX MIN

(]
(]

for iter in range(len(cold stt trans)):
# x Yref Y trans = y costs(t x yliter][3], t x yl[iter][5], whole
RPM[1:-1], stat ref)
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whole R

RMSE.append ([rmse (y costs(t x yliter][3 1,
[ 5], whole

PM, stat ref)[:,2] - y costs(t x yl[iter]
RPM, stat ref)[:,1])])

1, t x yliter][5
3], t x yliter]|[

KURT.append ([kurt (y costs(t x yliter][3], t x y[iter][5], whole R
PM, stat ref)[:,2] - y costs(t x yl[iter][3], t x yliter][5], whole
RPM, stat ref)[:,1])])

, Max max, , min min = min max(y costs(t x y[iter][3], t x ylit

ub , czyli ub% wyzej od amplitudy w danym punkcie delt RPM,
1b = 1b% nizej od amplitudy w danym punkcie delt RPM

MIN MAX MAX.append (max max[0])

MIN MAX MIN.append(min min[O0])

er][5], whole RPM, stat ref), ub, 1b)
#
"

RMSE = np.array (RMSE)
KURT = np.array (KURT)
MIN MAX MAX = np.array (MIN MAX MAX)
MIN MAX MIN = np.array (MIN MAX MIN)

MD3 mode = 1

fil name = []
fil name.append(cold stt trans[iter].split("/") [~
1].split(".") [0].split (™ ™) [-11])

fig, axes = plt.subplots(figsize=(30,15))
for i in range (0, len(t x y)):

axes.scatter(t x y[i1][3], t x y[i1][5], label = "{}".format (cold s
tt trans([i].split(" ") [-1].split(".")[0]))
axes.plot (whole RPM, stat ref ub, color='red', marker='o', linestyl
e='dashed', label="OoB Upper")
axes.plot (whole RPM, stat ref 1b, color='blue', marker='o', linesty
le="'dashed', label="0oB Lower")
axes.plot (whole RPM,stat ref, color='black', marker = "o", label =
"centre of CS")
axes.set title("CS for synchronous responce amplitude (the shaft re
lative vibration in bearing #1, 45° left from the vertical axis)",f
ontsize=25)
axes.set xlabel ("RPM (revolution per minute)", fontsize=25) # Notic
e the use of set to begin methods
axes.set ylabel (r'Amplitude in {}m peak-
peak [0,360]'.format (r"$\mus$"), fontsize=25)
axes.set ylim([-0.1, 200])
axes.grid(color="'b', alpha=0.5, linestyle='dashed', linewidth=0.5)
axes.tick params (labelcolor="k', labelsize='large', width=10)
axes.tick params(axis='x"', labelsize=20)
axes.tick params(axis='y', labelsize=20)
plt.legend (fontsize=20)
plt.legend()
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Table 19 shows the necessary procedures and functions for the OpEn 3D method. For example, the
cs_amp_kph_df function returns the CS vibration feature interpolation of a synchronous component,
and the x_y_ell function creates the coordinates of an ellipse rotated by a suitable angle, i.e., baseline

ellipse coordinates.

Table 19. OpEn 3D method functions.
def cs amp kph df (trans pth, probe):

# zaczytanie danych z konkretnego czujnika "probe id"
raw_trans df = transient data load(trans pth, probe)
# obroty w danym przebiegu

X _raw = raw_trans df.index

# tworzenie operatora CS dla 1XAmplitude

Cs_y oper CubicSpline(x raw, raw trans df["1XAmplitude"])
# Dziedzina dla interpol CS

x _cs_domain = x start stop(x raw, 50)

# pdb.set trace()

# interpolacja CS na dziedzinie x cs domain

amp _Ccs = Cs_y oper(x cs domain)
amp _cs_df = pd.DataFrame (data=amp cs, index=x cs domain)
amp cs _df.columns = ["{}".format (probe) ]

# amp cs df = amp cs df.T

# tworzenie operatora CS dla 1X Phase

cs_kph oper = CubicSpline(x raw, raw trans df["1X Phase"])
# interpolacja CS na dziedzinie x cs domain

kph cs = cs_kph oper (x cs domain)

kph cs df = pd.DataFrame (data=kph cs, index=x cs domain)
kph cs df.columns=["{}".format (probe) ]

# pdb.set trace()

return amp cs df, kph cs df

def x y ell(x,y,OpEn_amp,OpEn_ kph) :
# pdb.set trace()
circle = Point(x, y).buffer(l) # type(circle)=polygon
ellipse = shapely.affinity.scale(circle, OpEn amp, OpEn kph)
ellipse = rotate(ellipse, np.arctan2(y,x), origin=(x,y), use radi
ans=True)
fx, fy = ellipse.exterior.xy

return fx, fy

The entire process of the OpEn 3D method is presented in Table 20. First, the procedure retrieves the
previously calculated baseline ellipse coordinates and CS interpolated points from the current
transient. Then, the position of the point relative to the baseline ellipsis is determined for the given
sensor in the particular RPM instance. The loop is repeated for all common RPM values contained in

the current transient and for all measurements' sensors. Finally, the severity parameters are computed
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if any points go beyond the OpEn 3D BEAR. In the end, both the severity parameters and the

corresponding drawings are presented.

Table 20. OpEn procedure with severity parameter calculation and charts plotting (for the OpEn 3D case).
dist list = []
RPM list = []
probe = 12

amp trans = []
for 1 in range(len(amp_all probes koz df T.columns)):

RPM = trans x all.xs(f"{probe id[probe]}", level="Probe ID").colu
mns [1i]

# print ("RPM: ",RPM)

y RPM bl = y df.loc[f"{probe id[probe]}"] [RPM]

x RPM bl = x df.loc[f"{probe id[probe]}"] [RPM]

X

ct

-
Il

koz_x_all.xs(f"{probe_id[probe]}", level="Probe ID") [RPM] |

l"<1
o
[}
|

= koz y all.xs(f"{probe id[probe]}", level="Probe ID") [RPM] [

amp trans.append(np.sqrt(x tr**2 + y tr**2))
trans piont = geom.Point([x tr,y tr])

circle = Point(x RPM bl, y RPM bl) .buffer(l) # type(circle)=poly
gon

ellipse = shapely.affinity.scale(circle, OpEn_amp, OpEn_ kph)

ellipse = rotate(ellipse, np.arctan2(y RPM bl,x RPM bl), origin=(
x RPM bl,y RPM bl), use radians=True)

fx, fy = ellipse.exterior.xy

if ellipse.contains(trans piont) :
dist = 0
cont = {f"@{RPM} point within ell":dist}
dist list.append(0)
RPM list.append (RPM)

else:
dist = trans piont.distance(ellipse)
dist list.append(dist)
RPM list.append (RPM)
# ax.scatter(x tr,y tr, RPM, zdir="y", c="r")

fig,ax = plt.subplots(figsize = (30,30))

ax.set title(f"{probe id[probe]} Synchronous response amplitude (
1X-Amp) and phase lag (1X-Phase) at {RPM}RPM", fontsize=30)

# ax.set ylabel ("RPM (revolution per minute)", fontsize=25, labelp
ad=30) # Notice the use of set to begin methods
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ax.set xlabel(r'Displacement in $\muSm peak-
peak', fontsize=25, labelpad=20)

ax.set ylabel (r'Displacement in $\muSm peak-
peak', fontsize=25, labelpad=20)

ax.tick params(labelcolor='k', labelsize='x-large', width=10)

plt.rc('xtick',labelsize=20)

plt.rc('ytick',labelsize=20)

ax.set xl1im([-300,30017)

ax.set ylim([-300,30017)

ax.scatter(koz x all.xs(f"{probe id[probe]}", level="Probe ID") [R
PM] [0], koz y all.xs(f"{probe id[probe]}", level="Probe ID") [RPM] [0
],c="r"

label=f"Distance form OpEn ellipsis: {round(dist list]

-11, 4)1")

ax.scatter(trans x all.xs(f"{probe id[probe]}", level="Probe ID")
[RPM] [0], trans y all.xs(f"{probe id[probe]}", level="Probe ID") [RP
M] [0],c="Db",

label=f"Reference transient sample")

ax.scatter(x df.loc[f"{probe id[probe]}"][RPM], y df.loc[f"{probe
_id[probe]}"] [RPM], c="k", label="Centre of an OpEn Ellipsis")

ax.scatter (0,0, label="Point of origin (0,0)", c="g")

ax.plot (fx, fy, label=f"OpEn Ellipsis")

plt.legend(fontsize=25)

The author proposed the MD3 method as a procedure implemented to find the best set of parameters
for identifying a given malfunction. The sample of the code implementing the strategy detailed in
section 5.2 and 5.4 is presented in Table 21. The procedure uses the data point sets previously
processed in the OpEn method. Utilizing The data interpolated beforehand reduces the time and
computational requirements of the proposed method of identifying and selecting identified
parameters and thus the entire system. Table 21 shows an example of applying the MD3 method to
simulated data from the test rig. The technique is capable of accepting different types and
arrangements of sensors. The previous OpEn method nominates sensors taken for further analysis.
First, data points set with rotor unbalance are read after removal of the malfunction. The vector of
identification parameters is created as a vector of weights for the objective function. Then the vectors
with an unbalanced rotor and after balancing are determined. A mutual speed domain is defined for
both transients. The next step is to determine the extreme values of the search for the objective
function identification parameters. After that, the procedure of finding parameters of the decomposed
functions is performed for three separate scenarios. Finally, the best parameter set is selected to
approximate the function decomposed to the transient based on the RMSE standard described in Table
13. The results of the MD3 method are displayed and saved. First, the number of the best scenario and
its RMSE is given. Then, the set of parameters that identify a given scenario is used to determine the

type of failure.

Table 21. MD3 method procedure example.
# dict with all filepaths

112



# key - specyfic data

# value - root of all data in the folder

all files pth = {}

for key in pth:
temp = {key : file root (pth["{}".format (key)])}
all files pth.update (temp)

# CS domain - which the results will be compared

# (fix rotational speed increment - delta = 50RPM)
# and a all probes across the system

whole RPM = np.arange (0,3001,50)

probe id = ['lY', '1xX', ‘'2y', '2x', '3y', '3x', '4y', '4x', '5y', !
5X', 'ey', 'ex','7y', '7X']

probe id koz = ['6Y', 'oX',6 'T7Y', '7X']

probe id rk = ['1lY', '1X', '2Yy', '2X']

trans pth = sorted(all files pth["rk2"])

all amp rk2 = pd.DataFrame (data=None)

all kph rk2 = pd.DataFrame (data=None)

amp_all probes rk2 df = pd.DataFrame (data=None)
kph all probes rk2 df = pd.DataFrame (data=None)
file name = []

probe name = []

for tr no in range(len(all files pth["rk2"])):

# tworzenie df ze wszystkimi czujnikami z danego przebiegu
for 1 in range(len(probe id rk)):
amp_cs_df rk2, kph cs df rk2 = cs amp kph df (trans pth[tr no],
probe id rkl[i])
amp all probes rk2 df
_df rk2],axis=1)
kph all probes rk2 df = pd.concat ([kph all probes rk2 df,kph cs
_df rk2],axis=1)
file_name.append(all_files_pth["rk2"][tr_no].split("/")[—2:][—
1].split(".") [0])
probe name.append (probe id rk[i])
# pdb.set trace()

pd.concat ([amp all probes rk2 df,amp cs

amp_all probes rk2 df T
kph all probes rk2 df T

amp_all probes rk2 df.T
kph all probes rk2 df.T

hier index = list(zip(file name, probe name))

hier index = pd.MultiIndex.from tuples(hier index)

# nadawanie dwuwymiarowego indeksu dla przejrzystosci danych
amp_all probes rk2 df T = amp all probes rk2 df T.set index(hier in
dex)

amp _all probes rk2 df T.index.names = ["Transient", "Probe ID"]

kph all probes rk2 df T = kph all probes rk2 df T.set index(hier in
dex)
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kph all probes rk2 df T.index.names = ["Transient", "Probe ID"]
amp_all probes rk2 df T.loc["RK bal"][amp all probes rk2 df T.colum
ns|[-

1]] = amp_all probes rk2 df T.loc["RK bal"][amp all probes rk2 df T
.columns[-2]]

# # tworzenie wsp. kartezjanskich

x rk2 all = amp all probes rk2 df T[amp all probes rk2 df T.columns
[:-

1]]*np.cos (np.deg2rad(kph all probes rk2 df T[kph all probes rk2 df
_T.columns[:-1]1))

y rk2 all = amp all probes rk2 df T[amp all probes rk2 df T.columns
[:-
1]]1*np.sin(np.deg2rad(kph _all probes rk2 df T[kph all probes rk2 df
_T.columns[:-1]11))

# # lista wszystkich transientdéw z folderu, ktdére mam zebrane w df
ung list = pd.DataFrame (list (zip(*kph all probes rk2 df T.index))).
loc[0] .unique ()

# dostep do danych kolumn po indeksach dwupoziomowych > df.xs ("nazw
a indeksu z poziomu II" , level="nazwa kolumny indeksu poziomu II")
# czyli np kph all probes df T

wek = []
for i in range(0,12):
wek.append (f"w[{i}]")
weights tabular = pd.DataFrame (data=None, columns=wek)

y _imb = np.array(amp all probes rk2 df T.xs("1X", level="Probe ID")
.loc["RK imb"], dtype=float)

y bal = np.array(amp all probes rk2 df T.xs("1X", level="Probe ID")
.loc["RK bal"], dtype=float)

# v = np.array(amp all probes rk2 df T.xs("1Y", level="Probe ID").1l
Cc["RK imb"], dtype=float)

# w = [amp gl, peak gl, wide gl, amp g2, peak g2, wide g2, amp g3,

peak g3, wide g3, par amp, par start, bias term]

X = np.array(amp all probes rk2 df T.columns, dtype=float)

y = y imb

1b = [min(y), x[0], 10, min(y), 1/3*x[-

1]/ lO, min(Y)r 2/3*X[_1]r lO, OI [ ]/ O]
ub = [max(y), 1/2*x[-11, x[-11/5, max(y), 3/4*x[-11, x[-
11/5, max(y), x[-1]1, x[-11/5, max(y), x[-1], max(y)/4]
bounds=[ (1b[i], ub[i])for i in range(len(lb))]

evol = 750

p size = 40
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result 1 = list(de2(rmse 1, bounds, mut=.8, crossp=.7, popsize=p si
ze, its=evol))

pop 1, fit 1, idx 1 = result 1[-1]

w 1 = pop 1[idx 1]

result 2 = list(de2(rmse_ 2, bounds, mut=.8, crossp=.7, popsize=p si
ze, ilts=evol))

pop 2, fit 2, idx 2 = result 2[-1]

w 2 = pop 2[idx 2]

result 3 = list (de2(rmse 3, bounds, mut=.8, crossp=.7, popsize=p si
ze, its=evol))

pop 3, fit 3, idx 3 = result 3[-1]

w 3 = pop_ 3[idx 3]

scenario = [rmse 1l(pop 1l[idx 1]), rmse 2(pop 2[idx 2]), rmse 3 (pop
3[idx 37)]
mse imbal = np.argmin(scenario)

print (f"The best fit has Scenarion #{mse imbal+l} with the MSE: {sc
enario[mse imbal]}")
imbal = pd.DataFrame(data = [w 1, w 2, w_3])

The tables above show examples of the author's functions, procedures, and methods in his research.
They form parts of an automated, functional AFDI system for detecting and identifying faults in

machines covered by the author's research.
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7. Validation of the anomaly detection method

The author based the validation of the results of the OpEn 2D and OpEn 3D methods on data from the

tests of large rotor machines. These are machines with active power exceeding 200MW and 560MW.

The kinematic diagram of the 200MW machine is presented in Figure 17. All relative vibration sensors
installed on the device were used in the research. The turbine in such an arrangement has seven
bearings. Each bearing is equipped with two relative vibration sensors. The sensors are oriented at an
angle of 90 degrees — perpendicular to each other. Such a setup gives 14 sensors to analyze for each

transient.

All the devices used in the tests are equipped with flexible rotors, which means that when changing
the rotational speed, they pass through at least one resonance, called the area of critical revolutions

of the machine.

The author used data from various machines to validate the OpEn 3D method. In addition, transient
data were acquired from diagnostic tests of different machines power output rated machines, i.e.,
turbo generators in professional power plants in Poland and abroad. Finally, the baseline data has been

obtained following the methodology presented in section 4.3.

Analyzing such a large amount of various types data is complicated and sometimes impossible for an
analyst within a reasonable timeframe. Figure 49 shows the data set from one run after the CS
interpolation step, i.e., with correct data ready for further analysis. The figure is a collective chart of
one of the reference transients. As one can see, the data from different directions and sensors, even
assuming the correctness of dynamic behavior, differ significantly from each other.

s interpolation representation of the 1X-Amp vector and related with it 1X-kph vector during transient state
for the whole set of probes an the turbo-set on the polar plane

esponse amplitude {1X-Amp) for the whole set of probes on the turbo-set

amplitude [um; -]

bration

Lag angle ']

Rotational speed Rotationa! speed [rom]

Figure 49. Example of reference one transient data for whole turboset.
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The above figure consists of the data that make up the vibration vector in the amplitude and phase of
the first component. The upper left graph shows the vibration vector amplitudes only. The lower left
diagram shows the vibration amplitudes' phase lag values. In contrast, the chart on the right represents
the vibration vector in polar coordinates. It reveals the validity of the analysis of the vibration vector
as a whole and not each component separately. In particular, the phase angle shown in the lower left
graph cannot be reliably analyzed as a value on its own due to the unstable behavior of its value around
360-0 degrees.

Baseline measurements data are in the form of matrices with the dimensions of 14x60 for machines
whose transient state rotational speed is 0-3000 RPM. The methods for obtaining values for the
individual matrices are described in sections 4.4 and 4.7. The row of each matrix is the values for the

respective sensors. The columns are the appropriate values assigned to specific rotational speed

values.
Table 22. Baseline measurement matrix with an synchronous amplitude in polar coordinate system.
250 300 350 400 450 2850 2900 2950 3000

1Y | 18.0797 | 17.6416 | 16.7544 | 15.7551 | 14.9392 17.2457 | 16.9995 | 17.1407 | 17.1407
1X | 17.3126 | 17.9066 | 18.3764 | 18.6278 | 19.2790 15.5695 | 14.4821 | 15.2638 | 15.2638
2Y | 17.1000 | 17.7225 | 18.4773 | 18.8098 | 19.2274 14.6703 | 14.2029 | 14.3156 | 14.3156
2X | 14.6687 | 14.3613 | 14.1318 | 14.0141 | 14.0216 16.5651 | 16.8505 | 16.8406 | 16.8406
3Y | 19.8054 | 19.6251 | 19.7208 | 19.5423 | 19.5133 23.2796 | 23.6045 | 23.7757 | 23.7757
3X | 18.1819 | 18.4902 | 18.6752 | 18.8036 | 19.0409 22.4120 | 22.8693 | 22.3083 | 22.3083
4Y | 19.5390 | 20.4219 | 20.8601 | 21.8092 | 22.4026 27.1439 | 27.8642 | 26.9442 | 26.9442
4X | 26.2989 | 26.1141 | 25.9100 | 26.0061 | 25.9027 20.4005 | 19.9586 | 19.5699 | 19.5699
5Y | 7.4255 7.3889 8.1528 8.1592 8.3797 14.3790 | 13.1150 | 12.4154 | 12.4154
5X | 5.4076 5.4469 5.8714 6.0663 6.3985 7.9204 9.3487 6.3604 6.3604
6Y | 10.1077 | 9.8364 9.6704 9.8126 9.6594 11.0051 | 12.1029 | 8.5884 8.5884
6X | 10.2239 | 9.7091 8.8620 8.4680 7.6782 11.9129 | 10.3102 | 9.6962 9.6962
7Y | 4.8272 5.8035 6.8282 7.9428 9.4456 1.9068 2.6601 4.9510 4.9510
7X | 6.2322 6.6912 7.3006 8.1711 9.1624 8.3239 6.7158 | 10.1279 | 10.1279

Due to the size of these matrices, Table 22-Table 25 only present the slices presented to show the

structure and the values of the results for the exemplary rotational speed values. Entire baseline

measurements prepared for the purposes of this dissertation will be provided as an appendix to the

thesis.

Table 23. Baseline measurement matrix with a phase angle of the first component in polar coordinate system.
250 300 350 400 450 2850 2900 2950 3000

1Y | 66.7684 | 67.6967 | 69.5585 | 68.2684 | 67.0447 87.3691 | 86.0002 | 84.9439 | 84.9439
1X | 301.5792 | 303.5645 | 304.7411 | 305.5701 | 307.7440 5.1136 | 352.2297 | 354.7945 | 354.7945
2Y | 79.3813 | 81.4762 | 84.4833 | 89.7442 | 90.7489 102.8261 | 104.0489 | 105.1258 | 105.1258
2X | 219.9748 | 218.8219 | 216.9984 | 217.4119 | 216.7296 188.9264 | 190.4522 | 192.5758 | 192.5758
3Y | 160.0722 | 160.3929 | 160.1435 | 160.1268 | 160.0894 158.9433 | 157.5124 | 159.4700 | 159.4700
3X | 251.0256 | 251.6832 | 252.3456 | 252.5319 | 252.5334 257.5204 | 256.9892 | 258.5358 | 258.5358
4Y | 327.4881 | 329.5929 | 331.4779 | 332.3640 | 333.5153 18.3314 | 19.5947 | 20.0900 | 20.0900
4X | 94.9360 | 96.3703 | 97.0370 | 97.9308 | 98.4228 119.3251 | 121.0227 | 116.5172 | 116.5172
5Y | 97.4220 | 97.2957 | 95.3839 | 93.7577 | 94.8259 192.6392 | 205.6180 | 189.5794 | 189.5794
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5X | 243.3398 | 242.1795 | 240.0160 | 237.8734 | 236.2938 342.1443 | 351.2257 | 18.1290 | 18.1290
6Y | 325.6774 | 323.5088 | 320.4379 | 317.7451 | 314.2050 327.5943 | 330.2474 | 340.1089 | 340.1089
6X | 197.5565 | 199.2203 | 197.3539 | 194.3232 | 191.5923 209.3198 | 218.2199 | 197.9550 | 197.9550
7Y | 52.2139 | 55.6161 | 54.0261 | 53.5374 | 52.7177 81.4602 | 45.2078 | 85.6463 | 85.6463
7X | 191.9125 | 194.5826 | 194.3495 | 195.3103 | 195.3209 169.9922 | 167.6255 | 151.2256 | 151.2256

Table 22 and Table 23 show an example of the baseline amplitude and the date phase, respectively.

The baseline amplitudes are shown in Table 22. The data in this table can also be used as an OpEn

centerline for the OpEn 2D method.

Table 24. Baseline measurement matrix with vibration wector in Cartesian coordinate system: x-coordinate.
250 300 350 400 450 2850 2900 2950 3000

1Y | 7.1315 6.6952 5.8515 5.8335 5.8265 0.7916 1.1858 1.5106 1.5106
1X | 9.0662 9.9001 10.4722 | 10.8357 | 11.8014 15.5075 | 14.3491 | 15.2008 | 15.2008
2Y | 3.1511 2.6268 1.7763 0.0840 -0.2513 -3.2567 | -3.4477 | -3.7355 | -3.7355
2X | -11.2410 | -11.1888 | -11.2864 | -11.1312 | -11.2379 -16.3645 | -16.5709 | -16.4365 | -16.4365
3Y | -18.6195 | -18.4872 | -18.5483 | -18.3785 | -18.3469 -21.7251 | -21.8097 | -22.2656 | -22.2656
3X | -59118 | -5.8109 | -5.6637 | -5.6444 | -5.7151 -4.8431 | -5.1487 | -4.4339 | -4.4339
4Y | 164768 | 17.6129 | 18.3284 | 19.3210 | 20.0515 25.7664 | 26.2505 | 25.3048 | 25.3048
4X | -2.2628 | -2.8974 | -3.1743 | -3.5882 | -3.7941 -9.9914 | -10.2862 | -8.7373 | -8.7373
5Y | -0.9592 | -0.9383 | -0.7650 | -0.5347 | -0.7050 -14.0306 | -11.8257 | -12.2422 | -12.2422
5X | -2.4264 | -2.5421 | -2.9343 | -3.2260 | -3.5507 7.5389 9.2393 6.0447 6.0447
6Y | 8.3477 7.9079 7.4552 7.2629 6.7348 9.2913 | 10.5075 | 8.0760 8.0760
6X | -9.7477 | -9.1679 | -8.4586 | -8.2047 | -7.5216 -10.3868 | -8.1001 | -9.2240 | -9.2240
7Y | 2.9577 3.2775 4.0110 4.7204 5.7216 0.2832 1.8741 0.3758 0.3758
7X | -6.0979 | -6.4756 | -7.0729 | -7.8811 | -8.8368 -8.1973 | -6.5598 | -8.8773 | -8.8773

The matrix of the centers of the ellipses values in the (7, ), i.e., polar system is presented in Table 22

and Table 23. These are polar coordinates for the individual sensors for rows and the rotational speed

increments values for columns, respectively.

Table 25. Baseline measurement matrix with vibration wector in Cartesian coordinate system: y-coordinate.

250 300 350 400 450 2850 2900 2950 3000
1Y | 16.6138 | 16.3218 | 15.6994 | 14.6354 | 13.7562 17.2275 | 16.9581 | 17.0740 | 17.0740
1X | -14.7489 | -14.9209 | -15.1006 | -15.1519 | -15.2449 1.3877 -1.9580 | -1.3849 | -1.3849
2Y | 16.8072 | 17.5268 | 18.3917 | 18.8096 | 19.2258 14.3042 | 13.7781 | 13.8196 | 13.8196
2X | -9.4239 | -9.0031 | -8.5044 | -8.5141 | -8.3855 -2.5704 | -3.0569 | -3.6667 | -3.6667
3Y | 6.7504 6.5856 6.6985 6.6432 6.6453 8.3642 9.0283 8.3381 8.3381
3X | -17.1940 | -17.5533 | -17.7957 | -17.9364 | -18.1630 -21.8825 | -22.2822 | -21.8632 | -21.8632
4Y | -10.5017 | -10.3363 | -9.9607 | -10.1162 | -9.9906 8.5371 9.3446 9.2552 9.2552
4X | 26.2014 | 25.9529 | 25.7148 | 25.7573 | 25.6233 17.7863 | 17.1038 | 17.5111 | 17.5111
5Y | 7.3633 7.3290 8.1168 8.1417 8.3500 -3.1463 | -5.6705 | -2.0661 | -2.0661
5X | -4.8327 | -4.8173 | -5.0856 | -5.1374 | -5.3229 -2.4286 | -1.4261 1.9791 1.9791
6Y | -5.6993 | -5.8497 | -6.1592 | -6.5983 | -6.9244 -5.8978 | -6.0061 | -2.9221 | -2.9221
6X | -3.0840 | -3.1962 | -2.6433 | -2.0949 | -1.5429 -5.8335 | -6.3787 | -2.9890 | -2.9890
7Y | 3.8149 4.7895 5.5260 6.3880 7.5155 1.8857 1.8878 4.9367 4.9367
7X | -1.2864 | -1.6847 | -1.8094 | -2.1576 | -2.4209 1.4466 1.4392 4.8752 4.8752
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Table 24 and Table 25 depict the coordinates of the centers of the ellipses for Cartesian coordinates.
For practical and implementation reasons, the amplitudes and phases of the polar coordinate system
have been converted to the (x,y), i.e., Cartesian system. In the OpEn 3D method, the coordinate

system is used to determine and assemble individual ellipse centers.

The author validated the results of the OpEn 2D method on the data point sets obtained during the
diagnostic tests of a 200MW class turbine set. During diagnostic tests, the turbine generator set
experienced HP-IP cylinder rotor excessive misalignment. Data were collected for an invalid dynamic
state of the machine. Then two series of improving the alignment of HP-IP cylinder rotors were
undertaken. After each test, the maintenance department started the turbine set to obtain diagnostic
data and provide further recommendations and instructions. After the final alignment attempt, the
machine was allowed to start up fully. The turbine set reached FSNL, and its dynamic state allowed it

to carry out further tests, synchronization, and load up to the nominal power, i.e., + 200MW.

This unit has seven journal bearings and one thrust bearing (combined journal and thrust bearing)
placed in bearing pedestal no. 2. Schematic picture of this turbo-set is presented in Figure 17. Normally,
these machines are equipped with eddy current relative shaft-to-rotor vibration sensors. Typically, all
journal bearings in this type of turbine are equipped with such sensors. Every bearing has two sensors,
oriented perpendicularly to each other. The most common set-up of eddy-current sensors is presented
in Figure 7. Signal from these sensors is proportional to the shaft displacement with respect to the

bearing housing.

The case study presents the data measured at bearing no. 1. Measurements were carried out during
incremental improvement of the HP-IP part alignment. Data were collected during ten transient states,

both startups, and cast-downs. Figure 50 presents all the transients on a single plot.
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Transient data (shaft's relative vibration in bearing #1, 45° left from vertical axis)

175 - Real Live Data - reference transient U2, transient no. 01
Real Live Data - reference transient U2, transient no. 02
Real Live Data - reference transient U2, transient no. 03
Real Live Data - reference transient U2, transient no. 04
1501 . Real Live Data - reference transient U2, transient no. 05
Real Live Data - reference transient U2, transient no. 06
Real Live Data - reference transient U2, transient no. 07
Real Live Data - reference transient U2, transient no. 08
Real Live Data - reference transient U2, transient no. 09
Real Live Data - reference transient U2, transient no. 10
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Figure 50. Transient data during measurements course. Transients 01-04 were non-satisfactory. Transients 05-10
were satisfactory. Transient 09 was selected as the reference.

In most cases, the coast-down transient is better suited for analysis than the run-up because the turbo-
set does not experience additional excitation forces during this process. In such a case, the machine
coast down is driven only by the inertia of the shaft. The author did not experience noticeable
deviations between startups and coast downs during the analyzed measurements. That was a

prerequisite for the inclusion of startups into our analysis as well.

There were no signs of any other malfunction apart from misalignment, for example, rubs which can
produce a different response of a rotor system during startups and coast-down, as described in various

examples, e.g. [14], [16], [21]. We classify the transients in the following way:

e first two pairs (transient no. 01+04 in Figure 50) of transients are "non-satisfactory" in terms of vibration
response,

e following three sets of pairs (transients no. 05+10 in Figure 50) are "satisfactory" in proper alignment of
the HP-IP coupling.

The OpEn centerline was calculated as presented in Section 4.3. Upper and lower bounds were set at
24umg, and 13ump,, respectively, as explained in Section 4.5. During the first set of transients, the
synchronous response exceeded the OpEn BULL in the [1500,2600] rotational speed interval.

Transient no. 1 and 2 in Figure 51 depicts this scenario.
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CS of transient data (Bearing #1, 45° left from vertical axis)

1751 —— Upper level of OpEn
— Lower level of OpEn ,
CS on dataset from U2, and transient no. 01 o0 .
CS on dataset from U2, and transient no. 02 °

150 CS on dataset from U2, and transient no. 03 a z

CS on dataset from U2, and transient no. 04 .
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rpm (revolution per minute)

Figure 51. Example of a transients with misalignment (the initial state — transient no.1 and no.2 and after first
improvement — transient no.3 and no.4).

After the first alignment improvement, the majority response of the rotor system fell into the OpEn.
From the startup of the turbo-set up to approx. 1750RPM and above 2450RPM, all amplitudes were
inside OpEn. Still, the system response values between approx. 1700+2450RPM had higher values than

the OpEn upper bound, which can be seen in Figure 51, transient no. 3 and 4.

The second improvement of the HP-IP cylinder alighment resulted in the proper response of the

system. Figure 52 presents the dynamic data for the described situation.
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CS of transient data (Bearing #1, 45° left from vertical axis)

175 —— Upper level of OpEn
—— Lower level of OpEn
CS on dataset from U2, and transient no. 05
CS on dataset from U2, and transient no. 06
+ CSon dataset from U2, and transient no. 07
CS on dataset from U2, and transient no. 08
CS on dataset from U2, and transient no. 09
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Figure 52. Example of acceptable dynamic behavior.

The figures presented only the qualitative results. To be able to automate the assessment process, the
parameters proposed in Section 4.6 were applied and presented in Table 26. The transient no. 09
named "U2_09" was assumed to be the reference one. Hence, the RMSE and Kurtosis value in the one
before last column in Table 26, also named "U2_09," is 0. It is worth underlying that RMSE and Kurtosis
values for the last measured transient state named "U2_10" were the lowest ones even though it

contained samples from the whole rotational speed span (which was >100RPM up to 3000RPM).

Table 26 summarizes the performance of the proposed distance criteria. After the second alignment
improvement, RMSE of the further transient in the studied case does not exceed the value of 10, as
shown in Table 26, and since then, all amplitudes of synchronous response fell between OpEn upper

and lower values.

Table 26. Comparison of the OpEn 2D method selection criteria.

U20 | 020|020 | 020|020 | U20 | U20 | U20 | U20 | U2_1

1 2 3 4 5 6 7 8 9 0
RMSE 4258 | 37.27 | 2022 | 17.73 | 8.00 7.83 4.03 3.44 0.00 3.42
Kurtosis 1.84 1.94 1.77 1.95 1.77 2.27 2.10 2.90 0.00 2.05
MAX;EO_OP 7210 | 68.10 | 29.16 | 28.10 | 0.00 0.00 0.00 0.00 0.00 0.00
MIN_C:IO_OPE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure 53 depicts the visual evolution of the RMSE parameter. The RMSE is an error at each transient
during the measurement course. However, after the machine's fourth transient (second HP-IP coupling

improvement), the dynamic response is much closer to the reference transient than before.
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RMSE is a suitable parameter as it is sensitive to the distance from the healthy state. As we show in
the case study above, it is sensitive to the misalignment level. There is a value above which
misalignment is beyond an acceptable level. In the studied example, the value of 10 can be a good

condition indicator (still, for this particular sensor and this type of malfunction).

RMSE evolution among the improvement of the HP - IP alignment course

01 e RMSE for from U2, and transient no. 01
RMSE for from U2, and transient no. 02
» RMSE for from U2, and transient no. 03
e RMSE for from U2, and transient no. 04
™~ » RMSE for from U2, and transient no. 05
401 « RMSE for from U2, and transient no. 06
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Figure 53. The evolution of the Root Mean Square Error (RMSE) vs HP-IP alignment incremental improvement.

The kurtosis parameter is between 2.90 and 1.77. The values do not show the relationship to the level
of misalignment. Thus, the Kurtosis parameter is not helpful in this case study. In our investigation,
Kurtosis measures how the new transient is similar to its reference one in shape. It can signal if some
samples were far off the reference transient during a particular transient. This parameter may play a
significant role in finding anomalies such as oil whirl or whip. The transient of a machine that
experiences such phenomena can be extremely different from the reference one. Amplitudes
generated during instabilities are often close to bearing clearances, which can harm turbo-set
equipment such as the bearing itself, its oil seals, steam seals on the rotor and inside of a turbine
casing, and hydrogen oil seals (on the generator), and others. Furthermore, the rotational speed
intervals in which hydrodynamic instabilities can occur might be narrow compared to the whole
rotational speed range. Thus, in such cases, RMSE as a single assessment parameter of the transient
cannot suffice because even if the signal amplitude is much greater in a short interval, the number of

samples in the transient as a whole will diminish it.

Setting up the Kurtosis parameter will be a subject of further studies. Author will study the effect of
setting up RMSE and Kurtosis parameters on different signal components in different arrangements,
for example, RMSE on synchronous response and phase angle and Kurtosis on direct (or sub-

synchronous) response.

MAX_Oo_OpEn well describes misalignment in the studied example. This indicator, though, detects

if, at any given moment during a transient state, the vibration exceeds the OpEn_Upper value. This

123



parameter detects if any samples exceed the upper bound, and in such a case, it returns the distance
value and the relevant rotational speed. This parameter presents information about "the worst"
sample. This parameter can signal abnormal machine behavior during transient, for instance,

hydrodynamic instability. Thus, the MAX_Oo_OpEn is well suited for novelty detection purposes.

As shown in Table 26, no transient exceeded the OpEn_Lower value during the presented case study,
so the MIN_Oo_OpEn parameter cannot be evaluated. Above-described situation can imply two
things:

e  OpEn lover value can be set to too a low value which can cause the false positive error (lack of detection

in the early stage of malfunction evolution);
e misalignment is present in a shaft train, there will be no samples with amplitudes lower than expected.

These two scenarios will be the subject of our further studies.

To validate the OpEn 3D method, the author analyzed machines with different malfunctions. The
author will use the example of the rotor unbalance of the + 560MW turbine generator set for a detailed
presentation to highlight the results of validating the OpEn 3D method. This data was additionally used
to verify the MD3 method to validate the complete detection and identification process. The layout of
the tested device is shown in Figure 18. The author had to make some changes in the sensor description
to compare the data from the tested device with the correct values of the ellipses of the OpEn 3D
method. In addition, the way of naming the data from the machine had to change. The sensors
monitoring the dynamic state of the generator rotor in the 560MW unit are on bearings number eight
and number nine. In the baseline matrices, the sensors responsible for the dynamic generator

response are marked with number six and number seven.

To prove the validity of the thesis, the author decided to assign data from bearings number eight and
number nine coming from the real object as bearing number six and number seven, respectively, for
the OpEn 3D algorithm to compare the data from the generator to the ellipses assigned to the

generator.

Based on the constant speed data, operational personnel reported high vibration levels in bearing
number nine. Vibration measurements were carried out to verify the cause of the high vibration. Data
were recorded during transient operation (coast-down) of the unit. The portable data acquisition
interface unit was connected to eddy-current type vibration displacement sensors at all nine bearings

in both directions.

Transient data was recorded, and unbalance of the generator rotor free end (near the bearing number
nine) was diagnosed. After the balancing operation, the data was measured once more during the run-
up. The balancing operation was qualified as satisfactory. The turbogenerator was considered eligible
for long-term operation with no restrictions in terms of dynamic condition to run within a full range of

operation (referred to as the class A).
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The author used data from the generator sensors described above only to analyze and present the

results. The data was used to validate the method.

Table 27 summarizes the results for the first two transients participating in the research and the OpEn
3D method. The table layout is as follows: the values in the first column of the matrix correspond to
the individual rotational speed values for the successive instances determined by the CS interpolation
domain. Then the column values assigned to "Transient no. 01" and "Transient no. 02" are the values
of the distance from the baseline ellipse for the individual sensors, described 6X-7Y, in specific

rotational speed instances during the duration of the transient state.

Transient no.1 summarizes the data collected immediately before the balancing activities. One can see
that the most significant values of the distance from the ellipse come from the 7Y direction. For
example, the distance value at 3000RPM is over 240umpp. This is a very high value because the bearing
clearances for the generator bearings can be 400 um, and the clearances on the new hydrogen seals

can be around 300um.
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Table 27. OpEn 3D distance matrix: left — transient before balancing attempt; right — after trial mass balancing.

Rotational | Transient no.01 Transient no.02

speed[rpm] [6Y 6X 7Y 7X 6Y 6X 7Y 7X
0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0
150 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0
250 0 0 0 0 0 0 0 0
300 0 0 0 0 0 0 0 0
350 0 0 0 0 0 0 0 0
400 0 0 0 0 0 0 0 0
450 0 0 0 0 0 0 0 0
500 0 0 0 0 0 0 0 0
550 0 0 0 0 2.840 0 0 0
600 0 0 4.576 0 5.980 0 11.247 0
650 0 0 2.559 0 3.534 0 13.445 0
700 0 0 15.879 0 0 0 29.818 0
750 0 0 6.344 0 0 0 17.951 0
800 1.379 0 0 0 0 0 5.032 2.764
850 5.853 0 0 5.006 0 0 0 5.930
900 1.612 0 0 0 0 0 0 0
950 9.494 0 0 0 6.102 0 0 0
1000 8.809 0 0 0 6.397 0 0 0
1050 7.334 0 0 0 6.396 0 0 0
1100 9.394 0 0 0 4.621 0 0 0
1150 4.617 0 0 0 0.197 0 0 0
1200 6.616 0 0 0 3.753 0 0 0
1250 5.202 0 0 0 0 0 0 0
1300 0 0 0 0 0 0 0 0
1350 0 0 0 0 0 0 0 0
1400 0 0 0 0 0 0 0 0
1450 0 0 0 0 0 0 0 0
1500 0 0 0 0 0 0 0 0
1550 0 0 1.716 0 0 0 0 0
1600 1.371 0 1.704 0 0 0 0 0
1650 4.857 0 11.696 0 0 0 0 0
1700 9.650 0 15.990 0 0 0 0 0
1750 10.643 0 24.584 0 0 0 0 0
1800 11.539 0 36.928 0 0 0 0 0
1850 8.953 0 38.346 0 0 0 0 0
1900 7.221 0 46.684 0 0.920 0 4.370 0
1950 10.049 0 51.388 0 3.704 0 9.588 0
2000 11.785 0 58.633 0 5.075 0 13.607 0
2050 5.582 0 58.056 0 0 0 13.801 0
2100 8.338 0 65.568 0 0 0 14.157 0
2150 7.160 0 69.574 0 0 0 10.142 0
2200 6.850 0 72.192 0 0 0 13.422 0
2250 10.662 0 74.539 1.838 0 0 19.053 0
2300 11.332 0 75.357 6.580 1.183 0 23.129 0
2350 9.319 0 79.502 7.704 0 0 25.360 0
2400 4.955 0 86.786 11.471 0 0 27.545 0
2450 8.037 0 93.911 14.183 0 0 27.505 0
2500 8.824 0| 104.024 16.749 0 0 25.201 0
2550 8.578 0| 108.776 18.645 0 0 24.218 0
2600 10.433 0| 117.949 22.628 0 0 23.463 0
2650 13.785 0| 120.163 25.486 0 0 20.540 0
2700 13.271 0| 137.601 30.525 0 0 28.117 0
2750 14.580 0| 155.175 36.467 0 0 38.077 0
2800 14.859 0| 173.610 41.778 0 0 44,992 0
2850 11.248 0| 190.245 49.343 0 0 56.392 0.921
2900 5.366 0| 208.620 58.103 0 0 68.135 4.208
2950 0 0| 220.438 68.400 0 0 77.424 5.474
3000 0 0| 240.213 72.901 0 0 0 0

126



Figure 54 shows a graphical representation of the OpEn 3D method sample values. The figure presents
a baseline ellipse with the origin of the coordinate system depicted as a black point. On the other hand,
the red one is related to the vibration vector of the first synchronous component, i.e., the combination
of the amplitude and phase measured during the transient. Additionally, each ellipse in the
OpEn BULL matrix is rotated by a specific value determined by the vibration vector parameters
described in Section 4.8.The figure shows six moments for which the distance from the ellipse is
calculated. The graph in the upper left corner shows the last rotational speed for which the vibration
vector is still inside the ellipse. The figure on the top right shows a slight exceedance of the acceptance
ellipse limit already for the rotational speed value of 1550. The figures in the middle and lower parts

show the evolution of the distance of the vibration vector from the ellipse boundary.

127



7Y Synchronous response amplitude (1X-Amp) and phase lag (1X-Phase) at 1500rpm
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Figure 54. Graphical representation of the OpEn 3D distance matrix: 7Y sensor before balancing attempts.
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The columns in Table 27 entitled Transient no 2 shows data after the first generator rotor balancing
attempt. The weight was added on the NDE side to the rotor disc. The trial mass was approx. 560g on
a radius of approx. 450mm. After the workshop personnel installed the mass on the test angle, the
maintenance staff started the machine to measure the dynamic state. The measurements revealed a
significant improvement in the generator rotor dynamic parameters. Table 27 shows that for rated
speed (FSNL), the vibration amplitude on the NDE bearing in the Y direction (sensor described as 7Y)
decreased by 170umyp.

Unfortunately, the initial vibrations were so large that even such a significant improvement did not
give an entirely satisfactory result. Therefore, the balancing cycle had to be repeated. During trim
balance, the research team decided not to change the balance mass but only the angular orientation
of the balancing mass. Following trim balance, the vibration response of the unit reviled a very close

distance to the acceptance regions for both bearings and all directions of vibration measurement.

Table 28 collects the following two transients during trim balance and final transient, after which the
turboset was considered acceptable for long-term operation without any restrictions. As a result, the
power plant authorities decided to discontinue the corrective actions and leave the turbine set at the

disposal of electricity production.
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Table 28. OpEn 3D distance matrix: left —trim balance attempt; right — start-up for the long-term operation.

Rotational | Transient no.03 | Transient no.04
speed(rpm] [6Y 6X 7Y 7X ley 6X 7Y 7X

0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0
150 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0
250 0 0 0 0 0 0 0 0
300 0 0 0 0 0 0 0 0
350 0 0 0 0 0 0 0 0
400 0 0 0 0 0 0 0 0
450 0 0 0 0 0 0 0 0
500 0 0 0 0 0 0 0 0
550 0 0 0 0 0 0 0 0
600 0 0 6.772 0 0 0| 16.799 0
650 0 0] 32911 0 0 0| 22625 0
700 0 0| 67.868 0 0 0| 36461 0
750 0 0| 52.766 0 0 0| 24.009 0
800 0 0| 32472 9.018 0 0| 12665 2492
850 0 0 0 9.447 0 0 0 7.009
900 0 0 0 0 0 0 0 0
950 0 0 0 0 1.288 0 0 0
1000 0 0 0 0 4.031 0 0 0
1050 0 0 0 0 7.342 0 0 0
1100 0 0 0 0 8.003 0 0 0
1150 0 0 0 0 5.058 0 0 0
1200 0 0 0 0 6.886 0 0 0
1250 0 0 0 0 3.648 0 0 0
1300 0 0 0 0 0 0 0 0
1350 0 0 0 0 0 0 0 0
1400 0 0 0 0 0 0 0 0
1450 0 0 0 0 0 0 0 0
1500 0 0 0 0 5.038 0 0 0
1550 0 0 0 0 8.719 0 0 0
1600 0 0 0 0 8.806 0 0 0
1650 0 0 0 0] 11878 0 0 0
1700 0.571 0 0 0] 16.708 0 0 0
1750 0.648 0 1.464 0] 19.700 0 0 0
1800 0.983 0 0 0] 19.488 0 0 0
1850 5.294 0 0 0] 21926 0 0 0
1900 4.129 0 0 0] 22949 0 0 0
1950 3313 0 0 0] 23364 0 0 0
2000 4.251 0 0 0] 25.740 0 0 0
2050 2.901 0 0 0] 23.263 0 0 0
2100 1.523 0 0 0] 18.009 0 0 0
2150 1.793 0 0 0] 18521 0 0 0
2200 3.975 0 0 0] 20.139 0 0 0
2250 6.271 0 0 0] 23330 0 0 0
2300 7.941 0 0 0] 21875 0 0 0
2350 4.161 0 0 0] 18.450 0 0 0
2400 0 0 0 0] 14.700 0 0 0
2450 0 0 0 0] 12.760 0 0 0
2500 0 0 0 0] 13.864 0 0 0
2550 0 0| 6.000351 0] 12103 0 0 0
2600 0 0| 5.98333 0] 12129 0 0 0
2650 0 0| 13.58429 0 7.999 0 0 0
2700 0 0| 13.77618 0 5.208 0 0 0
2750 0 0| 17.45706 0 4.950 0 0 0
2800 0 0| 20.09014 0 0 0 1617 0
2850 0 0| 18.23544 0 0 0 3.673 0
2900 0 0] 19.97202 0 1171 0 6.873 0
2950 0 0| 24858 0 0 0| 15557 0
3000 0 0| 23.89176 0 0 0| 18827 0
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Figure 55 presents the evolution of the distance of the vibration vector from the ellipse acceptance
region for the 7Y sensor. The ellipses were given for the same rotational speed values in the case of

data from before and after the corrective actions.

An evident improvement in the position of the vibration vector can be seen comparing Figure 54 and

Figure 55 concerning the baseline region.

It is also worth mentioning that the author used the reference machines data sets to define the
acceptance regions in the form of ellipses sets for the validation process. The data used to determine
the baseline come from new machines or machines after repairs and factory acceptance installed

correctly on site.

The data presented in this section comes from a machine operating for a long and indefinite period.
The author did not have data from the transitional states immediately after its launch. Therefore, it is

impossible to refer to the starting vibration level of the machine in this way.

However, after corrective actions, one can conclude that the machine's behavior over the entire
measured rotational speed range is similar to the reference behavior defined by the acceptance
regions. Almost all distances throughout the transient state are close to zero, as shown in table 23 in

Transient no. 4 columns.
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7Y Synchronous response amplitude (1X-Amp) and phase lag (1X-Phase) at 1500rpm
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Figure 55. Graphical representation of the OpEn 3D distance matrix: 7Y sensor before balancing attempts

Figure 56 summarizes the change in the distance of the vibration vector from the acceptance region

for a repaired NDE bearing. One can see a significant improvement already in Transient no. 2. The

distances of the vibration vectors in both directions of this bearing have significantly decreased their

values. The above proves a significant improvement in the dynamic condition of the tested device. The
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graph reveals that the distance for Transient no. 4 turned out to be greater than zero. This means that

the vibration vector for the 7Y direction goes beyond the acceptance region.

Distance of the vibration vector data from the acceptance
region at 2950 rpm

250
200
) 150
[8)
c
8
L
o 100
50
0
7Y 7X
W Transient no.01 220.438 68.400
M Transient no.02 77.424 5.474
Transient no.03 24.85799975 0
Transient no.04 15.557 0

Figure 56. 7Y vibration vector data distance from the acceptance region evolution during corective actions.

Nevertheless, the value of 16 is minimal compared to 220. In addition, by examining Figure 55, one can
conclude that the position of the vibration vector is very close to the ellipse corresponding to 3000
RPM. The center of the ellipse, which is marked with the green point in the graphs, is located on the
opposite side of the origin of the coordinate system, shown in black. Therefore, one can assume that
for a different value of residual unbalance, or after another balancing attempt, the vibration vector

would be inside the ellipse.

he summary of activities aimed at improving the dynamic state of the turbine set under study is shown
in Figure 57. The data in the graph present all transients who participated in the tests on the research
object. All subsequent transients start at 1500 RPM. It allows for a fair comparison of the fit of the
data.
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7Y sensor vibration vector data and is fit to 2nd order polynomial
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Figure 57. Polynomial data fit to the vibration data vector during consecutive transient.

The author defined a trend line as a second-order polynomial for the data from each transient. As
described in section 12, such a polynomial can correctly nail the unbalance. For each of the trend lines,
the correctness parameter r2 was given. As seen in the discussed figure, the data from the transient
no is characterized by the highest value of the parameter fitting to the second-order polynomial. 1 in
the figure shown in blue. The adjustment value is 0.97. It proves the correctness of the hypothesis

about excessive unbalance on the generator rotor on the NDE side.

After the research team completed the corrective actions, the trend line fit to the data dropped
significantly, and the adjustment parameter was 0.61. It demonstrates a significant reduction in the
centrifugal force from the unbalance. The unbalance malfunction was primarily removed from the

tested object thanks to the corrective actions.
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8. Validation of the identification method

The author carried out the MD3 method validation process in two stages. In the first stage, the method
was implemented on data from the test rig. As a result, the stand was prepared with focus on
simulating the malfunction of the rotor unbalance. In the next stage, the author used the MD3 method
to identify the generator rotor unbalance parameters nominated by the OpEn 3D method described in

the previous chapter.

The authors validate the model on a Rotor Kit. It is a simplified model of a rotating machine with a
flexible rotor. The model is presented in Figure 4, and it is a variation of the simplified Jeffcott rotor

model well described by, e.g., Kicinski [9], Muszynska [8], and Ehrich [7].

. F it

7]

: Driver

F e h _%\

Figure 58. Scheme of the test rig used for validation purpose.

The model schematic, depicted in Figure 58, consists of two spaced masses, a variable speed-controlled
driver, and brass-bushing bearings. The bearings are described by number 1 and 2 in the Figure 58,
respectively. The sensors at each bearing are oriented by the convention driver-to-driven. The Y
direction means that the sensor is oriented 45° in left from the vertical axis. The X direction means that
the sensor is oriented 45° in right from the vertical axis, and the 90° from the Y sensor. Figure 9 presents
detailed schematics of the sensors arrangement. The validation method uses two sensors on either

side of the rotor.

Figure 5 presents the picture of the verification model on the test stand. To validate the identification
of at least the first bending mode Rotor Kit has to be rotated with a velocity of over 4000 rpm. Then,
the model for the unbalance response is validated by mass addition on both disks at the same angular

orientation.
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amplitude in um pk-pk

Vibration

Figure 59. The Rotor Kit test rig used for model validation.

The data from two experiments were recorded. First, an imbalance mass was added to the rotor as
described above. This trial is considered as the presented system imbalance response. The unbalance
mass was removed during the second trial, and the transient data set was recorded. The vibration

levels throughout the whole transient were at a low level and it was considered malfunction-free.

Several transient runs were performed and recorded. The resulting data showed convergence and
repeatability of the test rig setup. Figure 6 depicts examples of the transient response of the data
prepared for identification.

Vibration response of the test rig data (probe 1Y) Vibration response of the test rig data (probe 2Y)

imbalance cone
Rerere

Vibration amplitude in um pk-pk

Rotaho;al speed [rpm]“ ) Ralatiu;\.al speed (fDmih
(a) (b)
Figure 60. The transient vibration response of the test rig during with and without unbalance, respectively: (a)
data from the bearing number 1; (b) data from the bearing number 2.

Sensors with the same angular orientation were taken into account to analyze the validation data. Each
of the sensors is mounted on the same side of the rotor. The data (with and without unbalance) were
recorded and processed by the MD3 identification method. Figure 61 presents the curve shapes
plotted as lines based on scenario 1+3 against the real-object transient data curve (plotted as a scatter

plot). Based on the MD3 method, scenario 2 was selected as the best approximation of the sensor 1Y
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data, and scenario 3 was the best one to fit the transient data from sensor number 2Y. Table 29

presents a summary of RMSE values for all three scenarios for the case of an unbalanced rotor.

vibration response of the 1Y and decompo

ed functions identify by DE base on 750

i and

Vibrations amplitude

size of 40 Vibration response of the 2Y and decomposed functions identify by DE base on 750 evolutions and population size of 40
7

\
brations amplitude
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Figure 61. Outcome of the MD3 method based on three scenarios proposed in Chapter 5 on a test rig with
imbalance malfunction simulation: (a) Data obtained from the 1Y sensor, driven side of the rotor; (b) Data
obtained from the 2Y sensor, non-driven side of the rotor.

Table 29. The MSE values are based on the scenario and sensor location for the imbalance simulation on the test rig.

RMSE Sensor 1Y Sensor 2Y

Scenario 1 8.527 7.265

Scenario 2 4.905 3.213

Scenario 3 5.793 2.992
The scenario number one shows the worst fit to the transient data. The RMSE indexes for both sensors
1Y and 2Y have the highest value. Such a situation is most likely due to a split resonance (i.e. two
resonances close to each other) measured in both bearings. The split occurs in the target function
between 1500-2500rpm. Unable to adjust to the two resonances close together, the scenario chose
an "in-between" resonance—such a compromise results from an increased mis-match between the
scenario functions and the measured transient function.
Scenario 2 and Scenario 3 for sensor 1Y and sensor 2Y, respectively, were selected as the best sets of
decomposition function parameters. A summary of all the identified parameters by the DE algorithm
is presented in Table 30. In addition, parameters for the best scenario are highlighted.
Table 30. Parameters of the decomposed functions identified by the DE algorithm and chosen by the MD3 method based on

the imbalance data and the MSE as the quality index.

Scenario/sensor ag, Tpmy, Wy, ag, TPmgy, Wy, Ag, TPMy, Wy, a, Xp const,,
1/1Y 91.27 2014.41 204.93 - - - - - - 7545 -462.77 6.19
2/1Y 71.36 2100.00 209.76 63.31 1866.85 75.07 - - - 73.46  -46.59 8.78
3/1Y 75.67 1891.59 97.01 61.81 215743 241.15 13.36 4200.00 10.00 75.05 575.15 9.60
12Y 89.12 196259 222.43 - - - - - - 41.02 266.84 4.41
2/2Y 64.23 1848.03 91.10 62.21 2082.89 268.12 - - - 4259 134773 6.03
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3/2Y

64.23 1848.03 91.10

62.21 2082.89 268.12

97.24 4098.58 526.66

4259 1347.73

6.03

In the next step, the unbalance weights were removed and the transient data was recorded for the

analysis with the same set of sensors as earlier. Figure 62 depicts malfunction-free transients for the

sensors 1Y and 2V, respectively. Due to small amplitude values during these runs, the results of the DE

algorithm, i.e., decomposition function parameters and hence the RMSE quality index, are similar in

values. The values of the RMSE index concerning scenarios are presented in Table 31.

Vibration response of the 1Y and decomposed functions identify by DE base on 750 evolutions and population size of 40

Vibrations amplitude

ions amplitude
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@

Vibration response of the 2Y and decomposed functions identify by DE base on 750 evolutions and population size of 40

Rotational speed [rpm]
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Figure 62. MD3 method outcome based on three scenarios proposed in Section 2 on a test rig without mal-
function: (a) Data obtained from the 1Y sensor, driver side of the rotor; (b) Data obtained from the 2Y sensor,
non-driven side of the rotor.

Based on the RMSE quality index, the MD3 method shows that the best fit of the decomposed

functions for the reference transients provides scenario 2 and scenario 3 for the sensors 1Y and 2V,

respectively. However, it is visible that the values are very similar for all the scenarios. In such a case,

a simpler model should be chosen if in doubt.

Table 31. The RMSE values, based on the scenario and sensor location, for the reference transient simulation on the test rig.

MSE

Sensor 1Y

Sensor 2Y

Scenario 1
Scenario 2

Scenario 3

1.032
1.002
1.078

1.032
0.966
0.895

Table 32 summarizes all the decomposed function coefficients nominated by the MD3 method. This

table highlights the best solution for sensor data 1Y and 2Y in bold font.

Table 32. Parameters of the decomposed functions identified by the DE algorithm and chosen by the MD3 method based on
the reference data and the RMSE as the quality index.

A I P e

Scenario/sensor

agl

rpmg,

ng

agz

rpmg,

Wg2

ags

rpmg, Wy

a,

Xp

const,

1/1Y
2/1Y
3/1Y
1/2Y
2/2Y
3/2Y

11.82
11.85
11.44
11.82
11.96
11.96

1924.58
1924.53
1920.28
1924.58
1924.34
1924.34

118.94
119.41
113.26
118.94
121.07
121.07

18.87
3.44
3.04
3.04

2378.38
2519.68
2434.71
2434.71

10.00
840.00
66.31
66.31

4.82

3.43

4200.00 374.83

4200.00 10.00

4.35
4.32
18.87
4.35
4.24
4.24

-3634.30
-3523.06
4200.00
-3634.30
-3132.82
-3132.82

4.72
4.72
4.72
4.72
4.72
4.72

138



Figure 63 shows the values of the coefficients responsible for the identification of imbalance. In
imbalance rotor case all scenarios, including the simplest scenario one, can correctly detect rotor
unbalance coefficient. All scenarios have similar values for both sensors 1Y and 2Y, described in the

figure as 1Y;,pq1 and 2Yimpar respectively.

Imbalance parameter (parabola coefficient) with and without unbalance mass attached

80

70

S0

Imbalance parameter a,
»
o

1Y imbal 1Y bal 2Yimbal 2Y bal

Sensor Sensor
 Scenario 1 75.447 4345 41.018 4345
& Scenario 2 73.465 4323 42.594 4235
® Scenario 3 75.051 18.867 42.594 4235

Figure 63. Imbalance coefficients for sensor 1Y and 2V.

For a balanced rotor case, the unbalance coefficient in the scenario three for sensor 1Y has a higher
value than the other scenarios. Although the RMSE index is smaller, and the imbalance coefficient is
close to the actual value, the time and computing power needed to execute and evaluate this case
may not be rationally justified. For such a simple case, i.e. only one resonance speed interval and no
excessive imbalance, matching the function with the coefficients from scenario two should be

sufficient and satisfactory.

The research and tests conducted on the test rig confirm the correctness of the assumptions of the
MD3 method. The method can effectively identify at least one critical speed range and the failure in
the form of rotor imbalance. The model has been positively verified. Moreover, the decomposed
function parameters produced by the method reflect the actual mechanical values of a given object.
Thus, it can be used to track changes that turbo-set undergoes during each transient condition

8.2. Validation of MD3 method on real turbine

The Multidimensional Data Driven Decomposition method was applied to the data from a real
turbogenerator. The authors use the data measured on a 560MW steam unit in this case study. Figure
18 depicts a shaft-bearing line schematic representation. Based on the constant speed data,

operational personnel reported high vibration levels in bearing number nine. Vibration measurements
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were carried out to verify the cause of the high vibration. Data were recorded during transient
operation (coast-down) of the unit. The portable data acquisition interface unit was connected to
eddy-current type vibration dis-placement sensors at all nine bearings in both directions. Figure 9

shows the schematic and real-object sensor arrangement inside of bearing housing.

Transient data was recorded, and unbalance of the generator rotor free end (near the bearing number
nine) was diagnosed. After the balancing operation, the data was measured once more during the run-
up. The balancing operation was qualified as satisfactory. The turbogenerator was considered eligible
for long-term operation with no restrictions in terms of dynamic condition to run within a full range of
operation (referred to as the class A).

After the first measurement, the data were processed with the OpEn fault detection method. It
detected a high level of synchronous response on bearing 9 in the Y direction. At the same time, it did
not return any increased values of vibration amplitudes on bearing 8 in any direction. Lack of indication
would typically eliminate bearing 8 data for the MD3 method. However, for this case study, these data

were taken into account for comparison.
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Figure 64. Decomposed function identified by the DE algorithm to fit data from a real object before and after
balancing and the corresponding MSE indexes: (a) data from the bearing 8 and the sensor 8Y before balancing;
(b) data from the bearing 9 and the sensor 9Y before balancing; (c) data from the bearing 8 and the sensor 8Y
after balancing; (d) data from the bearing 9 and the sensor 9Y after balancing.
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A high level of vibration amplitude on the one end of the rotor and a normal level of vibration response
on the second end can be a symptom of the generator rotor unbalance in the vicinity of bearing 9. This
hypothesis was later confirmed during corrective actions. Figure 64 presents all three scenarios
identified by the DE algorithm according to the MD3 method. The RMSE index, as the decision criterion,
selected scenario 3 as the best fit with the RMSE value of 4.74 (sensors 9Y). Scenario 3 was also the

best fit for the transient without imbalance response approximation with the MSE index equal to 2.85.

Table 33

Table 33. The RMSE values based on the scenario and sensor location of the generator rotor with and

without imbalance malfunction. summarize RMSE indexes for bearing 8 and bearing 9.

Table 33. The RMSE values based on the scenario and sensor location of the generator rotor with and without imbalance

malfunction.
Sensor 8Y Sensor 8Y Sensor 9Y Sensor 9Y
MSE . .
imbalance response balance response imbalance response balance response
Scenario 1 4.725 6.253 30.75 6.627
Scenario 2 4.554 2.628 27.501 5.052
Scenario 3 3.907 2.6 4.739 2.852

Results returned for bearing 8 were different from those from bearing 9. As vibration levels were low
for both the unbalanced and the balanced state, the functions identified by the DE algorithm had very
similar decomposed function parameters. Thus the RMSE criterion in both cases had a low value. It

also confirms that the algorithm was successful for bearing 8.

Table 8 summarizes all the decomposed function parameters depending on the scenario. For example,
the functions which approximate the imbalance condition were high-lighted in scenario 3. Note that

all scenarios satisfactory identified the first critical speed zone, which can be seen in Figure 64 (b).

Table 34. Decomposed function parameters identified by DE algorithm. Function parameters in imbalance and healthy
condition. The MD3 scenario selection number is highlighted in bold font.

Scenario/

sensor-condition Toy TPy, Yo, T, TPy, Woy To3  TPMgy  Wog @ X const,
1/9Y-unbalanced  37.213 669.4 51.229 - - - - - - 255.000 -492.1 15.481
2/9Y- unbalanced 53.401 655.9 80.750 47.058 2212.5 590.000 - - - 255.000 130.9 6.279
3/9Y- unbalanced 59.614 670.0 78.497 51.173 22125 403.799 128.925 2942.7 214.478 215.647 462.1 9.686
1/9Y-balanced 71.034 668.9 90.854 - - - - - - 45.665 -1442.8 3.991
2/9Y-balanced 72.041 670.6 93.733 15.793 17069 271.219 - - - 85.197 1416.0 8.881
3/9Y-balanced 71.689 669.6 94.397 14.655 1779.0 329.603 36.022 2950.0 152.466 12.627 -2737.6 5.421
1/8Y-unbalanced 15.130 978.5 142.121 - - - - - - 44.383 -2950.0 11.096
2/8Y-unbalanced 15.130 5259 19.937 15.130 983.3 139.615 - - - 44.383 -2950.0 11.096
3/8Y- unbalanced 15.130 489.8 219.351 20.471 999.9 151.230 15.130 1995.7 589.995 44.383 -161.9 10.702
1/8Y-balanced 20.788 1475.0 590.000 - - - - - - 50.268 -2950.0 3.867
2/8Y-balanced 18.769 1014.8 146.283 26.970 1947.1 407.326 - - - 24.457 -2605.7 13.500

3/8Y-balanced 17.810 1015.6 147.178 11.130 1903.7 272.631 17.601 1966.7 506.730 22.515 -2678.9 13.500

Scenario 1 has only one critical speed zone, parabola, and bias term in the model. Therefore, it cannot
achieve a good fit to the real-object data, red line in Figure 64 (b). This model can find the peak of the
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first critical speed Tpmy, Z0ne, but the amplitude ag, and width of the peak wg, are affected by

parabola function (a,, x;,). Therefore, the parabola part of decomposed function cannot achieve a

good approximation of such an excessive imbalance condition.

The second scenario can correctly replicate the first critical speed zone in all its features. However, due
to the complexity of response in the rotational speed near FSNL, its performance was also not
satisfactory, the green line in Figure 64 (b). The second critical speed zone and significant unbalance

force made scenario two not sufficiently accurate.

Scenario 3 best approximates the real-object transient data, the blue line in Figure 64 (b). Thanks to
three Gaussian functions in its model, it could replicate two critical speed zones and use the third one
to enhance the model's performance to approximate additional nonlinearity introduced by the
imbalance at the highest rotational speed values. This approximation of the unbalance condition
resulted in the RMSE index being almost six times smaller than scenario 2 and seven times smaller than
scenario 1. The particular RMSE index values for the imbalance condition are presented in Table 31 in

a column titled “Sensor 9Y imbalance response”.

Real-object data collected during the second measurement course (after balancing) revealed exciting
results. For this case, each of the scenarios was a decent approximation of the healthy state of the
machine. Figure 64 (d) shows that each scenario detected and identified the first critical rotational
speed zone in all of its parameters consistently and in a convergent way. Furthermore, identified values
of all decomposed function parameters for all scenarios concerning the first critical speed interval are

almost identical.

Table 33 presents this in row 4+6 and column 1+3. Additionally, scenarios number two and three had
better identified transient response between 1400+2200rpm, and scenario three was superior to
others in replicating the system response above 2500rpm. Also, in this case, scenario three was the
best approximation of real-object transient data acquired from sensor number 9Y without an

imbalance condition.

With this in mind and using the author’s experience, a reasonable range of parameters of the
decomposed functions can be determined for this type of failure. Table 35 presents the values selected

as a range of search for decomposed function parameters.

Table 35. Healthy state operation decomposed function parameters by the DE algorithm.

Sensor ag, rpmg, Wy, ag, rpmg, Wy, ag, rpmg, Wy, a, xXp const,,

9Y <80 67030 <120 30 180050 <400 20 2950+50 <200 50 - 20

These values can be used as guideline parameters. The proper definition of this range can significantly

reduce the time required by the DE algorithm to reach optimum.
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9. Conclusions

Large turbogenerators are the heart of the power generation industry. They are designed and built for
long-term operation with as few shut-down processes as possible. Sometimes, the turbo-set can be
operated for months or even a year without a coast down. On the other hand, such a transient situation
carries essential diagnostic information about a machine's condition. During such events, much
information regarding the machine's condition is gone if not monitored and appropriately analyzed.
Automation should be applied to facilitate the analysis of these valuable data. Up to now it was not

possible, due to high cost of equipment and human expert.

The data-driven methods (OpEn and MD3) developed in this dissertation for the analysis and automatic
diagnostics of failures are driven by the type and nature of data obtained during large turbomachinery
measurements. Therefore, the methods proposed by the author in the doctoral dissertation are a
compromise of the amount of available data and the accuracy/repeatability of the results. The
dissertation is also a result of over 13 years of industrial practice combined with experience and expert

knowledge in the field of signal processing, rotor dynamics and large turbomachinery.

The proposed Operational Envelope (OpEn) method can help the maintenance staff in machine
operation and overhaul planning. OpEn is a novelty detection method that can be applied to the data
taken during the transient state of a machine. Together with the OpEn algorithm, the author proposed
a set of parameters that can be used to diagnose the transient automatically. Furthermore, those

parameters can be used with other process data for better and more in-depth diagnostic purposes.

Two parameters called RMSE and "Max Out of OpEn" were shown as helpful in the automated
detection of malfunctions. The other two may also be useful in the detection of other malfunctions.
The OpEn 2D and OpEn 3D are an automated fault detection method for transient states. The 2D case
analyzes only a single feature from a single sensor. The 3D case conjuncts two vibration signal features,
i.e., synchronous amplitude and its phase. Novelty detection method proposed in the dissertation can
be used to detect faults over different speed spans, different amplitudes during transient states, and
different sets of sensors. All these factors make this method very flexible and a powerful tool in

predictive maintenance schemes for many power facilities.

The Multidimensional Data Driven Decomposition (MD3) method proposed in this thesis is designed
to identify machinery faults automatically. The author’s novel approach to decompose the transient
into several predefined signals, enables the analysis of individual dynamics system parameters
becomes easier to evaluate and assess even to unqualified personnel. The decomposed transient
components are responsible for particular failure modes and, as a consequence, not only can different
malfunctions be detected, but they can also be identified. These parameters can be used to track and
trend the evolution of the system dynamic response parameters without the engagement of the
diagnostic teams. The MD3 method can assess data during each transient in contrast to portable
equipment measurement that can miss the unplanned and sudden shut-downs and start-ups. The

cornerstone of the method is to decompose a transient into a set of base functions. Such functions
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have a simple form (Gaussian, parabolic or constant bias). Each such function has a mechanical
meaning and can be used to diagnose and analyze transient responses collected during coast-downs
and start-ups. The innovative MD3 method proposed in the article can increase the safety of the device

and reduce the costs of electricity generation.

To tackle the problem of different content of transient data sets a set of models is used to fit the data.
The best scenario selection strategy uses the MSE criterion to evaluate the three available models of
decomposed function sets. The selection strategy is the ablation study of the MD3 method. This allows
the MD3 method additionally increase the reliability of the method and reduce the risk of overfitting
the model. Finally, the best model, which scenario has the lowest value of the MSE index, is used for

the technical state assessment.

The Differential Evolution algorithm performance in terms of the time-to-transient fit ratio for all

scenarios is investigated and presented. Input parameters of the DE for all scenarios are set up to:
Number of evolutions: 750;

Number of population: 40;

Crossover rate: 0.7;

Mutation rate: 0.8.

Both sections, Validation of Model Data and Case Study, confirm that the method can accurately
pinpoint the type and magnitude of a particular fault. Based on the case study, the parameter
responsible for the imbalance response was the a, the coefficient in the decomposed function. In the
real-object data case study, the MD3 method selected scenario three as the one with the best fitting
capabilities for replicating the system's transient response. Often in Machine Learning research the
ablation procedure is used to avoid the model overfitting. In our case, we achieve this goal by
estimating parameters of several models of different complexity. Thus, we additionally increase the
reliability of the method and reduce the risk of the model overfitting. Moreover, in the case study
section, the authors provided a set of parameters to assess the technical condition of the rotor of a
high-power generator. The parameters can be used as baseline parameters references to assess

potential damage during transient states if the vibrations fell out of the acceptance region.

The Multidimensional Data Driven Decomposition (MD3) is an extension of the Data Driven
Decomposition Method (D3), previously proposed by the authors in [14]. The multidimensional (multi-
sensor) approach produces much better results than the analysis performed only with a single sensor
(D3).

During the process of the research, Author performed a list of tasks. Some were learning of new
technologies (e.g. Python), the others were literature studies, to become familiar with the current state
of the art. However, the majority of tasks were Author’s original contribution to the field of signal
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processing, focused on Fault Detection and Identification. These tasks were:

Development and proposal of system architecture.

Development of data preprocessing methods.

Implementation the complete system in the Python environment.

Analysis of the 200MW,360MW, 470MW, 560MW type turbines technical documentation
(gathering of relevant knowledge about the dynamics of these types of machines, and
assumptions’ preparation for determining baseline measurements).

Preparation of the simplified 1DOF model of turbogenerator shaftline dynamics [62].

Analysis of the correct dynamic state databases and selecting reference data for baseline
evaluation.

Analysis of over 250 transient measurements databases.

Selecting and ranking transients according to the methodology criterion (correct for baseline
measurements; correct for the study: i.e., data contains potential malfunctions information;
unusable data: from data points not covered by the test, bad quality data).

Invention, creation, and development of the fault detection (OpEn) method.

Establishing the upper and lower values for the OpEn 2D case and the ellipsis axis values for the
OpEn 3D case.

Establishing the severity parameters for the OpEn 2D and 3D cases.

Establishing the upper and lower values for the OpEn 2D case and the ellipsis axis values for the
OpEn 3D case.

Invention, creation, and development of the fault identification (MD3) method.

Proposition of the decomposed functions algebraic representations (Gaussian, parabola,
bias/const).

Defining the fitness functions for the Differential Evolution algorithm.

Estimation of parameters of decomposed functions (adopting Python’s DE algorithm code to
find the decomposed function parameters).

Planning, preparation and execution of experiment on a test rig.

Validation of proposed methods on laboratory data.

Validation of proposed methods on real object data.

Summing up, the Author developed complete set of methods, using data-driven approach, to

automatically analyze the transient signals from large turbo sets. This allows to create the complete

automated fault detection and identification system of large turbomachinery using Machine Learning

approach. Such an achievement was the goal of this thesis, i.e. one can state that the goal of the

dissertation was achieved.

The results of this dissertation can be used in FDI systems in commercial and industrial power plants

as an autonomous diagnostic system. It can also be an extension and support for the existing diagnostic

system, adding an element of automation to the diagnostic processes of the most critical machines.
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During research, as in every scientific activity, several new challenges were identified. First, it was
discovered that the method becomes unfeasible when more than 4+6 transient responses are
considered at once. The above findings led the authors to conclude that the MD3 analysis should be
performed at particular rotor parts but not on the whole turbogenerator shaftline. Therefore,
improving the method's performance and extending its multidimensionality capabilities should be the

subject of further research.

Due to the size and complexity of the problem and the availability of data from real turbo sets, the
author could validate the entire system for the unbalanced state only. The OpEn detection method has
proven successful for other types of failure. However, due to the above, the author could not propose
an algebraic representation of the decomposed functions and find the values of their boundary

parameters for the MD3 method. It will be another direction of the author's research.

The author also plans to create methods that take into account other types of machine malfunctions.
For example, the analysis of additional signal features, the overall vibration level can be used to detect
sub-synchronous vibrations. These vibrations do not depend directly on the rotation of the turbine set,
so they are not included in the harmonic analysis. However, the dominant value of the sub-
synchronous components combined with the low values of the synchronous components may indicate
the development of oil whirl in the bearing. Due to very high amplitude levels, these incidences can

damage the machine's components.

During further research the author will research and validate the MD3 method for the rotor-to-stator
rubs detection and assessment. He will also use a set of different signal features to detect other
malfunctions. Additionally, the author plan to incorporate different DE strategies. It will involve

different mutation and crossover rate definition proposed Ahmad et al. [63].
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