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Streszczenie 

Wykrywanie i identyfikacja uszkodzeń dużych maszyn wirnikowych jest jednym z najważniejszych 
zagadnień diagnostyki maszyn energetycznych dużej mocy. Czynnikiem stwarzającym duże przeszkody 
w analizie tak dużych obiektów badawczych jest złożoność ich odpowiedzi drganiowej dla linii wałów, 
składającej się z kilku części. Istnieje szereg procedur i metod pozwalających wykrywać i identyfikować 
anomalie podczas pracy w stanach ustalonych maszyn energetycznych. Ważniejsza pod względem 
diagnostyki uszkodzeń jest jednak analiza stanów przejściowych tych maszyn. Zasadniczą wadą 
obecnego podejścia jest konieczność angażowania ekspertów z dużym doświadczeniem, co jest bardzo 
kosztowne i pracochłonne. 

Celem pracy było zaproponowanie kompletnego systemu automatycznej diagnostyki uszkodzeń 
dużych maszyn wirnikowych na bazie ich odpowiedzi w stanach przejściowych – w szczególności 
podczas zmiany prędkości obrotowej.  

Problem badawczy, to jest detekcja i identyfikacja uszkodzeń podczas uruchomienia lub odstawienia 
turbozespołu dużej mocy został rozwiązany poprzez analizę szeregu badań diagnostycznych 
wykonanych przez autora na obiektach zainstalowanych w elektrowniach zawodowych oraz symulację 
konkretnych niesprawności na stanowisku laboratoryjnym. Bazy danych z badaniami diagnostycznymi 
zawierały zarówno odpowiedzi turbozespołów wolnych od uszkodzeń, jak i z konkretnymi 
uszkodzeniami zweryfikowanymi w trakcie badań diagnostycznych na obiektach. Autor w poniższej 
pracy używał danych pochodzących z przenośnego urządzenia diagnostycznego. Autor opracował i 
zaproponował dwie metody: Operating Envelope – OpEn (do automatycznej detekcji uszkodzeń 
podczas stanów przejściowych) oraz Multidimensional Data Driven Decomposition – MD3 (do 
automatycznej identyfikacji niesprawności). Ustalenie danych referencyjnych jak i przygotowanie 
danych z aktualnego stanu przejściowego jest oparte na interpolacji Cubic Spline (w celu ujednolicenia 
interwałów, dla których będzie przeprowadzana analiza wszystkich danych). W metodzie detekcji 
uszkodzeń (OpEn) autor wykorzystał koncepcję zbliżoną do obwiedni sygnału (Spectrum Envelope) w 
celu określenia regionu akceptacji poprawności odpowiedzi turbozespołu. Do automatycznej 
identyfikacji parametrów dekomponowanych funkcji, został wykorzystany algorytm Differential 
Evolution (DE), który wywodzi się z rodziny algorytmów genetycznych Genetic Algorithms (GA). 
Pozostałymi narzędziami składającymi się na cały zaproponowany system są: dla metody detekcji: dwu- 
i trójwymiarowy rejon akceptacji dla każdego z czujników poszczególnych części turbozespołu, a dla 
metody identyfikacji: zbiór trzech scenariuszy z odpowiednio zmodyfikowanymi funkcjami 
dekompozycji wraz z miarą ich dopasowania. Wszystkie metody zostały przebadane na danych 
pochodzących z symulowanego środowiska na stanowisku laboratoryjnym oraz na danych z obiektów 
rzeczywistych. 

 

Słowa kluczowe: maszyny energetyczne, wykrywanie uszkodzeń, dynamika wirników, przetwarzanie 
sygnałów, dekompozycja sygnału, algorytmy genetyczne, Differential Evolution. 
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Abstract 

Detection and identification of malfunctions in large rotating machines are among the most critical 
subjects in the diagnostics of utility power generation machinery. The factor that creates significant 
obstacles in analyzing such large research objects is the complexity of the vibration response for the 
entire shaft line train, composed of several parts. There are several procedures and methods to detect 
and identify anomalies during the steady-state operation of turbomachinery. More important in fault 
diagnosis is the analysis of transient states of these machines. Key disadvantage of these methods is 
involvement of human experts with strong experience. 

The aim of the research was to propose a complete system of automatic fault diagnosis of large 
rotating machines based on their responses in transient states - particularly during changes in 
rotational speed. 

The research problem, i.e., the detection and identification of failures during the commissioning or 
shutdown of a high-power turbine set, was solved by analyzing a number of diagnostic tests performed 
by the author on facilities installed in utility power plants and simulating specific malfunctions at a test 
rig. The databases with diagnostic tests contained both the responses of fault-free turbine sets and 
those with specific damages confirmed during diagnostic tests on objects. The author used data from 
a portable diagnostic device. The author developed and proposed two methods: the Operating 
Envelope - OpEn method (for automatic fault detection during transient states) and the 
Multidimensional Data Driven Decomposition - MD3 method (for automatic fault identification). 
Determining the reference data and preparing the data from the current transient state is based on 
the Cubic Spline interpolation (to standardize the intervals for which all data will be analyzed). In the 
failure detection method (OpEn), the author used a concept similar to the signal envelope (Spectrum 
Envelope) to determine the region of acceptance of the correctness of the turbine set response. In his 
analysis, the Differential Evolution (DE) algorithm was used to automatically identify the parameters 
of the decomposed functions derived from the Genetic Algorithms (GA) family of genetic algorithms. 
The remaining tools that make up the entire proposed system are, for the detection method: two- and 
three-dimensional acceptance regions for each of the sensors of individual parts of the turbine set, 
and for the identification method: a set of three scenarios with appropriately modified decomposition 
functions along with a measure of their matching. All the methods were tested on data from a 
simulated environment on a laboratory stand and data from real turbo generators. 

 

Keywords: power generation machinery, fault detection, rotor dynamics, signal processing, signal 
decomposition, genetic algorithms, Differential Evolution. 
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1. Introduction 

1.1. Large turbomachinery in industry 

Large sets of turbogenerators are the main contributors to the world’s electric generation. Although 
in last years renewable energy sources are rapidly increasing, large utility power plants with large 
turbogenerators will play the overwhelming role in the industry. Such a scenario, according to 
forecasts, will remain for at least a few decades. Turbines coupled with generators are the primary 
machines in every large nuclear and fossil fuel utility power plant worldwide, and their ability to 
operate is critical for the power generation process. Such necessary units are called “critical machines” 
because their unavailability can degrade the operation of the national electric grid system, which can 
be harmful to the national industry. Therefore, their malfunctions should be detected to avoid 
catastrophic failures and unplanned shutdowns. 

To show the perspective, utility power plants are large-size facilities. The turboset plays a central role 
as it is a unit that converts mechanical energy into electrical energy. A turbine hall can be as long as 
0.5 km or even 1 km in extreme cases. Figure 1 shows two types of turbine hall arrangement. Top of 
the figure depicts an old type of machine hall. This arrangement is characterized by many smaller units, 
typically eight to twelve, located parallel to each other. The power output of a single unit usually is up 
to 230MW. Figure 1, bottom, shows a new arrangement of the power generating units. It is 
characterized by a small number of turbine sets, usually one or two, located one after the other. These 
are high-power units, as the unit's output power is often close to 1GW, which is four to five times 
greater than old types of turbine sets. 

 



12 
 

 

 
Figure 1. Power plant machine hall: top – old arrangement; bottom – new arrangement. 

Figure 2 illustrates an example of a 13K215 type turbine hall (top of Figure 2) and the turbine part 
cross-Section (bottom of Figure 2). These units are the most popular turbine type in Poland’s power 



13 
 

generation industry. These machines were mostly manufactured in the 1980s. They have been 
successively repaired and modernized to meet the operational requirements and increase their 
availability. 

 

 
Figure 2. Turbine hall of 13K215 units installed in a power plant (top) and cross-section of the turbine type 

(bottom). 

Figure 3 shows two opposite steps of the process of replacement of one of the key machine 
components - the Intermediate Pressure (IP) rotor. The top part of the figure shows the old rotor after 
it has been disassembled. The bottom part shows the new rotor installation in the IP cylinder body. 
Such regular modernizations allow extending the life of machines for many years. However, it must be 
supported by appropriate supervision of the device's safety. Together with increased electricity 
demand, new challenges arise both for the machines that are expected to be more reliable and for 
monitoring systems to diagnose malfunction without expert knowledge in a reliable way. These 
machines are expected to operate for long periods without the necessity of being shut down. From 
start-up to coast down, intervals between transient states can be measured in months or, in some 
cases, even longer. They are operated in varying conditions such as load change from 40% up to the 
nominal load, different steam temperatures, and pressures. This type of operation can introduce a 
large amount of stress, which eventually can lead to fatigue and, in extreme cases, to a failure. 
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Figure 3. Intermediate Pressure (IP) turbine rotor: top - disassembly of the old one; bottom - new one assembly. 
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To put this into perspective, the Figure 4 presents the smallest and the largest part of the turbine 
drivetrain. The smallest of the turbogenerator rotors is the high-pressure rotor (HP). It is about four 
meters long and weighs about five tons. Figure 4 (a) shows the on-site assembly of an HP cylinder with 
a rotor. On the other hand, the largest part of the turbine is the rotor of the low pressure (LP) cylinder. 
It measures about 10 meters in length and weighs above 100 tons. Figure 4 (b) and (c) presents the LP 
part (cylinder and rotor) assembly process.  

These types of equipment have to be robust, and their assembly must be extremely exact. For such 
large elements to run smoothly, they must be assembled with very high precision. Usually, the 
alignment of the particular shaft axis has to fall into a +/- 0.015 mm tolerance. The process of alignment 
of each shaft is complicated in terms of the logistics of cumbersome objects and constraints that have 
to be met. In addition, it can last for 72h for a single coupling. These operations make the overhaul 
activities long-lasting and tedious for both the contractor and the machine’s owner. Turbine sets are 
equipped with vibration monitoring and supervision systems to avoid unplanned outages and 
unwanted repairs. 

 

 

(a) 



16 
 

 

(b) 

 

(c) 

Figure 4. Steam turbine parts: (a) – HP cylinder assembly; (b) – 200MW class LP rotor assembly; (c) – two LP 
rotors of +450MW class unit in situ. 

Steam-powered turbogenerators still play an important role in the worldwide electrical power 
generation. The survey by Xiao et al. [1] presents the main components of a fossil-fuel power plant and 
its importance and share in the world power generation industry. Although renewable energy each 
year takes a bigger and bigger share in the power generation market, the safety of the power grid 
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requires large units in the system to balance the renewable sources in case of lack of wind or sun. 
Another important use of steam plants is suppling steam required by numerous industrial processes 
(e.g. chemical or paper plants). In such cases, renewal energy fails to provide such a media as was 
presented in the report [2]. 

1.2. Fundamentals of rotating machinery measurements 

Large turbomachinery like steam and gas turbogenerators should operate as long as possible without 
stoppage or interruptions of power generation. This approach forces a new monitoring standard for 
steam and gas turbogenerators. Monitoring and assessment of their technical condition are carried 
out using signals from vibration sensors. There are three basic types of sensors measuring turbine 
vibrations. These sensors are: accelerometers, velocity sensors, and eddy current sensors. Their 
designs and principles of operation vary from one type to another. In the next sections the main 
differences between these sensors will be presented.  

1.2.1. Accelerometers 

Acceleration sensors are usually small and light, as can be seen in Figure 5 top. They can measure wide 
range of frequencies. Depending on size and dimensions their frequency response usually starts from 
3𝐻𝑧 and spans up to 120𝑘𝐻𝑧. Figure 5, bottom, presents typical components of accelerometer. The 
main element is a piezoelectric element sandwiched between base of the sensor and the seismic mass. 
Stress applied to the piezoelectric element causes an electric charge to be generated. The sensor's 
electrical response is directly proportional to the vibration’s acceleration to which it is subjected. The 
force acting on piezoelectric element is obtained by the mass and preload spring configuration in the 
sensor. Often, they have integrated preamplifiers to rectify and enhance the signal output. Also, they 
need an external power supply to work. 
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Figure 5. Typical accelerometer sensor: top – real sensors examples; bottom – sensor components schematic. 

Due to their high-frequency bandwidth, these sensors are often used to monitor rolling bearings and 
planetary gears.  
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1.2.2. Velocity sensors 

Velocity sensors are generally the biggest and the bukliest of all types of vibration measurement 
sensors. They measure absolute velocity of the stationary structures. Due to the moving mass, i.e., 
permanent magnet, the usable frequency sensor output range spans from approximately 10 ÷ 15𝐻𝑧 
up to 1500𝐻𝑧, and they are sensitive to the mounting orientation. Figure 6, top left, presents examples 
of velocity sensors used to monitor turbine ‘s bearing pedestal casings, and top right – velocity sensor 
mounted on the bering pedestal on-site. The components of the typical velosity sensor are presented 
in Figure 6. The signal is generated by the permanent magnet moving inside a coil. The signal output is 
proportional to a velocity of vibration to which the sensor is subjected. They generate signal output 
without external power supply. 

  

 
Figure 6. Typical velocity sensor: top left – real sensors examples, top right – on-site velocity sensor assembly; 

bottom – sensor components schematic. 

Velocity sensors are often used in large turbomachinery monitoring and diagnostics as a suplementary 
measurements to eddy-current probes. 
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1.2.3. Displacement sensors 

Shaft‘s motion in relation to the bearing casing in fluid-film bearings is the vital monitoring parameter. 
This motion is used in diagnostic purposes as the most important source of information. Eddy-current 
probes can measure both static and dynamic motion of the shaft. It measures the gap between rotor 
and sensor. Static part of the signal is a rotor positon in the bearing and the dynamic part is the relative 
motion from actual static position. Critical machines are equipped with eddy current probes that 
measure the shaft's vibration inside a journal bearing in two perpendicular axes (relatively to one 
another). In the large turbomachinery equipped with fluid-film bearings, relative bearing-to-rotor 
displacement measurement provides essential information about the behavior of the rotor . Figure 7, 
top left, presents a schematic of their arrangement, and Figure 7 bottom depicts the field assembly. 
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Figure 7. Arrangement of eddy-current probes in the bearing housing; top– schematic, middle left – physical 
sensors example, middle right – typical sensor components; bottom – field assembly on a journal bearing. 

There are several different applications of eddy-current probes in the turboset measurements apart 
from vibration measurements. One of the most important is the measurement of the turbine's axial 
displacement. It measures the position of the turbine shaft to the reference point, often found inside 
the thrust bearing pedestal. This measurement is critical and is part of the machine safety system. 
Other measurements that use such sensors are the relative expansion of the rotor to the turbine 
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cylinder body, as depicted in Figure 8. Another measurement is the rotational speed, phase angle, and 
eccentricity (or mechanical runout of the shaft in front of the rotor in a radial direction) measurements 
used for diagnostic purposes.  

 
Figure 8. Relative expansion sensor assembly. 

In Chapter 6 of [3], Eisenmann describes various types of sensors, including eddy-current sensors, for 
machine health monitoring and protection systems. Figure 9 top shows the arrangement of shaft axial 
position, reference one-per-revolution point (called Keyphasor by Bently [4]), and relative vibrations 
sensors. The bottom part of Figure 9 depicts the real-life assembly and placement of the probes in the 
thrust bearing pedestal. 
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Figure 9. Eddy-current probe installation example; top – schematic arrangement by Eisenmann [3], bottom – 
physical assembly of the eddy-current sensors inside thrust bearing pedestal for different type of 

measurements. 

Performing a vibration analysis involves considering several parameters, e.g. broadband features, 
frequency selective features, and harmonic vectors. The most critical parameters to be assessed are 
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the natural frequencies of a shaft line. Vo and Ton-That [5] present an extensive study in this respect. 
The monitoring and protection systems of most large rotating machinery equipped with sliding fluid-
film bearings typically use two types of sensors, namely eddy current and velocity sensors. 

As assessed following ISO 20816-1, the technical condition of rotating machinery should fall within the 
10-100Hz frequency range. Due to the features of the sensors presented in Sections 12-15, eddy 
current sensors are the primary sensors for monitoring and protection systems of turbogenerators. 
Each bearing of the machine is equipped with this type of measurement. It is the main quality 
parameter determining the technical condition of the machine. In addition, the data from vibration 
velocity factors are often used as supplementary ones. Unfortunately, turbo-sets are often not 
equipped with velocity sensors in a repeatable and unambiguous manner due to economic reasons. 
This fact disqualifies measurements from these sensors for automatic evaluation and implementation 
on the entire machine park. 

1.2.4. Amplitude and phase lag measurement 

To extract diagnostic information from the vibration signal, a set of two parameters can provide the 
best results. These are the amplitude and frequency of a vibration component of a known frequency. 
For example, in rotating machinery with sliding bearings, the critical feature in signal extraction is the 
phase lag of signal components. This parameter determines the timing difference between pre-defined 
events. The example of the physical arrangement for this type of sensor is depicted in Figure 9.For 
example, the one-per-revolution mark determines the 360° of rotation, and the time between the 
consecutive marks determines the angular speed of the machine presented in Figure 10. The once-per-
revolution mark is one of these events, and the second one is the closest distance between the sensor 
probe and rotor present in the figure. A diagnostic system uses an eddy-current sensor to produce this 
reference point. 

 
Figure 10. Once-per-revolution event. Timing difference and rotational speed measurement [4]. 

It becomes a reference point for the whole shaft-line vibration measurements. All features from the 
vibration probes across the machine train reference to this signal. This reference enables obtaining 
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specific characteristics of the dynamic response of the shaft-line. Bently and Hatch [4] presented these 
concepts in an easy and straightforward way. Figure 11 depicts extracting a phase lag and amplitude 
from a simple vibration signal. The top chart presents "the raw" vibration signal from the sensor. The 
middle part of the figure describes a one-per-revolution reference point from the lag angle sensor 
(called Keyphasor by Bently [4]). The bottom chart shows the combination of the upper two to produce 
the wanted vibration feature. Time T is the time between the reference mark events. 

 
Figure 11. Phase lag angle, angular velocity, and amplitude extraction procedure [4]. 

The difference 𝑡 − 𝑡  is the time between the reference point and the highest point in the waveform 
since the reference point occurred. It is the amplitude 𝐷  of the vibration vector represented by the 
Equation (7), and depicted in Figure 11. Equation (1) presents the phase angle 𝛽  derivation.  
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𝑡 − 𝑡

𝑇
= β  

(1) 

 
Figure 12. Reference mark and vibration signal during field measurement. 

An example of extracting the characteristics of a vibration signal during field measurements is shown 
in the Figure 12. 

1.3. Selected aspects of rotordynamics 

In this thesis, the author focuses on determining the baseline behavior of the machine in a healthy 
state, detecting an anomaly when it occurs during the transient state, and identifying the malfunction 
– when detected. To introduce the reader into the subject, the key notions from the field of 
rotordynamics will be presented in the following section. 

1.3.1. Transient rotor response 

The most fundamental concept of estimation of rotating machinery is the model of the Jeffcott rotor 
described by Vance et al. [6] and presented in Figure 4. Starting from this model, Ehrich [7] presents 
the response of the rotor-bearing system to excitation by response for the synchronous excitation, i.e., 
imbalance during a transient state, in his in-depth study of rotordynamic topics.  

Thus the equations of motion for the Cartesian coordinate for the rotor model in Figure 4 can be listed 
as follows [6]. 
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𝑚�̈� + 𝑐�̇� + 𝑘𝑋 = 𝑚ɷ cos ɷ𝑡 (2) 

𝑚�̈� + 𝑐�̇� + 𝑘𝑌 = 𝑚ɷ 𝑢 sin ɷ𝑡 (3) 

 

(a) 

 

(b) 
Figure 13. The Jeffcott rotor model (a) [6]; End view of the Jeffcott rotor and its coordinates (b) [6]. 

With a solution of: 

𝑋 =
ɷ 𝑢

𝑘
𝑚

− ɷ + (
𝑐ɷ
𝑚

)

cos(ɷ𝑡 − 𝛽 ) (4) 

𝑌 =
ɷ 𝑢

𝑘
𝑚

− ɷ + (
𝑐ɷ
𝑚

)

sin(ɷ𝑡 − 𝛽 ) (5) 

𝛽 = tan (
𝑐ɷ

𝑚
𝑘
𝑚

− ɷ
) (6) 
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𝐷 = 𝑋 + 𝑌  (7) 

Equations (6) and (7) can be drawn for the angular speed of the rotor ɷ. Such graphs will provide 
helpful information on the behavior of the rotor during transient state operation. Figure 14 presents 
the solution to equations presents the solution to the equation (2) and (3) depicted visually throughout 

the transient state. Analyzing Figure 14, well below critical rotor speed (𝜔 = 𝑘/𝑚), phase angle 

(phase lag 𝛽 ) is in phase with the unbalance force. The shaft behaves like a rigid body within this zone, 
i.e., it does not deflect. As a rotor approaches its critical speed, whirling amplitude 𝐷  approaches its 
maximum with a phase angle reaching 90°, and the rotor deflection reaches the maximum value. With 
increasing rotation speed, phase lag will increase from 90° up to 180°, which will cause whirling 
amplitude to reduce after its critical speed range. 

 

 
Figure 14. Bode plots of the rotor response phase (top described by equation (5)) and amplitude (described by 

equation (3), (4), and (6)) [8]. 

Similar behavior of the system is observed during measurements with portable instruments connected 
to eddy current sensors. Figure 15 presents an example of a Bodé plot from a single eddy-current (i.e., 
relative vibration) sensor obtained during field measurements.  
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Figure 15. Bodé plot of the real system. 

The upper diagram shows the change in phase lag, and the lower chart shows the amplitude for 
individual revolutions. The graphs for Figure 15 show the amplitude-phase response of the system, at 
the measuring point, to the variable synchronous excitation, which is the centrifugal force. 

1.3.2. Unbalance response of the system undergoing transient states 

The most common malfunction in rotating machinery is the unbalance of one of its rotors. The force 
that generates the unbalance on the rotor is related to the centrifugal force shifting the center of mass 
of the rotating rotor away from the inertia axis of the rotor. For example, in Figure 13, marked as point 
𝐶, the radius 𝑟 on which the unbalance mass 𝑢 acts with rotational speed 𝜔 creating a rotating 
centrifugal force. The force creates rotor lateral movement perpendicular to the rotor axis inside the 

bearing. It can be approximated by the simple equation, i.e., 𝐹 = 𝑚𝑟𝜔 . The force generated by the 
rotor imbalance is proportional to the square of the rotational speed at which the rotor spins. 
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(a) 

 

(b) 

Figure 16. (a) – centrifugal force simulation; (b) – real data example of the unbalance rotor system response. 

Figure 16 (a) shows an exemplary diagram of the centrifugal force acting on the rotor during a change 
in rotational speed, i.e., during a transient state and the Table 1 summarize the simulation basic values 
together with their description. 

Table 1. Rotational speed simulation parameters. 
Description of the unit used in the simulation Unit Value 

The highest rotational speed value during simulation 
𝑥  3000𝑟𝑝𝑚 

Centrifugal force acting at the highest rotational speed value 
𝑎  300 

Centrifugal force entry point (since when centrifugal force 
contributes to the system response) 

𝑥  500 

 

The similar nature of the system's response to excessive imbalance force has been confirmed many 
times by the author's research on real objects. Figure 16 (b) shows an example of the system response 
in the form of a relative shaft vibration measured at one end of an unbalanced rotor. 

The centrifugal force from imbalance only makes a significant contribution starting from 900RPM due 
to the rotor transient's nature, as shown in Figure 16 (b). From around 400RPM to around 900RPM, 
the rotor passes through its resonance speed range. During transient states, the rotors of steam and 
gas turbine sets go through at least one, and sometimes even two, regions of resonant speed intervals.  
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1.4. Problem formulation 

After presentation of the basics of the large rotating machines and an outline of the nature of the 
response of their transient states, we can define the motivation for the actions taken in the thesis.  

1.4.1. The motivation 

Fault detection and identification is not an easy task for condition monitoring of the large rotating 
machinery. The reliable vibration measurements of high-power energy machines requires an advanced 
signal processing system, including spectral analysis and order analysis. Tracking filters are used during 
start-ups and coast downs, which set the synchronous component to the current rotational speed of 
the turbine set. Due to fluid-film bearings used as the supporting structures of the machine, the 
complexity of the rotor-to-stationary part relations is even more complex. One can find an excellent 
introduction to the subject in the widely recognized book by Bently and Hatch [10]. Interested readers 
can also refer to the work of Vance et al. [6], who presents the entire course of rotordynamic analysis. 
In-depth and very detailed rotor modeling examples, in turn, can be found in the books of Muszyńska 
[8], Kiciński [9], and Eisenmann [3]. 

Along with regular rotor models, they propose and explain several malfunctions, such as fluid induced 
instabilities presented in [8] and [10]. Complex and accurate models, mainly focused on 200MW class 
turbines, were proposed by Kiciński in [9] and [10]. These advanced models were based on the FEM 
(Finite Element Method) to analyze a rotor's behavior. On the other hand, a rotor rub fault requires a 
different approach to modeling, and the measurement of torsional vibration appears to be very helpful 
in this process. Interested readers can refer to the work of [11], where the author presents the study 
in a very detailed manner. 

According to the works of Muszyńska [8], Bently and Hatch [4], Adams [11], and Eisenmann [3], the 
primary and most common malfunctions are: 

 unbalance, 
 misalignment, 
 rotor rub, 
 oil-related and steam-related instabilities in bearings and seals, respectively, 
 bearing overload/ underload. 

Even though these failures are the most frequent to be encountered, it is tough to distinguish them 
without extensive experience and expert knowledge. Some of them can exhibit similar features during 
steady-state operation. In such cases, transient signal analysis is the best way to analyze vibration data 
to produce a reliable outcome. The raw vibration signals are very complex, and the measurement 
database size is enormous.  

A few types of signal features describe machine dynamic state, such as overall level of vibration, both 
relative (measured in peak to peak or 0 to peak, respectively) and absolute (measured in RMS – Root 
Mean Squared, or 0-pk – zero-peak). Other commonly used features are synchronous system response 
(1X), second super synchronous system response (2X), and sub-synchronous, as Bently and Hatch [4] 
and Eisenmann [3] described. It is important to track both amplitude and phase for the harmonic 
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features. Eddy-current sensors provide all the necessary information to obtain the aforementioned 
features.  

Due to the rarity of transients in the machine's life cycle, the author had a limited amount of them 
collected. Although the author could label some transients from his measurements as defective, they 
did not account for even five percent of all measurements collected throughout the author's career. 
This made it impossible to use machine learning and artificial intelligence methods that need training 
and test data to train the models. It is especially important regarding the data from faulty states. 

To overcome this problem, the collected data were used to create the foundations of a system based 
on data-driven methods that turned out to be effective and robust. 

The system proposed by the author will operate in the background, using the data from the turbine 
set monitoring system. It is activated after every coast down or start-up. The system will automatically 
assess the data. It will allow further operation, as long as vibration response during transient will be 
qualified as correct. In the other case, it will perform the fault identification and inform about possible 
cause of a problem. 

The methods proposed in the dissertation below are relatively simple. This is because it should be used 
in practice by non-experts. There is a theoretical disadvantage that system may not be able to detect 
the smallest changes and deterioration of dynamic state and will send alerts only when the condition 
of the machine deteriorates noticeably. The simplicity (and hence resistance to disturbances) and 
robustness are decisive advantages of the proposed approach. The system will be able to report the 
dynamic state change and to avoid false alarm indications. This will contribute to the increased trust 
to the indications of the proposed FDI (Fault Detection and Identification) system.  

Let us first focus on the main component of the authors research – the transient state. During a change 
of the rotating speed, excitation force (centrifugal, synchronous force) will vary, changing the stiffness 
and damping relations of the system. These changes are an inherent part of the flexible rotor design. 
Machines in a correct state also experience the same mechanisms, although their vibration response 
is very different. If we assume a rotor-to-bearing system without malfunctions, the transient curve will 
have a set of parameters to reflect its behavior. This set will include the peak of the resonance 
response, width of the critical speed interval, vibration amplitude at Full Speed No Load (FSNL) state, 
etc.. That same system with developing malfunction will produce a different response, and the 
parameters reflecting its behavior will have different values. 

The majority of methods available in the literature consider only steady-state operation of the 
machine. Brito et al. in [12] showed advantages in unsupervised learning and its incorporation in 
rotating machinery fault pattern detection and diagnosis. It constitutes a methodology to detect a fault 
mode and predict its trend. In fault diagnosis, they used the black-box model approach and shapely 
additive explanations method. He used unsupervised classification and root cause analysis to produce 
a diagnosis. They present several advancements in fault detection, diagnosis, and prognosis in rotating 
machinery. From this perspective, automatic detection of common malfunctions can become an 
interesting complement to standard monitoring equipment. 
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In large turbomachinery, this is not the case. Machine Learning approach is very hard to apply. The 
major problem is that fault mode data are often not available. Furthermore, there is no available 
training data set due to the low rate of transient states during the machine's lifetime (and even less 
with a fault). Additionally, a few state-of-the-art anomaly detection algorithms are examined. Thus, 
there is a shortage of techniques dealing with the transient states, especially for large turbogenerators, 
for which the transient data sets become very large both in terms of data points and in terms of time, 
depicted in Section 2.1 and shown in Figure 19 as coast down, and in Figure 20 as start-up. 

The author in [13] and in [14] proposed foundations and the basic considerations of automated 
turbomachinery fault detection and identification, respectively. The concept was proposed for a single 
channel only with unprocessed data and without any severe malfunctions. For such a relatively simple 
case, one probe is sufficient. However, taking into account the whole turbogenerator shaftline relying 
on a single sensor often lacks essential information. Further-more, different malfunctions can exhibit 
itself in different parts of the machine during different circumstances. Therefore, for large 
turbogenerator sets, multichannel analysis is a necessity. Analysis should use different features from 
a single sensor (i.e. overall vibration amplitude, its first harmonic and phase, second harmonic, 
subharmonics, and others). Also, the investigation can incorporate different sensors from the same 
bearing (oriented orthogonally in the bearing plane). Finally, the research can use sensors at different 
axial locations along the shaftline. The above-described analysis challenges are why the original 
method, proposed in [13] and [14] for a single sensor, must be extended to a multidimensional case. 

A maintenance strategy that enables detecting malfunctions at the early stages of their evolution 
should play a crucial role in facilities using these types of machinery. The best data source for assessing 
the technical condition is the transient data measured during start-ups and coast downs. Most of the 
automated methods proposed in the literature are applicable to small machines with a rolling element 
bearing, during a steady-state operation with a shaft considered a rigid body. Large power 
turbomachinery express a very different behavior. They operate above their first critical rotational 
speed interval, and thus their shafts are considered flexible. To make the case more complex, these 
turbines are equipped with hydrodynamic sliding bearings. Such an arrangement introduces significant 
complexity to the analysis of the machine behavior, and consequently, analyzing such data requires 
advanced rotordynamics knowledge and field experience. Typically, after each transient machine data 
should be investigated to check whether the dynamic state is satisfactory and the machine can be 
operated safely. Such a step requires advanced measurement equipment, which is not always 
accessible, and availability of a skilled expert, which is costly and must be scheduled according to the 
availability. 

The goal of author’s dissertation was the research of a method to diagnose large rotating equipment 
in an autonomous way, so that the load on experts can be reduced to really important cases. In the 
dissertation the author proposes the anomaly detection method which he named the Operating 
Envelope (abbreviated as OpEn) and the fault identification method, which he named the 
Multidimensional Data Drive Decomposition (abbreviated as MDDD or MD3). Combination of both 
methods extend the single sensor concepts proposed in [13] and [14] to a functional and autonomous 
multi-channel fault detection and identification system.  
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Some works heading in the same direction were published in recent years. For instance, Bielecki et al. 
in [15] proposed a simple yet effective method for unsupervised monitoring of rotating machinery for 
failure detection in the early stages. Lei et al. in [16] incorporated unsupervised feature learning on big 
data set to diagnose the motor and locomotive bearing faults patterns. Wang and Sun [17] used the 
combination of wavelet decomposition sparse filtering networks and a support vector machine to 
establish fault diagnosis in the motor bearings. Authors adopted the decomposition concept to their 
research. All these works consider smaller machines during their steady-state operation. There are lack 
of works that take into account transient states of a large turbomachinery.  

The data-driven methods (OpEn and MD3) developed in this dissertation for the analysis and automatic 
diagnostics of failures are driven by the type and nature of data obtained during large turbomachinery 
measurements. Therefore, the methods proposed by the author in the doctoral dissertation are a 
compromise of the amount of available data and the accuracy/repeatability of the results. The 
dissertation is also a result of over 13 years of industrial practice combined with experience and expert 
knowledge in the field of signal processing, rotor dynamics and sliding bearings. 

Data-driven methods have advantages and disadvantages. The advantage of the methods proposed in 
this work are their simplicity. The advantage of simplicity is clarity in interpreting the results and a 
straightforward implementation process. No expert knowledge is required to read the method's 
indications contrary to, for example, FEM methods, where expert knowledge is essential for diagnosis. 
The disadvantage of simplicity is the possibility of "insensitivity" and overlooking the nuances of the 
early changes in the behavior of the turbine set. 

Such a limited set of data available for analysis makes it impossible to use artificial intelligence methods 
and algorithms and advanced novelty detection algorithms. Nevertheless, the methods proposed by 
the author turned out to be robust and were positively validated on both laboratory data and data 
from real objects. 

1.4.2. Goal of the thesis 

The main scientific goal of the dissertation is proving of the statement: 

It is possible to detect and identify faults of the large turbomachinery by an automated algorithm 
using analysis of transient data. 

This goal was achieved by dividing the whole work into several steps, which are listed below: 

 Development and proposal of system architecture. 
 Development of data preprocessing methods. 
 Analysis of the correct dynamic state databases and selecting reference data for baseline evaluation. 
 Invention, creation, and development of the fault detection (OpEn) method.  
 Establishing the upper and lower values for the OpEn 2D case and the ellipsis axis values for the OpEn 3D 

case. 
 Establishing the severity parameters for the OpEn 2D and 3D cases. 
 Invention, creation, and development of the fault identification (MD3) method.  
 Proposition the algebraic representations of the decomposed functions.  
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 Defining the fitness functions for the Differential Evolution algorithm. 
 Estimation of parameters of decomposed functions (adopting Python’s DE algorithm code to find the 

decomposed function parameters). 
 Implementation of the complete system in Python. 
 Planning, preparation and execution of experiment on a test rig. 
 Validation of proposed methods on laboratory data. 
 Validation of proposed methods on real object data. 

As a result, the dissertation aims to create the foundation framework, methods, and procedures of 
automated vibration data assessment to enhance maintenance reliability. Automatic fault detection 
and identification (FDI) tool can help maintain the reliability and safety of equipment in industrial 
plants. 

In addition, such a tool will facilitate work of operating personnel in turboset dynamic state 
assessment. It can also enable them to react faster to changes in the dynamic response to avoid critical 
failure and reduce the downtime to a minimum. Furthermore, information on the dynamic state of 
operation and its condition based on transient response can help management personnel plan 
essential repairs ahead. As a result, it can minimize the risk of long unplanned stand-still, overhaul, and 
repair. Such a situation can reduce the company's financial results and make the enterprise non 
profitable. Last but most important, increasing the reliability resulting from information from the 
procedures and methods contained in this doctoral dissertation may increase the safety of devices and 
people operating these devices by minimizing catastrophic damage to machines. 

1.4.3. Scope of the thesis 

The doctoral dissertation is structured as follows. The first chapter introduces the subject of large 
utility rotating machines. It includes a guide to vibration measurements of large rotating machines. 
Then, the most important values for assessing the dynamic condition of turbine sets are presented and 
described. It also includes an introduction to selected aspects of rotor dynamics needed for the 
research. The chapter ends with the formulation of the problem and the thesis, and the aim of the 
doctoral dissertation. 

The second chapter describes the work research object in greater detail. It shows the subjects on which 
the author performed the research. The specificity of the measurement of vibrations of large rotating 
machines and its influence on the selection of measuring equipment is discussed. Also presented are 
instruments used in measuring large turbine sets in the industry. 

The third chapter describes the process of collecting and processing transient data points. First, the 
measuring equipment used during diagnostic tests is described. Then, the entire configuration of the 
measuring equipment is presented and discussed. Next, the transient data points sampling rates are 
described in detail. The chapter also covers the most critical data structures that are needed and used 
in automatic fault detection and identification systems. The last part of this chapter discusses the issue 
of interpolation and its use in the data preprocessing process. 

In chapter four whole fault identification system is laid out. First, the author describes essential aspects 
of an automatic fault detection system. Then, the term Operating Envelope (OpEn) method is 
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introduced. This chapter describes the transient selection method for baseline measurements from 
which the acceptance region is calculated. Next, the term OpEn 2D is introduced, the OpEn method, 
which applies to only one vibration signal feature. Next, the severity parameters for the OpEn 2D 
method are given and entered. Then the author introduces the concept of OpEn 3D as an OpEn method 
for vibration signals consisting of two features. Finally, the method of obtaining baseline 
measurements for this case and severity parameters, which are used to assess the severity of the 
detected malfunction, are given. 

In chapter five, the entire system for identifying malfunctions is presented. In the beginning, the author 
introduces the method of parameter identification. Then the methods of identifying inequalities are 
discussed. Next, the concept of the Multidimensional Data Driven Decomposition (MD3) method is 
described. Finally, the author presents the application of the Differential Evolution (DE) algorithm to 
identify the parameters of decomposed functions. 

The sixth chapter describes the architecture of the automatic detection and identification system for 
large rotating machines proposed by the author. First, the author proposes a place for his system in 
the monitoring and diagnostics systems of the existing power plant systems. Then the pseudo-codes 
of the most important modules of the whole system are presented and explained. Then, the Python 
code for all the most essential functions and procedures is presented and described. 

The seventh chapter describes the validation of the OpEn method for both the 2D and 3D cases. First, 
the baseline measurement is presented. The baseline measurements are a prerequisite for validating 
the results of both methods. There are tables with baseline values for the entire turbo set consisting 
of high-pressure (HP), intermediate-pressure (IP), and low-pressure (LP) cylinder and the generator 
rotors. Then the OpEn method validation process for the 2D case is presented. Finally, the OpEn 3D 
method is validated on another dataset used in the identification method's validation process to 
validate the entire diagnostic system. 

Chapter eight describes the entire MD3 method validation process. First, the author used the method 
validation on test-rig model data. In the first part of the chapter, the author discusses the model data 
in detail, as well as the simulation results and method testing. Then he used the validation data of the 
OpEn 3D method from the previous chapter. Finally, the author gives a set of function parameters of 
decomposed functions. For this case, a scenario is indicated, i.e., a set of parameters of decomposed 
functions that best match the real transient. 

In the ninth chapter, the author presents the conclusions of the following work. Detailed conclusions 
regarding the OpEn as well as MD3 methods are presented. Finally, the author outlines the directions 
for further research and potential improvement of the system. 
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2. Measurement data of large turbomachinery 

The vibration data taken at large turbomachinery are very specific. The data acquisition equipment is 
highly specialized and is seldom used for any other machinery, due to high cost, set of functionality 
and required reliability. It also has several features, which requires specialized pre-processing before 
further data processing methods can be applied. These aspects will be presented in this chapter. 

2.1. Design and operation of large steam turbines 

The research subject is a steam turbine rigidly coupled to a generator of high output power. The 
research in this doctoral dissertation focuses mainly on machines of the +200MW class. To validate the 
author's proposed method +500MW class turboset research was also included.  

The share of large turbomachines in professional power sector markets varies depending on a specific 
country and grid settings. As far as Poland is concerned, an essential part of the turbogenerators are 
units of +200MW type (the 13K215 with 13MPa live steam pressure, 535°C of live steam temperature, 
condensate operation unit, and 215MW of power output and its modifications up to the 13K242 – the 
same parameters, but almost a 15% increase in power output). This unit type is the most common 
large turbo-set found in Poland's power generation industry. More than 50 units of this type operate 
until now, and they contribute to almost half of the national power production capabilities. The 18K360 
are the second most crucial type of turbo-sets. There are 16 such units in Poland. Additionally, a few 
units were built in the last several years with a very high-power output ranging from 800MW to 
+1,000MW. Due to the Polish power generation structure, my objective is to focus on +200MW units 
at first, and afterwards extend to units with a similar transient behavior. 

 
Figure 17. The layout of a 200MW type turbo-set. The bearings are numbered from the HP side (the figure 

prepared by the authors). 

A typical 200MW class turbogenerator consists of three cylinders (HP for high pressure, IP for 
intermediate pressure, and LP for low pressure) and one generator Figure 17 presents the entire setup 
of this type of machine. The author based the validation of the method on a turbines with a power 
output of +500MW. They have a similar kinematic scheme and the dynamic behavior. Figure 18 
presents the layout of its arrangement. 

 
Figure 18. The layout of a +500MW type turboset. 
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Turbines of this type have one HP cylinder, one IP cylinder, and two LP cylinders. They are also rigidly 
coupled with a generator. Despite the extension of the shaft line with an additional LP cylinder, the 
nature of the generator rotor response is very similar. The author confirmed the similarity of their 
transient responses throughout over 13 years of research on these two types of devices. The validation 
of the MD3 method results was performed on the responses of the unbalanced rotor of the + 500MW 
turbine generator set. 

In the power generation critical machinery such as turbogenerators are assumed to run smoothly for 
the whole lifetime period – often more than 30 years. Especially in large units, which are equipped in 
oil lubricated hydrodynamic bearings, vibration severity criterion is one of the most essential 
monitoring parameter as for the machine’s mechanical condition. Mechanical vibration is the source 
which contains most information about the health of the component.  

Unambiguous data are needed for comparison, to determine the baseline measurements, perform the 
anomaly detection task, and identify the parameters of the decomposed functions. The best data that 
defines the correct condition of the turbogenerator are vibrations of the shaft journal in the bearing 
bushing. The data for these machines' research is characterized by substantial changes during the 
operation of the device. Therefore, they can take different values depending on the machine's 
operation point. For example, during an idle run, i.e., Full Speed No Load (FSNL), the turbo-set may 
have a different vibration response than in the full-load operation of the generator. This is because the 
turbine's rotational speed is at its nominal value on the idle run. Still, the generator does not produce 
electricity (the generator is not synchronized with the power grid yet). Therefore, the turbine can move 
relatively freely because of moderate steam-related forces only. Finally, when the turbogenerator 
works at full load, the shaftline is subjected to maximum forces (the generator rotor load, steam-
related thrust force, temperature vector, etc.). To the contrary, during the coast down the turboset is 
unaffected by any forces other than the inertia. Figure 19 shows the coast down curve of a 200 MW 
class turbogenerator. As shown in the picture, the duration of the coast down may exceed 120 minutes 
(time from 19:28 to 21:52). 
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Figure 19. Shaftline inertia curve (coast down example) of the 200MW class unit. 

Similarly, when starting the machine (i.e., during run-up), the forces from the steam are also not 
significant. Therefore, in the author's opinion, based on the experience gathered during many years of 
research on energy machines, transients’ states (i.e., both run-ups and coast downs) are the best ways 
to assess the correctness of the technical condition of high-power energy devices. 

 
Figure 20. Start-up curve of the 200MW class unit 

There are several methods to measure vibration during the transient state. Each turbo-set is equipped 
in an online monitoring system. Such systems continuously measure vibration and calculate simplest 
features (peak amplitude, rms, gap, etc.). When vibration level exceeds configured level of alarm, the 
monitoring system will send the trip signal to the turbine controller, which will cut off the steam and 
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cause the turbine to trip. Although they may bring some help to analyze the machine condition, 
measurements from the monitoring systems do not provide much diagnostic information. For 
example, they often do not calculate vibration features, despite having such capabilities. Neither, they 
do not store the history of operation, nor raw vibration signals for a more thorough analysis. Therefore, 
there is another method used to collect the data for transient analysis, namely advanced portable data 
collection systems. Measurements with portable diagnostic equipment are widely used for in-depth 
analysis and diagnostics of the technical condition.  

The experience in configuring the equipment of monitoring systems in power plants in Poland and 
abroad allows the author to assume that with a small amount of work on the part of the devices' users, 
it will become the basis for the implementation of the proposed autonomous FDI system. The system 
proposed in this dissertation can work as extension of the standard monitoring system. Furthermore, 
the FDI system will become an invaluable help during unexpected shutdowns during which no 
measurements by portable devices are gathered. Finally, such an arrangement will help assess the 
machine's condition on an ongoing basis and indicate places of the evolution of potential malfunctions.  

The prerequisites to the work in research of autonomous algorithms are access to real life data and 
extensive experience in the field of transient data analysis. During the author’s 13 years of experience 
in research on large rotating machines, he developed plans and schedules for the commissioning of 
power equipment and diagnostic tests in terms of measurement, vibration analysis, and evaluation of 
the dynamic state of turbine sets. He carried out diagnostic tests by analyzing data from portable 
equipment. The data was collected after a previously prepared and agreed plan for conducting 
measurements and plant operation. This is worth to emphasize, as such plans may affect a country 
power generation system and must be agreed upon with the plant and the grid management 
authorities. Thus, the author has a unique position and ability to undertake the dissertation task. 

In the second scenario, the automated FDI methods can be used on the data collected by portable 
equipment. Then, with implementation of automated analysis of transient data, collected by portable 
diagnostic equipment, manual analysis by a human expert can be limited to only vital examinations. 
This also helps to reduce the time and costs associated with planning and diagnostic measurements, 
reducing the maintenance costs. 

2.2. Portable measurement systems 

Since the dissertation is based on data collected by portable systems dedicated for large 
turbomachinery, it is important to present the specifics of these data acquisition and analysis systems. 
There are several companies worldwide who manufacture advanced portable data collection systems, 
suited for large turbomachinery. Figure 21 shows examples of data acquisition units offered by several 
market-leading companies. 

The acquisition unit should be configured according to the ISO standards (ISO 20816-1). This standard 
defines only the fundamental frequency range for assessing the technical condition of a machine based 
on its vibrations of shafts and bearing caps. To perform full diagnostics of shaft lines and bearing 
supports, more advanced and detailed settings of the measuring equipment are often needed. In this 
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Section, the author gives the complete Digital-to-Analog Interface Unit (DAIU) configuration for the full 
diagnostics of large rotating machinery. 

The measuring instruments, used in the diagnostics of large rotating machines, are industrial 
computers with specialized signal conditioning and high-end data acquisition. These are expensive 
devices that can cost over 100kUSD. These DAIUs are equipped with fully configurable analog-to-digital 
converters. The inputs of these devices can measure various signals: 

 Static signals - values from temperature, pressure, and valve position sensors. 
 Dynamic signals - coming from all types of sensors (described in Section 1.2). In addition, some DAIU’s 

input cards have built-in accelerometer sensor power supplies. 
 They can collect more than 20 dynamic signals simultaneously. 
 They are equipped with tacho sensor inputs. They can determine the rotational speed of the machine. It 

is used to synchronize all the sensors features to the first harmonic of rotational speed and its factors. 
Additionally, these inputs can be used to set the tracking filter, calculating the harmonic components. The 
tacho inputs are fully configurable, and they can handle outputs from different sensors like eddy-current 
probes, laser and optical sensors. 

Along with the device, an advanced software for configuration and analysis of rotor dynamics is 
delivered, dedicated to a given unit, as depicted in Figure 21, top left and right. 
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Figure 21. Examples of DAIUs from leading manufactures. The top: left – Siemens [18], right – Meggitt [19]; in 
the middle: left - Bently Nevada [20], right – OROS [21]; in the bottom: left – Emerson [22], right - Bruel and 

Kael [23]. 

Depending on the equipment's configuration and needs, measurement data can be saved concerning 
time or the change of rotational speed increment or two of these parameters simultaneously and 
independently. These computers can write substantial amounts of data to their internal disks. They 
can also convert the necessary diagnostic features on-the-fly and present them. In addition, depending 
on the software, the tacho input and analog-to-digital converter inputs can be used for modal analysis. 

The author works for a company equipped with measuring equipment from Bently Nevada. Hence, the 
author has the most experience with such equipment. However, each of the other companies listed in 
Figure 21 offers comparable products. 
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3. Transient data preparation and preprocessing 

This chapter describes the various steps of data preparation that will be used by the automatic fault 
detection and identification system. First, it contains the structure of diagnostic data used in the 
system. Then, it presents the individual stages and results of data processing. 

3.1. Portable equipment used for data collection 

After each diagnostic measurement, the data are saved in the acquisition unit memory as a database. 
Then the database has to be downloaded from Digital-to-Analog Interface Unit (DAIU). DAIU is an 
industrial computer capable of acquiring, processing, and presenting collected dynamic signals, as 
presented in Section 2.2. In addition, it can export processed data as text files. This operation enables 
further analysis of vibration features.  

 
Figure 22. An example of the vibration measurements setup – acquisition units (two DAIUs) connected to the 

stationary monitoring system in the control room. 
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The DAIU unit is connected to a stationary monitoring system to collect data from eddy current 
sensors. Figure 22 presents an exemplary setup of DAIU during the measurement course. DAIU is 
connected to buffered outputs of a stationary monitoring system.  

3.2. Measurement system configuration 

In this section the configuration and preparation of measurements with portable instruments is 
presented. The software for configuration, acquisition, processing, saving, and presentation of data 
used by the author is a part of the measuring equipment supplied. This program is the ADRE Sxp. 
However, any other apparatus, described in Section 2.2, with the same settings can reproduce the 
author's research repeatedly. This section is quite technical but is necessary to fully understand the 
structure of the data used for further analyses..  

Figure 23 and Figure 24 presents the dynamic channel and one-per-revolution reference mark setup 
details used during each measurement course, respectively. Table 2 and Table 3 summarize the most 
important configuration steps and options set up by the author during his research. 

First, in the General tab window, one can set the general properties for all the sensors participating in 
the measurement. Next, the "Location" column describes the placement of each sensor on the rear 
panel to be easily identified. "B" letter stands for the Box in this column, i.e., an acquisition unit. Letter 
"S" - means slot, i.e., this identifies the dynamic sampling card in the Box. The best-equipped boxes 
can hold three "slots" (i.e., three dynamic sampling cards). Each card can contain eight channels. 
Finally, "C" is the channel number on the "slot". Finally, the "Channel Name" column specifies a unique 
sensor name during the measurement course used in the analysis process. The "Machine Name" 
column is not obligatory but describes the placement of the sensor. In the example presented in figure 
2, the 1X sensor measures HP vibration. The values in the " Keyphasor " column are the most important 
ones to set up in this tab. It assigns the reference one-per-revolution mark sensor described in Section 
3 to a dynamic sampling channel that measures vibrations. Only the reference mark sensor enables 
vibrations feature extraction that the author uses in this dissertation. Finally, the "Transducer 
Orientation" column sets up the angular orientation of the sensors to an arbitrary reference direction 
- in this case, "Up". For example, suppose we set the value in the "Direction" column to "45-Right-
Radial". In that case, the sensor location is 45 degrees from the vertical axis in the right direction, 
perpendicular to the shaft axis. The "Transducer" tab sets all the sensor properties up, like Transducer 
type, type of the measurement, the minimal and maximal value measured by the sensor, its sensitivity, 
coupling, the sampling mode, and the bandwidth filter properties. Next, the "Variables" tab configures 
the low and high frequencies for the bandpass filters and the number of its poles on the input. The NX-
1, NX-2, and NX-3 columns set up the sub-synchronous feature of the system response to 0.5 times the 
whirling frequency, super synchronous features of the three and four times, respectively. In the final 
step, one can configure different types of waveforms. 
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Figure 23. ADRE Sxp dynamic channels setup. 

After years of experience in research and analyzing the machines in question, the author decided to 
introduce asynchronous and synchronous waveform settings to the measurement procedure. It allows 
additional accuracy in the spectrum and orbits analysis and becomes the foundation to formulate the 
baseline values as the turbine reference behavior.  

Setting up a one-pre-revolution reference mark configuration is similar to that for dynamic channels. 
The eddy current sensors described in Section 4 are used for the reference mark measurement. 
General tab configuration extends only by the maximum value of the measured rotational speed. In 
the "Transducer" tab, the sensor type, measurement unit of the sensor, its sensitivity, and Coupling 
and Sampling are set. Using DC coupling for the constant synchronizing measurement for the eddy 
current sensor produces finer results. 
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Figure 24. One-per-revolution reference mark configuration tabs. 

In the "Signal Conditioning" tab, the minimum and maximum voltage configuration, the type of edge 
that will trigger the measurement, and the threshold hysteresis can be set. 

Usually, large turbogenerators have only one notch on their circumference. That is why "Event per 
Revolution" is set up to one. 
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Table 2. Dynamic card configuration table. 

 

The last tab is used when using other portable equipment. It is not used during this research. Other 
tabs are not significant for the type of research the dissertation considers. Therefore, the "Variables" 
and "Waveform" tabs are left in default modes. 
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Table 3. Configuration of one-per-revolution reference mark. 

 
 

Thanks to the measurement equipment's configuration and setting summarized in Table 2 and Table 
3, the author obtained the vibration features used in the following dissertation. Data collected with 
the portable equipment are a much richer source of information than only a single parameter used by 
monitoring systems in the control room. The power plant's monitoring and protection systems use an 
overall vibration amplitude. As a result, they miss most of the critical signal components used for 
diagnostic purposes. On contrary, portable systems can calculate much broader set of features. Typical 
list of these features is given below:  

 Rotational speed of the shaft; 
 Probe-to-shaft average distance in DC voltage (called Gap) 
 Overall vibration amplitude (called Direct);  
 The amplitude of the first harmonic of the signal (called 1X_Amplitude);  
 The phase angle of the first harmonic (called 1X_Phase);  
 The amplitude of the second harmonic of the signal (called 2X_Amplitude);  
 The phase angle of the second harmonic (called 2X_Phase);  
 The amplitude of the sub&super-harmonic of the signal (called nX_Amplitude);  
 The phase angle of the sub&super-harmonic (called nX_Phase). 

Figure 25 presents vibration features during measurements course in tabular view window. There is a 
brief summary of measurement configuration and status in the upper part of the tabular view. It 
describes channels, their name, location, the sensor's status, location and angular orientation, the 
timeframe of the measurement, the unit of speed, and units in which the amplitude and phase lag are 
shown in the table window below. 
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Figure 25. Portable equipment diagnostic features capabilities. 

Finally, the lower part of the tubular window presents the essential features collected by the system 
and listed above. Thera is one more column called Bandpass. It presents the overall vibration 
amplitude within the bandpass filter range. This filter is set during configuration procedure depicted 
in Figure 23 in the third step (the Variable tab) and summarized in Table 2 in the Variables and 
Bandpass rows.  

Figure 26 provides an overview of all the most important parameters needed to assess the technical 
condition of a machine during a transient state. Evaluation of such a complex object is not a trivial task. 
The analysis results are often displayed in the form of trends or graphics. They illustrate the behavior 
of the total vibrations, or they can be depicted as a graph of vibration vector composed of individual 
vibration features. 
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Figure 26. Coast down chart examples. 

The top figure shows the tabular view with all available vibration features. The selected data point 
taken at speed of 1408RPM is synchronized across all the charts below. Red values in the tabular 
window describe the analyzed sensor. The coast down curve with the currently analyzed rotational 
speed instance is depicted in the middle-left figure. The right-hand side graph in the center shows the 
phase lag trend (upper, red chart) and both the overall and synchronous vibration trend (blue and red, 
respectively). The bottom charts are the Nyquist and Bode charts on the left and right. The Bode plot 
represents the amplitude and phase response of a system vibration signal separately during a transient 
state. The response is strictly related to rotational speed. The Nyquist plot shows the system response 
during a transient as a trajectory of the vibration vector in polar coordinates. The vector consists of 
the first harmonic amplitude and the corresponding phase lag. The set of these values for individual 
rotational speed increments is the trajectory of the vibration vector during coast down. 

3.3. Transient data point sampling 

Each monitoring and acquisition system records data with different resolutions in terms of time and 
rotational speed intervals. It is a result of the design of monitoring systems used in the field, and 
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numerous datasets have such a feature. This data were already taken in the past and it is not possible 
to repeat these measurements. Since the data is essential for the algorithm preparation, the data 
sampling must be tackled in the first place.  

Portable measurement system configuration has two different triggering options, according to the 
change of speed and according to the elapsed time. Typical values are 20–60 s for time intervals and 
5–50 RPM for the rotational speed change. Depending on the trip time instance, the measurement 
systems record the transient process at different points in time and speed. Therefore, direct 
comparison of the transient vibration parameters in an automated way is not possible and the data 
must be preprocessed to allow automated processing. 

 

The following assumptions must be introduced in terms of sampling and triggering data to collect 
transient data properly: 

 sample after each ∆ = ±10𝑟𝑝𝑚 (since the trigger is activated by each change in the rotational speed 
of ±10 revolutions per minute, the data will be stored in the acquisition unit. It does not matter when the 
trigger was activated along the rotational speed span regardless of the time elapsed between the 
samples), 

 sample after each ∆ = 20𝑠𝑒𝑐 (after every 20 seconds, samples are to be stored regardless of the 
rotational speed change). 

Due to the type of the tested object, which is a turbine set, the transition time is very long. The entire 
shaft line of the largest vessels can weigh over 500 tons, and their run-on time, as shown in Section 
1.1, may take more than 120 minutes. Due to the shaft line inertia during a transient state (coast-
downs especially) depicted in Figure 19, the data from 3,000 RPM to approximately 1,300 RPM will 
often be collected by ∆  trigger, and from 1,300 RPM to the turning gear (which is activated at 

𝜔 <20 RPM) the main trigger will be ∆ . As a result, the data is not evenly distributed in terms 

of both time and RPM value. Several issues must be overcome to use the actual data from the 
measurement: 

 The “raw” data points are unevenly spread (the reason is the configuration of the sampling which is 
explained in the previous paragraph), 

 Due to the operational reasons, the start-point and end-point of the measurement are not always the 
same, 

 Depending on the type of a transient (start-up or coast-down), the data is not shown in order (the 
rotational speed vector may start from the lowest rotational speed or the highest one). 

Even if the nature of the transient is the same, the starting point of triggering each transient is not 
always the same, particularly for the rotational speed. The most important aspect is whether the 
starting point varies between particular measurements. Such complicated trigger procedure generates 
a different set of samples every time a transient is recorded. Data points are placed close to each other 
RPM-wise (comparing transient-to-transient), but not identically with respect to rotational speed 
mark.  
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Due to the fact that acquired data are field measurements and also that we measured many machines 
(of the same type, but still different units), the noise reduction was also an important matter. The data 
noise reduction considerations are presented in Section 3.5.1. 

3.4. Structure of measurement data  

The data collected by DAIU, which are needed for the analysis has a complex structure. It is similar to 
a three-dimensional matrix. Figure 27 presents the structure of the transient data matrix.  

 
Figure 27. Transient data structure. 

On the first axis (vertical), there are 𝑖-rows of subsequent rotational speeds for which data has been 
collected. There are 𝑗-columns with vibration signal features on the second axis (horizontal), and the 
third 𝑘 axis (depth) contains the set of all sensors.  

Each transient has 500 to 750 data points and up to 15 features per a single data point. Figure 28 shows 
a fragment of the data points matrix (rotational speed vs. signal features) from a single sensor during 
a transient state. This is the 𝑖 and 𝑗 axis of the transient data matrix. The third, 𝑘 axis of the matrix 
includes all vibration sensors. In this example dataset there are 14 sensors.  
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Figure 28. Transient data points for one sensor. 

Figure 29 shows the 𝑗 and 𝑘 axes of the transient matrix at one point of the rotational speed instance. 
The rotational speed column called “Speed(P)”, depicted on the figure shows fixed value but sensor 
column called “Channel” presents all sensors during the measurement course. On average, one 
transient matrix consists of about 70,000 elements per analysis. 

 
Figure 29. Transient data points for all sensors at single rotational speed instance. 

Next, data is exported to a CSV file using the ADRE Sxp software. Then a Python program (developed 
by the author) opens, selects, and processes the data. 

3.5. Data interpolation 

The measurement data should be appropriately acquired and preprocessed before the diagnostic 
system can use it to properly assess the condition of the turboset during transients’ states. Different 
portable systems measure and collect/obtain data differently. They might have another sampling 
resolution (it especially applies to the rotational speed increments). Therefore, the vibration data the 
DAIU system collects cannot be directly compared and need preprocessing. 

One can compare transient data amplitude-wise (comparing amplitudes from one transient with 
another). However, implementation of this method is impractical in our case. Transient data records 
vary significantly depending on the trigger setting, especially RPM tags. If one compares the amplitudes 
from different RPMs, such an analysis will be misleading. A more advanced (and valuable) type of 
analysis is to assess transient data signals, but for a reference mark which is the same for all analyzed 
transient states. Author assumes that such a mark is the rotational speed. Choosing a rotational speed 
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mark as the reference signal enables us to compare data repetitively and reliably. Data prior, during, 
and past critical speed can be unequivocally identified and compared. Resonance peaks and shaftline 
unbalance response depend heavily on rotational speed and should be appropriately compared 
independently on a trigger setting.  

Gathering a sufficient amount of data during transient states requires using two kinds of triggers: one 
is rotational speed-depended, and the other one is time-depended. Both triggers are independent 
from each other. Figure 19 presents the inertia of the system during a typical coast down. It depicts 
revolutions per minute versus time elapsed. Typical coast down of the large turbomachinery can last 
more than an hour. Rotational speed starting from the trip point (at the full rotational speed of the 
machine) down to approx. 1/6 of nominal speed (500 revolutions per minute) changes quickly 
compared to the time elapsed. The RPM-dependent trigger is needed during this first stage of a coast 
down. During the second stage, rotational speed changes are much slower. At that stage, the time-
dependent trigger will provide more samples (i.e., information). Such a trigger procedure (widely used 
in engineering practice) generates a different set of the database every time a transient occurs. Data 
points are placed close to each other (comparing transient-to-transient) but not identically concerning 
the rotational speed mark.  

Unequally spaced data points along the rotational speed axis can introduce difficulties in implementing 
processing algorithms. Figure 30 presents an example of data shown for one sensor with ten transient 
states. Each transient has a different scatter color. The data from the transients have different 
rotational speed values, making the comparison of signal amplitude values inaccurate and 
cumbersome, and direct automatic evaluation of such transients is impossible. To tackle this issue, a 
preprocessing method is required. Such a method is part of this dissertation.  

 
Figure 30. Non-equidistant spaced transient data points. 
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Measurements of transients in large machines are not frequent events. Transient states cannot be 
repeated at will, due to cost-related, time, and stress for the machine. Therefore, interpolation is 
needed to find function values at places not specified in the transient data point matrix. 

To start with, the algorithm which converts the measured data to the RPM-equidistant data is 
necessary. At first, a function creates an equally spaced vector of rotational speeds and each particular 
transient. In other words, the first step is resampling the speed vector to generate a data vector having 
the same RPM values for all the transients.  

Figure 31 presents set of “raw transients” data points of one signal feature with the data obtained 
throughout one of the field measurement courses performed by the author. Upper plot shows the 
whole four transients recorded during one of the measurement course. The bottom figure presents 
the zoom for an example part of the rotational speed interval of [1820, 1900] RPM. The zoom reveals 
that not all the data points are collected for the same RPM values. It creates a significant problem in 
analyzing and comparing transients data with respect to rotational speed increments. In order to 
correctly compare values between transients, the values for individual transients must be interpolated. 

There are various interpolation methods. The trivial, linear interpolation introduces significant errors. 
Trigonometric interpolation is used to approximate periodic functions. However, the transient curve is 
not a periodic function, so the interpolation task cannot use this method. Polynomial interpolation 
such as first and higher-order is used to find function values at points beyond the points collected 
during measurements. However, the polynomial of interpolated a function has a degree one lower 
than the number of points in the data set. For a single signal feature during a transient, the collection 
of points averages 500-700 data points. The extremely high order of the polynomial makes this 
approach impractical for this application. An interesting solution is spline interpolation, especially its 
variation - a third-degree polynomial called cubic spline (CS). This interpolation fits the third degree 
(cubic) polynomials between each of the two consecutive data points in data set. This process produces 
third degree polynomials of one less than the data points in the data set. Each of the spline function 
from this set has a first and the second derivative specified fit the piecewise function without breakage 
of its continuity. The third degree polynomial assures that the line connecting all the data points will 
be continuous and will have smooth non-erratic shape. 
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Figure 31. Raw transient data example: top – whole transient data point set; bottom – zoom of the transient 
representative interval. 

Thus, the author decided that the most suitable method for this application will be cubic spline 
interpolation. CS interpolate the transient data points and helps to generate the data points for the 
same rotational speed points for each analyzed transient. Additionally, it also handles “cropped” 
transients, i.e., transients which do not start at “0” RPM and finish at the FSNL (Full Speed No Load) 
point, i.e. at 3000 RPM. Finally, the CS interpolation applied to any new analyzed transient ensures 
that all the data points are located in the same places on the rotational axis as from the baseline 
transient. This operation enables data to be compared reliably. Schumaker [24] and Dyer [25] presents 
the advantages of equally spaced points/knots in polynomial spline functions.  
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3.5.1. Cubic spline 

The Cubic Spline interpolation is a type of interpolation that handles the problem of oscillating edges 
of intervals with equally spaced interpolation points when using higher-order polynomial 
interpolation. Gerald and Wheatley described theoretical considerations and applications in [26]. 

Schumaker in [24] formulated a set of four general properties for a centerline of the cubic spline 
function 𝑠 in the Carteisan plane for a set of points (𝑥 , 𝑦 ), 𝑖 = 1,2, … , 𝑘: 

1 𝑠 is a piecewise cubic polynominal with knots at 𝑥 , … , 𝑥 ; 
2 𝑠 is a linear polynomial for 𝑥 ≤ 𝑥  and 𝑥 ≥ 𝑥 ; 
3 𝑠 has two continuous derivatives everywhere; 
4 𝑠(𝑥 ) = 𝑦 ,  𝑖 = 1,2, … , 𝑘 

Such a function produces more minor errors and improves accuracy. Schumaker in [24] and Gerald and 
Wheatley in [26] describes the theory, together with a process of creating and using spline 
interpolation. Finally, [25] shows a few examples of spline interpolation as a curve fitting method. The 
main idea of cubic spline is presented by Schumaker in [24]. The goal is to produce a set of the third-
degree polynomial functions 𝑠 (𝑥) that satisfy: 

𝑆(𝑥) =

⎩
⎪
⎨

⎪
⎧

𝑠 (𝑥), 𝑖𝑓 𝑥 ≤ 𝑥 < 𝑥

𝑠 (𝑥), 𝑖𝑓  𝑥 ≤ 𝑥 < 𝑥
.
.
.

𝑠 (𝑥), 𝑖𝑓 𝑥 ≤ 𝑥 < 𝑥

 

 

(8) 

Where polynomial to be fitted across each interval 𝑥 ≤ 𝑥 < 𝑥 , is given by equation: 

𝑠 (𝑥) =  𝑎 (𝑥 − 𝑥 ) + 𝑏 (𝑥 − 𝑥 ) + 𝑐 (𝑥 − 𝑥 ) + 𝑑  

 

(9) 

where 𝑖 = 1, 2, … , 𝑛 − 1, and respectively, the first and the second derivative is given by: 

𝑠 (𝑥) =  3𝑎 (𝑥 − 𝑥 ) + 2𝑏 (𝑥 − 𝑥 ) + 𝑐  

 

(10) 

𝑠 (𝑥) =  6𝑎 (𝑥 − 𝑥 ) + 2𝑏  
(11) 

for the same 𝑖 = 1, 2, … , 𝑛 − 1. 

The matrix equation for the cubic spline interpolation is given by: 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 4
0 1
0 0

     
1 0
4 1
1 4

⋯
0 0
0 0
0 0

    
0 0
0 0
0 0

⋮ ⋱ ⋮
0 0
0 0
0 0

     
0 0
0 0
0 0

⋯
4 1
1 4
0 1

    
0 0
1 0
4 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑀
𝑀
𝑀
𝑀

⋮
𝑀
𝑀
𝑀

𝑀 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=
6

ℎ

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑦 − 2𝑦 + 𝑦
𝑦 − 2𝑦 + 𝑦
𝑦 − 2𝑦 + 𝑦

⋮
𝑦 − 2𝑦 + 𝑦
𝑦 − 2𝑦 + 𝑦

𝑦 − 2𝑦 + 𝑦 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 
(12) 

where: 𝑀 = 𝑠′′(𝑥 ), and ℎ = 𝑥 −  𝑥 . 
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This is an under-determined system (𝑛 − 2 rows by 𝑛 columns). To find unique solutions for the matrix 
equation (5) the following assumptions has to be made: 

𝑀 = 2𝑀 −  𝑀  (13) 

𝑀 = 2𝑀 −  𝑀  (14) 

 

This boundary conditions let us reduce the system matrix to a 𝑛 − 2 by 𝑛 − 2 dimensions: 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
6 0 0
1 4 1
0 1 4

⋯
0 0 0
0 0 0
0 0 0

⋮ ⋱ ⋮
0 0 0
0 0 0
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⋯
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1 4 1
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⎥
⎤
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⎥
⎥
⎤
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6
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⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑦 − 2𝑦 + 𝑦
𝑦 − 2𝑦 + 𝑦
𝑦 − 2𝑦 + 𝑦

⋮
𝑦 − 2𝑦 + 𝑦
𝑦 − 2𝑦 + 𝑦

𝑦 − 2𝑦 + 𝑦 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 
(15) 

 

Solving (6) yields the sought equally distanced interpolated data points. 

3.5.2. Cubic Spline spacing 

When applying the interpolation of the data, it is important to properly select the data spacing 
parameter. During research work for the dissertation, the author tested different settings of the 
spacing parameter, i.e., spacing between consecutive rotational speed values, for the CS interpolation. 
He performed these tests with 25, 25, 100, and 150 RPM between data points and applied it to the 
OpEn procedure. Figure 32 shows the OpEn method for each value of this parameter. 

The spacing parameter value of 25, Figure 32 (a), gives outstanding results in replicating the transient 
function shape. Unfortunately, it consumes a lot of time and computing power. As shown in Figure 1a, 
for a rotational speed of about 2600RPM OpEn center line and acceptance region recreate the 
disturbance in the form of a sudden decrease in the amplitude value. This drop indicates that using 
this parameter value will be potentially sensitive to data noise. 

Figure 32 (c) and Figure 32 (d), respectively shows the OpEn method output for spacing parameters 
100 and 150. It takes much less time to complete the entire procedure than for 25 RPM parameter. It 
is less sensitive to data interference, which is shown in Figure 3. Unfortunately, the graphs also show 
that the method for these parameters is not able to correctly replicate the shape of the transient 
between 1750RPM and 2250RPM. This range is the most important part of the transient, which 
disqualifies the 100 and 150 RPM parameters for the OpEn method . 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 32. Examples of different settings of the spacing parameter interval between the consecutive rotational 
speed instances: (a) spacing: 25RPM; (b) spacing: 50RPM; (c) spacing: 100RPM; (d) spacing: 150RPM. 

The best ratio of the data quality, i.e., reconstruction of the shape of the transient function, to the time 
and computing power has a value of 50RPM between samples. Setting the spacing parameter to 50 
RPM allowed to reduce the susceptibility to the data noise with the correct reproduction of the shape 
of the transient curve in the entire rotational speed range. 

  



60 
 

4. Fault detection method 

After the data are acquired and preprocessed, as proposed in the previous section, the algorithms for 
fault detection and identification can be executed. Fault detection is the first step of the proposed set 
of algorithms. Fault detection is checked as the first one and should check whether there is any change 
in the data. The ultimate application of the method is to check every transient state that the machine 
experienced. After implementation in an online system, the system would run in the background by 
default in parallel with the monitoring system. After each transient is stored in memory, the fault 
detection algorithm would be executed and screen the data whether a human expert should 
investigate the data. 

4.1. Anomaly detection method 

The automated assessment of complex technical systems was the subject of numerous research. 
Demetgul et al. in [27], highlight the fact that most industrial systems are non-linear and require 
appropriate analysis methods. Each such an attempt must include feature extractor and classifier. The 
authors have analyzed multiple generic methods for the diagnostic of the pneumatic systems of the 
material handling systems, starting from dimension reduction to clustering for classification.  

In recent years, novelty detection algorithms for small machines equipped with rolling element bearing 
have gained more and more popularity. Dworakowski et al. in [28] test novelty detection algorithms. 
The principles of their operation are based on Artificial Neural Networks (ANN), feature space distance, 
and probability distribution. Their study included a healthy state of operation, different damage 
scenarios, and various feature vectors for elliptical gearboxes' autonomous and multidimensional 
monitoring. Wang et al. [29] sophisticated fault diagnostic scheme for planetary gearboxes. They use 
three vibration signal domains, i.e., frequency, time, and time-frequency, to extract fault features. A 
new method, incorporating a multi-objective evolutionary and decomposition algorithm, is proposed 
to enhance fault feature subsets. In addition, Dezert-Smarandache rules are applied to improve 
robustness and fault classification rate. Lis et al. [30] proposed an interesting approach to the novelty 
detection method. Their method used data over-hung centrifugal pump vibration data in the time 
domain. The data for the analysis is based on accelerometers. They introduced pump diagnostics based 
on the nearest-neighbor method reinforced by the new data preprocessing method. The proposed 
method has been validated on on-site pumps used in the industry. They argue that data-driven 
methods can be used in predictive maintenance strategies. The above methods and algorithms are 
very effective for small rotating machines equipped with rolling bearings. Unfortunately, large turbine 
sets have slide bearings, in which the wedge film suppresses a significant part of the vibration signal. 
As a result, it creates a barrier to high-frequency vibrations propagation, used for the analyses 
presented above. This makes the methods mentioned above ineffective. 

Zhang et al. in [31], [32] presented an interesting approach to "the next level" of data-driven machinery 
diagnostics. He proposed a method that joins the domain gap across varying operating conditions. 
Although, his work implies to be effective in applications for the rolling element bearing in the train 
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industry, it can produce proper cross-domain fault diagnosis only with a balanced amount of different 
fault modes data available. 

The author also analyzed the literature on rotating machines equipped with slide bearings. New 
condition monitoring strategies for these machines were well described by Jabłoński and Barszcz in 
[33] and Capelli et al. [34]. This new approach requires new ways of monitoring the turbines. 
Banaszkiewicz in [35] showed a concept lifetime assessment system for steam turbines that considers 
a wide range of operating condition changes in the scope of creep-fatigue damage. Zagorowska et al. 
[36] presented an interesting concept of exponential trend approximation with shape adaptation to 
monitor performance degradation during operation. Hanachi et al. [37] presented an interesting 
approach to improving prognostic accuracy in the compressor section of gas turbines by taking into 
account the effects of humidity, and Zohair et al. [38] proposed a modified Weibull distribution as a 
reliability estimator for gas compression turbines to reduce the failure risk. These works are of great 
value and present an improved way of monitoring the rotating machines; however, they are missing 
much information on machine dynamic conditions. This information comes from a transient state of 
the turbogenerator. New diagnostic technologies are being developed, e.g. state-of-the-art thermal 
and flow diagnostic of steam turbines (described by Głuch in chapter 3 of [39]) and introduced to 
power plants, still vibration response of the unit remains the fundamental method to assess the 
technical state of turbo-sets. In [40] authors perform analysis of a complex case of Gas Turbine 
vibrations. They confirm the fact that tedious analysis work and availability of experts is required for 
proper detection and identification of a large turbomachinery fault. These works are of great value and 
present an improved way of monitoring the rotating machines; however, they are missing a significant 
portion of the information on machine dynamic conditions. This information comes from a transient 
state of the turbogenerator. 

The authors in [41] showed that such a method will be beneficial and can be beneficial in two ways: as 
a “health monitoring” parameter for the maintenance personnel and the planner and management 
personnel – to properly plan and execute machine inspections and overhauls. Bornassi et al. [42] 
highlight the importance of analysis of transients states in the case of large turbomachinery blades. 
The authors of the paper presented a combination of the 1DOF model with real blade vibration 
measurement data to identify the vibration parameters of blades during transient state. 

The review of the state-of-the-art showed that there is a lack of the method to help the maintenance 
personnel quickly assess the state of machinery during turbine coast-downs and start-ups, ideally in 
an automated way. Therefore, creating a method to define a healthy pattern, i.e., reference or 
baseline) is of great value. Having such a pattern, together with some acceptance boundaries, can 
compare each transient to whether it represents a healthy condition. Due to the lack of skilled 
personnel, it should be reiterated that the method should be automated. The author proposed such a 
method and coined the name of Operational Envelope (OpEn). This idea is based on an envelope 
wrapped around a particular signal feature for the 2D case or features for the 3D case during the 
transient state of the machine. 

The author proposed a method to detect an anomaly in transient behavior called Operational Envelope 
(OpEn). The method, depicted in Figure 33, consists of the following steps. First, the transient state 
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data are collected from the turbogenerator, i.e., real-object. Then the baseline transient is determined. 
Next, the CS interpolation is applied to these reference transients. Afterward, the baseline selection is 
established. The baseline determination procedure is described in Section 4.4 and 4.7. Next, the CS 
interpolation distributes the data points equally across the rotational speed range. This operation 
establishes the center points of the OpEn. In the following stage, the upper and lower values for OpEn 
are defined. 

The proposed name of the "operational envelope”, comes from the meaning of the actions involved. 
However, this term should not be mistakenly mixed with the concept of the "signal envelope," and its 
spectrum called the "Envelope Spectrum."  

Table 4. Differences between OpEn and standard Spectrum Envelope. 
 

Operational Envelope Envelope Spectrum 

Function domain RPM/CPM (revolutions/cycles per minute) Hz 
Rotational speed Varying across large span Constant  
Number of 
amplitudes 

1st harmonic across whole RPM range 
(system’s response to the centrifugal force) 

N spectral lines (each refers to different 
frequency/amplitude) 
It contains sub-harmonics, harmonic and 
multiple of harmonic, and all between 
(depending on spectral resolution) 

Tacho-sensor Essential Unnecessary 
Attitude/lag angle Used n/a 
Envelope’s  
setpoints 

Center of envelope ± arbitrary value(s) n/a 

 

These are two different methods, and there are several significant differences between the spectrum 
envelope and the OpEn proposed by the author. Table 4 summarizes the main differences between 
these two concepts. 

As one can see, both methods are very different. OpEn uses a speed sensor to track changing RPM 
during transients. On the other hand, Envelope Spectrum assumes that the machine's revolutions are 
stable, i.e., the method is used for evaluating the machine's condition in the steady-state operation. 

4.2. OpEn method 

The first step in an automated anomaly detection method during transients of large turbomachinery 
is to collect data to create a baseline transient. For this purpose, the author analyzed over 150 
databases with records recorded during 13 years of professional work. Next, from among evaluated 
transients, the author nominated approximately 25 to define the baseline transient. After that, the 
transient data must be CS interpolated to obtain strictly defined points in the field of rotational speed. 
Without interpolating the functions at predetermined points, it would not be possible to reliably 
compare transients due to the hurdles described in Section 3.5. 
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Figure 33. Automatic anomaly detection flowchart method. 

 

This Section describes the Operational Envelope (OpEn) method in detail. The content of this Section 
was published by the author in paper [13]. The following description is only valid for one sensor. For 
the entire turbine set to be included in anomaly detection, each analyzed sensor must undergo this 
procedure. For example, this procedure will be performed six times for a turbine set equipped with 
three bearings with two eddy-current sensors for each bearing. On the other hand, for a nine-bearing 
turbine set with two sensors per bearing, 18 iterations of this procedure are required.  

The method consists of several steps. The author collected real data from the transient state of the 
turbogenerator set. Then he used the acquired data and data from the turbine’s design, i.e., 
engineering department where he works, to determine the baseline transient which suits the design 
best. Afterwards, the baseline transient is subjected to the CS interpolation to have equally distributed 
data points across the rotational speed range. Next, the center of OpEn and its upper and lower values 
are established.  
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Figure 34. OpEn and its upper and lower values. 

 

The upper and lower values of OpEn for individual rotational speed values constitute the acceptance 
region for that specific rotational speed. This is represented by red and green line values in the points 
of CS (orange scatter points) on Figure 34. A set of values for every rotational speed in which the 
turboset transient states are defined creates a 2D or 3D OpEn for a particular sensor. Now, for every 
rotational speed instance defined by CS interpolation, a new data can be quickly verified if it is inside 
the OpEr region. No further improvement actions are required if the OpEn contains all the data from 
a new transient state; however, if the data or even a few points from the transient lay outside the 
OpEn, further actions should be suggested to assess the severity of the malfunction. 

After that, the amplitudes of reference transients are summed up for the consecutive rotational speed 
increment values (from RPM = 100 to RPM = 3000 every 50RPM). This operation gives 60 places where 
the algebraic mean of all amplitudes at each point is taken. Figure 35 shows an example of the 
reference data (for clarity, only five transients were used). Points for baseline transient are summed 
at specific places on the x-axis. 
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Figure 35. Example of reference transient data set with OpEn values given. 

The next level of development of the OpEn method is to include additional vibration signal features. 
For example, applying the OpEn acceptance values concept to a vibration vector results in the OpEn 
acceptance region as an ellipse. Next, the ellipsis acceptance region is broadcasted on a predefined 
baseline transient vector for every rotational speed increment. In this way, the OpEn 3D defines the 
next level of acceptance region for complex vibration vectors.  

4.3. Baseline measurements – selection and its consequences 

In order to correctly detect an anomaly during transient, a reference transient is essential. However, 
selecting a single transient as the reference curve is not a good idea during the transient of large 
rotating machinery equipped with plain bearings. The turboset transient response under different 
operating conditions will have different values. An essential aspect is the oil temperature at the 
entrance to the bearings. In the author's experience, the transient of the same unit in winter and 
summer may differ significantly. 

With this in mind, the author analyzed and made selections of the most representative transients from 
the set of all databases he had. The author analyzed over 250 databases of transient measurements. 
From among them, he selected and ranked transients according to the criterion of his methodology. 
He classified data included in the analysis into the following categories:  

 dynamic condition: correct - helpful in the research,  
 dynamic condition: acceptable but useless to define the baseline,  
 data from runs with excessive misalignment of the HP-IP part,  
 data with excessive unbalance, data with bearing oil instability 3, 
 unusable data - from data points not covered by the test, with wrong sensor orientations. 
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He analyzed the correct dynamic state databases and selected reference data for baseline evaluation 
from them. The set of reference transient data set included approximately 25 transients containing all 
turbo-set’s displacement vibration sensors, i.e., 14 sensors per transient, and all of the vibration signal 
features.  

The author checked several averaging methods such as the median filter, standard deviation method, 
and the arithmetic mean. Due to the small amount of transient data points and a good results' 
correctness to the implementation ratio, he used the arithmetic mean. 

4.4. 2D baseline 

The data used to create the baseline is described in Section 4.3. A single feature of the vibration signal 
is used to create the baseline measurements. Figure 1 shows the flowchart of the method for 
calculating the baseline value for one sensor.  
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Figure 36. OpEn 2D baseline measurements flowchart. 

First, the reference signal set is interpolated CS to determine the values of the individual reference 
transients in a predefined set of rotational speeds. The first part of this procedure creates a matrix of 
the k-rows of transients and the n-columns of rotational speed instances. Next, the arithmetic mean is 
performed column-wise, i.e., for each rotational speed instance. Finally, all values of the means create 
the baseline vector. 

The procedure described above and presented in Figure 36 should be repeated as many times as 
sensors are included in the analysis to determine the baseline values for the entire turbine set. The set 
of all baseline values creates a matrix with dimensions 𝑙 by 𝑘, where l is the number of sensors included 
in the analysis and k is the rotational speed increment. The result of the complete procedure is the 
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OpEn 2D Baseline Upper and Lower Limit matrix (OpEn BULL). It contains all acceptable values for 
individual sensors in all rotational speed instances. 

4.5. Upper and lower OpEn values 

Setting up an upper and lower bound for the OpEn is not a trivial task. The bounds mean the actual 
Operational Envelope above and below the centerline calculated as described in the previous section. 
We expect transients measured on healthy machines to stay within the area between lower and upper 
bounds. 

Vance et. al. throughout their book [6] studied how different setups of the bearing applied to the same 
machine can produce dramatically different results. Eisenmann in [3] well described and explained 
how damping and stiffness affect response of the system during transient states. Thus, one needs to 
be aware of large effects caused by small changes. 

The upper value should be set up higher, because of the non-linear nature of damping in bearing-rotor 
system. Non-linear nature of the rotor-to-bearing response is explained in by the numerous authors 
like Muszyńska [8], Eisenmann [3], Kiciński [9], Adams [11]. For instance, having properly aligned and 
balanced rotors on the same machine, different state of initial conditions (such as rotor and/or steam 
temperature, time of stand-still, etc.) can cause higher amplitudes, especially when whirling speed 
approaches to the resonant speed. Similarly, differences in inlet oil temperatures can produce 
differences in resonant peak amplitudes, and this is directly related to the oil damping properties. 

The lower values are also important to analyze. The behavior of both static and dynamic response of 
rotor system changes together with crack propagation. Bachschmid described these phenomena in 
detail in [43]. Setting up lower value of OpEn can be a great help with shaft crack detection. As was 
presented in the report by Allianz[41] and Bently and Hatch [4] during evolution of a crack in the shaft 
its stiffness deteriorates. Such a phenomenon causes resonance frequency move to the direction of 
lower frequencies.  

Based on the authors’ experience, reinforced with suggestions from General Electric’s engineering 
department fallowing values were set up: 

 The OpEn 2D case: The upper value is 24µmpp, and the lower value is 13µmpp. 
 The OpEn 3D case: The amplitude value is 30µmpp, and the phase value is 20°. 

4.6. OpEn 2D severity parameter definition 

The core of the method is the detection of anomalies during transient states. The anomaly detection 
method can create two vectors having the same rotational speed values and different amplitudes in 
values. These vectors define the upper and lower bounds of the OpEn. In addition, they define the 
acceptance threshold of a new transient. Several norms are incorporated to automatically measure a 
distance between vector data points outside the OpEn for a new transient vector. The threshold will 
classify new vectors as they are measured. Only then can the method be proposed to machinery 
operators, and they will be able to use it without specialist knowledge and experience. 
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There is no single "silver bullet" method in order to appropriately assess the "good" or "bad" transient 
state. The author proposes a few metrics and compares their performance. The following metrics has 
been proposed for the OpEn 2D: 

 𝑅𝑀𝑆𝐸 – Root Mean Square Error from the whole transient; 
 𝐾𝑈𝑅𝑇 – Kurtosis from the whole transient; 
 𝑀𝐴𝑋_𝑂𝑜_𝑂𝑝𝐸𝑛 – maximum distance above the OpEn upper value; 
 𝑀𝐼𝑁_𝑂𝑜_𝑂𝑝𝐸𝑛 – maximum distance below the OpEn lower value. 

RMSE is a root mean square, as defined by Leon-Garcia in chapter 4 in [44], between the cubic spline 
interpolation of the reference transient (the OpEn centerline) and cubic spline interpolation of the 
actual data measured by a portable data acquisition system in the field on the same rotational velocity 
points. Figure 37 visualizes this norm. Equation defines RMSE norm. 

𝑅𝑀𝑆𝐸 =
𝑦 _ − 𝑦 _

𝑇
 

(16) 

 

Where: 

 𝑅𝑀𝑆𝐸  – root mean square error of given transient 

 𝑦 _  – “healthy” value (reference transient data – center of OpEn) 

 𝑦 _  – observed value (newly acquired, real transient data) 
 [𝑙, 𝑢] –rotational speed interval, common for 𝑦 _  and 𝑦 _  

 𝑇 – number of common data points (samples at the same rotational speed points) 

In the example on fig. 5 above RMSEOpEn would be:  

𝑅𝑀𝑆𝐸 =
𝑦 _ − 𝑦 _

7
 

(17) 

𝑅𝑀𝑆𝐸 describes how far, on average, the newly acquired transient is from the OpEn, where only the 
centerline is considered. Thus, it measures the general average distance between these vectors. 

𝐾𝑈𝑅𝑇 parameter is defined as the fourth standardized moment: 

𝐾𝑈𝑅𝑇 [𝑋] = 𝐸
𝑋 − 𝜇

𝜎
=

𝐸[(𝑋 − 𝜇) ]

(𝐸[(𝑋 − 𝜇) ])
 

(18)

Where: 

 X – is a vector of real data; 
 μ – is the mean of X; 
 σ – is the standard deviation of X. 

The 𝐾𝑈𝑅𝑇 parameter represents a distance between the two vectors with a higher weight of peaks, 
which should be detected automatically. For example, if a transient differs by a high value at only a 
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few data points, it cannot bring sufficient weight to the RMSE factor, but the KURT parameter detects 
it. 

Equation (19) describes 𝑀𝐴𝑋_𝑂𝑜_𝑂𝑝𝐸𝑛 (abbreviation from Maximum Out of OpEn). It measures the 
highest distance above the OpEn upper value. This parameter measures and compares vector values 
at rotational speed like the previous ones. 

MAX _ = max ( 𝑎𝑏𝑠 𝑦 − 𝑦 |  𝑖 ∈ [𝑙, 𝑢]) ) 
(19) 

 Where: 
 𝑦 _  – OpEn upper bound 

 𝑦 _  – observed value (real transient data acquired during transient) 

 𝑖 ∈ [𝑙, 𝑢] – common rotational speed interval 

In order to illustrate the above severity parameters, sample data from the real object transient will be 
presented below. The data comes from a +200MW class turbine set measured during commissioning 
after the outage. As shown in Figure 37 (top), the maximum value for this transient is 162µmpp, and 
the upper value of the OpEn in this rotational speed instance is given as 107.9µmpp. So, it equals 
51.1µmpp. 𝑀𝐴𝑋 _  stays at zero as long as no point from the observed vector protrudes above 

the upper bound of the OpEn. Thus, it is a quick detection tool. It reacts to any violation of the upper 
bound. 
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Figure 37. Severity parameter visualization versus real data values: top – RMSE norm; bottom – “Min Out of 
OpEn” and “Max Out of OpEn” values. 

On the other hand, equation (20) describes the 𝑀𝐼𝑁 _   parameter (abbreviation from Minimum 

Out of OpEn). It is symmetrical to the previous measure but has a different value. The parameter 
measures and compares data at a common rotational speed interval. 

MIN _ = max ( 𝑎𝑏𝑠(𝑦 _ − 𝑦 ) |  𝑖 ∈ [𝑙, 𝑢])  
(20) 

 Where: 
 𝑦 _  – OpEn lower value; 
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 𝑦 _  – observed value (real transient data acquired during transient); 

 𝑖 ∈ [𝑙, 𝑢] – mutual speed rotation interval. 

It is a measure of the highest distance below the OpEn lower value. The parameter measures and 
compares data at a common rotational speed interval. Figure 37 (bottom) presents the upper and 
lower values of the OpEn. 

Due to the nature and the vibration response during transient states well described by Bachschmid et 
al. [43] and by Hajnayeb et al. [45] MAX_Oo_OpEn and MIN_Oo_OpEn parameter can help to detect a 
change in the bearing damping parameters, and developing of rotor cracks.  

Together with the OpEn algorithm, the author proposes a set of parameters which can be used in order 
to automatically diagnose the transient. These parameters can be used in a conjunction with each 
other and other process data for better and more in-depth diagnostic purposes. 

4.7. 3D baseline 

Baseline measurements for the 3D configuration are different from those for 2D. Two vibration signal 
features must be combined into a vibration vector to determine the baseline value. The values of the 
vectors are the amplitude and phase of the individual harmonics described in section 1.2.4, describing 
vibrations in the complex plane. An example of such a vibration vector is the system's response to 
excitation with a synchronous force. The first coordinate for this vector is the signal amplitude, and 
the second is the phase lag value. A set of vectors for all predefined rotational speed instances creates 
a transient 3D vector response. The structure of the vector is similar to the n by two matrices. Each 
row in this matrix corresponds to a predefined rotational speed increment. Columns are amplitude 
and phase features of vibration signal, respectively. Figure 38 presents the flowchart of the method 
for calculating the baseline vector for the one sensor. 

First, the two sets of transients composed of appropriately selected signal features are picked. Next, 
the CS interpolated is applied to each signal feature transient to obtain equidistant data points on the 
rotational speed axis. These operations create two matrices of k by n dimensions. One matrix describes 
points related to the amplitude and the second one - phase lag. Both matrices described above form 
the OpEn 3D Baseline Ellipsis Acceptance Region matrix (OpEn BEAR). These matrices are used to 
describe the acceptance region for the OpEn 3D method. 
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Figure 38. OpEn 3D baseline measurements flowchart. 

Then, the amplitude and phase matrices of the vibration signal are converted to Cartesian coordinates. 
Each of the Cartesian coordinate matrix has the same dimensions as the r and fi matrices. Matrix rows 
correspond to individual transients and columns - rotational speed increments obtained after CS 
interpolation. Each of the matrices obtained is subjected to the arithmetic mean operation performed 
on all rows in a given column. The operation is performed for all columns of the matrix, that is, for all 
rotational speeds. The results of the above operations are two sets of Cartesian coordinates of the 
baseline vector. Each pair of the obtained coordinate sets is closely related to the corresponding 
rotational speed value. Associating Cartesian coordinate sets with the rotational speed domain creates 
a 3D vector. Figure 39 depicts two examples of baseline vectors obtained after procedure described 
above. 
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Figure 39. Baseline vector examples. 

The point on the XY plane corresponds to the amplitude and phase of the vibration signal. The transient 
rotations are arranged on the Z-axis. This system creates a baseline vector trajectory for a particular 
sensor. 

4.8. OpEn 3D severity parameter definition 

One-feature only analysis may not be sufficient to diagnose potential malfunctions correctly. For this 
purpose, the author extends feature analysis on the vibration vector. This vector contains information 
about the amplitude and phase of the synchronous component. 

When considering the overall vibration signal only, much information about the object is lost. For 
example, one can only tell if the vibrations are high or low. By extending the analysis of other features, 
the assessment of the machine state can be significantly improved. For example, information about 
the synchronous component and its phase lag is a significant dynamic parameter of the turbine set. 
Their change from one coast-down to another coast-down may indicate that evolution of malfunction 
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is taking place. Changing of the synchronous vector may indicate the appearance of additional force 
from unbalance and the need to take corrective actions. In turn, the change in the value of the second 
synchronous vector may be the symptom of the shaft crack propagation described in detail in the book 
[43] and research by Hajnayeb et al. in [45]. 

All rotational speed instances use an ellipse as an acceptance region for a given transient. The ellipse 
center is the baseline value described in Section 4.7. An exemplary set of ellipses constituting the 
acceptance region throughout the whole transient is shown in Figure 40. The top of the figure depicts 
the whole ellipsis set with its middle points as the baseline. The bottom chart presents these ellipses 
related to their rotational speed instance. This exemplary set refers only to one eddy-current sensor. 
Finally, to represent the baseline behavior of the shaftline fully, 13 more sets are defined. 

 

Figure 40. Example of OpEn 3D ellipsis set: top - mean baseline and ellipse at each speed point during transient; 
bottom - 3D view (including turbogenerator rotational speed) of the ellipse set for the whole transient state for 

one sensor only. 
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The severity parameter to evaluate the vibration vector analysis is the value of the shortest distance 
between actual data and the OpEn 3D of the ellipse acceptance region. 

The acceptable values of the amplitude and phase of the vibration vector form an ellipse. The ellipse 
area defines the OpEn acceptance region and the edge of the ellipse - the limits of OpEn 3D. 

 
Figure 41. OpEn 3D acceptance region and severity parameter definition. 

The 𝑂𝑝𝐸𝑛3𝐷  severity parameter to evaluate the vibration vector analysis, mark in the Figure 41 by 
the purple line, is the value of the shortest distance between actual data and the OpEn 3D of the ellipse 
acceptance region. The acceptance ellipse middle point, defined as the intersection point of the semi-
axis of the ellipse, lies at the baseline point defined for each rotational speed value. This is the green 
point, i.e., the end of the vibration vector, which in the polar system has the coordinates (𝐷 _ , 𝛽 _ ), 

respectively depicted in Figure 41. The acceptance region for vibration vectors proposed by the author 
was determined thanks to the author's many years of experience in analyzing transient states of large 
rotor machines. The ellipsis semi-axes are the acceptable amplitude, and the phase marked in Figure 

41 as 𝑂𝑝𝐸𝑛3𝐷  and 𝑂𝑝𝐸𝑛3𝐷 , respectively. The actual transient vector is described by 

(𝐷 _ , 𝛽 _ ) coordinates and marked in Figure 41 and Figure 42 in red. The new transient data is 

compared to the OpEn3D acceptance region. In addition, the actual vibration vector is compared with 
its corresponding ellipse for each rotational speed separately for the current transient. The set of 
acceptance ellipsis for the whole transient for one sensor is depicted Figure 40. Figure 42 depicts an 
example of applying this parameter. When transient data are within the OpEn 3D acceptance region, 
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the shaftline is considered to be in good condition (Figure 42 – top). The 𝑂𝑝𝐸𝑛3𝐷  distance from 
the OpEn 3D acceptance region is equal to 0. Therefore, no further actions are undertaken. 

 

 
Figure 42. OpEn 3D ellipse severity parameter visualization: top – actual data inside of an ellipse; bottom – 

actual data outside of an ellipse. 

 

On the other hand, if the data fell outside the OpEn 3D acceptance region, the distance of the vibration 
vector from the ellipse is calculated. Figure 42, bottom, presents an example of determining the 
severity parameter as the distance of the vibration vector from the ellipse. At 2600RPM, the vibration 
vector point is outside the acceptance region. Next, the severity parameter is calculated and defined. 
It is the closest distance from the point outside the ellipse to the ellipse. 
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5. Fault Identification method 

The first part of the FDI algorithm is the fault detection method, which was proposed in the previous 
section. If a fault is detected, it is very useful to learn what was the reason for a deviation from the 
baseline. To answer this question, one needs to perform the fault identification. This operation 
constitutes the second part of the method proposed in this dissertation. This section presents the 
details of this method. 

5.1. Parameter identification method 

The vibration response of the unit remains the fundamental method to assess the technical state of 
turbo-sets. Sometimes the interval between shutdowns can last up to a year without intermission. 
During this period, the turbo-set is operated in varying conditions such as significant load change, 
different steam temperatures and pressures, and many more. These conditions can cause a large 
amount of stress, which eventually can lead to fatigue and, in extreme cases, to failure. The automated 
assessment of complex technical systems was the subject of numerous research. 

After a series of total machine destruction cases, German insurance company Allianz carried out 
extensive research [41]. It concluded that without a proper turbomachinery diagnosis, the 
consequences could be fatal to the equipment and very dangerous to the people who operate them. 
Since this report, a significant amount of research and effort has been invested in inventing and 
implementing new and more precise methods of technical condition assessment. Demetul et al. in [27] 
highlight the fact that most industrial systems are non-linear and require appropriate analysis 
methods. Each such attempt must include a feature extractor and classifier. The authors have analyzed 
multiple generic methods to diagnose the pneumatic systems of the material handling systems, 
starting from dimension reduction to clustering for classification. Zagorowska et al. [36] presented an 
interesting approach and new insights to track the evolution of malfunction during steady-state 
operation with a novel approach to trend tracking technic. Głuch, in chapter 3 of [39], describes a state-
of-the-art thermal and flow diagnostic of steam turbines in great detail. Duan et al. in [46] presented 
several attempts at tracking turbogenerator degradation with Deep Neural Networks. However, the 
features were calculated from turbo-set operation data, not during transient states. Akhtar et al. [40] 
perform an analysis of a complex case of Gas Turbine vibrations. They confirm that tedious analysis 
work and the availability of experts are required to detect and identify a large turbomachinery fault 
correctly. Sachin et al. [47] present an interesting approach to bearing diagnosis. They propose 
reducing the number of features. Paper claims that proper feature ordering and selection could 
significantly improve classification accuracy, especially for machines equipped with modern CMS, 
which acquire and calculate many features.  

The above methods and research improve the quality of assessing the technical condition of machines. 
However, they do not consider the transient states of high inertia machines, which can last up to two 
hours, as depicted in Figure 19. Therefore, there is a lack of a method to help the maintenance 
personnel quickly assess the state of machinery during turbine cast-downs and start-ups, ideally in an 
automated way. Data from these states are as important as the steady-state ones, but the amount of 
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transient data is incomparably smaller than that of steady-state operation. This makes this data an 
invaluable source of information. The amount of information about the dynamic state obtained from 
them determines the need to introduce supervision, assessment, and diagnostic system during coast 
downs and start-ups of the above devices. 

The main quality indicator of rotating machines is the bearing vibration. Therefore, there are many 
works dedicated to bearings' fault diagnosis. Wei et al. [48] use an adaptive approach to extract 
features from faulty bearings with success. Kun et al. [49] have also proposed an interesting approach 
to bearing faults classification. The paper presents the use of Ensemble Empirical Mode Decomposition 
(EEMD) and Singular Value Decomposition (SVD) to extract fault features, and then an advanced 
clustering method is used for fault pattern recognition. Wang et al. [29] also use ML technics and 
incorporate them into planetary gearbox malfunctions detection. [28] 

The papers mentioned above studied only machines with rolling element bearings or planetary gears 
during their steady-state operation conditions. There is a lack of papers concerning assessing the 
behavior of fluid-film bearings in large rotating machinery during transient states. The availability of 
machines equipped with rolling bearings or planetary gears is significantly greater than that of large 
rotor machines. Therefore, examining small rotor devices is not associated with a large financial outlay 
and workload. There are many small rotor machines in the industry. Often, due to their redundancy, 
they can be freely tested without significantly increasing the company's production costs. The available 
data makes the ML idea and any AI-based algorithms justified in these cases. Moreover, large amount 
of data increases the probability of detecting damage and recognizing a fault pattern, and also gives a 
better training-to-testing data ratio. 

Unfortunately, there is a lack of papers concerning assessing the behavior of fluid-film bearings in large 
rotating machinery during transient states. The author of this dissertation aims to reduce this gap by 
introducing a method of automatic anomaly detection during transient states. 

5.2. Malfunction identification methods 

Large turbogenerators exhibit a highly non-linear response during transient states due to various 
factors, such as passage through its resonances, lube oil damping, fluid forces (e.g., steam), rubbing, 
and other factors. The author proposes decomposing each transient response into a set of signals to 
deal with such a complex response. He utilizes the signal structure known “a priori”, and such 
decomposed signals can be interpreted separately, thereby facilitating the analysis. Nonlinearity in 
transient response, even in respect of a single rotor supported by two bearings, can cause some 
difficulties regarding its description in a mathematical sense.  

The transient state data points of a rotor have a highly nonlinear nature. The author proposed 
decomposing a transient curve into a few known and less complex signals to address a particular 
malfunction of complex behavior. The advantages of decomposition on nonlinear stochastic signals 
were thoroughly described by Chui and Mhaskar [50], Cicone [51]. Chui and Mhaskar, and Cicone 
researched the enhancements and improvements of the decomposition of nonstationary time signals. 
Chui and Mhaskar proposed a new mathematical theory behind their method that performs better 
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than the synchrosqueezing transform method. Cicone presented a detailed analysis of the methods 
for decomposing nonstationary signals. He also presented a detailed methodology for composing the 
signal into individual, simpler components. The methods used do not require "a priori" assumptions. 
He also analyzed the most popular decomposition methods, indicating their advantages and 
disadvantages. 

Each decomposed signal represents a different rotor behavior during the transient. The author offers 
three types of functions to approximate the transient signal curve. Equations (21)–(23) represents the 
analytic form of the decompose type of the functions.  

𝑓 = 𝑎 𝑒
( )

 (21) 

𝑓 = 𝑎
𝑥 − 𝑥

𝑥 − 𝑥
 (22) 

𝑓 = 𝑏  
(23) 

Where: 
𝑓  – Gauss function with 𝑎 ,  𝑏 , 𝑐  parameters respectively, 
𝑓  – parabola with 𝑎  parameter and  𝑏  as a bias term respectively, 
𝑎  – amplitude of the Gauss function, 
𝑏  –placement of the resonance peak along the rotational speed axis, 
𝑐  – width of the resonance, 
𝑎  – factor related to synchronous response, 
𝑥  – starting point of centrifugal force response, 
𝑥  – rotational speed range (in given transient), 
𝑏  – bias constant (electrical/mechanical runout). 

 

Based on assumption above, numerous function combinations with different sets of parameters can 
be superposed to fit the measured data. 

Hence, the complex function described by the equations (6) and (7) can be represented as a sum of 
the simple functions described by the equations (21)-(23), similarly to the procedure described by Chui 
[50] and Rao [52]: 

𝜑 = 𝜑 + 𝜑 + ⋯ + 𝜑 = 𝜑  (24) 

 

where: 
𝜑  – decomposed function described by the combination of equations (21)-(23). 

 
The MSE (Mean Square Error) and the MAE (Mean Absolute Error) are used as a measure of accuracy 
concerning the decomposition approximation. 𝑀𝑆𝐸   has been defined as a sum of the squares, 
whereas 𝑀𝐴𝐸   has been defined as a sum of the absolute values between real function 𝜑  and 

our approximation 𝜑  within the space of all the samples throughout the transient in the 
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equations (7) and (8), respectively. Consequently, the 𝑀𝑆𝐸  and the 𝑀𝐴𝐸   are used to assess a 
fit of the decomposed parts to the actual data which was obtained during the measurements: 

𝑀𝑆𝐸 = 𝜑 (𝜔) − 𝜑 (𝜔)  (25) 

𝑀𝐴𝐸 = 𝜑 (𝜔) − 𝜑 (𝜔)  (26) 

where:  
𝜔 – revolution per minute (rotational speed). 

 
The malfunction identification method proposed in the doctoral dissertation consists of a tournament 
between three scenarios involving different variants of decomposed functions approximating a given 
transient. The simplest scenario proposes an approximation with three partial functions, i.e., one 
Gaussian function with a parabola and bias. Six parameters describe the partial functions of this 
scenario. The most complex variant consists of five partial functions, i.e., three Gaussian functions, a 
parabola, and a bias function. Twelve parameters are used to describe the partial functions for this 
scenario. 

The proposed method can yield up to 12 parameters describing a single transient with three resonance 
peaks, unbalance, and run-out. Each resonance is described by three parameters that can be 
monitored independently: the resonance peak, its placement, the rotational speed interval, and the 
width related to damping in a bearing. In addition, rotor unbalance response is monitored with two 
parameters of a single parabola. According to the tests carried out during the author's research, a set 
of the 12 parameters described above should suffice to correctly model and monitor the transients 
and their most essential parameters. 

5.3. Multidimensional Data Driven Decomposition (MD3) 

Multidimensional Data Driven Decomposition (MD3) is an extension of a concept presented by authors 
in [14]. This method consists of two main parts listed below: 

1. Real data preparation and preprocessing, 

2. Identification of decomposed function parameters. 

The first step is required to transform very different data sets into unified vectors, which can be a 
subject of comparison. The content of data sets measured on the physical objects is often different. 
Each transient can vary depending on a large number of external factors, which are not recorded in 
the vibration response of the system. For instance, there happen to be processed depending 
conditions, e.g., lousy quality vacuum in the condenser, which can cause a machine to stop much 
quicker than during normal coast-down. In addition, there are transients when the Full Speed No Load 
(FSNL) state cannot be achieved during the start-up. There are no turbine-related issues (common ones 
are vacuum-related problems, lube oil-related problems, boiler-related issues, or others.). Even if the 
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whole RPM span transient is recorded, it is evident that the vibration data are not stored at the same 
rotational speed instances.  

Each monitoring and acquisition system records data with different resolutions in terms of time and 
rotational speed intervals. It is a result of design of monitoring systems used in the field and numerous 
datasets have such a feature. This data already exists and it is not possible to repeat these 
measurements. Portable measurement system configuration has two different triggering options, 
according to the change of speed and time. Typical values are 20-60 seconds for time intervals and 5-
50 RPM for the rotational speed change. Depending on the trip time instance, the measurement 
systems record the transient process at different points in time and speed. Therefore, direct 
comparison of the transient vibration parameters in an automated way is not possible. 

As a first step, the vibration data need to be preprocessed to have the same set of RPM values. A cubic 
spline interpolation was introduced as the preprocessing procedure to solve this problem. It allows 
defining a set of equally spaced rotational speed values at which the vibration values shall be 
interpolated. Later, the fitness functions of the decomposed functions will be evaluated. Barszcz and 
Zabaryłło [13] describe the usage of cubic spline interpolation and its benefits in transient state 
analysis. Dyer and Dyer in [25] and Barszcz and Zabaryłło in [13] present the advantage of using the 
equally spaced knots for the polynomial spline function (i.e., equally spaced rotational speed 
increments during transient). De Boor, in his book [53] in chapter XIV shows that the advantage of 
cubic spline interpolation is to smooth the interpolation function in the points of interest. In our 
research, the points of interest at which the cubic spline is calculated are the rotational speed instances 
from the following {𝑟𝑝𝑚 , 𝑟𝑝𝑚 , 𝑟𝑝𝑚 , … , 𝑟𝑝𝑚 }. Typically, the set consists of equidistant values, 
e.g., 200 RPM ending at 3,000 RPM (for European power plants) with a 50 RPM distance between 
points. 

The second step of the procedure decomposes a preprocessed transient into essential components. 
Finally, the procedure relates a set of function parameters and coefficients to physical phenomena 
occurring during the coast-downs and start-ups across the shaft line when a fault is present. Thus, the 
input transients are decomposed into more straightforward base functions. These functions are used 
as a measure of particular malfunction. Based on experience and research, the authors took a set of 
three decomposition base functions into account: 

1. One Gaussian function, one parabola, and one constant/bias function. It produces a set of six 
parameters. This scenario can identify one critical speed and unbalance. 

2. Two Gaussian functions are considered, one parabola and one constant/bias function. It 
produces a set of nine parameters. This scenario can identify rotors with two critical speed zones 
and unbalance. 

3. Three Gaussian functions are considered, one parabola and one constant/bias function. This 
scenario can identify rotors with up to three critical speed zones and unbalance.  

Each scenario is qualified based on that same quality performance parameter, namely MSE. Mean 
Squared Error (MSE) measures the fitness function to be minimalized. Equation 1 presents the 
definition of MSE, as defined by Leon-Garcia in chapter 4 in [44]. 
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Figure 43 presents the flowchart of the MD3 method divided into particular operations. 

The first four blocks refer to step 1, as described at the beginning of the section. The MD3 method 
starts with detecting an anomaly in the OpEn procedure. After detecting a potential malfunction, the 
data in a set of features for individual rotational speed increments are passed for preprocessing. There 
are several steps in the newly received data preprocessing procedure. The first step is to sort the data 
samples according to the rotational speed value. This step is essential when there are different 
transient conditions con-figured. For example, during coast-down, the recording of the rotational 
speed would start at the highest one. The situation reverses when the start-up is recorded, and the 
rotational speed will start at 0 RPM. The procedure sorts the data in ascending order to rotational 
speed values to analyze the data systematically. Next, the samples with the same rotational speed tags 
are removed from the dataset. Further on, the speed range for the currently analyzed transient is 
determined, and the range is divided into equidistant points on the rotational speed axis. The Cubic 
Spline interpolation establishes equidistant points from the current transient as the last operation in 
this step.  

The latter operations in Figure 43 belong to the second step. For each transient, three scenarios are 
evaluated based on the MSE quality index. First, the scenario with the best-decomposed functions 
fitting parameters, i.e., the smallest value of the MSE index, is chosen to represent the current 
transient state. These parameters can be used in malfunction identification, and they are stored for 
future reference. 
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Figure 43. The MD3 method flowchart. 

Estimating the values of the proposed functions is the heart of the method. The author uses 
Differential Evolution (DE) algorithm to determine these parameters. The algorithm finds the best fit 
of the assumed model vs. real-object data. Equation 2 presents how the decomposed functions are 
combined to form the final transient function. Finally, Equations 3÷5 present the analytical 
representation of individual decomposed functions. 

𝜑 (𝑟𝑝𝑚) = 𝐺𝑎𝑢𝑠𝑠 , (𝑟𝑝𝑚 ) + 𝑃 (𝑟𝑝𝑚 ) + 𝐵 (𝑟𝑝𝑚 ) (27) 

𝐺𝑎𝑢𝑠𝑠 , (𝑟𝑝𝑚) = 𝑎 𝑒
 
( )

 
(28)

𝑃 (𝑟𝑝𝑚) = 𝑎
𝑟𝑝𝑚 − 𝑥

𝑟𝑝𝑚 − 𝑥
 (29)

𝐵 = 𝑐𝑜𝑛𝑠𝑡  (30)

 

Where: 
𝑟𝑝𝑚  – particular rotational speed from equally spaced rotational speed increment set where 

𝑟𝑝𝑚  𝜖 {𝑟𝑝𝑚 ,  𝑟𝑝𝑚 ,  𝑟𝑝𝑚 , …,   𝑟𝑝𝑚 }; 
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𝑟𝑝𝑚  – maximum rotational speed in the transient set; 
𝜑  – cubic spline interpolation of real data in ω instances; 
𝜑  – cubic spline interpolation of real data in ω instances; 
𝑛 – a number of Gaussian functions chosen for the decomposition; 
𝑗 𝜖 {1,2,3, … , 𝑛} – particular Gaussian function in 𝑛 set; 
𝐺𝑎𝑢𝑠𝑠 , (𝑟𝑝𝑚) – 𝑗-th Gaussian function; 

𝑃  – parabola function (2nd-degree polynomial); 
𝐵  – bias function with its parameter (constant not dependent on 𝑟𝑝𝑚); 
𝑎  – amplitude of 𝑗-th Gaussian function at the top of its critical speed (resonant speed); 

𝑝  – the peak of the 𝑗-th Gaussian function in terms of rotational speed; 

𝑤  – width of the resonant zone of the 𝑗-th Gaussian function; 

𝑎  – amplitude of 𝑖-th parabola function at the end of the recorded transient; 

𝑥  – point of start of the parabola in terms of rotational speed (𝑟𝑝𝑚); 

𝑐𝑜𝑛𝑠𝑡  – constant term taking into account initial vibration indication of the shaft. 

 

The benefit of the method is physical interpretation of the aforementioned parameters. This is 
important advantage over methods, which yield parameters without clear connection to physical 
features of particular faults. 

5.4. Identification parameters 

Based on the assumption described in Section 5.2, the author proposes that several decomposed 
function combinations can be applied to fit the transient curve. In addition, different sets of functions 
and Identification scenarios can be applied to fit the measured data in the best way. 

The complex transient function behavior described by the equations (4)-(7) can be represented as a 
sum of the simpler functions described by the equations (21)-(23) and (28)-(30), similarly to the 
procedure described by Chui and Mhaskar [50] and by Rao [52]. 

The first decomposed type of function is the Gaussian probability distribution function described by 
the equation (21) and depicted in Figure 44. It can approximate the resonance behavior of the rotor. 
Its parameters define amplitude at the resonance peak, placement along the rotational speed axis, and 
the resonance width, which in the example in the Figure 44 are 1850, 100 and 700, respectively. These 
parameters are essential when analyzing the rotor response in the critical interval. Changes can 
indicate a potential issue with the bearing parameters and a start or evolution of a bearing degradation 
process. Further, parameter change of resonance peak amplitude can indicate a potential imbalance 
problem. When combined with the change width parameter, it can indicate the deterioration of the 
bearing damping parameters. Finally, the placement of the resonance peak change can indicate rubs 
during the transient state or, in combination with the change in 2X amplitude response, can be a 
symptom of shaft crack propagation. 

The second one is the parabola depicted in Figure 44 by red dotted line, and described by the equation 
(22). It can represent the centrifugal force related to the unbalance response. Changes in these 
function parameters indicate that some imbalance to the rotor was introduced. There can be several 
reasons for that. According to the author's experience, the most common change in imbalance 
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response is the circumferential mass reduction caused by a sudden event (falling off the blade's tip) or 
erosion-induced reduction of the bade mass. In both cases, centrifugal force changes, and the 
imbalance response of the rotor affects the parameter of the parabola function. 

 
Figure 44. Example of the decomposed signals simulating runout, resonance and unbalance and their 

superposition. 

The third one is the constant function described by the equation (23). It can represent the initial 
mechanical runout of the shaft. It can also account for the measurement noise. 

5.5. Differential Evolution algorithms as a part of Genetic Algorithms 
family 

The fundamental question is how to properly adjust the parameters of the functions proposed in the 
previous sections. The method should be based on the data available after each transient. After 
analysis of literature and initial tests, the Genetic Algorithms were selected for this task. 

Genetic Algorithms (GA) are parallel mathematical algorithms that transform each population (i.e., 
individual parameters of mathematical objects) into a new set of parameters based on a fitness 
function. The fitness function is a way of evaluating the cost of an individual and population to adapt 
to the environment related to each population and its parameters. They are based on Darwin’s theory 
of evolution, which stated that only the best-adapted individuals (the fittest ones) will survive to 
reproduce and create a new population that would be better adapted to the natural conditions. The 
DE algorithm is part of the Genetic Algorithms (GA) family. GA are based on the concept of population 
evolution in a natural habitat. The idea of finding the best solution to a given problem (goal function) 
was described by Koza and Poli in Chapter 5 [54]. Finding the solution starts with some initial set of 
solutions with different parameters (called population) and using the quality parameter (called fitness 
function) to determine the best solutions from the solutions’ pool (the fittest individuals from the 
particular population, called parents). Then, another set of solutions based on the parents (called 
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children) is produced. Children inherit many properties from their parents, but they can also be 
subjected to modifications in their parameters (called mutation and genes’ crossover). Then, the new 
solution set of the next evolution is ready to be evaluated. This can go on until the quality parameter 
is met or for an arbitrary number of evolutions. Throughout their book they describe the basics of GAs 
and deliver an extensive discussion on its advantages and limitations of GAs. The main advantage of 
the GA is its possibility to adapt to different problem-solving tasks. 

GA algorithms are used extensively across many fields of science and engineering. For example, Roetzel 
et al., in chapter 6 in [55], described the heat exchanger networks design using GA with network 
parameters like total annual cost, target temperatures hot and cold temperatures with good results. 
Furthermore, Li et al. in [56] present a GA enhancement and reinforcement to feature an extraction 
and classification algorithm based on the neural network used to diagnose electrocardiogram signals. 
They argue that GA feature optimization and Back Propagation Neural Networks could be applied in 
cardiac arrhythmia automatic identification due to dimension reduction. It can yield a classification 
accuracy of 99.33%. 

The Differential Evolution (DE) is an evolutionary algorithm, which constitutes part of the GA family. 
The DE is a stochastic search algorithm based on the population. What is more, the DE is based on 
Darwin’s theory of evolution, where the strongest (i.e. fittest) and therefore the best individual has 
the best chance to survive and reproduce. The “fittest” parents from the population pass on their 
genes (qualities) to the next population, which has a greater chance of survival, accommodation, and 
reproduction, even higher than their parents have in a given environment. An example of such an 
approach was described by Storn and Price [57]. Further implementations and enhancements of the 
DE algorithm are presented in Qin et al. [58] and Das et al. [59]. 

Muratoglu [60],[61] presents an interesting application of the DE algorithm to optimize rotating 
machinery, namely hydro turbines. In the paper, five different primary hydrofoil families were 
optimized and scaled. The optimized hydrofoils were found to deliver successful performance for 
hydrokinetic turbines. 

The aforementioned algorithm is used in the so-called “derivative-free optimization”. The DE algorithm 
finds a minimum of a function 𝑓(𝑥): 𝑅 → 𝑅, where it is hard to approximate the derivatives of an 
analytical function (which may be complex or non-derivative), or it is impossible to identify the 
analytical form of a target function to be optimized and therefore the derivatives cannot be computed 
easily.  

The DE algorithm has the following steps (visual description is shown in Fig. 8): 

1) Create a population with a 𝑁  individuals. Each individual has a set of parameters 𝑥,. Each 
parameter vector corresponds to an objective function. Select a target and base vector. 

2) Randomly select two population members.  

3) Compute a weighted difference vector from the previously picked two-parameter vectors. 

4) Add a computed weighted difference vector to the base vector, thereby creating a mutant 
vector. Use the target vector and mutant vector for a crossover (trial vector). 
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5) Select from the two vectors, i.e., the target vector or trial vector (selection is based on the cost 
function). 

6) Consequently, a new population is created. 

 
Figure 45. Differential Evolution (DE) algorithm scheme. 

Where: 

𝑔 – generation counter (increases every algorithm cycle) 

𝑥( , ) – parameter vector for the 𝑁𝑝 − 𝑖, 𝑖𝜖{0,1,2 … 𝑁𝑝} population member 

𝑓 𝑥 ,  – objective function value for the parameter vector 𝑥( , ) 

𝑣( , )  – parameter vector for the 𝑁𝑝 − 𝑖, 𝑖𝜖{0,1,2 … 𝑁𝑝} mutant population member 

𝑓 𝑣 ,  – objective function value for the mutant parameter vector 𝑣( , ).  

 

In the doctoral dissertation, the author used the DE algorithm to find the parameters of partial 
decomposed analytical functions expressed by equations (21)-(23), which, when summed, best reflect 
the currently studied transient response. The DE algorithm is the backbone of the MD3 method, 
described in more detail in section 5.3, to determine the parameters of the partial functions of the 
individual scenarios. The best scenario is determined based on the results of its calculations. 

The MD3 method, and in particular the DE algorithm used to search for the parameters of decomposed 
functions, is the essence of the automatic identification part of the FDI system. 
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6. Architecture of the automated FDI system 

This chapter presents the architecture of the proposed automated FDI system. Then, the flow of data 
necessary for detecting and identifying malfunctions will be described. Finally, the critical elements of 
the executive program are presented and explained. 

6.1. System architecture 

The architecture of monitoring and protection (M&P), and diagnostic systems (DS) may differ 
significantly depending on the production plant.  

 

Figure 46 shows typical data flow in a power plant. Some plants may only have a M&P system, depicted 
in the Figure 46 by the red dashed rectangle. Others have expanded their systems architecture with a 
DS, presented by the black dashed rectangle in Figure 46. 

In the case of power plants, the monitoring system collects, displays and saves data. The security 
system, which comes as a part of a monitoring system, watches over the device's safety. This layer 
operates without any human intervention and is able to automatically initiate the coast down 
procedure of the power generation unit. The diagnostic system is a separate layer, which analyzes the 
current state of the machine. It can perform advanced diagnostics procedures to facilitate an expert in 
diagnosing the machine's malfunctions. 

 
Figure 46. Basic monitoring and diagnostic system arrangement. 

The data from the sensors go to the M&D system (black line in Figure 46). The monitoring system saves 
and displays the data collected from the object in the control room. The protection system uses the 
data collected by the monitoring system and compares them with the upfront threshold values. If the 
instantaneous values measured by the monitoring system exceed the threshold - the machine is turned 
off by the protection system. It is the most straightforward system, marked in Figure 46 with a red 
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dashed line. However, this approach does not guarantee conscious management of the machinery and 
the optimal organization of repairs. Having only the overall data and not processing the vibration data 
for diagnostic features, the personnel cannot determine the machine's technical condition correctly. 
This strategy often leads to unforeseen outages. 

The DS is an extension added to the M&D system. It can extract diagnostic features necessary for the 
correct analysis and diagnostics of rotating machines. This system uses measurements provided by the 
M&D system. Raw data from the M&P system is passed to DS (red line in Figure 46), where appropriate 
tools are used to extract diagnostic features (yellow line in Figure 46). These characteristics can be 
computed in flight or a posteriori as the need arises. The diagnostic systems used in utility power plants 
do not work automatically. Unfortunately, this involves little checking of the technical condition of the 
device. Usually, an expert is only hired when the problem is so severe that the safe operation of the 
equipment is jeopardized. This approach leads to unnecessary and increased expenses and reduces 
the device's expected life. 

The author during his research proposed, developed, and tested the automated FDI tool. The flowchart 
of the system is shown in Figure 47. It consists of two main parts - the OpEn module and the MD3 
module. OpEn is a module for automatic failure detection, which uses the concept of the acceptance 
region wrapped around the modeled baseline. 

 
Figure 47. Flowchart of the proposed system. 

The OpEn module runs in the background during each transition state. If the data in the transient does 
not exceed the acceptance area, the module does not perform actions visible to the operator. When 
transient data exceed acceptance values, the module calculates the severity parameters and passes 
them to the device operators. Then the transient data preprocessed in the OpEn module is passed to 
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the MD3 module. The MD3 module identifies basic malfunctions without expert intervention. The 
parameters of individual malfunctions are identified for the decomposed functions and optimized to 
fit the input transient best. Each of the decomposed functions of the MD3 module has its mechanical 
meaning.  

Both the methods were implemented in the Python environment. The software tool was proposed, 
designed and validated. The complete system was tested on laboratory and real turbine data. 

The automatic fault detection and identification (AFDI) system proposed by the author is part of the 
DS of power plant devices. Therefore, it can be a simple diagnostic and operational support system. 
Figure 48 depicts proposed structure and arrangement of M&D and DS equipped in AFD&I system in 
power plants. 

 
Figure 48. Monitoring-protection and diagnostic systems in power plants supported by the automated FDI 

system (OpEn & MD3 modules). 

The AFD&I system can operate autonomously without the DS layer. In Figure 48, this is shown as a blue 
line. In this case, it will be the first line of supervision of the baseline condition of the machine. If 
properly implemented, it will detect the beginnings of the evolution of malfunctions, giving the owners 
time to prepare for possible repairs. For systems equipped with DS, the AFD&I system can become a 
support for diagnostic teams indicating the beginnings of the malfunctions evolution in an automated 
manner. This system will eliminate the need to constantly check the technical condition of all devices 
and limit the process of checking to those that actually show faults origins.  

The system consists of two stages: first step is fault detection, described in Section 3 and the second 
step is fault identification, described in Section 4. The preparatory process includes activities such as 
loading reference transient data sets and processing them, leading to the determination of baseline 
measurements and OpEn values. The enforcement proceedings include activities related to data 
processing from a given transient state, an anomaly detection module, and a basic malfunction 
identification module.  Loading data and CS interpolation modules are common to both paths. 
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In the following sections of the chapter, the individual modules of the proposed AFD&I system will be 
presented. The author used Python version 3.8 libraries and Google Collaboratory as the scripting 
environment to implement the system. 

6.2. Algorithms for the detection and identification methods 

In following paragraph, the main algorithms for the anomaly detection and malfunction identification 
are presented. First a pseudocode for the reference data import module is depicted. Depending on 
arbitrary chosen option for the OpEn method it returns matrices with baseline acceptable region values 
for the OpEn 2D and 3D case. Afterward, OpEn algorithms for current transient are laid out for 2D and 
3D case, respectively. Next the MD3 method is explained and its pseudocode is presented. At the end 
of the chapter the python code for the most important function is given and explained. 

6.2.1. Data import module 

First pillar of the entire system is the data import module for the baseline values calculation presented 
in the Algorithm 1. This module retrieves the given transient data from the transient data sets given 
location. All set of transients are analyzed for one sensor individually. Each transient data set contains 
all vibration features provided by the measuring system – in this case the portable data acquisition 
unit. The module then cleans the data matrix by removing the rows with the same RPM values. Then 
it sorts the data in ascending order with respect to the RPM. The module is used for iterative data input 
into the algorithm.  

Algorithm 1. Data Import and CS module for the baseline measurement 
Input: sensor list, set of transient data in given location, OpEn 2D Upper Value, OpEn 2D Lower Value, OpEn 3D Amp 

Value, OpEn 3D Kph Value, mode (BULL/BEAR or both) 

Result: CS interpolated transient data vibration values for all turboset probes in given location, OpEn 2D Baseline Upper 
and Lower Limits (OpEn 2D BULL) matrix, OpEn 3D Baseline Ellipsis Acceptance Region (OpEn 3D BEAR) matrix  

Procedure: 

for every probe in probe set: 

 for every transient in given transient location 

  Open file 

  Select vibration features applicable to given analysis and given probe 

  Remove and clean duplicated data 

  Sort data in ascending order (RPM-wise) all the vibration data and all of its features 

  Probe transient vibration data matrix 

  minimal and maximal RPM 

  CS interpolation for all vibration feature 

 end (all transients for one probe) 

 OpEn centerline matrix for one probe (arithimetic mean of non-zero values RPM-wise) 



93 
 

end (all transients for all probesin given location) 

if mode = BULL 

 OpEn centerline matrix + Upper value = OpEn 2D Upper Value matrix  

 OpEn centerline matrix – Lower value = OpEn 2D Lower Value matrix 

 from OpEn 2D Upper Value matrix and OpEn 2D Lower Value matrix create OpEn 2D BULL matrix 

if mode = BEAR 

 from OpEn 3D Amp Value, OpEn 3D Kph Value and OpEn centerline matrix create a OpEn 3D BEAR matrix 

if mode = both 

 Perform mode = BULL 

 Perform module = BEAR 

end  

 

Module returns the acceptable region of OpEn matrices. Depending on the system capabilities it can 
produce OpEn 2D Baseline Upper and Lower Limit matrix (OpEn BULL) or OpEn 3D Baseline Ellipsis 
Acceptance Region matrix (OpEn BEAR), or both. 

6.2.2. Detection method for the OpEn 2D and 2D case 

Algorithm 2 and Algorithm 3 presents the process of collecting and processing the current transient to 
detect anomalies in the case of OpEn 2D and the OpEn 3D method, respectively. This is the second 
pillar of the system. In the beginning, each module takes matrices with reference data for itself. In the 
case of the OpEn 2D module, it is the OpEn 2D BULL matrix, visible in Algorithm 2, where each element 
contains two values of a given sensor at a given rotational speed. On the other hand, the OpEn 3D 
module uses the OpEn 3D BEAR matrix, shown in Algorithm 3, in which each matrix element is a set of 
ellipse coordinates for a given sensor at a given rotational speed. Then, each module opens the current 
file with the current transient from the indicated location. In the next step, vibration signal features 
are selected. In the case of OpEn 2D, only one vibration signal feature is selected, e.g., total vibration 
amplitude (Direct) or the amplitude of the first component (1X Amplitude). The OpEn 3D case analyzes 
the vibration vector as a whole, i.e., the combination of the amplitude and phase of the first 
component (1X Amplitude and 1X Phase).  

Algorithm 2. Data Import and CS module for the current transient processing using OpEn 2D 
method. 

Input : sensor list, transient data set, OpEn 2D BULL matrix 

Result : Set of OpEn versus CS interpolated transient data values for all turboset probes in transient 

Procedure : 

Upload OpEn BULL matrix for whole probe set 

Open actual transient data set file: 

Select vibration features applicable to given analysis  



94 
 

Remove and clean duplicated data 

Sort data in ascending order (RPM-wise) all the vibration data and all of its features 

Set common CS domain with OpEn 2D BULL matrix (equidesant spaced rotational speed increment) 

for every probe in probe set: 

 CS interpolation of given vibration feature 

 for each, common, rotational speed value in current transient 

  Compare CS vector element with the respective OpEn 2D BULL matrix element  

  if OpEn Lower value <= current data value and current data value <= OpEn Upper value 

   No actions are taken – behavior on this RPM is considerate as correct 

   Standby 

  else 

   Set MD3 method triggered active (save probe name, RPM value) 

   Apply RMSE procedure to the given transient data 

   Apply Kurtosis procedure to the given transient data 

   Apply MIN and MAX procedures to the given transient data 

 end 

 Save the OpEn 2D severity parameters (MIN / MAX, RMSE, Kurtosis) 

end 

if MD3 trigger active == True 

 Display the OpEn 2D severity parameters 

 Go to MD3 method 

else  

 Standby 

 

 

The next step for both OpEn 2D and OpEn 3D, as in the case of Algorithm 1, is the cleaning and sorting 
of the data to perform the CS interpolation correctly. Then, the algorithm determines a mutual 
rotational speed domain for the actual transient data set and the baseline matrices. This operation is 
vital from the point of view of the principle of operation of the OpEn method. It enables a suitable 
comparison of the baseline values with the current transient. The mutual rotational speed comparison 
approach also makes it possible to compare baseline transients with those that are not fully registered 
– i.e., that do not start or end in a known machine state (turning or FSNL operation). The next step is 
to perform CS interpolation in order to obtain the signal features values in the predefined rotational 
speed domain with an interval identical to that in the OpEn BULL and OpEn BEAR matrix for the 2D and 
3D case, respectively. Then, a nested loop follows. It iteratively takes each sensor and compares 
element by element of the current transient's value with the baseline values for all the elements in the 
common domain.  
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In the case of OpEn 2D, presented in Algorithm 2, the current transient value in a particular rotational 
speed instance is compared with the corresponding maximum and the minimum acceptable values. If 
the vector value goes beyond the assigned baseline interval (OpEn BULL) for any point in a given vector, 
the sensor data and its name is saved. The transient from the sensor and the severity parameters are 
calculated and saved. MD3 trigger is activated to switch to the MD3 method and identify the 
malfunction.  

 

Algorithm 3. Data Import and CS module for the current transient processing using OpEn 3D 
method. 

Input: CS data points matrix of probe set for the current transent, OpEn 3D BEAR matrix 

Result: Anomaly detection and advisory for furgther actions or standby 

Procedure : 

Upload OpEn 3D baseline values for whole probe set 

Open actual transient data set file 

Select vibration features applicable to given analysis (1X Apmlitude and 1X Phase) 

Remove and clean duplicated data 

Sort data in ascending order (RPM-wise) all the vibration data and all of its features 

Set common CS domain with baseline measurements (equidesant spaced rotational speed increment) 

CS interpolation of given vibration features 

for every probe in probe set: 

 for each, common, rotational speed value in current transient 

  Compare if the CS vector fell within the OpEn 3D BEAR) 

  if current data vector element fell within OpEn 3D BEAR element values 

   No actions are taken – behavior in this RPM is considerate as correct 

  else 

   Distance from the ellipsis is calculated 

   Set MD3 method triggered active (save probe name, RPM value) 

   Save the severity parameters (distance from the ellipsis) 

end 

if MD3 trigger active == True 

 Display and store distance form the Ellipsis 

 Go to MD3 method 

else  

 Standby 
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In the case of OpEn 3D, presented in Algorithm 3, the current transient vector (amplitude and phase) 
in a particular rotational speed instance is compared with the corresponding baseline ellipsis 
acceptable region (OpEn BEAR). If the vector falls out of the assigned baseline ellipsis for any point in 
a given vector, the sensor data and its name is saved. The transient from the sensor and the severity 
parameter as the distance from the ellipsis is calculated and saved. MD3 trigger is activated to which 
to the MD3 method and identify the malfunction. 

At the end of the procedure, the MD3 trigger status is checked. If it is active, severity parameters are 
displayed and sensor names with values outside the baseline interval are passed to the MD3 method. 
If the MD3 trigger is inactive, the system remains in standby mode - no messages or values are 
displayed (the program remains in the background). 

 

6.2.3. MD3 method algorithm 

Third pillar is the malfunction identification module named MD3 method. Algorithm 4 pseudocode for 
the MD3 method. After the OpEn method has nominated the individual sensors for the identification 
procedure, the MD3 method is activated. In the beginning, it gets CS interpolation of previously 
processed transients from the indicated sensors. This shortens the time and saves the computational 
power required to complete the entire identification procedure. Then, three weight vectors for the 
different scenarios are created. The ranges of the weights of these vectors are predefined. The limit 
values search range of the weight vectors were determined in the accordance with author's knowledge 
and experience in the transient analysis. 

Algorithm 4. MD3 method algorithm. 
Input: CS data points matrix for probe names nominated by OpEn method in current transent (applicable vibration 

feature(s) for the analysis), number of evolutions (evol), population size (pop_size) 

Result: Malfunction identification parameters 

Procedure: 

Upload CS data points matrix obtained in OpEn method 

Generate a 6x1 weight vector with a set of random values (for scenario no. 1) – w1 

Generate a 9x1 weight vector with a set of random values (for scenario no. 2) – w2 

Generate a 12x1 weight vector with a set of random values (for scenario no. 3) – w3 

for each probe indicated by MD3 trigger in OpEn method: 

 Establish the upper bound of the search for maximal number of identification parameters 

 Establish the lower bound of the search for maximal number of identification parameters 

 set number of evolutions 

 set number of population size 

 for every scenario[i] 

  Run DE algorithm for w[i] weights and with fitness_func[i] as a fitness function 
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  Establish the best evolution number and individual based on RMSE norm  

  best solution = identification parameters = fittest individual 

  Add the best solutions to the scenario_weights[i] vector 

 end 

 Best scenario = min(RMSE(scenario_1), RMSE(scenario_2), RMSE(scenario_3)) 

 display and save the best scenario number 

 display and save the best scenario weight vector parameters 

 display and save the best scenario RMSE value 

 plot a chart of the best scenario function versus CS of real data 

end 

 

In the further part, for each of the sensors indicated for identification, the algorithm determines the 
upper and lower limits of the search for identification parameters. Then, three scenarios are calculated 
using the established evolution quantity and population size parameters. Each scenario is based on 
parameter identification using the Differential Evolution (DE) algorithm. DE algorithm searches for 
weight vectors that best approximate a given objective function. The qualitative parameter describing 
the adjustment of the identified parameters to the objective function is the RMSE standard. The 
scenario with the smallest RESE value is nominated as the best representation of the malfunction 
transient. The best scenario weight vector parameters are saved. The CS transient of the nominated 
probe is plotted against the decomposed function described by the best scenario identification 
parameters. 

6.2.4. Key Python functions 

In the research during the doctoral dissertation, the author used Python 3.x and developed Google 
Colaboratory scripts for the research and data analysis. The latter allowed for the combination of 
functions written in the Python programming language and allowed access to data stored in the cloud. 
Table 5 lists the most important Python 3.x libraries that were used in the detection and identification 
system: 

Table 5. Python libraries used in research. 

import os  

from google.colab import drive 

from glob import glob 

import numpy as np 

import pandas as pd 

from matplotlib import pyplot as plt 

from scipy.stats import norm, kurtosis 

from scipy.interpolate import CubicSpline 

import shapely 

from shapely.geometry import Point, LineString, Polygon 

from shapely.affinity import scale, rotate 
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import shapely.geometry as geom 

from shapely.ops import nearest_points 

 

Library os, google.colab and glob were used to handle the cloud resources such as transient data file 
loading and writing the baseline measurements. Numpy and Pandas libraries facilitated the faster data 
numerical operations. Large SciPy library and its sub-library such as Interpolate.CubicSpline, 
Stat.Norm, and Stat.Kurtosis and were used to perform cubic spline interpolation and calculate the 
severity parameters, respectively. Whole Shapely library together with its sub-libraries were used to 
process the OpEn 3D anomaly detection part of the system. 

Table 6 presents the list of access paths to resources located in the cloud. First on the list is the access 
path to the baseline data calculated by the program and ready to be downloaded each time a new 
transient is analyzed. Then, the access path to the reference measurements is used to determine the 
baseline values. There are also various modes of malfunction coming from the machines studied by 
the author. Finally, multiple malfunction modes originate from the machines tested by the author with 
confirmed diagnoses. The last two paths on the list are data from the laboratory test rig. These data 
describe in a controlled manner simulation of the rotor unbalance. Validation of the results was 
conducted on the data described above was used both on the laboratory stand and on the data from 
real models tested by the author. 

Table 6. Cloud resources used in the research (uploaded by the author from his portable data acquisition unit). 

# google drive mount 
drive.mount('/content/drive/') 

# particular mode filepaths 
bl_pth = "/content/drive/My Drive/Colab/Baseline_transient/" 

ref_trans = "/content/drive/My Drive/Colab/Transient/Ref_trans/" 

rub_trans = "/content/drive/My Drive/Colab/Transient/Rub_HP_Rear/" 

pru_trans = "/content/drive/My Drive/Colab/Pru/" 

mor_trans = "/content/drive/My Drive/Colab/Mor/" 

koz_trans = "/content/drive/My Drive/Colab/Koz/" 

rot_kit = "/content/drive/My Drive/Colab/Rot_Kit/" 

rot_kit_2 = "/content/drive/My Drive/Colab/Rot_Kit_2/" 

# dict combining both, names of modes and their acces paths to all 
files    
pth = {"base_l":bl_pth, "ref":ref_trans, "rub":rub_trans, "pru":pru_trans, "mor":

mor_trans, "koz": koz_trans, "rk": rot_kit, "rk2": rot_kit_2} 

 
 

Table 7 lists the function that loads data from a given location. It is a universal module that selects 
signal features and cleans up and sorts data. The procedure is used when determining baseline 
measurements and for the OpEn method, both 2D and 3D. 

Table 7. Function retriving and preprocessing the transient data set from given location. 

def transient_data_load(f_path, probe_id): 
  """ 
  Function retriving the data from location f_list 
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  it preprocessed it in terms of remowing doubled rotational speed 
  Sorts it by "Channel Name" (which is passed to it as probe_id) 
  and returns following dict with a name of transient and df with i
ts speed : 
  x - pre-processed rotational speed vector 
  y - 1XAmpl vector  
  kph - 1Xkeyphasor (Pase Lag vector of the first charmonic) 
  """ 
  use_data = pd.read_excel(f_path, header = 2) 
  use_data = use_data[["Channel Name","Speed(P)","1XAmplitude","1X 
Phase","Direct"]].loc[use_data['Channel Name'] == "{}".format(probe
_id)] 
  use_data.drop_duplicates(subset ="Speed(P)", keep = False, inplac
e = True) 
  use_data.sort_values("Speed(P)", ascending = True, inplace = True
) 
  use_data.set_index("Speed(P)", inplace=True) 
  # use_data_name = all_files_pth["ref"][0].split(" ")[-
1].split(".")[0] 
  return use_data 
 

 

An essential procedure from the point of view of comparing transients is the procedure presented in 
Table 8. The current rotational speed vector returns the ordered rotational speed vector. The output 
vector of the function is defined at identical instances of rotational speed and with the same 
equidistant interval. This procedure enables the correct domain determination and points of 
determining the amplitudes of CS interpolation for transients 

Table 8. Lowest and highest RPM value in transient. 

def x_start_stop(x,delta_RPM): 
  """ 
  Funkcja zwraca uporządkowany przedział max i min prędkości obroto
wej 
  dla danego przebiegu wejściawego x i różnicy obrotów delta_RPM 
  """ 
  if x[0] - delta_RPM < 0: 
    x_startowy = 0 
  else: 
    for i in range(delta_RPM): 
      x_temp = x[0] + i  
      if x_temp % delta_RPM == 0: 
        x_startowy = x[0] + i 
        break 
      else: continue 
 

  if x[-1] + delta_RPM >10000: 
      x_koncowy = 10000 
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  else: 
    for i in range(delta_RPM): 
      x_temp = x[-1] - i  
      if x_temp % delta_RPM == 0: 
        x_koncowy = x[-1] - i 
        break 
      else: continue 
  x0 = np.arange(x_startowy,x_koncowy+1,delta_RPM) 
  return x0 

 

The procedure for creating a CS interpolation with data points set is presented in Table 9. The function 
uses the functions described in Table 7 and Table 8  to obtain data set points in specific rotational 
speed instances. In this case, the procedure returns two vectors consisting of CS interpolating the 
vibration amplitude and phase. This function is an example used in the OpEn 3D method. In this case, 
the RPM measurement is also accompanied by the amplitude and phase of the vibration signal. 

Table 9. CS interpolation procedure. 

def cs_amp_kph_df(trans_pth, probe): 
 

  # zaczytanie danych z konkretnego czujnika "probe_id" 
  raw_trans_df = transient_data_load(trans_pth, probe) 
  # obroty w danym przebiegu 
  x_raw = raw_trans_df.index 
  # tworzenie operatora CS dla 1XAmplitude 
  cs_y_oper = CubicSpline(x_raw, raw_trans_df["1XAmplitude"]) 
  # Dziedzina dla interpol CS 
  x_cs_domain = x_start_stop(x_raw,50) 
  # interpolacja CS na dziedzinie x_cs_domain 
  amp_cs = cs_y_oper(x_cs_domain) 
  amp_cs_df = pd.DataFrame(data=amp_cs, index=x_cs_domain) 
  amp_cs_df.columns = ["{}".format(probe)] 
  # tworzenie operatora CS dla 1X Phase 
  cs_kph_oper = CubicSpline(x_raw, raw_trans_df["1X Phase"]) 
  # interpolacja CS na dziedzinie x_cs_domain 
  kph_cs = cs_kph_oper(x_cs_domain) 
  kph_cs_df = pd.DataFrame(data=kph_cs, index=x_cs_domain) 
  kph_cs_df.columns=["{}".format(probe)] 
   
  return amp_cs_df, kph_cs_df 

 

Searching and returning access paths to all files from a given location in the cloud function is presented 
in Table 10. The program goes through the selected folder with subfolders and returns a list of access 
paths as an iterable list. This procedure allows access to many files in an automated manner. 

Table 10. Fnction returning list of all transient data set file names within the folder. 

def file_root(cont_pth): 
  """ 
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  Function returns a list to all files within praticular folder 
  """ 
  p_f = [] 
  dir_files = [] 
  # direct = [] 
  for root, dirs, files in os.walk(r"{}".format(cont_pth), topdown 
= True): 
    for name in files: 
      p_f.append(os.path.join(root, name)) 
  for i in range(len(p_f)): 
    if p_f[i].split(".")[-1] == "xlsx": 
      dir_files.append(p_f[i]) 
    else: 
      pass 
  return dir_files 

 

Examples of the two partial functions for generating the decomposition function are shown in Table 
11. They are used in the MD3 method described in section 5.2 by the formulas (21) and (22), 
respectively. The function called gauss is used to represent both the area of the critical revolutions of 
the machine and to model the non-linearity of the rotor response in situations of very large amplitudes. 
The function described as "parabola" is used to model the rotor responses related to unbalance. Due 
to the nature of the phenomenon, it was necessary to introduce the centrifugal force input threshold 
as an additional identification parameter. 

Table 11. Parabola and Gaussian functions - the decomposed functions. 

def gauss(x, amp, peak, wide): 

  return amp*np.exp(-(x-peak)**2/(2*wide**2))  

 

def parabola(x, a,x0): 
  if x0<x: 
    parabola = a*((x-x0)/(4200-x0))**2  
  else: parabola = 0 
  return parabola 

 

Table 12 show the three scenarios for decomposed functions. The first function consists of only three 
partial functions: term bias described by equation (23), parabola described by equation (22), and one 
gaussian function (21). The function model described in this way has six parameters that the DE 
algorithm should identify. The second and third models are an extension of the most straightforward 
model, and they have two and three gauss functions, respectively. Nine and twelve parameters 
describe and identify the second and third MD3 method scenarios. 

Table 12. Three models used in MD3 method “tournament”. 

def fmodel_1(x,w): 
  y = [] 
  for i in range(len(x)): 
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    y.append(gauss(x[i], w[0], w[1], w[2])  + parabola(x[i],w[9],w[
10]) +w[11]) 
  return y 
 

def fmodel_2(x,w): 
  y = [] 
  for i in range(len(x)): 
    y.append(gauss(x[i], w[0], w[1], w[2]) + gauss(x[i], w[3], w[4]
, w[5]) + parabola(x[i],w[9],w[10]) +w[11]) 
  return y 
 

def fmodel_3(x,w): 
  y = [] 
  for i in range(len(x)): 
    y.append(gauss(x[i], w[0], w[1], w[2]) + gauss(x[i], w[3], w[4]
, w[5]) + gauss(x[i], w[6], w[7], w[8]) + parabola(x[i],w[9],w[10])
 +w[11]) 
  return y 

 

Table 13 shows the function's implementation for assessing the fitness of the particular model 
parameters to the current transient function. This function is the norm applied for every function from 
the MD3 method scenario. The outcome of this procedure is the fitness parameter which determines 
the best scenario function, i.e., parameters describe the current transient. 

Table 13. The MD3 method the fitness function quality parameter. 

def rmse(w): 
    y_pred = fmodel(x, w) 
    return np.sqrt(sum((y - y_pred)**2) / len(y)) 

 

The heuristic limits of the search for the parameter values of partial functions are presented in Table 
14. These values are determined anew for each transient. However, all the scenarios used to identify 
the current failure have the same search values. 

Table 14. Upper and lower search limits boundries for the DE algorithm. 

lb = [min(y), x[0], 10, min(y), 1/3*x[-1], 10, min(y), 2/3*x[-1], 
10, 0, -x[-1], 0] 
ub = [max(y),1/2*x[-1], x[-1]/5, max(y), 3/4*x[-1], x[-
1]/5, max(y), x[-1], x[-1]/5, max(y), x[-1], max(y)/4] 
bounds=[(lb[i], ub[i])for i in range(len(lb))] 

 

Table 15 shows the functions used in the system for creating baseline measurements from reference 
transients. The detailed process is described in section 4.2. 

Table 15. Baseline measurements functions. 

def probe_baseline(cold_stt_trans, probe_id, whole_RPM, prb): 
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  x_cs_domain, y_cs, kph_cs, curr_trans_name, whole_ref_set_1xamp, 
whole_ref_set_1xkph = trans_CS(cold_stt_trans, probe_id, whole_RPM,
 prb) 
  x_stat = np.zeros(len(whole_RPM)) 
  y_stat = np.zeros(len(whole_RPM)) 
  whole_ref_set_x = np.zeros((len(cold_stt_trans),len(whole_RPM))) 
  whole_ref_set_y = np.zeros((len(cold_stt_trans),len(whole_RPM))) 
 

  for trans in range(len(cold_stt_trans)): 
    # print("trans no = ",trans) 
    for RPM in range(len(whole_RPM)): 
      whole_ref_set_x[trans][RPM] = whole_ref_set_1xamp[trans][RPM]
*np.cos(np.deg2rad(whole_ref_set_1xkph[trans][RPM])) 
      whole_ref_set_y[trans][RPM] = whole_ref_set_1xamp[trans][RPM]
*np.sin(np.deg2rad(whole_ref_set_1xkph[trans][RPM])) 
      # print("RPM no = ",RPM) 
     
  x_stat = np.sum(whole_ref_set_x,axis=0)/np.count_nonzero(whole_re
f_set_x,axis=0) 
  y_stat = np.sum(whole_ref_set_y,axis=0)/np.count_nonzero(whole_re
f_set_y,axis=0) 
  kph_stat = np.rad2deg(np.arctan2(y_stat,x_stat)) 
  r_stat = np.sqrt(x_stat**2 + y_stat**2) 
 

  for RPM in range(len(kph_stat)): 
    if kph_stat[RPM] < 0: 
      kph_stat[RPM] = kph_stat[RPM] + 360 
  return x_stat, y_stat, kph_stat, r_stat, whole_ref_set_1xamp, who
le_ref_set_1xkph 
 

def trans_CS(cold_stt_trans, probe_id, whole_RPM, probe): 
 

  # tworzenie pustego zboru dla wszystkich przebiegów z danego kata
logu   
  whole_ref_set_1xamp = np.zeros((len(whole_RPM),len(cold_stt_trans
))).T 
  whole_ref_set_1xkph = np.zeros((len(whole_RPM),len(cold_stt_trans
))).T 
 

  # wyliczam CS dla U3 - stan zimny oraz dla probe_id[2] 
  # t_x_y = [] 
  x_raw = [] 
  y_raw = [] 
  kph_raw = [] 
  x_cs_domain = [] 
  # y_qbc_spln_oper =[] 
  y_cs = [] 
  # kph_qbc_spln_oper = [] 
  kph_cs = [] 
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  curr_trans_name = [] 
  for i in range(len(cold_stt_trans)): 
    # t_x_y.append(("trans_{}, x_raw_{}, y_raw{}, kph_raw_{}, x_cs_
domain_{}, y_qbc_spln_oper_{}, y_cs_{}, kph_qbc_spln_oper_{}, kph_c
s, curr_trans_name_{}".format(i,i,i,i,i,i,i,i,i,cold_stt_trans[i]))
.split(",")) 
     
    # dane z poszczególnych przebiegów 
    # trans_{} 
    _, temp_x_raw, temp_y_raw, temp_kph_raw = transient_data_load(c
old_stt_trans[i],probe_id[probe]) 
     
    # x_cs_domain_{} 
    x_cs_domain.append(x_start_stop(temp_x_raw, 50)) 
     
    # tworzenie operatora cubic spline (CS) dla y_raw w punktach x_
raw 
    # y_qbc_spln_oper_{} 
    cs_y_oper = CubicSpline(temp_x_raw, temp_y_raw) 
    # tworzenie wartości funkcji CS dla punktów w miejscach x_cs_do
main_ (t_x_y[i][2]) i ampl. y_raw 
    # y_cs_{}  
    y_cs_temp =  cs_y_oper(x_cs_domain[i]) 
    y_cs_temp[0] = y_cs_temp[1] 
    y_cs_temp[-1] = y_cs_temp[-2] 
    y_cs.append(y_cs_temp) 
       
    # tworzenie operatora cubic spline (CS) dla kph_raw w punktach 
x_raw  
    # kph_qbc_spln_oper_{} 
    cs_kph_oper = CubicSpline(temp_x_raw, temp_kph_raw) 
    # tworzenie wartości funkcji CS dla punktów w miejscach x_cs_do
main_ (t_x_y[i][2]) 
    # kph_cs 
    kph_cs_temp =  cs_kph_oper(x_cs_domain[i]) 
    kph_cs_temp[0] = kph_cs_temp[1] 
    kph_cs_temp[-1] = kph_cs_temp[-2] 
    kph_cs.append(kph_cs_temp) 
     
    # curr_trans_name_{} 
    curr_trans_name = "{}".format(cold_stt_trans[i]) 
    # pdb.set_trace()   
    indx_RPM = np.where(whole_RPM == x_cs_domain[i][0])[0][0] 
    
 

  # Przypisywanie wartości do poszczególnych indeksów  
  # odpowiadającej konkretnej prędkości obrotowej  
    for k in range(len(x_cs_domain[i])): 
      whole_ref_set_1xamp[i][indx_RPM + k] = y_cs[i][k] 
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      whole_ref_set_1xkph[i][indx_RPM + k] = kph_cs[i][k] 
  return x_cs_domain, y_cs, kph_cs, curr_trans_name, whole_ref_set_
1xamp, whole_ref_set_1xkph 

 

Table 16 shows the calculation of baseline measurement values and the behavior of the calculation 
results at a specific location on the virtual disk for a single sensor. The author used the PyDrive, 
google.colab, and oauth2client.client libraries from Google Colaboratory resources to carry out these 
operations. Performing the procedure n times, where n corresponds to the number of sensors or 
sensors included in the data point set matrix, allows obtaining baseline data for the entire shaftline. 

Table 16. Baseline measurements procedure: calculating and saving in the cloud. 

probe_no_x_stat = [] 
probe_no_y_stat = [] 
probe_no_kph_stat = [] 
probe_no_r_stat = [] 
for prb in range(len(probe_id)): 
  x_stat_temp, y_stat_temp, kph_stat_temp, r_stat_temp, whole_ref_s
et_1xamp, whole_ref_set_1xkph = probe_baseline(cold_stt_trans, prob
e_id, whole_RPM, prb) 
  probe_no_x_stat.append(x_stat_temp) 
  probe_no_y_stat.append(y_stat_temp) 
  probe_no_kph_stat.append(kph_stat_temp) 
  probe_no_r_stat.append(r_stat_temp) 
  print("probe no: ", prb) 
 

!pip install -U -q PyDrive 
from pydrive.auth import GoogleAuth 
from pydrive.drive import GoogleDrive 
from google.colab import auth 
from google.colab import files 
from oauth2client.client import GoogleCredentials 
 

auth.authenticate_user() 
gauth = GoogleAuth() 
gauth.credentials = GoogleCredentials.get_application_default() 
drive = GoogleDrive(gauth) 
stat_CS_r = pd.DataFrame(data=probe_no_r_stat, index=probe_id, colu
mns=whole_RPM) 
stat_CS_kph = pd.DataFrame(data=probe_no_kph_stat, index=probe_id, 
columns=whole_RPM) 
stat_CS_x = pd.DataFrame(data=probe_no_x_stat, index=probe_id, colu
mns=whole_RPM) 
stat_CS_y = pd.DataFrame(data=probe_no_y_stat, index=probe_id, colu
mns=whole_RPM) 
stat_CS_r.to_csv('stat_CS_r.csv', sep='\t')  
files.download('stat_CS_r.csv') 
stat_CS_kph.to_csv('stat_CS_kph.csv', sep='\t')  
files.download('stat_CS_kph.csv') 
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stat_CS_x.to_csv('stat_CS_x.csv', sep='\t')  
files.download('stat_CS_x.csv') 
stat_CS_y.to_csv('stat_CS_y.csv', sep='\t')  
files.download('stat_CS_y.csv') 

 

Table 17 presents the procedure for downloading baseline data from virtual resources and creating 
baseline ellipses, which they will use to detect anomalies for the OpEn 3D case. First, baseline data is 
read from the cloud and entered into an appropriately named matrix instance. Next, the vibration 
feature data is transformed into the form of a polar and Cartesian coordinate system. The name of the 
matrix's rows is multi-level, which easily defines the properties of a specific sensor. 

Table 17. Baseline data load (for the OpEn 3D case) and creating baseline ellipsis coordinates. 

# dict with all filepaths  
# key - specyfic data 
# value - root of all data in the folder  
all_files_pth  = {} 
for key in pth: 
    temp = {key : file_root(pth["{}".format(key)])} 
    all_files_pth.update(temp) 
# -----------------------------------------------------------------
------------------------------- 
# CS domain - in which we will compare our results  
# (fix rotational speed increment - delta = 50RPM) 
# and a all probes across the system 
whole_RPM = np.arange(0,3001,50) 
probe_id = ['1Y', '1X', '2Y', '2X', '3Y', '3X', '4Y', '4X', '5Y', '
5X', '6Y', '6X','7Y', '7X'] 
# -----------------------------------------------------------------
------------------------------- 
# OpEn acceptance region 
OpEn_amp, OpEn_kph = 30, 25 
 

# -----------------------------------------------------------------
------------------------------- 
# dict contains all baseline maesurements 
baseline_data = {} 
for i in range(len(all_files_pth["base_l"])): 
  bl_data_temp, bl_name_temp = beseline_data_load(all_files_pth["ba
se_l"][i]) 
  bl_temp = {bl_name_temp.split("_")[-1]: bl_data_temp} 
  baseline_data.update(bl_temp) 
# -----------------------------------------------------------------
------------------------------- 
# df for all baseline data - name of df is its property 
x_df = pd.DataFrame(data=baseline_data["x"], index=probe_id, column
s=whole_RPM) 
y_df = pd.DataFrame(data=baseline_data["y"], index=probe_id, column
s=whole_RPM) 
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r_df = pd.DataFrame(data=baseline_data["r"], index=probe_id, column
s=whole_RPM) 
kph_ = pd.DataFrame(data=baseline_data["kph"], index=probe_id, colu
mns=whole_RPM) 
# -----------------------------------------------------------------
------------------------------- 
# df as a matrix of a vectors with ellipsis co-
ordinates for each sensor and each RPM 
fy   = pd.DataFrame(data=None, index=probe_id, columns=whole_RPM) 
fx   = pd.DataFrame(data=None, index=probe_id, columns=whole_RPM) 
# populating df with a ellipsis co-ordinates 
for i in range(0,baseline_data["x"].shape[0]): 
  for k in range(0,baseline_data["x"].shape[1]): 
    x = baseline_data["x"][baseline_data["x"].columns[k]][baseline_
data["x"].index[i]] 
    y = baseline_data["y"][baseline_data["y"].columns[k]][baseline_
data["y"].index[i]] 
    f_x,f_y = x_y_ell(x,y,OpEn_amp,OpEn_kph) 
    fx[fx.columns[k]][fy.index[i]] = f_x 
    fy[fy.columns[k]][fy.index[i]] = f_y 
    # fx[nazwa_czujnika][prędkość_obrotowa], czyli fx[0][0], pierws
zy czujnik (1Y) dla pędk. obr = 0 
    # fy[nazwa_czujnika][prędkość_obrotowa] 
    #  
# -----------------------------------------------------------------
------------------------------- 

 

The OpEn procedure for the 2D case is presented in Table 18: 

1. The current transient data points set is retrieved from the file with the specified location. 

2. Loaded data are preprocessed and prepared for CS interpolation. 

3. CS interpolation follows. Data from every probe in the current transient are compared with 

their OpEn BULL values. If any point exceeds the OpEn BULL matrix values assigned to them - 

severity parameters are calculated, and MD3 mode is set to 1. 

4. The corresponding graphs and severity parameters values are presented. 

Table 18. OpEn procedure with severity parameter calculation and charts plotting (for the OpEn 2D case). 

cold = np.arange(0,12) 
hot = np.arange(12, len(ref_trans_U3)) 
cold_stt_trans = [ref_trans_U3[i] for i in cold] 
hot_stt_trans = [ref_trans_U3[i] for i in hot] 
 

# wyliczam CS dla U3 - stan zimny 
t_x_y = [] 
for i in range(len(cold_stt_trans)): 
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  t_x_y.append(("trans_{}, x_{}, y_{}, x_cube_{}, y_spline_temp_{},
 y_cube_{}, {}".format(i,i,i,i,i,i,cold_stt_trans[i])).split(",")) 
  # dane z poszczególnych przebiegów 
  t_x_y[i][0], t_x_y[i][1], t_x_y[i][2] = transient_data_load(cold_
stt_trans[i]) 
  t_x_y[i][3] = x_start_stop(t_x_y[i][1], 50) 
  # tworzenie operatora cubic spline (CS) 
  # ---------------------------------------------------------------
-------------------------------------------------------------------
----------- 
  t_x_y[i][4] = CubicSpline(t_x_y[i][1], t_x_y[i][0]["1XAmplitude"]
) 
  # ---------------------------------------------------------------
-------------------------------------------------------------------
----------- 
  # tworzenie wartości funkcji CS dla punktów w miejscach x_cube 
  t_x_y[i][5] =  t_x_y[i][4](t_x_y[i][3]) 
  t_x_y[i][5][0] = t_x_y[i][5][1] 
  t_x_y[i][5][-1] = t_x_y[i][5][-2] 
 

ub = 30 
lb = 15 
whole_RPM = np.arange(0,3001,50) 
whole_ref_set = np.zeros((len(whole_RPM),len(cold_stt_trans))).T 
for i in range(len(cold_stt_trans)): 
  # wspólne obroty 
  indx_RPM = np.where(whole_RPM == t_x_y[i][3][0])[0][0] 
  for k in range(len(t_x_y[i][3])): 
    whole_ref_set[i][indx_RPM + k] = t_x_y[i][5][k] 
Whole_ref = pd.DataFrame(whole_ref_set.T) 
 

# pozbycie się wartości brzegowych - gdzie interpolacja nie zachowu
je się stabilnie 
Whole_ref.set_index(whole_RPM,inplace=True) 
 

# Nazwanie kolumn wg ich nazwy pliku 
cols = [] 
for i in range(len(cold_stt_trans)): 
  cols.append(cold_stt_trans[i].split("/")[-1]) 
Whole_ref.columns = cols 
 

RMSE = [] 
KURT = [] 
MIN_MAX_MAX = [] 
MIN_MAX_MIN = [] 
 

for iter in range(len(cold_stt_trans)): 
  # x_Yref_Y_trans = y_costs(t_x_y[iter][3], t_x_y[iter][5], whole_
RPM[1:-1], stat_ref) 
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  RMSE.append([rmse(y_costs(t_x_y[iter][3], t_x_y[iter][5], whole_R
PM, stat_ref)[:,2] - y_costs(t_x_y[iter][3], t_x_y[iter][5], whole_
RPM, stat_ref)[:,1])]) 
  KURT.append([kurt(y_costs(t_x_y[iter][3], t_x_y[iter][5], whole_R
PM, stat_ref)[:,2] - y_costs(t_x_y[iter][3], t_x_y[iter][5], whole_
RPM, stat_ref)[:,1])]) 
  _, max_max, _, min_min = min_max(y_costs(t_x_y[iter][3], t_x_y[it
er][5], whole_RPM, stat_ref), ub, lb)  
  # ub , czyli ub% wyżej od amplitudy w danym punkcie delt_RPM,  
  # lb = lb% niżej od amplitudy w danym punkcie delt_RPM 
  MIN_MAX_MAX.append(max_max[0]) 
  MIN_MAX_MIN.append(min_min[0]) 
 

RMSE = np.array(RMSE) 
KURT = np.array(KURT) 
MIN_MAX_MAX = np.array(MIN_MAX_MAX) 
MIN_MAX_MIN = np.array(MIN_MAX_MIN) 
 

MD3_mode = 1 

 

fil_name = [] 
fil_name.append(cold_stt_trans[iter].split("/")[-
1].split(".")[0].split(" ")[-1]) 
 

fig, axes = plt.subplots(figsize=(30,15)) 
for i in range(0, len(t_x_y)): 
  axes.scatter(t_x_y[i][3], t_x_y[i][5], label = "{}".format(cold_s
tt_trans[i].split(" ")[-1].split(".")[0])) 
axes.plot(whole_RPM, stat_ref_ub, color='red', marker='o', linestyl
e='dashed', label="OoB_Upper") 
axes.plot(whole_RPM, stat_ref_lb, color='blue', marker='o', linesty
le='dashed', label="OoB_Lower") 
axes.plot(whole_RPM,stat_ref, color='black', marker = "o", label = 
"centre of CS") 
axes.set_title("CS for synchronous responce amplitude (the shaft re
lative vibration in bearing #1, 45° left from the vertical axis)",f
ontsize=25) 
axes.set_xlabel("RPM (revolution per minute)", fontsize=25) # Notic
e the use of set_ to begin methods 
axes.set_ylabel(r'Amplitude in {}m peak-
peak [0,360]'.format(r"$\mu$"), fontsize=25) 
axes.set_ylim([-0.1, 200]) 
axes.grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5) 
axes.tick_params(labelcolor='k', labelsize='large', width=10) 
axes.tick_params(axis='x', labelsize=20) 
axes.tick_params(axis='y', labelsize=20) 
plt.legend(fontsize=20) 
plt.legend() 
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Table 19 shows the necessary procedures and functions for the OpEn 3D method. For example, the 
cs_amp_kph_df function returns the CS vibration feature interpolation of a synchronous component, 
and the x_y_ell function creates the coordinates of an ellipse rotated by a suitable angle, i.e., baseline 
ellipse coordinates. 

Table 19. OpEn 3D method functions. 

def cs_amp_kph_df(trans_pth, probe): 
 

  # zaczytanie danych z konkretnego czujnika "probe_id" 
  raw_trans_df = transient_data_load(trans_pth, probe) 
  # obroty w danym przebiegu 
  x_raw = raw_trans_df.index 
  # tworzenie operatora CS dla 1XAmplitude 
  cs_y_oper = CubicSpline(x_raw, raw_trans_df["1XAmplitude"]) 
  # Dziedzina dla interpol CS 
  x_cs_domain = x_start_stop(x_raw,50) 
  # pdb.set_trace() 
  # interpolacja CS na dziedzinie x_cs_domain 
  amp_cs = cs_y_oper(x_cs_domain) 
  amp_cs_df = pd.DataFrame(data=amp_cs, index=x_cs_domain) 
  amp_cs_df.columns = ["{}".format(probe)] 
 

  # amp_cs_df = amp_cs_df.T 
  # tworzenie operatora CS dla 1X Phase 
  cs_kph_oper = CubicSpline(x_raw, raw_trans_df["1X Phase"]) 
  # interpolacja CS na dziedzinie x_cs_domain 
  kph_cs = cs_kph_oper(x_cs_domain) 
  kph_cs_df = pd.DataFrame(data=kph_cs, index=x_cs_domain) 
  kph_cs_df.columns=["{}".format(probe)] 
  # pdb.set_trace() 
  return amp_cs_df, kph_cs_df 
 

def x_y_ell(x,y,OpEn_amp,OpEn_kph): 
  # pdb.set_trace() 
  circle = Point(x, y).buffer(1)  # type(circle)=polygon 
  ellipse = shapely.affinity.scale(circle, OpEn_amp, OpEn_kph) 
  ellipse = rotate(ellipse, np.arctan2(y,x), origin=(x,y), use_radi
ans=True) 
  fx, fy = ellipse.exterior.xy 
  return fx,fy 

 

The entire process of the OpEn 3D method is presented in Table 20. First, the procedure retrieves the 
previously calculated baseline ellipse coordinates and CS interpolated points from the current 
transient. Then, the position of the point relative to the baseline ellipsis is determined for the given 
sensor in the particular RPM instance. The loop is repeated for all common RPM values contained in 
the current transient and for all measurements' sensors. Finally, the severity parameters are computed 
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if any points go beyond the OpEn 3D BEAR. In the end, both the severity parameters and the 
corresponding drawings are presented. 

Table 20. OpEn procedure with severity parameter calculation and charts plotting (for the OpEn 3D case). 

dist_list = [] 
RPM_list = [] 
probe = 12 
amp_trans = [] 
 

for i in range(len(amp_all_probes_koz_df_T.columns)): 
 

  RPM = trans_x_all.xs(f"{probe_id[probe]}", level="Probe ID").colu
mns[i] 
  # print("RPM: ",RPM) 
  y_RPM_bl = y_df.loc[f"{probe_id[probe]}"][RPM] 
  x_RPM_bl = x_df.loc[f"{probe_id[probe]}"][RPM] 
 

  x_tr = koz_x_all.xs(f"{probe_id[probe]}", level="Probe ID")[RPM][
0] 
  y_tr = koz_y_all.xs(f"{probe_id[probe]}", level="Probe ID")[RPM][
0] 
  amp_trans.append(np.sqrt(x_tr**2 + y_tr**2)) 
  trans_piont = geom.Point([x_tr,y_tr]) 
 

  circle = Point(x_RPM_bl, y_RPM_bl).buffer(1)  # type(circle)=poly
gon 
  ellipse = shapely.affinity.scale(circle, OpEn_amp, OpEn_kph) 
  ellipse = rotate(ellipse, np.arctan2(y_RPM_bl,x_RPM_bl), origin=(
x_RPM_bl,y_RPM_bl), use_radians=True) 
  fx, fy = ellipse.exterior.xy 
 

  if ellipse.contains(trans_piont): 
    dist = 0 
    cont = {f"@{RPM} point within ell":dist} 
    dist_list.append(0) 
    RPM_list.append(RPM) 
 

  else: 
    dist = trans_piont.distance(ellipse) 
    dist_list.append(dist) 
    RPM_list.append(RPM) 
  # ax.scatter(x_tr,y_tr, RPM, zdir="y", c="r") 
 

  fig,ax = plt.subplots(figsize = (30,30)) 
  ax.set_title(f"{probe_id[probe]} Synchronous response amplitude (
1X-Amp) and phase lag (1X-Phase) at {RPM}RPM",fontsize=30) 
  # ax.set_ylabel("RPM (revolution per minute)",fontsize=25, labelp
ad=30) # Notice the use of set_ to begin methods 



112 
 

  ax.set_xlabel(r'Displacement in $\mu$m peak-
peak',fontsize=25, labelpad=20) 
  ax.set_ylabel(r'Displacement in $\mu$m peak-
peak',fontsize=25, labelpad=20) 
  ax.tick_params(labelcolor='k', labelsize='x-large', width=10) 
  plt.rc('xtick',labelsize=20) 
  plt.rc('ytick',labelsize=20) 
  ax.set_xlim([-300,300]) 
  ax.set_ylim([-300,300]) 
  ax.scatter(koz_x_all.xs(f"{probe_id[probe]}", level="Probe ID")[R
PM][0], koz_y_all.xs(f"{probe_id[probe]}", level="Probe ID")[RPM][0
],c="r", 
             label=f"Distance form OpEn ellipsis: {round(dist_list[
-1], 4)}") 
  ax.scatter(trans_x_all.xs(f"{probe_id[probe]}", level="Probe ID")
[RPM][0], trans_y_all.xs(f"{probe_id[probe]}", level="Probe ID")[RP
M][0],c="b", 
             label=f"Reference transient sample") 
  ax.scatter(x_df.loc[f"{probe_id[probe]}"][RPM], y_df.loc[f"{probe
_id[probe]}"][RPM], c="k", label="Centre of an OpEn Ellipsis") 
  ax.scatter(0,0, label="Point of origin (0,0)", c="g") 
  ax.plot(fx,fy, label=f"OpEn Ellipsis") 
  plt.legend(fontsize=25) 

 

The author proposed the MD3 method as a procedure implemented to find the best set of parameters 
for identifying a given malfunction. The sample of the code implementing the strategy detailed in 
section 5.2 and 5.4 is presented in Table 21. The procedure uses the data point sets previously 
processed in the OpEn method. Utilizing The data interpolated beforehand reduces the time and 
computational requirements of the proposed method of identifying and selecting identified 
parameters and thus the entire system. Table 21 shows an example of applying the MD3 method to 
simulated data from the test rig. The technique is capable of accepting different types and 
arrangements of sensors. The previous OpEn method nominates sensors taken for further analysis. 
First, data points set with rotor unbalance are read after removal of the malfunction. The vector of 
identification parameters is created as a vector of weights for the objective function. Then the vectors 
with an unbalanced rotor and after balancing are determined. A mutual speed domain is defined for 
both transients. The next step is to determine the extreme values of the search for the objective 
function identification parameters. After that, the procedure of finding parameters of the decomposed 
functions is performed for three separate scenarios. Finally, the best parameter set is selected to 
approximate the function decomposed to the transient based on the RMSE standard described in Table 
13. The results of the MD3 method are displayed and saved. First, the number of the best scenario and 
its RMSE is given. Then, the set of parameters that identify a given scenario is used to determine the 
type of failure. 

Table 21. MD3 method procedure example. 

# dict with all filepaths  
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# key - specyfic data 
# value - root of all data in the folder  
all_files_pth  = {} 
for key in pth: 
    temp = {key : file_root(pth["{}".format(key)])} 
    all_files_pth.update(temp) 
# -----------------------------------------------------------------
------------------------------- 
# CS domain -  which the results will be compared  
# (fix rotational speed increment - delta = 50RPM) 
# and a all probes across the system 
whole_RPM = np.arange(0,3001,50) 
probe_id = ['1Y', '1X', '2Y', '2X', '3Y', '3X', '4Y', '4X', '5Y', '
5X', '6Y', '6X','7Y', '7X'] 
probe_id_koz = ['6Y', '6X','7Y', '7X'] 
probe_id_rk = ['1Y', '1X', '2Y', '2X'] 
trans_pth = sorted(all_files_pth["rk2"]) 
all_amp_rk2 = pd.DataFrame(data=None) 
all_kph_rk2 = pd.DataFrame(data=None) 
amp_all_probes_rk2_df = pd.DataFrame(data=None) 
kph_all_probes_rk2_df = pd.DataFrame(data=None) 
file_name = [] 
probe_name = [] 
for tr_no in range(len(all_files_pth["rk2"])): 
 

  # tworzenie df ze wszystkimi czujnikami z danego przebiegu 
  for i in range(len(probe_id_rk)): 
    amp_cs_df_rk2,  kph_cs_df_rk2 = cs_amp_kph_df(trans_pth[tr_no],
 probe_id_rk[i]) 
    amp_all_probes_rk2_df = pd.concat([amp_all_probes_rk2_df,amp_cs
_df_rk2],axis=1) 
    kph_all_probes_rk2_df = pd.concat([kph_all_probes_rk2_df,kph_cs
_df_rk2],axis=1) 
    file_name.append(all_files_pth["rk2"][tr_no].split("/")[-2:][-
1].split(".")[0]) 
    probe_name.append(probe_id_rk[i]) 
    # pdb.set_trace() 
 

  amp_all_probes_rk2_df_T = amp_all_probes_rk2_df.T 
  kph_all_probes_rk2_df_T = kph_all_probes_rk2_df.T 
   
hier_index = list(zip(file_name, probe_name)) 
hier_index = pd.MultiIndex.from_tuples(hier_index) 
# nadawanie dwuwymiarowego indeksu dla przejrzystości danych 
amp_all_probes_rk2_df_T = amp_all_probes_rk2_df_T.set_index(hier_in
dex) 
amp_all_probes_rk2_df_T.index.names = ["Transient", "Probe ID"] 
kph_all_probes_rk2_df_T = kph_all_probes_rk2_df_T.set_index(hier_in
dex) 
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kph_all_probes_rk2_df_T.index.names = ["Transient", "Probe ID"] 
amp_all_probes_rk2_df_T.loc["RK_bal"][amp_all_probes_rk2_df_T.colum
ns[-
1]] = amp_all_probes_rk2_df_T.loc["RK_bal"][amp_all_probes_rk2_df_T
.columns[-2]]  
# # tworzenie wsp. kartezjańskich 
x_rk2_all = amp_all_probes_rk2_df_T[amp_all_probes_rk2_df_T.columns
[:-
1]]*np.cos(np.deg2rad(kph_all_probes_rk2_df_T[kph_all_probes_rk2_df
_T.columns[:-1]])) 
y_rk2_all = amp_all_probes_rk2_df_T[amp_all_probes_rk2_df_T.columns
[:-
1]]*np.sin(np.deg2rad(kph_all_probes_rk2_df_T[kph_all_probes_rk2_df
_T.columns[:-1]])) 
 

# # lista wszystkich transientów z folderu, które mam zebrane w df 
unq_list = pd.DataFrame(list(zip(*kph_all_probes_rk2_df_T.index))).
loc[0].unique() 
 

# dostęp do danych kolumn po indeksach dwupoziomowych > df.xs("nazw
a indeksu z poziomu II" , level="nazwa kolumny indeksu poziomu II") 
# czyli np kph_all_probes_df_T 
 

wek = [] 
for i in range(0,12): 
  wek.append(f"w[{i}]") 
weights_tabular = pd.DataFrame(data=None, columns=wek) 
 

y_imb = np.array(amp_all_probes_rk2_df_T.xs("1X", level="Probe ID")
.loc["RK_imb"], dtype=float) 
y_bal = np.array(amp_all_probes_rk2_df_T.xs("1X", level="Probe ID")
.loc["RK_bal"], dtype=float) 
# y = np.array(amp_all_probes_rk2_df_T.xs("1Y", level="Probe ID").l
oc["RK_imb"], dtype=float) 
# w = [amp_g1, peak_g1, wide_g1, amp_g2, peak_g2, wide_g2, amp_g3, 
peak_g3, wide_g3, par_amp, par_start, bias_term] 
 

x = np.array(amp_all_probes_rk2_df_T.columns, dtype=float) 
y = y_imb 
 

lb = [min(y),         x[0],      10, min(y),     1/3*x[-
1],      10, min(y), 2/3*x[-1],      10,      0, -x[-1],        0] 
ub = [max(y),    1/2*x[-1], x[-1]/5, max(y),     3/4*x[-1], x[-
1]/5, max(y),     x[-1], x[-1]/5, max(y),  x[-1], max(y)/4] 
bounds=[(lb[i], ub[i])for i in range(len(lb))] 
 

evol = 750 
p_size = 40 
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result_1 = list(de2(rmse_1, bounds, mut=.8, crossp=.7, popsize=p_si
ze, its=evol)) 
pop_1, fit_1, idx_1 = result_1[-1] 
w_1 = pop_1[idx_1] 
result_2 = list(de2(rmse_2, bounds, mut=.8, crossp=.7, popsize=p_si
ze, its=evol)) 
pop_2, fit_2, idx_2 = result_2[-1] 
w_2 = pop_2[idx_2] 
result_3 = list(de2(rmse_3, bounds, mut=.8, crossp=.7, popsize=p_si
ze, its=evol)) 
pop_3, fit_3, idx_3 = result_3[-1] 
w_3 = pop_3[idx_3] 
 

scenario = [rmse_1(pop_1[idx_1]), rmse_2(pop_2[idx_2]), rmse_3(pop_
3[idx_3])] 
mse_imbal = np.argmin(scenario) 
print(f"The best fit has Scenarion #{mse_imbal+1} with the MSE: {sc
enario[mse_imbal]}") 
imbal = pd.DataFrame(data = [w_1, w_2, w_3]) 
 

 

The tables above show examples of the author's functions, procedures, and methods in his research. 
They form parts of an automated, functional AFDI system for detecting and identifying faults in 
machines covered by the author's research. 
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7. Validation of the anomaly detection method 

The author based the validation of the results of the OpEn 2D and OpEn 3D methods on data from the 
tests of large rotor machines. These are machines with active power exceeding 200MW and 560MW. 

The kinematic diagram of the 200MW machine is presented in Figure 17. All relative vibration sensors 
installed on the device were used in the research. The turbine in such an arrangement has seven 
bearings. Each bearing is equipped with two relative vibration sensors. The sensors are oriented at an 
angle of 90 degrees – perpendicular to each other. Such a setup gives 14 sensors to analyze for each 
transient. 

All the devices used in the tests are equipped with flexible rotors, which means that when changing 
the rotational speed, they pass through at least one resonance, called the area of critical revolutions 
of the machine. 

7.1. Baseline measurements for the validation method 

The author used data from various machines to validate the OpEn 3D method. In addition, transient 
data were acquired from diagnostic tests of different machines power output rated machines, i.e., 
turbo generators in professional power plants in Poland and abroad. Finally, the baseline data has been 
obtained following the methodology presented in section 4.3. 

Analyzing such a large amount of various types data is complicated and sometimes impossible for an 
analyst within a reasonable timeframe. Figure 49 shows the data set from one run after the CS 
interpolation step, i.e., with correct data ready for further analysis. The figure is a collective chart of 
one of the reference transients. As one can see, the data from different directions and sensors, even 
assuming the correctness of dynamic behavior, differ significantly from each other. 

 
Figure 49. Example of reference one transient data for whole turboset. 
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The above figure consists of the data that make up the vibration vector in the amplitude and phase of 
the first component. The upper left graph shows the vibration vector amplitudes only. The lower left 
diagram shows the vibration amplitudes' phase lag values. In contrast, the chart on the right represents 
the vibration vector in polar coordinates. It reveals the validity of the analysis of the vibration vector 
as a whole and not each component separately. In particular, the phase angle shown in the lower left 
graph cannot be reliably analyzed as a value on its own due to the unstable behavior of its value around 
360-0 degrees. 

Baseline measurements data are in the form of matrices with the dimensions of 14x60 for machines 
whose transient state rotational speed is 0-3000 RPM. The methods for obtaining values for the 
individual matrices are described in sections 4.4 and 4.7. The row of each matrix is the values for the 
respective sensors. The columns are the appropriate values assigned to specific rotational speed 
values.  

Table 22. Baseline measurement matrix with an synchronous amplitude in polar coordinate system. 
 250 300 350 400 450 ... 2850 2900 2950 3000 

1Y 18.0797 17.6416 16.7544 15.7551 14.9392 ... 17.2457 16.9995 17.1407 17.1407 
1X 17.3126 17.9066 18.3764 18.6278 19.2790 ... 15.5695 14.4821 15.2638 15.2638 
2Y 17.1000 17.7225 18.4773 18.8098 19.2274 ... 14.6703 14.2029 14.3156 14.3156 
2X 14.6687 14.3613 14.1318 14.0141 14.0216 ... 16.5651 16.8505 16.8406 16.8406 
3Y 19.8054 19.6251 19.7208 19.5423 19.5133 ... 23.2796 23.6045 23.7757 23.7757 
3X 18.1819 18.4902 18.6752 18.8036 19.0409 ... 22.4120 22.8693 22.3083 22.3083 
4Y 19.5390 20.4219 20.8601 21.8092 22.4026 ... 27.1439 27.8642 26.9442 26.9442 
4X 26.2989 26.1141 25.9100 26.0061 25.9027 ... 20.4005 19.9586 19.5699 19.5699 
5Y 7.4255 7.3889 8.1528 8.1592 8.3797 ... 14.3790 13.1150 12.4154 12.4154 
5X 5.4076 5.4469 5.8714 6.0663 6.3985 ... 7.9204 9.3487 6.3604 6.3604 
6Y 10.1077 9.8364 9.6704 9.8126 9.6594 ... 11.0051 12.1029 8.5884 8.5884 
6X 10.2239 9.7091 8.8620 8.4680 7.6782 ... 11.9129 10.3102 9.6962 9.6962 
7Y 4.8272 5.8035 6.8282 7.9428 9.4456 ... 1.9068 2.6601 4.9510 4.9510 
7X 6.2322 6.6912 7.3006 8.1711 9.1624 ... 8.3239 6.7158 10.1279 10.1279 

 

Due to the size of these matrices, Table 22-Table 25 only present the slices presented to show the 
structure and the values of the results for the exemplary rotational speed values. Entire baseline 
measurements prepared for the purposes of this dissertation will be provided as an appendix to the 
thesis. 

Table 23. Baseline measurement matrix with a phase angle of the first component in polar coordinate system. 
 250 300 350 400 450 ... 2850 2900 2950 3000 

1Y 66.7684 67.6967 69.5585 68.2684 67.0447 ... 87.3691 86.0002 84.9439 84.9439 
1X 301.5792 303.5645 304.7411 305.5701 307.7440 ... 5.1136 352.2297 354.7945 354.7945 
2Y 79.3813 81.4762 84.4833 89.7442 90.7489 ... 102.8261 104.0489 105.1258 105.1258 
2X 219.9748 218.8219 216.9984 217.4119 216.7296 ... 188.9264 190.4522 192.5758 192.5758 
3Y 160.0722 160.3929 160.1435 160.1268 160.0894 ... 158.9433 157.5124 159.4700 159.4700 
3X 251.0256 251.6832 252.3456 252.5319 252.5334 ... 257.5204 256.9892 258.5358 258.5358 
4Y 327.4881 329.5929 331.4779 332.3640 333.5153 ... 18.3314 19.5947 20.0900 20.0900 
4X 94.9360 96.3703 97.0370 97.9308 98.4228 ... 119.3251 121.0227 116.5172 116.5172 
5Y 97.4220 97.2957 95.3839 93.7577 94.8259 ... 192.6392 205.6180 189.5794 189.5794 
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5X 243.3398 242.1795 240.0160 237.8734 236.2938 ... 342.1443 351.2257 18.1290 18.1290 
6Y 325.6774 323.5088 320.4379 317.7451 314.2050 ... 327.5943 330.2474 340.1089 340.1089 
6X 197.5565 199.2203 197.3539 194.3232 191.5923 ... 209.3198 218.2199 197.9550 197.9550 
7Y 52.2139 55.6161 54.0261 53.5374 52.7177 ... 81.4602 45.2078 85.6463 85.6463 
7X 191.9125 194.5826 194.3495 195.3103 195.3209 ... 169.9922 167.6255 151.2256 151.2256 

 

Table 22 and Table 23 show an example of the baseline amplitude and the date phase, respectively. 
The baseline amplitudes are shown in Table 22. The data in this table can also be used as an OpEn 
centerline for the OpEn 2D method. 

Table 24. Baseline measurement matrix with vibration wector in Cartesian coordinate system: x-coordinate. 
 250 300 350 400 450 ...  2850 2900 2950 3000 

1Y 7.1315 6.6952 5.8515 5.8335 5.8265 ...  0.7916 1.1858 1.5106 1.5106 
1X 9.0662 9.9001 10.4722 10.8357 11.8014 ...  15.5075 14.3491 15.2008 15.2008 
2Y 3.1511 2.6268 1.7763 0.0840 -0.2513 ...  -3.2567 -3.4477 -3.7355 -3.7355 
2X -11.2410 -11.1888 -11.2864 -11.1312 -11.2379 ...  -16.3645 -16.5709 -16.4365 -16.4365 
3Y -18.6195 -18.4872 -18.5483 -18.3785 -18.3469 ...  -21.7251 -21.8097 -22.2656 -22.2656 
3X -5.9118 -5.8109 -5.6637 -5.6444 -5.7151 ...  -4.8431 -5.1487 -4.4339 -4.4339 
4Y 16.4768 17.6129 18.3284 19.3210 20.0515 ...  25.7664 26.2505 25.3048 25.3048 
4X -2.2628 -2.8974 -3.1743 -3.5882 -3.7941 ...  -9.9914 -10.2862 -8.7373 -8.7373 
5Y -0.9592 -0.9383 -0.7650 -0.5347 -0.7050 ...  -14.0306 -11.8257 -12.2422 -12.2422 
5X -2.4264 -2.5421 -2.9343 -3.2260 -3.5507 ...  7.5389 9.2393 6.0447 6.0447 
6Y 8.3477 7.9079 7.4552 7.2629 6.7348 ...  9.2913 10.5075 8.0760 8.0760 
6X -9.7477 -9.1679 -8.4586 -8.2047 -7.5216 ...  -10.3868 -8.1001 -9.2240 -9.2240 
7Y 2.9577 3.2775 4.0110 4.7204 5.7216 ...  0.2832 1.8741 0.3758 0.3758 
7X -6.0979 -6.4756 -7.0729 -7.8811 -8.8368 ...  -8.1973 -6.5598 -8.8773 -8.8773 

 

The matrix of the centers of the ellipses values in the (𝑟, 𝜃), i.e., polar system is presented in Table 22 
and Table 23. These are polar coordinates for the individual sensors for rows and the rotational speed 
increments values for columns, respectively. 

Table 25. Baseline measurement matrix with vibration wector in Cartesian coordinate system: y-coordinate. 
 250 300 350 400 450 ... 2850 2900 2950 3000 

1Y 16.6138 16.3218 15.6994 14.6354 13.7562 ... 17.2275 16.9581 17.0740 17.0740 
1X -14.7489 -14.9209 -15.1006 -15.1519 -15.2449 ... 1.3877 -1.9580 -1.3849 -1.3849 
2Y 16.8072 17.5268 18.3917 18.8096 19.2258 ... 14.3042 13.7781 13.8196 13.8196 
2X -9.4239 -9.0031 -8.5044 -8.5141 -8.3855 ... -2.5704 -3.0569 -3.6667 -3.6667 
3Y 6.7504 6.5856 6.6985 6.6432 6.6453 ... 8.3642 9.0283 8.3381 8.3381 
3X -17.1940 -17.5533 -17.7957 -17.9364 -18.1630 ... -21.8825 -22.2822 -21.8632 -21.8632 
4Y -10.5017 -10.3363 -9.9607 -10.1162 -9.9906 ... 8.5371 9.3446 9.2552 9.2552 
4X 26.2014 25.9529 25.7148 25.7573 25.6233 ... 17.7863 17.1038 17.5111 17.5111 
5Y 7.3633 7.3290 8.1168 8.1417 8.3500 ... -3.1463 -5.6705 -2.0661 -2.0661 
5X -4.8327 -4.8173 -5.0856 -5.1374 -5.3229 ... -2.4286 -1.4261 1.9791 1.9791 
6Y -5.6993 -5.8497 -6.1592 -6.5983 -6.9244 ... -5.8978 -6.0061 -2.9221 -2.9221 
6X -3.0840 -3.1962 -2.6433 -2.0949 -1.5429 ... -5.8335 -6.3787 -2.9890 -2.9890 
7Y 3.8149 4.7895 5.5260 6.3880 7.5155 ... 1.8857 1.8878 4.9367 4.9367 
7X -1.2864 -1.6847 -1.8094 -2.1576 -2.4209 ... 1.4466 1.4392 4.8752 4.8752 
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Table 24 and Table 25 depict the coordinates of the centers of the ellipses for Cartesian coordinates. 
For practical and implementation reasons, the amplitudes and phases of the polar coordinate system 
have been converted to the (𝑥, 𝑦), i.e., Cartesian system. In the OpEn 3D method, the coordinate 
system is used to determine and assemble individual ellipse centers. 

7.2. Single channel: 1X amplitude validation (OpEn 2D case) 

The author validated the results of the OpEn 2D method on the data point sets obtained during the 
diagnostic tests of a 200MW class turbine set. During diagnostic tests, the turbine generator set 
experienced HP-IP cylinder rotor excessive misalignment. Data were collected for an invalid dynamic 
state of the machine. Then two series of improving the alignment of HP-IP cylinder rotors were 
undertaken. After each test, the maintenance department started the turbine set to obtain diagnostic 
data and provide further recommendations and instructions. After the final alignment attempt, the 
machine was allowed to start up fully. The turbine set reached FSNL, and its dynamic state allowed it 
to carry out further tests, synchronization, and load up to the nominal power, i.e., + 200MW. 

This unit has seven journal bearings and one thrust bearing (combined journal and thrust bearing) 
placed in bearing pedestal no. 2. Schematic picture of this turbo-set is presented in Figure 17. Normally, 
these machines are equipped with eddy current relative shaft-to-rotor vibration sensors. Typically, all 
journal bearings in this type of turbine are equipped with such sensors. Every bearing has two sensors, 
oriented perpendicularly to each other. The most common set-up of eddy-current sensors is presented 
in Figure 7. Signal from these sensors is proportional to the shaft displacement with respect to the 
bearing housing. 

The case study presents the data measured at bearing no. 1. Measurements were carried out during 
incremental improvement of the HP-IP part alignment. Data were collected during ten transient states, 
both startups, and cast-downs. Figure 50 presents all the transients on a single plot.  
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Figure 50. Transient data during measurements course. Transients 01-04 were non-satisfactory. Transients 05-10 

were satisfactory. Transient 09 was selected as the reference. 

In most cases, the coast-down transient is better suited for analysis than the run-up because the turbo-
set does not experience additional excitation forces during this process. In such a case, the machine 
coast down is driven only by the inertia of the shaft. The author did not experience noticeable 
deviations between startups and coast downs during the analyzed measurements. That was a 
prerequisite for the inclusion of startups into our analysis as well. 

There were no signs of any other malfunction apart from misalignment, for example, rubs which can 
produce a different response of a rotor system during startups and coast-down, as described in various 
examples, e.g. [14], [16], [21]. We classify the transients in the following way: 

 first two pairs (transient no. 01÷04 in Figure 50) of transients are "non-satisfactory" in terms of vibration 
response, 

 following three sets of pairs (transients no. 05÷10 in Figure 50) are "satisfactory" in proper alignment of 
the HP-IP coupling. 

The OpEn centerline was calculated as presented in Section 4.3. Upper and lower bounds were set at 
24µmpp and 13µmpp, respectively, as explained in Section 4.5. During the first set of transients, the 
synchronous response exceeded the 𝑂𝑝𝐸𝑛 𝐵𝑈𝐿𝐿  in the [1500,2600] rotational speed interval. 
Transient no. 1 and 2 in Figure 51 depicts this scenario. 
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Figure 51. Example of a transients with misalignment (the initial state – transient no.1 and no.2 and after first 

improvement – transient no.3 and no.4). 

After the first alignment improvement, the majority response of the rotor system fell into the OpEn. 
From the startup of the turbo-set up to approx. 1750RPM and above 2450RPM, all amplitudes were 
inside OpEn. Still, the system response values between approx. 1700÷2450RPM had higher values than 
the OpEn upper bound, which can be seen in Figure 51, transient no. 3 and 4. 

The second improvement of the HP-IP cylinder alignment resulted in the proper response of the 
system. Figure 52 presents the dynamic data for the described situation. 
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Figure 52. Example of acceptable dynamic behavior. 

The figures presented only the qualitative results. To be able to automate the assessment process, the 
parameters proposed in Section 4.6 were applied and presented in Table 26. The transient no. 09 
named "U2_09" was assumed to be the reference one. Hence, the RMSE and Kurtosis value in the one 
before last column in Table 26, also named "U2_09," is 0. It is worth underlying that RMSE and Kurtosis 
values for the last measured transient state named "U2_10" were the lowest ones even though it 
contained samples from the whole rotational speed span (which was >100RPM up to 3000RPM). 

Table 26 summarizes the performance of the proposed distance criteria. After the second alignment 
improvement, RMSE of the further transient in the studied case does not exceed the value of 10, as 
shown in Table 26, and since then, all amplitudes of synchronous response fell between OpEn upper 
and lower values. 

Table 26. Comparison of the OpEn 2D method selection criteria. 

 
U2_0

1 
U2_0

2 
U2_0

3 
U2_0

4 
U2_0

5 
U2_0

6 
U2_0

7 
U2_0

8 
U2_0

9 
U2_1

0 
RMSE 42.58 37.27 20.22 17.73 8.00 7.83 4.03 3.44 0.00 3.42 

Kurtosis 1.84 1.94 1.77 1.95 1.77 2.27 2.10 2.90 0.00 2.05 
MAX_Oo_Op

En 
72.10 68.10 29.16 28.10 0.00 0.00 0.00 0.00 0.00 0.00 

MIN_Oo_OpE
n 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Figure 53 depicts the visual evolution of the RMSE parameter. The RMSE is an error at each transient 
during the measurement course. However, after the machine's fourth transient (second HP-IP coupling 
improvement), the dynamic response is much closer to the reference transient than before. 
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RMSE is a suitable parameter as it is sensitive to the distance from the healthy state. As we show in 
the case study above, it is sensitive to the misalignment level. There is a value above which 
misalignment is beyond an acceptable level. In the studied example, the value of 10 can be a good 
condition indicator (still, for this particular sensor and this type of malfunction). 

 
Figure 53. The evolution of the Root Mean Square Error (RMSE) vs HP-IP alignment incremental improvement. 

The kurtosis parameter is between 2.90 and 1.77. The values do not show the relationship to the level 
of misalignment. Thus, the Kurtosis parameter is not helpful in this case study. In our investigation, 
Kurtosis measures how the new transient is similar to its reference one in shape. It can signal if some 
samples were far off the reference transient during a particular transient. This parameter may play a 
significant role in finding anomalies such as oil whirl or whip. The transient of a machine that 
experiences such phenomena can be extremely different from the reference one. Amplitudes 
generated during instabilities are often close to bearing clearances, which can harm turbo-set 
equipment such as the bearing itself, its oil seals, steam seals on the rotor and inside of a turbine 
casing, and hydrogen oil seals (on the generator), and others. Furthermore, the rotational speed 
intervals in which hydrodynamic instabilities can occur might be narrow compared to the whole 
rotational speed range. Thus, in such cases, RMSE as a single assessment parameter of the transient 
cannot suffice because even if the signal amplitude is much greater in a short interval, the number of 
samples in the transient as a whole will diminish it. 

Setting up the Kurtosis parameter will be a subject of further studies. Author will study the effect of 
setting up RMSE and Kurtosis parameters on different signal components in different arrangements, 
for example, RMSE on synchronous response and phase angle and Kurtosis on direct (or sub-
synchronous) response. 

𝑀𝐴𝑋_𝑂𝑜_𝑂𝑝𝐸𝑛 well describes misalignment in the studied example. This indicator, though, detects 
if, at any given moment during a transient state, the vibration exceeds the 𝑂𝑝𝐸𝑛_𝑈𝑝𝑝𝑒𝑟  value. This 
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parameter detects if any samples exceed the upper bound, and in such a case, it returns the distance 
value and the relevant rotational speed. This parameter presents information about "the worst" 
sample. This parameter can signal abnormal machine behavior during transient, for instance, 
hydrodynamic instability. Thus, the 𝑀𝐴𝑋_𝑂𝑜_𝑂𝑝𝐸𝑛 is well suited for novelty detection purposes.  

As shown in Table 26, no transient exceeded the 𝑂𝑝𝐸𝑛_𝐿𝑜𝑤𝑒𝑟 value during the presented case study, 
so the 𝑀𝐼𝑁_𝑂𝑜_𝑂𝑝𝐸𝑛 parameter cannot be evaluated. Above-described situation can imply two 
things: 

 OpEn lover value can be set to too a low value which can cause the false positive error (lack of detection 
in the early stage of malfunction evolution); 

 misalignment is present in a shaft train, there will be no samples with amplitudes lower than expected.  

These two scenarios will be the subject of our further studies. 

7.3. 1X amplitude and phase validation (OpEn 3D case) 

To validate the OpEn 3D method, the author analyzed machines with different malfunctions. The 
author will use the example of the rotor unbalance of the + 560MW turbine generator set for a detailed 
presentation to highlight the results of validating the OpEn 3D method. This data was additionally used 
to verify the MD3 method to validate the complete detection and identification process. The layout of 
the tested device is shown in Figure 18. The author had to make some changes in the sensor description 
to compare the data from the tested device with the correct values of the ellipses of the OpEn 3D 
method. In addition, the way of naming the data from the machine had to change. The sensors 
monitoring the dynamic state of the generator rotor in the 560MW unit are on bearings number eight 
and number nine. In the baseline matrices, the sensors responsible for the dynamic generator 
response are marked with number six and number seven.  

To prove the validity of the thesis, the author decided to assign data from bearings number eight and 
number nine coming from the real object as bearing number six and number seven, respectively, for 
the OpEn 3D algorithm to compare the data from the generator to the ellipses assigned to the 
generator. 

Based on the constant speed data, operational personnel reported high vibration levels in bearing 
number nine. Vibration measurements were carried out to verify the cause of the high vibration. Data 
were recorded during transient operation (coast-down) of the unit. The portable data acquisition 
interface unit was connected to eddy-current type vibration displacement sensors at all nine bearings 
in both directions. 

Transient data was recorded, and unbalance of the generator rotor free end (near the bearing number 
nine) was diagnosed. After the balancing operation, the data was measured once more during the run-
up. The balancing operation was qualified as satisfactory. The turbogenerator was considered eligible 
for long-term operation with no restrictions in terms of dynamic condition to run within a full range of 
operation (referred to as the class A). 
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The author used data from the generator sensors described above only to analyze and present the 
results. The data was used to validate the method. 

Table 27 summarizes the results for the first two transients participating in the research and the OpEn 
3D method. The table layout is as follows: the values in the first column of the matrix correspond to 
the individual rotational speed values for the successive instances determined by the CS interpolation 
domain. Then the column values assigned to "Transient no. 01" and "Transient no. 02" are the values 
of the distance from the baseline ellipse for the individual sensors, described 6X-7Y, in specific 
rotational speed instances during the duration of the transient state. 

Transient no.1 summarizes the data collected immediately before the balancing activities. One can see 
that the most significant values of the distance from the ellipse come from the 7Y direction. For 
example, the distance value at 3000RPM is over 240µmpp. This is a very high value because the bearing 
clearances for the generator bearings can be 400 µm, and the clearances on the new hydrogen seals 
can be around 300µm. 
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Table 27. OpEn 3D distance matrix: left – transient before balancing attempt; right – after trial mass balancing. 
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Figure 54 shows a graphical representation of the OpEn 3D method sample values. The figure presents 
a baseline ellipse with the origin of the coordinate system depicted as a black point. On the other hand, 
the red one is related to the vibration vector of the first synchronous component, i.e., the combination 
of the amplitude and phase measured during the transient. Additionally, each ellipse in the 
𝑂𝑝𝐸𝑛 𝐵𝑈𝐿𝐿  matrix is rotated by a specific value determined by the vibration vector parameters 
described in Section 4.8.The figure shows six moments for which the distance from the ellipse is 
calculated. The graph in the upper left corner shows the last rotational speed for which the vibration 
vector is still inside the ellipse. The figure on the top right shows a slight exceedance of the acceptance 
ellipse limit already for the rotational speed value of 1550. The figures in the middle and lower parts 
show the evolution of the distance of the vibration vector from the ellipse boundary. 
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Figure 54. Graphical representation of the OpEn 3D distance matrix: 7Y sensor before balancing attempts. 
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The columns in Table 27 entitled Transient no 2 shows data after the first generator rotor balancing 
attempt. The weight was added on the NDE side to the rotor disc. The trial mass was approx. 560g on 
a radius of approx. 450mm. After the workshop personnel installed the mass on the test angle, the 
maintenance staff started the machine to measure the dynamic state. The measurements revealed a 
significant improvement in the generator rotor dynamic parameters. Table 27 shows that for rated 
speed (FSNL), the vibration amplitude on the NDE bearing in the Y direction (sensor described as 7Y) 
decreased by 170µmpp. 

Unfortunately, the initial vibrations were so large that even such a significant improvement did not 
give an entirely satisfactory result. Therefore, the balancing cycle had to be repeated. During trim 
balance, the research team decided not to change the balance mass but only the angular orientation 
of the balancing mass. Following trim balance, the vibration response of the unit reviled a very close 
distance to the acceptance regions for both bearings and all directions of vibration measurement.  

Table 28 collects the following two transients during trim balance and final transient, after which the 
turboset was considered acceptable for long-term operation without any restrictions. As a result, the 
power plant authorities decided to discontinue the corrective actions and leave the turbine set at the 
disposal of electricity production. 
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Table 28. OpEn 3D distance matrix: left – trim balance attempt; right – start-up for the long-term operation. 
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Figure 55 presents the evolution of the distance of the vibration vector from the ellipse acceptance 
region for the 7Y sensor. The ellipses were given for the same rotational speed values in the case of 
data from before and after the corrective actions. 

An evident improvement in the position of the vibration vector can be seen comparing Figure 54 and 
Figure 55 concerning the baseline region. 

It is also worth mentioning that the author used the reference machines data sets to define the 
acceptance regions in the form of ellipses sets for the validation process. The data used to determine 
the baseline come from new machines or machines after repairs and factory acceptance installed 
correctly on site. 

The data presented in this section comes from a machine operating for a long and indefinite period. 
The author did not have data from the transitional states immediately after its launch. Therefore, it is 
impossible to refer to the starting vibration level of the machine in this way. 

However, after corrective actions, one can conclude that the machine's behavior over the entire 
measured rotational speed range is similar to the reference behavior defined by the acceptance 
regions. Almost all distances throughout the transient state are close to zero, as shown in table 23 in 
Transient no. 4 columns. 
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Figure 55. Graphical representation of the OpEn 3D distance matrix: 7Y sensor before balancing attempts 

Figure 56 summarizes the change in the distance of the vibration vector from the acceptance region 
for a repaired NDE bearing. One can see a significant improvement already in Transient no. 2. The 
distances of the vibration vectors in both directions of this bearing have significantly decreased their 
values. The above proves a significant improvement in the dynamic condition of the tested device. The 
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graph reveals that the distance for Transient no. 4 turned out to be greater than zero. This means that 
the vibration vector for the 7Y direction goes beyond the acceptance region. 

 

Figure 56. 7Y vibration vector data distance from the acceptance region evolution during corective actions. 

Nevertheless, the value of 16 is minimal compared to 220. In addition, by examining Figure 55, one can 
conclude that the position of the vibration vector is very close to the ellipse corresponding to 3000 
RPM. The center of the ellipse, which is marked with the green point in the graphs, is located on the 
opposite side of the origin of the coordinate system, shown in black. Therefore, one can assume that 
for a different value of residual unbalance, or after another balancing attempt, the vibration vector 
would be inside the ellipse. 

he summary of activities aimed at improving the dynamic state of the turbine set under study is shown 
in Figure 57. The data in the graph present all transients who participated in the tests on the research 
object. All subsequent transients start at 1500 RPM. It allows for a fair comparison of the fit of the 
data. 
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Figure 57. Polynomial data fit to the vibration data vector during consecutive transient. 

The author defined a trend line as a second-order polynomial for the data from each transient. As 
described in section 12, such a polynomial can correctly nail the unbalance. For each of the trend lines, 
the correctness parameter r2 was given. As seen in the discussed figure, the data from the transient 
no is characterized by the highest value of the parameter fitting to the second-order polynomial. 1 in 
the figure shown in blue. The adjustment value is 0.97. It proves the correctness of the hypothesis 
about excessive unbalance on the generator rotor on the NDE side.  

After the research team completed the corrective actions, the trend line fit to the data dropped 
significantly, and the adjustment parameter was 0.61. It demonstrates a significant reduction in the 
centrifugal force from the unbalance. The unbalance malfunction was primarily removed from the 
tested object thanks to the corrective actions. 
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8. Validation of the identification method 

The author carried out the MD3 method validation process in two stages. In the first stage, the method 
was implemented on data from the test rig. As a result, the stand was prepared with focus on 
simulating the malfunction of the rotor unbalance. In the next stage, the author used the MD3 method 
to identify the generator rotor unbalance parameters nominated by the OpEn 3D method described in 
the previous chapter. 

8.1. Validation of model data  

The authors validate the model on a Rotor Kit. It is a simplified model of a rotating machine with a 
flexible rotor. The model is presented in Figure 4, and it is a variation of the simplified Jeffcott rotor 
model well described by, e.g., Kiciński [9], Muszyńska [8], and Ehrich [7]. 

 
Figure 58. Scheme of the test rig used for validation purpose. 

The model schematic, depicted in Figure 58, consists of two spaced masses, a variable speed-controlled 
driver, and brass-bushing bearings. The bearings are described by number 1 and 2 in the Figure 58, 
respectively. The sensors at each bearing are oriented by the convention driver-to-driven. The Y 
direction means that the sensor is oriented 45° in left from the vertical axis. The X direction means that 
the sensor is oriented 45° in right from the vertical axis, and the 90° from the Y sensor. Figure 9 presents 
detailed schematics of the sensors arrangement. The validation method uses two sensors on either 
side of the rotor.  

Figure 5 presents the picture of the verification model on the test stand. To validate the identification 
of at least the first bending mode Rotor Kit has to be rotated with a velocity of over 4000 rpm. Then, 
the model for the unbalance response is validated by mass addition on both disks at the same angular 
orientation. 
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Figure 59. The Rotor Kit test rig used for model validation. 

The data from two experiments were recorded. First, an imbalance mass was added to the rotor as 
described above. This trial is considered as the presented system imbalance response. The unbalance 
mass was removed during the second trial, and the transient data set was recorded. The vibration 
levels throughout the whole transient were at a low level and it was considered malfunction-free. 

Several transient runs were performed and recorded. The resulting data showed convergence and 
repeatability of the test rig setup. Figure 6 depicts examples of the transient response of the data 
prepared for identification. 

  
(a) (b) 

Figure 60. The transient vibration response of the test rig during with and without unbalance, respectively: (a) 
data from the bearing number 1; (b) data from the bearing number 2. 

Sensors with the same angular orientation were taken into account to analyze the validation data. Each 
of the sensors is mounted on the same side of the rotor. The data (with and without unbalance) were 
recorded and processed by the MD3 identification method. Figure 61 presents the curve shapes 
plotted as lines based on scenario 1÷3 against the real-object transient data curve (plotted as a scatter 
plot). Based on the MD3 method, scenario 2 was selected as the best approximation of the sensor 1Y 
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data, and scenario 3 was the best one to fit the transient data from sensor number 2Y. Table 29 
presents a summary of RMSE values for all three scenarios for the case of an unbalanced rotor. 

  

(a) (b) 
Figure 61. Outcome of the MD3 method based on three scenarios proposed in Chapter 5 on a test rig with 
imbalance malfunction simulation: (a) Data obtained from the 1Y sensor, driven side of the rotor; (b) Data 

obtained from the 2Y sensor, non-driven side of the rotor. 

Table 29. The MSE values are based on the scenario and sensor location for the imbalance simulation on the test rig. 

RMSE Sensor 1Y Sensor 2Y 
Scenario 1 8.527 7.265 
Scenario 2 4.905 3.213 
Scenario 3 5.793 2.992 

 

The scenario number one shows the worst fit to the transient data. The RMSE indexes for both sensors 
1Y and 2Y have the highest value. Such a situation is most likely due to a split resonance (i.e. two 
resonances close to each other) measured in both bearings. The split occurs in the target function 
between 1500-2500rpm. Unable to adjust to the two resonances close together, the scenario chose 
an "in-between" resonance—such a compromise results from an increased mis-match between the 
scenario functions and the measured transient function. 

Scenario 2 and Scenario 3 for sensor 1Y and sensor 2Y, respectively, were selected as the best sets of 
decomposition function parameters. A summary of all the identified parameters by the DE algorithm 
is presented in Table 30. In addition, parameters for the best scenario are highlighted. 

Table 30. Parameters of the decomposed functions identified by the DE algorithm and chosen by the MD3 method based on 
the imbalance data and the MSE as the quality index. 

Scenario/sensor 𝒂𝒈𝟏
 𝒓𝒑𝒎𝒈𝟏

 𝒘𝒈𝟏
 𝒂𝒈𝟐

 𝒓𝒑𝒎𝒈𝟐
 𝒘𝒈𝟐

 𝒂𝒈𝟑
 𝒓𝒑𝒎𝒈𝟑

 𝒘𝒈𝟑
 𝒂𝒑 𝒙𝒑 𝒄𝒐𝒏𝒔𝒕𝒃 

1/1Y 91.27 2014.41 204.93 - - - - - - 75.45 -462.77 6.19 

2/1Y 71.36 2100.00 209.76 63.31 1866.85 75.07 - - - 73.46 -46.59 8.78 

3/1Y 75.67 1891.59 97.01 61.81 2157.43 241.15 13.36 4200.00 10.00 75.05 575.15 9.60 

1/2Y 89.12 1962.59 222.43 - - - - - - 41.02 266.84 4.41 

2/2Y 64.23 1848.03 91.10 62.21 2082.89 268.12 - - - 42.59 1347.73 6.03 
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3/2Y 64.23 1848.03 91.10 62.21 2082.89 268.12 97.24 4098.58 526.66 42.59 1347.73 6.03 

 

In the next step, the unbalance weights were removed and the transient data was recorded for the 
analysis with the same set of sensors as earlier. Figure 62 depicts malfunction-free transients for the 
sensors 1Y and 2Y, respectively. Due to small amplitude values during these runs, the results of the DE 
algorithm, i.e., decomposition function parameters and hence the RMSE quality index, are similar in 
values. The values of the RMSE index concerning scenarios are presented in Table 31. 

  
(a) (b) 

Figure 62. MD3 method outcome based on three scenarios proposed in Section 2 on a test rig without mal-
function: (a) Data obtained from the 1Y sensor, driver side of the rotor; (b) Data obtained from the 2Y sensor, 

non-driven side of the rotor. 

Based on the RMSE quality index, the MD3 method shows that the best fit of the decomposed 
functions for the reference transients provides scenario 2 and scenario 3 for the sensors 1Y and 2Y, 
respectively. However, it is visible that the values are very similar for all the scenarios. In such a case, 
a simpler model should be chosen if in doubt. 

Table 31. The RMSE values, based on the scenario and sensor location, for the reference transient simulation on the test rig. 

MSE Sensor 1Y Sensor 2Y 
Scenario 1 1.032 1.032 
Scenario 2 1.002 0.966 
Scenario 3 1.078 0.895 

 

Table 32 summarizes all the decomposed function coefficients nominated by the MD3 method. This 
table highlights the best solution for sensor data 1Y and 2Y in bold font. 

Table 32. Parameters of the decomposed functions identified by the DE algorithm and chosen by the MD3 method based on 
the reference data and the RMSE as the quality index. 

Scenario/sensor 𝒂𝒈𝟏
 𝒓𝒑𝒎𝒈𝟏

 𝒘𝒈𝟏
 𝒂𝒈𝟐

 𝒓𝒑𝒎𝒈𝟐
 𝒘𝒈𝟐

 𝒂𝒈𝟑
 𝒓𝒑𝒎𝒈𝟑

 𝒘𝒈𝟑
 𝒂𝒑 𝒙𝒑 𝒄𝒐𝒏𝒔𝒕𝒃 

1/1Y 11.82 1924.58 118.94 - - - - - - 4.35 -3634.30 4.72 
2/1Y 11.85 1924.53 119.41 18.87 2378.38 10.00 - - - 4.32 -3523.06 4.72 
3/1Y 11.44 1920.28 113.26 3.44 2519.68 840.00 4.82 4200.00 374.83 18.87 4200.00 4.72 
1/2Y 11.82 1924.58 118.94 - - - - - - 4.35 -3634.30 4.72 
2/2Y 11.96 1924.34 121.07 3.04 2434.71 66.31 - - - 4.24 -3132.82 4.72 
3/2Y 11.96 1924.34 121.07 3.04 2434.71 66.31 3.43 4200.00 10.00 4.24 -3132.82 4.72 
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Figure 63 shows the values of the coefficients responsible for the identification of imbalance. In 
imbalance rotor case all scenarios, including the simplest scenario one, can correctly detect rotor 
unbalance coefficient. All scenarios have similar values for both sensors 1Y and 2Y, described in the 
figure as 1𝑌  and 2𝑌  respectively. 

 
Figure 63. Imbalance coefficients for sensor 1Y and 2Y. 

For a balanced rotor case, the unbalance coefficient in the scenario three for sensor 1Y has a higher 
value than the other scenarios. Although the RMSE index is smaller, and the imbalance coefficient is 
close to the actual value, the time and computing power needed to execute and evaluate this case 
may not be rationally justified. For such a simple case, i.e. only one resonance speed interval and no 
excessive imbalance, matching the function with the coefficients from scenario two should be 
sufficient and satisfactory. 

The research and tests conducted on the test rig confirm the correctness of the assumptions of the 
MD3 method. The method can effectively identify at least one critical speed range and the failure in 
the form of rotor imbalance. The model has been positively verified. Moreover, the decomposed 
function parameters produced by the method reflect the actual mechanical values of a given object. 
Thus, it can be used to track changes that turbo-set undergoes during each transient condition 

8.2. Validation of MD3 method on real turbine 

The Multidimensional Data Driven Decomposition method was applied to the data from a real 
turbogenerator. The authors use the data measured on a 560MW steam unit in this case study. Figure 
18 depicts a shaft-bearing line schematic representation. Based on the constant speed data, 
operational personnel reported high vibration levels in bearing number nine. Vibration measurements 
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were carried out to verify the cause of the high vibration. Data were recorded during transient 
operation (coast-down) of the unit. The portable data acquisition interface unit was connected to 
eddy-current type vibration dis-placement sensors at all nine bearings in both directions. Figure 9 
shows the schematic and real-object sensor arrangement inside of bearing housing. 

Transient data was recorded, and unbalance of the generator rotor free end (near the bearing number 
nine) was diagnosed. After the balancing operation, the data was measured once more during the run-
up. The balancing operation was qualified as satisfactory. The turbogenerator was considered eligible 
for long-term operation with no restrictions in terms of dynamic condition to run within a full range of 
operation (referred to as the class A). 

After the first measurement, the data were processed with the OpEn fault detection method. It 
detected a high level of synchronous response on bearing 9 in the Y direction. At the same time, it did 
not return any increased values of vibration amplitudes on bearing 8 in any direction. Lack of indication 
would typically eliminate bearing 8 data for the MD3 method. However, for this case study, these data 
were taken into account for comparison. 

  
(a) (b) 

  
(c) (d) 

Figure 64. Decomposed function identified by the DE algorithm to fit data from a real object before and after 
balancing and the corresponding MSE indexes: (a) data from the bearing 8 and the sensor 8Y before balancing; 
(b) data from the bearing 9 and the sensor 9Y before balancing; (c) data from the bearing 8 and the sensor 8Y 

after balancing; (d) data from the bearing 9 and the sensor 9Y after balancing. 
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A high level of vibration amplitude on the one end of the rotor and a normal level of vibration response 
on the second end can be a symptom of the generator rotor unbalance in the vicinity of bearing 9. This 
hypothesis was later confirmed during corrective actions. Figure 64 presents all three scenarios 
identified by the DE algorithm according to the MD3 method. The RMSE index, as the decision criterion, 
selected scenario 3 as the best fit with the RMSE value of 4.74 (sensors 9Y). Scenario 3 was also the 
best fit for the transient without imbalance response approximation with the MSE index equal to 2.85.  

Table 33 

Table 33. The RMSE values based on the scenario and sensor location of the generator rotor with and 
without imbalance malfunction. summarize RMSE indexes for bearing 8 and bearing 9. 

Table 33. The RMSE values based on the scenario and sensor location of the generator rotor with and without imbalance 
malfunction. 

MSE 
Sensor 8Y 

imbalance response 
Sensor 8Y 

balance response 
Sensor 9Y 

imbalance response 
Sensor 9Y 

balance response 
Scenario 1 4.725 6.253 30.75 6.627 
Scenario 2 4.554 2.628 27.501 5.052 
Scenario 3 3.907 2.6 4.739 2.852 

 

Results returned for bearing 8 were different from those from bearing 9. As vibration levels were low 
for both the unbalanced and the balanced state, the functions identified by the DE algorithm had very 
similar decomposed function parameters. Thus the RMSE criterion in both cases had a low value. It 
also confirms that the algorithm was successful for bearing 8. 

Table 8 summarizes all the decomposed function parameters depending on the scenario. For example, 
the functions which approximate the imbalance condition were high-lighted in scenario 3. Note that 
all scenarios satisfactory identified the first critical speed zone, which can be seen in Figure 64 (b). 

Table 34. Decomposed function parameters identified by DE algorithm. Function parameters in imbalance and healthy 
condition. The MD3 scenario selection number is highlighted in bold font. 

Scenario/ 
sensor-condition 

𝒂𝒈𝟏
 𝒓𝒑𝒎𝒈𝟏

 𝒘𝒈𝟏
 𝒂𝒈𝟐

 𝒓𝒑𝒎𝒈𝟐
 𝒘𝒈𝟐

 𝒂𝒈𝟑
 𝒓𝒑𝒎𝒈𝟑

 𝒘𝒈𝟑
 𝒂𝒑 𝒙𝒑 𝒄𝒐𝒏𝒔𝒕𝒃 

1/9Y-unbalanced 37.213 669.4 51.229 - - - - - - 255.000 -492.1 15.481 
2/9Y- unbalanced 53.401 655.9 80.750 47.058 2212.5 590.000 - - - 255.000 130.9 6.279 
3/9Y- unbalanced 59.614 670.0 78.497 51.173 2212.5 403.799 128.925 2942.7 214.478 215.647 462.1 9.686 
1/9Y-balanced 71.034 668.9 90.854 - - - - - - 45.665 -1442.8 3.991 
2/9Y-balanced 72.041 670.6 93.733 15.793 1706.9 271.219 - - - 85.197 1416.0 8.881 
3/9Y-balanced 71.689 669.6 94.397 14.655 1779.0 329.603 36.022 2950.0 152.466 12.627 -2737.6 5.421 
1/8Y-unbalanced 15.130 978.5 142.121 - - - - - - 44.383 -2950.0 11.096 
2/8Y- unbalanced 15.130 525.9 19.937 15.130 983.3 139.615 - - - 44.383 -2950.0 11.096 
3/8Y- unbalanced 15.130 489.8 219.351 20.471 999.9 151.230 15.130 1995.7 589.995 44.383 -161.9 10.702 
1/8Y-balanced 20.788 1475.0 590.000 - - - - - - 50.268 -2950.0 3.867 
2/8Y-balanced 18.769 1014.8 146.283 26.970 1947.1 407.326 - - - 24.457 -2605.7 13.500 
3/8Y-balanced 17.810 1015.6 147.178 11.130 1903.7 272.631 17.601 1966.7 506.730 22.515 -2678.9 13.500 

 

Scenario 1 has only one critical speed zone, parabola, and bias term in the model. Therefore, it cannot 
achieve a good fit to the real-object data, red line in Figure 64 (b). This model can find the peak of the 
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first critical speed 𝑟𝑝𝑚  zone, but the amplitude 𝑎  and width of the peak 𝑤  are affected by 

parabola function (𝑎 , 𝑥 ). Therefore, the parabola part of decomposed function cannot achieve a 

good approximation of such an excessive imbalance condition.  

The second scenario can correctly replicate the first critical speed zone in all its features. However, due 
to the complexity of response in the rotational speed near FSNL, its performance was also not 
satisfactory, the green line in Figure 64 (b). The second critical speed zone and significant unbalance 
force made scenario  two not sufficiently accurate.  

Scenario 3 best approximates the real-object transient data, the blue line in Figure 64 (b). Thanks to 
three Gaussian functions in its model, it could replicate two critical speed zones and use the third one 
to enhance the model's performance to approximate additional nonlinearity introduced by the 
imbalance at the highest rotational speed values. This approximation of the unbalance condition 
resulted in the RMSE index being almost six times smaller than scenario 2 and seven times smaller than 
scenario 1. The particular RMSE index values for the imbalance condition are presented in Table 31 in 
a column titled “Sensor 9Y imbalance response”. 

Real-object data collected during the second measurement course (after balancing) revealed exciting 
results. For this case, each of the scenarios was a decent approximation of the healthy state of the 
machine. Figure 64 (d) shows that each scenario detected and identified the first critical rotational 
speed zone in all of its parameters consistently and in a convergent way. Furthermore, identified values 
of all decomposed function parameters for all scenarios concerning the first critical speed interval are 
almost identical.  

Table 33 presents this in row 4÷6 and column 1÷3. Additionally, scenarios number two and three had 
better identified transient response between 1400÷2200rpm, and scenario  three was superior to 
others in replicating the system response above 2500rpm. Also, in this case, scenario  three was the 
best approximation of real-object transient data acquired from sensor number 9Y without an 
imbalance condition. 

With this in mind and using the author’s experience, a reasonable range of parameters of the 
decomposed functions can be determined for this type of failure. Table 35 presents the values selected 
as a range of search for decomposed function parameters. 

Table 35. Healthy state operation decomposed function parameters by the DE algorithm. 

Sensor 𝒂𝒈𝟏
 𝒓𝒑𝒎𝒈𝟏

 𝒘𝒈𝟏
 𝒂𝒈𝟐

 𝒓𝒑𝒎𝒈𝟐
 𝒘𝒈𝟐

 𝒂𝒈𝟑
 𝒓𝒑𝒎𝒈𝟑

 𝒘𝒈𝟑
 𝒂𝒑 𝒙𝒑 𝒄𝒐𝒏𝒔𝒕𝒃 

9Y <80 670±30 <120 30 1800±50 <400 20 2950±50 <200 50 - 20 
 

These values can be used as guideline parameters. The proper definition of this range can significantly 
reduce the time required by the DE algorithm to reach optimum. 
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9. Conclusions 

9.1. Final remarks 

Large turbogenerators are the heart of the power generation industry. They are designed and built for 
long-term operation with as few shut-down processes as possible. Sometimes, the turbo-set can be 
operated for months or even a year without a coast down. On the other hand, such a transient situation 
carries essential diagnostic information about a machine's condition. During such events, much 
information regarding the machine's condition is gone if not monitored and appropriately analyzed. 
Automation should be applied to facilitate the analysis of these valuable data. Up to now it was not 
possible, due to high cost of equipment and human expert. 

The data-driven methods (OpEn and MD3) developed in this dissertation for the analysis and automatic 
diagnostics of failures are driven by the type and nature of data obtained during large turbomachinery 
measurements. Therefore, the methods proposed by the author in the doctoral dissertation are a 
compromise of the amount of available data and the accuracy/repeatability of the results. The 
dissertation is also a result of over 13 years of industrial practice combined with experience and expert 
knowledge in the field of signal processing, rotor dynamics and large turbomachinery. 

The proposed Operational Envelope (OpEn) method can help the maintenance staff in machine 
operation and overhaul planning. OpEn is a novelty detection method that can be applied to the data 
taken during the transient state of a machine. Together with the OpEn algorithm, the author proposed 
a set of parameters that can be used to diagnose the transient automatically. Furthermore, those 
parameters can be used with other process data for better and more in-depth diagnostic purposes. 

Two parameters called RMSE and "Max Out of OpEn" were shown as helpful in the automated 
detection of malfunctions. The other two may also be useful in the detection of other malfunctions. 
The OpEn 2D and OpEn 3D are  an automated fault detection method for transient states. The 2D case 
analyzes only a single feature from a single sensor. The 3D case conjuncts two vibration signal features, 
i.e., synchronous amplitude and its phase. Novelty detection method proposed in the dissertation can 
be used to detect faults over different speed spans, different amplitudes during transient states, and 
different sets of sensors. All these factors make this method very flexible and a powerful tool in 
predictive maintenance schemes for many power facilities. 

The Multidimensional Data Driven Decomposition (MD3) method proposed in this thesis is designed 
to identify machinery faults automatically. The author’s novel approach to decompose the transient 
into several predefined signals, enables the analysis of individual dynamics system parameters 
becomes easier to evaluate and assess even to unqualified personnel. The decomposed transient 
components are responsible for particular failure modes and, as a consequence, not only can different 
malfunctions be detected, but they can also be identified. These parameters can be used to track and 
trend the evolution of the system dynamic response parameters without the engagement of the 
diagnostic teams. The MD3 method can assess data during each transient in contrast to portable 
equipment measurement that can miss the unplanned and sudden shut-downs and start-ups. The 
cornerstone of the method is to decompose a transient into a set of base functions. Such functions 
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have a simple form (Gaussian, parabolic or constant bias). Each such function has a mechanical 
meaning and can be used to diagnose and analyze transient responses collected during coast-downs 
and start-ups. The innovative MD3 method proposed in the article can increase the safety of the device 
and reduce the costs of electricity generation.  

To tackle the problem of different content of transient data sets  a set of models is used to fit the data. 
The best scenario selection strategy uses the MSE criterion to evaluate the three available models of 
decomposed function sets. The selection strategy is the ablation study of the MD3 method. This allows 
the MD3 method additionally increase the reliability of the method and reduce the risk of overfitting 
the model. Finally, the best model, which scenario has the lowest value of the MSE index, is used for 
the technical state assessment.  

The Differential Evolution algorithm performance in terms of the time-to-transient fit ratio for all 
scenarios is investigated and presented. Input parameters of the DE for all scenarios are set up to: 

Number of evolutions: 750; 

Number of population: 40; 

Crossover rate: 0.7; 

Mutation rate: 0.8. 

Both sections, Validation of Model Data and Case Study, confirm that the method can accurately 
pinpoint the type and magnitude of a particular fault. Based on the case study, the parameter 
responsible for the imbalance response was the ap the coefficient in the decomposed function. In the 
real-object data case study, the MD3 method selected scenario three as the one with the best fitting 
capabilities for replicating the system's transient response. Often in Machine Learning research the 
ablation procedure is used to avoid the model overfitting. In our case, we achieve this goal by 
estimating parameters of several models of different complexity. Thus, we additionally increase the 
reliability of the method and reduce the risk of the model overfitting. Moreover, in the case study 
section, the authors provided a set of parameters to assess the technical condition of the rotor of a 
high-power generator. The parameters can be used as baseline parameters references to assess 
potential damage during transient states if the vibrations fell out of the acceptance region. 

The Multidimensional Data Driven Decomposition (MD3) is an extension of the Data Driven 
Decomposition Method (D3), previously proposed by the authors in [14]. The  multidimensional (multi-
sensor) approach produces much better results than the analysis performed only with a single sensor 
(D3). 

 

9.2. Author’s contribution 

During the process of the research, Author performed a list of tasks. Some were learning of new 
technologies (e.g. Python), the others were literature studies, to become familiar with the current state 
of the art. However, the majority of tasks were Author’s original contribution to the field of signal 
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processing, focused on Fault Detection and Identification. These tasks were: 
 Development and proposal of system architecture. 
 Development of data preprocessing methods. 
 Implementation the complete system in the Python environment. 
 Analysis of the 200MW,360MW, 470MW, 560MW type turbines technical documentation 

(gathering of relevant knowledge about the dynamics of these types of machines, and 
assumptions’ preparation for determining baseline measurements). 

 Preparation of the simplified 1DOF model of turbogenerator shaftline dynamics [62]. 
 Analysis of the correct dynamic state databases and selecting reference data for baseline 

evaluation. 
 Analysis of over 250 transient measurements databases. 
 Selecting and ranking transients according to the methodology criterion (correct for baseline 

measurements; correct for the study: i.e., data contains potential malfunctions information; 
unusable data: from data points not covered by the test, bad quality data). 

 Invention, creation, and development of the fault detection (OpEn) method.  
 Establishing the upper and lower values for the OpEn 2D case and the ellipsis axis values for the 

OpEn 3D case. 
 Establishing the severity parameters for the OpEn 2D and 3D cases. 
 Establishing the upper and lower values for the OpEn 2D case and the ellipsis axis values for the 

OpEn 3D case. 
 Invention, creation, and development of the fault identification (MD3) method.  
 Proposition of the decomposed functions algebraic representations (Gaussian, parabola, 

bias/const). 
 Defining the fitness functions for the Differential Evolution algorithm. 
 Estimation of parameters of decomposed functions (adopting Python’s DE algorithm code to 

find the decomposed function parameters). 
 Planning, preparation and execution of experiment on a test rig. 
 Validation of proposed methods on laboratory data. 
 Validation of proposed methods on real object data. 

 

Summing up, the Author developed complete set of methods, using data-driven approach, to 
automatically analyze the transient signals from large turbo sets. This allows to create the complete 
automated fault detection and identification system of large turbomachinery using Machine Learning 
approach. Such an achievement was the goal of this thesis, i.e. one can state that the goal of the 
dissertation was achieved.  

The results of this dissertation can be used in FDI systems in commercial and industrial power plants 
as an autonomous diagnostic system. It can also be an extension and support for the existing diagnostic 
system, adding an element of automation to the diagnostic processes of the most critical machines.  
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9.3. Further research 

During research, as in every scientific activity, several new challenges were identified. First, it was 
discovered that the method becomes unfeasible when more than 4÷6 transient responses are 
considered at once. The above findings led the authors to conclude that the MD3 analysis should be 
performed at particular rotor parts but not on the whole turbogenerator shaftline. Therefore, 
improving the method's performance and extending its multidimensionality capabilities should be the 
subject of further research.  

Due to the size and complexity of the problem and the availability of data from real turbo sets, the 
author could validate the entire system for the unbalanced state only. The OpEn detection method has 
proven successful for other types of failure. However, due to the above, the author could not propose 
an algebraic representation of the decomposed functions and find the values of their boundary 
parameters for the MD3 method. It will be another direction of the author's research. 

The author also plans to create methods that take into account other types of machine malfunctions. 
For example, the analysis of additional signal features, the overall vibration level can be used to detect 
sub-synchronous vibrations. These vibrations do not depend directly on the rotation of the turbine set, 
so they are not included in the harmonic analysis. However, the dominant value of the sub-
synchronous components combined with the low values of the synchronous components may indicate 
the development of oil whirl in the bearing. Due to very high amplitude levels, these incidences can 
damage the machine's components.  

During further research the author will research and validate the MD3 method for the rotor-to-stator 
rubs detection and assessment. He will also use a set of different signal features to detect other 
malfunctions. Additionally, the author plan to incorporate different DE strategies. It will involve 
different mutation and crossover rate definition proposed Ahmad et al. [63]. 
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