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Abstract 

Currently, the energy industry is at the time of a groundbreaking transformation which 

results in the dispersion of energy sources. The need for transformation is caused by the 

climate change observed in recent years, which entails the need to reduce CO2 emissions. 

The effect is an increase in electricity prices, prompting industry to minimize energy 

consumption. The author’s interests focus especially on the issues of energy installations in 

industrial applications. 

The author has put forward the thesis that “Comprehensive modeling of the industrial 

facilities like wastewater treatment plants can be used in optimization of control leading to 

minimization of electric energy consumption.” The author assumes that complex energy 

optimization algorithms can be implemented numerically in the installation of an industrial 

facility such as the above-mentioned sewage treatment plant (WWTP). Such a model is 

based on data from the existing Płaszów WWTP in Krakow. 

Modelling of wastewater treatment plants has been chosen as the main topic. Aeration has 

been analyzed, as it is the most energy-consuming part of the process. The available 

modifications to the control of the installation have been discussed. The target 

implementation compared the performance of the reactor model and blowers with the 

available measurement data. A Matlab/Simulink model has been prepared to enable energy 

optimization of the treatment plant facility. Thanks to this numerical image, it is possible to 

freely test various energy optimization algorithms without the need to interfere with the 

operation of the existing installation.  

The operation of virtual WWTP is validated. A proprietary uncertainty testing procedure in a 

complex strategy for controlling reactors and blowers has been prepared. Actions are 

performed to validate the parameters implemented in the model. Morris analysis has 

revealed the parameters of the most essential introduction process. The author has taken 

the state estimation to check the cleaning efficiency and identify the parameters with the 

Extended Kalman Filter. 

The main purpose of the work is to use the optimization algorithms in the control of 

wastewater treatment plants with the use of numerical models of WWTP. The author has 

decided on the practice of changing the switching time and downtime of the blowers’ in 

order to select the optimal operation of the station of six blowers in the installation. 

Subsequently, the energy optimization of the blowers has been thereby carried out in terms 

of reducing electricity consumption. 

One can acknowledge the dissertation's contribution to the current scientific resources. The 

work covers the implementation of a complex biological simulation of sewage reactors in 

Płaszów Sewage Treatment Plant in Kraków. Thanks to their use, it was possible to achieve 

the aim of the dissertation - to prove the possibility of using energy optimization algorithms 

in industrial installations of sewage treatment plants. To the best of author’s knowledge, this 

analysis is the first such approach for the Kraków sewage treatment plant. 
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Streszczenie 

Obecnie branża energetyczna jest w momencie przełomowej transformacji. Obserwowane w 

ostatnich latach zmiany klimatu, pociągają za sobą potrzebę redukcji emisji CO2, co skutkuje 

wzrostem cen energii elektrycznej. To z kolei skłania przemysł do minimalizacji zużycia 

energii. Zainteresowania autora koncentrują się na kwestiach działania instalacji 

energetycznych w zastosowaniach przemysłowych. 

Autor stawia następującą tezę: „Kompleksowe modelowanie obiektów przemysłowych takich 

jak oczyszczalnie ścieków może być wykorzystane w optymalizacji sterowania prowadzącej 

do minimalizacji zużycia energii”. Autor zakłada, że złożone algorytmy optymalizacji 

energetycznej mogą być zaimplementowane numerycznie w instalacji takiego obiektu 

przemysłowego, jakim jest wspomniana powyżej oczyszczalnia ścieków. Praca bazuje na 

danych pochodzących z Zakładu Oczyszczania Ścieków Płaszów w Krakowie. 

Głównym tematem pracy jest modelowanie oczyszczalni ścieków. Przeanalizowano proces 

napowietrzania ścieków, ponieważ jest to najbardziej energochłonna część procesu. 

Omówiono dostępne modyfikacje sterowania instalacją. W realizacji docelowej porównano 

wydajność modelu reaktora i dmuchaw z dostępnymi danymi pomiarowymi. Przygotowano 

model Matlab/Simulink, aby umożliwić optymalizację energetyczną oczyszczalni ścieków. 

Dzięki temu liczbowemu obrazowi możliwe jest swobodne testowanie różnych algorytmów 

optymalizacji energetycznej bez konieczności ingerencji w pracę istniejącej instalacji. 

Sprawdzono działanie wirtualnej oczyszczalni ścieków. Przygotowano autorską procedurę 

testowania niepewności w złożonej strategii sterowania reaktorami i dmuchawami. 

Wykonano działania, które badają parametry  zaimplementowane w modelu. Analiza 

Morrisa ujawniła parametry najistotniejsze w procesie oczyszczania ścieków. Autor 

zaimplementował estymację stanu w celu sprawdzenia wydajności oczyszczalni ścieków i 

identyfikacji parametrów za pomocą Rozszerzonego Filtru Kalmana (EKF). 

Głównym celem pracy jest wykorzystanie algorytmów optymalizacji w sterowaniu 

oczyszczalniami ścieków z wykorzystaniem modeli numerycznych oczyszczalni ścieków.  

Autor zdecydował się na praktykę polegającą na zmianie czasu przełączenia oraz przestoju 

dmuchaw w celu doboru optymalnej pracy stacji sześciu dmuchaw w instalacji. W dalszej 

kolejności w ten sposób przeprowadzono optymalizację energetyczną dmuchaw pod kątem 

redukcji zużycia elektryczności. 

Można znaleźć wkład rozprawy do aktualnych zasobów naukowych. Praca obejmuje 

wykonanie kompleksowej symulacji biologicznej reaktorów ściekowych w Oczyszczalni 

Ścieków Płaszów w Krakowie. Dzięki ich wykorzystaniu udało się zrealizować cel rozprawy - 

udowodnić możliwość stosowania algorytmów optymalizacji energetycznej w 

przemysłowych instalacjach oczyszczalni ścieków. Według obecnej najlepszej wiedzy taka 

analiza jest pierwszym takim podejściem dla krakowskiej oczyszczalni ścieków. 
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1 Aim and scope of the thesis 

1.1 Motivation and the aim of the dissertation 

MOTIVATION: We observe the continuous progress in various fields. For example, 

technological development leads to the modernization of production techniques, 

improvement of process management and efficiency of operation. Nowadays, a conscious 

environmental policy is particularly taken into account, which forces the industries to reduce 

CO2 emissions. Next decades are likely to witness a considerable emphasis on the reduction 

of electricity consumption. This impacts the industry that also needs to reduce the impact on 

the environment to preserve the nature for the future. It is not only economically justified, 

but it also reduces long-term costs of operation. This direction of development has inspired 

the author to choose this subject of research. 

OBJECTIVE: In the author’s forgoing research, it has been examined that wastewater 

treatment plants (WWTPs) are considerable energy consumers. Therefore, research of this 

industry is taken into consideration. Indeed, the main motivation of dissertation is to 

investigate the process of industrial wastewater treatment in terms of the reduction of 

electricity consumption. To carry out the study, a simulation environment that implements 

optimization control strategy in order to reduce energy consumption has been conducted. 

THE AIM OF WORK: The author explored tools for simulation of the wastewater treatment 

process and later exploited one in a numerical implementation. Such virtualization simplifies 

virtual prototyping of the operation of sewage treatment plants. The main aim of the work is 

to investigate the operation  of industrial wastewater treatment considering electricity and 

optimization of its consumption. It is carried out by simulations utilizing optimization 

algorithms and implementation of efficient control strategies. 

BACKGROUND: Doctoral dissertation is supported  by the dean's grants, the place of work is 

the AGH Center of Energy. The research conducted as part of this doctoral dissertation was 

carried out with financial support under the GEKON-EPOS program (contract number 

GEKON2/02/266926/3/2015)1.  

1.2 The context of research within the GEKON project 

GEKON project included the implementation of Integrated System for Energy Efficiency 

Integrated System EEIS (ZSEE Zintegrowany System Efektywności Energetycznej) as a 

superior system to the control system of the Płaszów Sewage Treatment Plant existing for 

several years. The system has been built so that IT and communication solutions are 

compatible with the standards adopted and used in the Płaszów Sewage Treatment Plant 

[1][2].The research is carried out as part of this project. The aim of the work is to carry out 

the model of the internal processes of the sewage treatment plant in terms of energy 

optimization[3]. 

 
1 More information can be found on websites  
http://krim.agh.edu.pl/projekty/epos/ 
https://www.astor.com.pl/klienci-astor/wdrozenia/10368-mpwik-krakow-zintegrowany-system-efektywnosci-
energetycznej-w-oczyszczalni-plaszow.html 

http://krim.agh.edu.pl/projekty/epos/
https://www.astor.com.pl/klienci-astor/wdrozenia/10368-mpwik-krakow-zintegrowany-system-efektywnosci-energetycznej-w-oczyszczalni-plaszow.html
https://www.astor.com.pl/klienci-astor/wdrozenia/10368-mpwik-krakow-zintegrowany-system-efektywnosci-energetycznej-w-oczyszczalni-plaszow.html
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1.3 Scope of the dissertation 

The selected area concerns environmental engineering, in particular technical aspects of the 

operation of sewage treatment plants. The industry is dictated by the need to analyze the 

energy consumption of the aeration process, which is the most energy-intensive purification 

process. The simulation framework presented in the thesis is based on algorithms describing 

the operation of wastewater treatment plants. The goal of work is to present the 

implementation aspects of algorithms used in the topic of reduction of industrial energy 

consumption using control optimization criteria. 

The work focuses on the analysis of optimization algorithms of the wastewater treatment 

process. A simulation model of biological reactors of the treatment plant has been prepared 

and measurements of the control system installed in the existing treatment plant have been 

used. The case study includes a treatment plant in Płaszów Sewage Treatment Plant in 

Kraków. The available modifications of the control of the municipal sewage treatment plant 

object are discussed. The purpose of the work is to develop optimal algorithms for 

controlling blowers taking into account the criterion of minimizing energy consumption. 

The above considerations discuss different approaches to energy optimization of industrial 

facilities. The dissertation focuses on algorithms and energy optimization, which aims to 

losslessly minimize the energy costs of the industrial process. In particular, the focus was on 

researching the energy aspects of facilities such as sewage treatment plants. 

The main assumption of the work is to prepare Matlab/Simulink model which 

unambiguously determines the air blow based on the demand for oxygen in the wastewater. 

A detailed numerical model of wastewater treatment plants that includes blowers is 

described. The simulation prepared in this way integrates the BSM1 model with the blower 

design.  

Subsequently, such a simulation constructed a numerical environment, which allows testing 

the energy efficiency of the oxygenation process without interfering in the existing 

treatment plant. Such simulation allows to model and validate the operation of wastewater 

treatment plants based on a numerical model – the modification in blower's control 

algorithm allows to validate electricity consumption during the aeration process.  
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1.4 Thesis and original contribution of the work 

 

The author follows the thesis that  

Comprehensive modeling of the industrial facilities like wastewater treatment 

plants can be used in optimization of control leading to minimization of electric 

energy consumption. 

Numerous activities have been described in order to implement the task.  

First, the BSM1 model has been thoroughly tested and its structure has been rebuilt so that 

the parameters currently correspond to those in the Płaszów sewage treatment plant. The 

BSM1 model has been integrated with blowers, thus creating a full system. This complex 

simulation of the sewage biological reactors in Płaszów WWTP is the first novelty presented 

in the study.  

Further, the author uses this model for simulation to reduce power consumption. In order to 

achieve this goal optimization algorithm running on BSM1 model of the WWTP is proposed. 

Despite the high uncertainty, the observations have a cognitive value. The author assumes 

that this approach meets the criteria of novelty. 

More specifically, the following issues are considered new: 

❖ Complete numerical model of Płaszów WWTP based on BSM1 in 

Matlab/Simulink; 

❖ Uncertainty treatment and identification procedure in complex blowers’ 

control strategy; 

❖ Optimization of WWTP’s control by modification of blowers’ delays.  
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1.5 Structure of the dissertation 

The work is divided into chapters in the order presented below. 

The second chapter introduces the reader to important economic and environmental 

background – the reduction of electricity consumption in industrial units. The introduction of 

the work includes an in-depth analysis of the current state of theoretical knowledge in the 

field of highly-efficient energy sources and effective methods of controlling receivers.  

In the third chapter, the author presents the idea of a municipal wastewater treatment plant 

simulation using BSM1 model based on ASM mathematical equations. The detailed 

description of the model is presented.  

In chapter four, the author shows the model of Płaszów WWTP as the object of research. 

The paragraph describes in detail the design assumptions and practical aspects considered in 

simulation based on the real object.  

Later in the fifth paragraph, the author discusses the practical implementation of BSM1 

model and aeration system in such municipal WWTP. The model has been used and the 

optimization is presented in the next paragraph.  

Chapters six and seven present the model validation based on two independent ideas. The 

former presents a numeric model of reactor characterized by model sensitivity. The latter 

discusses the Kalman filter for model validation.  

In paragraph eight, the simulations calculating the electricity demand, taking into 

consideration different parameters wastewater influent are presented. The discussed results 

are collected in tables. 

In paragraph nine, the author introduces us to the optimization of electric energy 

consumption utilizing numerical implementation of WWTP. They lead to assumptions that 

such model can be used in optimization of control leading to minimization of electric energy 

consumption.  

In paragraph ten, discussion of results paying special attention to minimization of electricity 

consumption is presented. 
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2 Electric energy consumption in large industrial facilities 

2.1 Energy aspects of industrial facilities 

According to the [4], the industry is responsible for 33% of global energy consumption and 

38% of CO2 emissions in the atmosphere. Such proportion of industrial consumption in the 

relation to the whole economy is presented in Fig. 1. According to the American Energy 

Information Administration (EIA), the industry can be divided into three groups: energy-

intensive production, non-energy-intensive production, and services (agriculture, 

construction) [5]. The energy balance depends, to a large extent, on the specifics of the 

country being studied. 

 
Fig. 1. The use of energy by end customers [4] 

Each process improvement in the industrial process can generate observable savings which 

contribute to measurable economic benefits in the long term. An example of an energy-

intensive industry is the metallurgical industry. For instance, the Chinese steel industry 

accounts for 15.2% of total national electric energy consumption, 14% of wastewater 

production and 6% of solid waste [6]. The share of only four energy-intensive branches of 

industry in Poland (chemical, non-ferrous metals, ferrous and paper) amounts to 

approximately 70% of the electricity consumed in the industry [7]. Nevertheless, there are 

industrial recipients in other manufacturing sectors. Ramirez and Patel analyzes non-energy 

intensive industries concerning its energy intensity, value-added, the value of production 

and energy cost [8]. The analysis points out the strong relationship between manufacturing 

output and energy consumption in the non-energy intensive sectors which certainly does not 

include metallurgy. Indisputably, slight improvement in the energy-consuming process 

generates significant savings.  

How can energy neutrality be implemented in practice in the case of large industrial 

facilities? In principle, two options to local electricity generation in industry can be 

distinguished: on-site local generation using internal resources– photovoltaic, waste biogas 

combustion, waste heat recovery; and energy saving through the on-site improvement of 

ongoing industrial process. 
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2.2 Wastewater treatment as energy-consuming processes 

What does this energetic aspect look like in the non-intensive industry like municipal 

services? In a report prepared by organization ESMAP around 4 percent of global electricity 

production is used for a municipal water supply and wastewater treatment (WWT). The high 

potential for electricity reduction is in the wastewater treatment industry [9].  

The issue of electric energy consumption in large industrial facilities such as sewage 

treatment plants can be considered through on-site generation and the implementation of 

optimization algorithms. Optimization algorithms are used to improve the operation of 

wastewater treatment plants. In [10], authors analyze the economic aspects of 

modernization of wastewater treatment plants to optimize electric energy consumption. 

Authors analyze the modernization of diffusers to more effective ones. In [11], energy 

consumption in selected sewage treatment plants in Japan has been presented. In [12], 

authors describe the energy consumption of the Slovak sewage treatment plant. In [13], 

authors propose enhancement of Polish WWTP through biogas implementation.  

The object of the Płaszów Sewage Treatment Plant in Kraków is a modern facility that meets 

most of the latest environmental and energy standards. More information about the 

Płaszów Sewage Treatment Plant in Kraków is presented in [14]. The municipal sewage 

treatment plant is an example of an installation serving a large area of the Kraków 

agglomeration. Therefore, due to the significant size of the utility its importance is 

noticeable – the facility is a significant consumer of electricity. The dissertation discusses 

control techniques to reduce electricity consumption taking Płaszów WWTP as a reference. 

They allow modernization of the process in a way that avoids costly investments so that 

society can benefit from cleaning costs. This issue will be discussed in the following 

paragraphs of this dissertation. In the following chapters of the work, two approaches to 

minimize the cost of electricity consumption are presented. At first, on-site generation is a 

way of increasing self-sufficiency. Later, optimization algorithms are discussed and the 

implementation possibilities are presented. The reduction of electric energy consumption is 

the effect of such optimization.  

2.3 On-site generation as a method of reducing energy consumption 

2.3.1 On-site local generation using internal resources 

With the increase of consumer awareness, manufacturers are paying more and more 

attention to the sources of electricity that power production processes. The generation of 

electricity using on-site local resources can be considered as an energy-efficient solution. 

This is because the plant does not have to purchase electricity from external suppliers. Such 

a solution increases the efficiency of the industrial process and reduces operating costs. 

However, the costs of implementation of a certain solution in a company are significant.  

Part of this attention focuses on the use of green electricity. Thanks to this attitude, the 

companies reduce the environmental impact of the production processes, which then 

reaches customers’ expectations. This attitude is positively perceived by customers to 
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increase the entrepreneur's profits. These processes are analyzed on the example of global 

corporations[15]. 

The largest share is from non-renewable energy sources, with the indication of renewable 

energy growing in industrial plants (Fig. 2). For example, according to [16], the company 

Facebook declares to cover 25% of electricity consumption by renewable energy. The biggest 

retailer in the US, Wal-Mart, invested in a wind farm in Red Bluff distribution center to 

supply 15 to 20% of the facility’s electricity needs at substantial cost savings over the next 15 

years. In report [17], authors suggest the distribution of electricity sources in industrial 

plants. 

 

Fig. 2. Industrial on-site generation of total electricity production share (left),  

 CHP- systems of on-site generated electricity share (middle),  

main energy sources of on-site generate electricity for 2017 (right) [17] 

2.3.2 Biogas combustion 

In research, the author discusses the sewage treatment plant installations. In their case, 

biogas from the decomposition of wastewater is the most valuable resource. The schematic 

of the process is presented below (Fig.3)[18]. 

 
Fig. 3. Schematic of waste utilization be electricity production [18] 

Anaerobic digestion is a primary method of utilization of products such as plant remains, 

agricultural products or organic waste. These are natural processes by which microorganisms 

break down biodegradable material in the absence of oxygen – the amount of organic 

matter is reduced by the extraction of gases. The process intensifies at elevated 

temperatures, thus external heat source is advantageous. The product of anaerobic 
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digestion is biogas which consists of methane (65%) and other non-flammable ingredients 

(carbon dioxide and water).Proper storage conditions allow one to produce biogas that 

releases heat (while being burned) which is utilized to generate energy [19]. 

The biogas potential of solid waste depends on the type of feedstock. During anaerobic 

digestion around 0.42m3 of biogas is obtained by processing 1kg of biodegradable solid [20]. 

When the content of biodegradable ingredients in waste is 50%, the yield of biogas is 

reduced to 0.21m3 per kg. Each 1m3 of sewage contains around 0.5kg of sludge [21]. The 

digestion of 1 kg of sewage sludge produces approximately 0.7m3 of biogas [22]. Biogas 

extracted during anaerobic digestion of both solid waste and sewage sludge can be used as a 

partial or complete fuel for combustion engines and as such is considered as a potential 

source of a renewable energy [23].  

The potential of anaerobic digestion to produce biogas is presented by Houdková[24] – 

authors present biogas production in a laboratory and next, comment on the potential of 

biogas utilization and biogas production for vehicles. Matuszewska et al. [25] evaluate the 

biological methane potential of various feedstock for the production of biogas to supply 

engines in agricultural tractors. Otherwise, biogas can feed generators producing electricity 

in stationary local power plants. Some researchers focus on such waste management – 

Željko et al. [26]propose energy recovery from waste by the creation of waste management 

centers in regions of Croatia. 

Waste digestate is utilized, incinerated or landfilled [22]. Pyrolysis of digestate is one of the 

utilization methods. Opatokun et al. [27] assess the energy potential of food waste energy 

harvesting system. The authors conclude that transitional energy base products (biogas and 

bio-oil) are generated through the energy harvesting system of food waste, while energy-

rich solid fuels can be produced through pyrolysis at 500°C. In [28], the author proposes 

approaches based on anaerobic digestion and pyrolysis of sewage management. 

In [29], authors analyze the potential of biogas utilization to reduce the electricity 

consumption in Dubrovnik city located in Croatia. In the paper, authors give examples of 

many low-temperature processes from which energy can be recovered in the city of 

Dubrovnik. 

The use of fuel cells fed with biogas obtained in a sewage treatment plant is a new direction 

of research. Particularly interesting is the SOFC Solid Oxide Fuel Cell technology elaborated 

in the DEMOSOFC project [30]. Especially cogeneration (combined heat and power) in 

industrial applications is exploited. 

Sometimes waste heat can be used to generate additional electricity [31]. The temperature 

scale even covers the range below 200°C. Such low-temperature recovery is possible thanks 

to the use of organic working fluids that change state in different conditions. In [32], issues 

concerning the usage of Organic Rankine Turbines (ORC)and steam process for small power 

generation are presented. 
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2.4 Selection of algorithms used in optimization of control 

2.4.1 Tasks scheduling to reduce electricity consumption 

Control algorithm of industrial utilities can be usually improved to a certain extent. Proper 

tasks scheduling could be one of the ways having a positive effect on performance of the 

controlled system. When using the task scheduling technique, a task should be selected, in 

such order that the total time of their implementation is the most advantageous. It is 

necessary to respect the availability of energy resources and temporary rigor of the 

feasibility of tasks [33]. 

We can distinguish two methods of making decisions about starting tasks: greedy scheduling 

algorithms and lazy scheduling algorithms. In the greedy approach, each task is carried out at 

the time of its submission as long as it has the highest priority. In the lazy task scheduling, 

the algorithm makes decisions during the application operation (on-line), the dispositions 

are supported by historical readings. Lazy algorithms enable deferment of the receiver's 

inclusion to match the consumption of resources to its planned availability. They are used in 

applications such as sensors with limited availability of resources (energy harvesting). 

Fig. 4 presents operation of tasks scheduling algorithms in both versions. 

 
Fig. 4. Operation of algorithms using (a) greedy (b) lazy tasks scheduling[34] 

The implementations of tasks scheduling in the energy industry have been published. 

Authors developed algorithms that predict the potential electricity availability and schedules 

the tasks according to prediction. The considered topic allows to improve the process of 

charging batteries installed in electric vehicles. In [35], authors consider two heuristic 

algorithms: the Earliest Start Time (EST) algorithm and the Earliest Finish Time (EFT) 

algorithm. EST tries to advance the start charging time to get customers in service as early as 

possible while EFT focuses on the possible finish charging time to get customers served as 

soon as possible. In [36],authors present the lazy algorithm for energy harvesting sensor 

nodes. T. Khatib presents the review of optimization systems used in inverters used in 

photovoltaic systems (PV) [37]. The publication presents that the sun is a highly unreliable 

power source. Thus, the sophisticated power management systems might be used. Zhang et. 

al. [38] propose Optimal Scheduling of Smart Homes Energy Consumption with Microgrid. 

Electricity consuming tasks are scheduled on the basis of different electricity tariffs, 

electricity task time window and forecasted renewable energy output. 

The author is faced with the question of whether there is a possibility of similar scheduling of 

energy-intensive processes in applications, in particular, like sewage treatment plants. 
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2.4.2 Mathematical programming in electricity sector 

Mathematical programming is a tool in which management operations are described by 

mathematical equations that can be used for a variety of purposes. In particular, it focuses 

on finding an extreme value of a certain objective function in which limits have been 

imposed on variables that affect the narrowing of the number of possible solutions 

described by the objective function 𝑧 = 𝑓(𝑥𝑗) = 𝑚𝑖𝑛/𝑚𝑎𝑥 with constraints: 𝑓(𝑥𝑗) ≤ 0;  𝑗 =

1, … , 𝑚. The task optimization problem, formulated in this way, can be solved by many 

methods using the available optimization environments (i.e. GAMS, AIMMS) and are used in 

the optimization of complex energy models [39].  

The application of mathematical programming in industry has been examined. Works 

[40]and [41] present mathematical programming in the optimization of industrial processes. 

Paper [42] discusses the use of mathematical programming in the design of the wastewater 

treatment process itself. In [40], the use of linear programming for optimizing the planning 

and production process has been discussed. A discrete-time scheduling model for 

continuous power-intensive process networks with various power contracts has been 

examined in [41]. 

Mathematical programming is a commonly used technique in the optimization of control to 

reduce electric energy consumption. This type of optimization has been implemented in the 

electric energy industry, as described in the literature below. Mathematical programming is 

a basis for operation of electricity markets in electricity distribution. In [43], authors discuss 

tools deploying this programming technique to optimize electricity distribution at the 

country level. In publication Business Models for Distributed Energy Resources: A Review and 

Empirical Analysis An MIT Energy Initiative Working Paper [44], the most popular 

applications of dispersed electricity sources have been debated. The document considers 

legal incentives to apply flexible solutions. In [45], authors scrutinize the basic applications of 

market coupling algorithms as tools for optimization in electricity trade at the international 

level. In particular, the author draws attention to the publication EUPHEMIA Public 

Description [46] that shows the use of the EUPHEMIA algorithm as a tool enabling further 

integration of distribution on the international market. The purpose of the paper is to 

discuss basic algorithms applied in practice, their theoretical assumptions and the scope of 

recent as well as future applications. The authors provide considerations about these 

algorithms in the context of optimization of electricity distribution in Poland. 

The task of mathematical programming is within the scope of this thesis. The author will look 

for the possibility of implementing this approach in the developed model of a sewage 

treatment plant. 
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(1) 

(3) 

2.4.3 Optimal control in electric energy distribution 

Optimal control is the process of determining control and state trajectories for a dynamic 

system over a period of time to minimize cost criterion. The problem is derived from 

mathematical optimization. Each problem of optimal control requires a mathematical 

formulation of the process quality indicator that is to be optimal. Optimization in real 

systems always takes place with constraints imposed on the process variables which cannot 

assume any values [47]. 

The concept of optimal control is described as continuous-time cost functional presented 

below [48] and [47]:  

𝐽 = 𝐸(𝑥(𝑡0), 𝑡0, 𝑥(𝑡𝑓), 𝑡𝑓) + ∫ 𝐹(𝑥(𝑡), 𝑢(𝑡), 𝑡)
𝑡𝑓

𝑡0
𝑑𝑡 

�̇�(𝑡) = 𝑓[𝑥(𝑡), 𝑢(𝑡), 𝑡] 

ℎ[𝑥(𝑡), 𝑢(𝑡), 𝑡] ≤ 0 

Where: 

J is a performance index is a measure of the quality of system behavior, 

E and F are referred to as the Mayer term and the Lagrangian respectively, 

x(t) is the state, u(t) is the control,  

h indicates the path constraints, 

t0 is the initial time, tf  is the terminal time. 

This type of optimization has been implemented in the electric energy industry, as described 

in the literature below. 

David M. Rosewater[49] investigates the optimal control in practical application. Analysis 

with respect to the models is used in optimal control of battery energy storage. The author 

demonstrates the significance of model selection in optimal control. In this case, the task 

presents the optimal control equation, the form of which is a simplification of the above. 

Luis I. Minchala-Avila et al. discuss some control techniques for optimal control in energy 

management and microgrids control [50]. The paper presents an overview of optimal control 

techniques used in energy management and microgrid control. Authors show optimal energy 

management systems (EMS) that can be used in management and control of microgrids. The 

paper debates numerous methodologies of optimal control. Authors discuss variable 

optimization methods for microgrid control: predictive optimization, mixed-integer linear 

programming (MILP) and non-classic optimization techniques. 

The task of mathematical programming is within the scope of interest. Later in the 

dissertation, there is a reference described in this optimization method. In particular, the 

optimization of the wastewater treatment in terms of selected process parameters in time 

domain interests the author.  

(2) 
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2.4.4 Brute force approach in optimization of electric energy consumption 

Brute force approach in optimization (exhaustive search) is a non-complex way of searching 

for an optimal solution. This is an approach to calculate all possible solutions and decide 

afterwards which one is the best. The method is feasible for case of model with a small 

dimensionality. Such a solution does not allow to search for a global minimum [51]. 

Grid search optimization, for example, is one way to search for values using brute force 

approach. The task is to a grid of parameter values at equal distances. The input parameters 

thus form a grid of equally spaced points. An exemplary implementation of a grid of this type 

is shown below (Fig. 5). 

 
Fig. 5. Example of grid search across different values of two parameters [52] 

This type of optimization has been implemented in the electric energy industry, as described 

in the literature below. 

Anna Glazunova, Elena Aksaeva in [53] present the implementation of brute-force in the 

flexibility of the electric power system (EPS). Authors come up with some deterministic 

methods developed to study the EPS flexibility. Later, authors usebrute-force optimization to 

determine the most effective combinations of possible loads in electric power system. 

In publication [54], Parlier Guillaume et al. propose solution of solving distribution feeder 

reconfiguration (DFR) problem. First, authors present the numeric implementation of DFR 

problem with constraints. The high number of solutions is reduced based on a graph theory 

pre-processing. Later, brute-force approach is used to select the most effective solution. 
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2.4.5 Blockchain to reduce the consumption of electricity 

Blockchain has received much attention in the last decade. This paragraph presents 

application research of the technology of distributed database registers based on a 

blockchain. The algorithm is applicable among other things as a block-based transaction 

register.  

A distributed transaction register is a base in which transactions are collected in blocks, 

which then, as a result of encryption algorithms, are associated with blocks containing a 

register of previous transactions (Fig.6) [55]. 

 
Fig. 6. Block structure of a typical blockchain [55] 

Each privileged node can independently download its copy of the database in nodes - 

servers. The use of a distributed database gives the possibility of independent registration of 

certain information. To decide which node has the correct data, consensus methods 

guaranteeing full data security have been developed. 

Two independent worlds - central and distributed databases are shown in the graphic below 

(Fig. 7). What are the benefits of spreading this data between different clients? The use of 

distributed registers allows you to secure your information on different servers without 

indicating the central one. Such a built-in register contains the whole history of transactions 

that have taken place so far. Thanks to this the base is safe to manipulate. 

 
Fig. 7. Comparison of a standard device network with blockchain application 
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As part of the developed topic, attention is paid to the possibility of using algorithms of 

distributed databases on the blockchain in the optimization of industrial processes, in 

particular energy optimization. For this purpose, it is decided to use the open project 

implementing the blockchain database – Hyperledger supported by Linux Foundation. This 

database is dedicated for use in distributed corporate networks - closed, non-public 

distributed registers that cover the area of one or several companies. Transaction 

registration in Hyperledger is possible thanks to the use of blockchains. The algorithm 

introduced in this database consists of two types of nodes - client and privileged. The 

privileged node can enter transactions into a distributed register. The customer, on the 

other hand, has the option of synchronizing the account with one of the privileged nodes. 

Available studies report the use of distributed databases based on the Hyperledger project in 

the energy sector. In [56], Zhang considers using a distributed IOE (internet of energy) 

system for electricity trading using the implementation of the Hyperledger environment. 

Ultimately, the operated power grid also supports batteries which task is to stabilize the 

system. Lombardi [57] discusses the distributed database application for intelligent IoT 

networks. An infrastructure architecture based on smart contracts has been presented 

which offers functionality for managing energy trading policy, conducting energy auctions on 

the network. The authors add that the solution is beneficial in particular in the settlement of 

prosumer installations. 

In the paper [58], the following applications of databases dispersed in the power industry 

are distinguished and discussed: 

❖ certificates of origin of electricity, 

❖ distributed registers in energy distribution management, 

❖ smart-contracts in prosumer accounting. 

Blockchain acts as a distributed database. The distribution of the register with the data for 

the settlement of this information is crucial in the case of bottom-up installations, such as 

energy clusters. The use of blockchain in the energy sector allows to improve the exchange 

of data between producers. Such action lets you save on electricity by reducing its 

consumption. 
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2.5 Approach used in further considerations 

The previous chapters outline two optimization approaches in order to optimize electricity 

management: on-site generation utilizing internal reaches and reduction by energy 

management.  

Firstly, it is possible to produce electricity on the premises of the plant. However, on-site 

energy production will not fully replace the consumption of an off-site power plant. 

Therefore, the author focuses on the possibilities of reducing electricity consumption in the 

municipal sewage treatment plant. 

The author has made a review of algorithms used in optimization of electric energy 

consumption in engineering applications. More specifically, the following methods have 

been described: 

1. Tasks scheduling, 

2. Mathematical programming, 

3. Optimal control, 

4. Grid search optimization (based on brute  force exhaustive search), 

5. Application of blockchain. 

Undoubtedly, the implementation of the above-mentioned control optimization algorithms 

could lead to minimization of electric energy consumption[59]. The control algorithms are 

tested on the model of an industrial facility. The author analyzes an industrial object that 

consumes significant amounts of electrical energy. Due to the significant energy cost of the 

biological process in the treatment of wastewater, the author considers this part as a place 

for potential energy savings. The author proves that there are possibilities to optimize the 

electricity consumption in such installation and discusses possible solutions in this matter. 

Author proposes novel task scheduling algorithm to reduce electricity consumption. More 

precisely, the lazy control policy that tries to run the blowers no later than necessary. The 

task is to control the activation of the blowers in such a way as to optimize the operating 

point of the device. Thanks to this solution, electricity consumption is reduced. 

Second, the author makes an attempt to implement an optimal control task based on 

mathematical programming. The presented optimization covers boundary conditions were 

selected on the basis of the author's knowledge, literature sources and previous 

simulations. The work includes a series of simulations for the determined influent 

parameters and  internal work settings of the sewage treatment plant. Due to the 

complexity of the topic solution is a form of grid search optimization, in other words, the 

brute force approach. The obtained results were compared in terms of electric energy 

consumption. Results are treated as a suboptimal solutions due to this method of 

determining the minimum. 

The author did not include blockchain algorithms in his doctoral dissertation. In the author's 

opinion, these algorithms have great potential for implementation in the power industry. 

However, not in industrial wastewater treatment plants. 
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3 Numerical representation of wastewater treatment process 

3.1 Wastewater treatment process – general description 

Wastewater Treatment Plant (WWTP) –a set of technological facilities as well as associated 

operations for removing contaminants contained in wastewater. The wastewater treatment 

plant also includes the treatment and disposal of sewage sludge (or other solid 

contaminants) arising during wastewater treatment. Fig. 8 presents two stages of classic 

wastewater treatment process – a mechanical and biological one. 

 
Fig. 8. Division into two basic processes during wastewater treatment  

Mechanical wastewater treatment - physical and mechanical processes that result in 

decanted sewage and sludge. Mechanical treatment involves removing mechanical 

impurities from sewage, i.e. solids and suspended solids, crushing, sedimentation, flotation, 

foaming, and centrifugation. These processes take place employing separating grids, screens, 

grease separators, sand traps, settling tanks and filters. 

Biological treatment of wastewater – processes with the use of aerobic and anaerobic 

microorganisms, as a result of which purified wastewater is generated, separated from the 

sludge and sludge containing biomass including pollutants. Such processes use aerobic and 

anaerobic microorganisms, as a result of which purified sewage is generated and sludge 

containing biomass including pollutants. Biological treatment processes may be used 

without or combined with mechanical treatment and with an increased degree of 

purification. The scheme of biological treatment is marked below. Recently, two types of 

bioreactors in WWTPs are installed [60], [61]:conventional activated sludge process 

bioreactors (AST) and membrane bioreactors (MBR) (Fig. 9).  

 
Fig. 9. Comparison of Activated Sludge Treatment system with Membrane Bioreactor (MBR) [60], [61] 
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Both types of sewage treatment plants are cited in the publications presented in the state of 

the art. In the implementation part, the author focuses on the treatment plant with 

activated sludge process bioreactors (Fig. 10). 

 
Fig. 10. Schematic of internal and external recirculation [62], [63] 

 

3.2 Key parameters to assess wastewater quality 

It is worth mentioning commonly used units describing sewage quality. They will be used in 

the further paragraphs of the dissertation. The key parameters describing the wastewater 

used in laboratories and the operation of the treatment plant are: 

❖ Biochemical Oxygen Demand (BOD),  

❖ Chemical Oxygen Demand (COD),  

❖ Total Suspended Solids (TSS), 

❖ Concentration of ammonia, 

❖ Concentration of phosphorous, 

❖ PH level. 

Biochemical Oxygen Demand (BOD) is a parameter corresponding consumption of oxygen 

for oxidation in the aerobic conditions of organic compounds contained in wastewater (or in 

water) with the participation of microorganisms. The total mineralization of organic 

compounds contained in water and sewage requires a long time – about 20 days. However, 

the most intense biodegradation processes take place within the first five days. Therefore, 

BOD5 has been adopted as an indicator of the load of water and sewage by organic 

substances. As the temperature has a great influence on the speed of chemical reactions, 

the indicator determination at 20oC without light has been accepted. Usually, a five-day BOD 

equals about 70% of the total BOD. 

Chemical Oxygen Demand (COD) is a parameter used similarly to BOD to assess the state of 

water or sewage, interpreted as the amount of oxygen needed to oxidize organic and 

inorganic compounds contained. Oxidation is carried out using strong oxidizing compounds 

such as potassium dichromate (K2Cr2O7), potassium periodate (KJO3) or potassium 

permanganate (KMnO4). 
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BOD is part of the COD, i.e. the COD value is always greater than the BOD value. Their 

proportion is an important indicator of the biodegradability of sewage. For example, 

hypothetically, if all substances would decompose naturally, i.e. BOD/COD=1, we are 

dealing with perfectly biodegradable sewage. To examine the COD and BOD values, long-

term and costly analysis of sewage samples (including much more indicators than BOD and 

COD) is carried out [64], [65].  

Total Suspended Solids (TSS) is the dry-weight of suspended particles which are not 

dissolved. TSS corresponds to mass concentration assessed by filtration using dedicated 

filters. 

Ammonia and phosphorous are biogenic particles that are needed for the development of 

living organisms. Their presence in nature increases the fertility of rivers and lakes, causing 

eutrophication. It results in the massive growth of algae which, dying, cause secondary water 

pollution. Therefore, these elements are also studied in the purification process. 

Total Kjeldahl Nitrogen (TKN) gives the results of the total organic nitrogen plus ammonia. 

TKN is usually requested to gain knowledge as to the total nitrogen content of the sample. 

Total Nitrogen is the parameter that additionally takes into consideration nitrate and nitrite. 

Kjeldahl analysis is the tool for the determination of ammonium and amine nitrogen. 

Total Nitrogen is the sum of nitrate-nitrogen and nitrite-nitrogen, ammonia-nitrogen and 

organically bonded nitrogen. Generally speaking, total Nitrogen concentration(NTOT) is the 

sum of nitrogen compoundslike: Total Kjeldahl Nitrogen (TKN); nitrate-nitrogen andnitrite-

nitrogen. 

In the dissertation, the author uses unit mg/l as a measure of the wastewater quality of 

these parameters. The literature also refers to the possibility of using the same g/m3 units to 

express pollutants content in wastewater [66]. 

In the book [63], authors present an example characteristics of parameter values in urban 

wastewater for selected cities in the country. The summarized values are presented in 

Tab. 1. 

Tab. 1. Example characteristics of parameter values in urban wastewater [63] 

Parameter Unit ŁÓDŹ STRYKÓW GŁÓWNO NAMYSŁOW 

PH - 7.4 – 7.9 7.2 – 7.5 7.2 – 7.4 7.2 

BOD5 (mg/l) 140 300 290 600 

COD  (mg/l) 140 300 290 600 

COD/BOD - 2.7 1.8 1.5 2.0 

TSS  (mg/l) 150 250 330 500 

AMMONIA  (mg N/l) 32.2 65.7 55.2 30 

PHOSPHOROUS  (mg P/l) 8.3 30.2 20.1 10 
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3.3 BSM1 model based on ASM1 

3.3.1 ASM1 as a numeric tool for modeling water treatment 

The Activated Sludge Models (ASM) are sued in biological processes occurring in treatment 

by the formulation of mathematical equations. The basic model, named ASM1, was 

published in 1987 and was later extended with new functionalities [67], [68]. The primary 

sewage characteristics such as the content of inorganic and organic matter and alkalinity are 

simulated. The effluent is characterized by state variables which represent concentrations of 

components in the wastewater, and dynamics observed during water cleaning is described 

by state equations. In particular, ASM1 includes 13 state variables[69], [70].  

One group of variables are biodegradable components of the Chemical Oxygen Demand 

(COD). These are: Readily biodegradable substrate SS; Slowly biodegradable substrate XS; 

Active heterotrophic biomass XB,H; Active autotrophic biomass XB,A. Non-biodegradable 

material characterized by variables unaffected by biological action in the system: SI and XI; 

Variable XP models inert particulate matter arising from biomass decay. These components 

are summarized in Tab.2. 

Tab. 2. Wastewater characterization for carbonaceous components [67] 

COD 

Biodegradable COD 
Soluble - SS 

Particulate - XS 

Non-Biodegradable COD 
Soluble - SI 

Particulate - XI and XP 

Active mass COD 
Heterotrophs - XB,H 

Autotrophs - XB,A 

 

Remaining state variables are the concentration of dissolved oxygen SO, the alkalinity level 

SALK, and 4 components of the Total Kjeldahl Nitrogen (TKN). The latter are: Nitrate and 

nitrite nitrogen SNO; Biodegradable organic nitrogen XND; Soluble biodegradable organic 

nitrogen SND; Volumetric concentration of free and saline ammonia in dilution SNH. The 

whole set of TKN components is shown in Tab. 3. 

Tab. 3. Wastewater characterization for nitrogenous components [67] 

TKN 

Free & Saline ammonia - SNH 

Organically bound N 

Soluble Organic N 
Nonbiodeg. NSNI 

Biodeg. NSND and XND 

Particulate organic N 

Nonbiodeg NXNI and XNP 

Active mass N - XNB 

Nitrate and Nitrite N - SNO 
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The treatment process itself is described by 8 processes reflecting natural transformations 

observed during sewage treatment. Tab. 4 presents all processes included in ASM1 model. 

State characteristics and processes are reciprocally correlated.  

Tab. 4. Processes in ASM numeric models[67] 

No Process 

1 Aerobic growth of heterotrophs 

2 Anoxic growth of heterotrophs 

3 Aerobic growth of autotrophs 

4 Decay of heterotrophs 

5 Decay of autotrophs 

6 Ammonification of soluble organic nitrogen 

7 Hydrolysis of entrapped organics 

8 Hydrolysis of entrapped organic nitrogen 

 

The processes are related to the model coefficients through a set of 5 stoichiometric and 14 

kinetic parameters [68]. Stoichiometric parameters describe the relationship between the 

components, while kinetic – rate-concentration dependence in the process. The relations are 

gathered in Petersen matrix for wastewater treatment (Tab. 5). 

Tab. 5. Petersen matrix for wastewater treatment (original, obtained from [68]) 
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(4) 

(5) 

(6) 

All bio-processes considered in ASM1 model are presented in the general overview 

presented below (Fig. 11). 

 

Fig. 11. General overview of ASM1 [71] 

The documentation of BSM1 model [57] limits effluent quality, as presented below (Tab. 6).  

Tab. 6. Wastewater characterization for nitrogenous components [67] 

 Variable Value 

Total nitrogen NTOT < 18 g N m-3 

Chemical oxygen demand CODTOT < 100 g COD m-3 

Effluent ammonia SNH < 4 g N m-3 

Total suspended solids TSS < 30 g SS m-3 

Biochemical oxygen demand BOD5 < 10 g BOD m-3 

 

Documentation of BSM1 model [67] proposes the following methods of calculating the 

following parameters. These formulas are used in research under the patronage of the 

institutions of the European Union [72]and in applications such as MASSFLOW [73]. 

CODTOTAL = XI + SI + SS + XS + XBH + XBA+XP 

TKN = SNH + SND +XND + iXB(XBH + XBA)+iXP(XNI + XNP) 

NTOT = SNO + TKN 

Assessed values of parameters are according to library: iXB = 0.08; iXP = 0.06; fP = 0.08.  
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ASM1 model presented above has been developed to more extended versions. Activated 

Sludge Model no. 2 (ASM2) include nitrogen removal and biological phosphorus removal. In 

ASM2d denitrifying PAOs are added. In 1998 ASM3 was published – included internal storage 

compounds that have an important role in the metabolism of the organisms [68]. Anaerobic 

Digestion Model ADM1 is designed to model the dynamic of anaerobic digestion [74]. 

3.3.2 Development of the BSM models based on ASM 

The ASM1 as a numeric simulation tool is commonly implemented in the Benchmark 

Simulation Model (BSM). BSM is a numerical framework that describes the entire 

wastewater treatment process of a WWTP. BSM1 is the first version of BSM model. Further 

modifications are BSM1_LT, ADM1, and BSM2 [75], [76] and [77]. 

The first version of numerated BSM1 has been developed by a research team at the 

University of Lund which has been released as a Matlab/Simulink implementation[78]. That 

simulation comprises activated sludge reactor divided into aerobic and anoxic sections. 

Secondary settlers follow the reactor. An independent version of such a model has been 

developed.BSM1_LT model is used in long term simulations [79]. 

BSM2 is a second developed simulation of BSM1 layout. It includes BSM1 for the biological 

treatment of the wastewater and covers a wider range of wastewater treatment – the 

sludge treatment. In such a model a primary clarifier, a thickener, an anaerobic digester, a 

thickener of secondary sludge and a dewatering unit have been added. The view of the 

entire cleaning process with the BSM1 model range selected is shown in the graphic below 

(Fig. 12). 

 
Fig. 12. Range of BSM2 model [80]  
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3.3.3 Demonstration of BSM1 model 

The documentation [71] presents the BSM1 model including the simple reference layout 

(Fig. 13). The benchmark plant is composed of a sludge reactor consisting five compartments 

activated with two anoxic tanks followed by three aerobic tanks. In first two  (anoxic ones) 

biological denitrification reactions take place where bacteria change nitrate into nitrogen. In 

the aerated sections (aerobic) nitrification takes place. It is the reaction in which the bacteria 

oxidize ammonium to nitrate. The activated sludge reactor is followed by a clarifier 

(secondary settler) in that water and activated sludge is separated. Water that is the result 

of treatment is directed outside of the plant. As it contains much less waste than influent to 

WWTP the environmental impact is reduced to a minimum. To maintain the process 

activated sludge is recirculated inside the reactor (internal recycle) and from settler to 

reactor(external recycle), and mixed with influent. The excess waste sludge is removed. 

 

Fig. 13. General overview of the BSM1 water treatment reactor [71] 

The demonstration layout model is equipped with oxygen and ammonia sensors that are 

used in aeration control through a dedicated algorithm. These sensors work on the principle 

of feedback with the use of PI regulators (as indicated in the diagram). The dynamic behavior 

of sensors and actuators is considered through additional measurement noise.  

A basic control strategy is proposed to test the benchmark: it aims to control the dissolved 

oxygen level in the final compartment of the reactor by manipulation of the oxygen transfer 

coefficient and to control the nitrate level in the last anoxic tank by the manipulation of the 

internal recycle flow rate. It is crucial to mention that the KLa (oxygen transfer coefficient) is 

calculated on the basis of the process and used to simulate the aeration process. This aspect 

will be discussed in consecutive paragraphs. 
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BSM1 is imaged in a numeric block diagram implemented in the Matlab/Simulink 

environment (Fig. 14). The files can be downloaded from the website2. The base schematic 

of BSM1 model is available in MATLAB Simulink, thus the author uses this application in this 

dissertation. Model designs the activated sludge WWTP that operates for an average 

influent dry-weather flow rate of 18.446 m3/day and an average biodegradable COD in the 

influent of 300 g/m3. 

 
Fig. 14. The model of reference reactor in BSM1 model 

A list of state variables used in BSM1, with their definition, appropriate notation and initial 

values of influent are presented in Tab.7. 

Tab. 7. List of ASM1 variables[71] 

No Parameter Abbreviation Constant influent value set in 
BSM1 

1 Soluble inert organic matter SI 30 

2 Soluble inert organic matter SS 69.5 

3 Particulate inert organic matter XI 51.2 

4 Slowly biodegradable substrate XS 202.32 

5 Active heterotrophic biomass XBH 28.17 

6 Active autotrophic biomass XBA 0 

7 Particulate products arising from biomass decay XP 0 

8 Oxygen SO 0 

9 Nitrate and nitrite nitrogen SNO 0 

10 NH4
++NH3 nitrogen  SNH 31.56 

11 Soluble biodegradable organic nitrogen SND 6.95 

12 Particulate biodegradable organic nitrogen XND 10.59 

13 Alkalinity SALK 7 

14 Total Suspended Solids TSS 211.2675 

15 Flow rate Q  18 446 

 

 
2Downloaded from http://www.iea.lth.se after contact with Ulf Jeppson (ulf.jeppsson@iea.lth.se)  

http://www.iea.lth.se/
mailto:ulf.jeppsson@iea.lth.se
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In publication[81], Ulf Jeppson, who is the co-author of BSM algorithms, describes 

modifications in basic concepts implemented in BSM1, BSM1_LT, andBSM2. 

Along with the original model of the sewage treatment plant, exemplary seven-day runs 

describing the parameters of flowing sewage have been provided 3.  

We can mention among them the following flowing sewage routes: 

❖ CONSTANTINFLUENT –corresponds to a non-physical situation where the 

parameters of the wastewater do not change (assumption of fixed values are as 

in Tab. 7) (Fig. 15), 

❖ DRYINFLUENT –daily fluctuations resulting from the time of day  (Fig. 16), 

❖ STORMINFLUENT – daily fluctuations resulting from the time of day  with a single-

stream inflow caused by a storm (Fig. 17), 

❖ WETINFLUENT –daily fluctuations resulting from the time of day  with a two day 

period corresponding to the rainy weather (Fig. 18). 

 
Fig. 15. Graph showing the values of wastewater parameters in the BSM1 model 

 

 

 
3 Downloaded from http://iwa-mia.org/benchmarking/#BSM1  

http://iwa-mia.org/benchmarking/#BSM1
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Fig. 16. Graph showing the values of wastewater parameters affected by the dry weather in the BSM1 model 

 
Fig. 17. Graph showing the values of wastewater parameters affected by the stormy weather in the BSM1 model 

weekend 

weekend 

storms  

storms  
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Fig. 18. Graph showing the values of wastewater parameters affected by the dry weather in the BSM1 model 

  

rain 

rain 
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3.3.4 Blowers control to maintain the treatment process 

The issue of oxygenation directly arises from the operation of the reactor. Aeration control 

sustains treatment processes to achieve expected effluent quality regardless of the influent 

parameters (Fig. 19). It is worth emphasizing that aeration systems usually generate up to 

60% of the costs of the total electric energy consumption during wastewater treatment [10]. 

Due to the significant consumption, reactors’ aeration is a crucial part of WWTPs’ operating 

control. 

 

 

 

 

 

 

 

Fig. 19. Step by step schematic of the simulation presented in the dissertation 

In previous paragraphs, the BSM1 numeric model of reactors is presented. It implements 

ASM equations in its operation. The main process objective is to reduce wastewater 

measured by TKN and BOD oxygen with the use of air delivered by blowers. The plant 

control system is critical to achieving the most efficient sequencing of the aeration blowers. 

The literature [82]proposes a variety of blower control techniques: 

❖ running the smallest number of machines (blower that does not rotate and 

consumes no energy), 

❖ running the largest number of machines in your most efficient range, 

❖ avoiding idling and deflating, 

❖ determining the sequence of operations with regard to service life and 

maintenance intervals. 

The following types of blowers are presented [82]: 

❖ rotary lobe blower, 

❖ centrifugal or turbo blower, 

❖ rotary screw compressor. 
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(9) 

(8) 

(7) 

3.3.5 Oxygenation transfer implemented originally in BSM1 

Numeric solutions implemented in the original BSM1 model base on the concept of KLa 

parameter as the transfer coefficient [78]. A simple reference layout contains the algorithm 

that is implemented in BSM1. The equation takes into consideration a reactor containing 5 

aerated sections.  

The activated sludge process consists of aerated zones. The dissolved oxygen (DO) mass 

balance [71]:  

𝑑𝑦(𝑡)

𝑑𝑡
=

𝑄(𝑡)

𝑉
(𝑦𝑖𝑛(𝑡) − 𝑞(𝑡)) + 𝐾𝐿𝑎(𝑢(𝑡))(𝑐𝑠𝑎𝑡 − 𝑐) − 𝑅(𝑡) 

Where: 

y(t) – dissolved oxygen in the zone 

KLa – volumetric mass transfer coefficient 

csat – dissolved oxygen saturation coefficient 

c – dissolved oxygen concentration 

In each section of the reactor, the oxygen concentration (C) depends on the value of the 

previous time step and fresh inflow by the following formula [57]: 

𝑑𝐶

𝑑𝑡
= (𝐾𝐿𝑎) ∙ (𝑐𝑠𝑎𝑡 − 𝑐) 

Maximal value of KLa is 240. In controlled sections, the KLa parameter ranges from 0 to this 

value. According to the document, to calculate the air costs aeration system must take into 

consideration plant peculiarities (a type of diffusers, bubble size, depth, etc.). 

Aeration energy is presented in the equation below. AE is proportional to time integral of 

the particular volume of section and the value of the KLa coefficient designated for the 

section. Unfortunately, it applies only to the Degremont DP230 porous disc diffusers at an 

immersion depth of 4m. 

𝐴𝐸 =
𝑆0

𝑠𝑎𝑡

𝑇 ∙ 1.8 ∙ 1000
∫ ∑ 𝑉𝑖 ∙ 𝐾𝐿𝑎𝑖(𝑡)𝑑𝑡

5

𝑖=1

14𝑑𝑎𝑦𝑠

7𝑑𝑎𝑦𝑠

 

As it is presented above, BSM1 is used for simulation biological treatment. Described 

aeration system is limited to diffusors described in the documentation. The question how 

aeration in WWTPs in general operates remains unanswered. 
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3.4 Airflow modeling in reactors 

3.4.1 Theoretical introduction to problem of oxygen transfer into 

wastewater 

This paragraph presents the typical parameters used to describe the oxidation aspect of 

wastewater. The values can be extracted during the simulation to parameterize the aeration 

process and then, be used during the energy optimization of the model[83], [84], [85], [86]. 

The parameters are presented in two versions – both in undefined and standard conditions. 

Since 1982 standard conditions define temperature 20oC (68oF) and pressure 100 kPa (1 bar) 

[87], [88].Standard conditions for temperature and pressure are standard sets of conditions 

for experimental measurements to be established to allow comparisons to be made 

between different sets of data. 

Oxygen Mass Transfer Coefficient (KLa), used in wastewater treatment, presents to rate 

with oxygen that is transferred to the activated sludge by the aerating system. KLa is a non-

linear function of the airflow rate. In BSM1, the KLa allows the description of mass transfer 

between gas and liquid in two-phase systems and informs about the degree of mass transfer 

at the interface between the solid and gaseous phase for a unit of volume and allows to 

assess how efficiently this process is carried out. 

Oxygen Transfer Rate (OTR), Standard Oxygen Transfer Rate (SOTR). OTR is the oxygen 

transfer rate in clean water in non-standard conditions. The OTR is the actual mass of 

oxygen transferred per time unit and is the key process variable for design WWTPs. Standard 

oxygen transfer rate SOTR (kg/d) presents OTR in standard conditions – clean water. 

Oxygen Transfer Efficiency (OTE), Standard Oxygen Transfer Efficiency (SOTE). Oxygen 

transfer efficiency presents how much of the injected oxygen becomes dissolved in water. 

The parameter has expressed a percentage of the oxygen mass flow pushed through 

blowers. The value strongly depends on the depth and type of diffusers. The default value of 

Standard Oxygen Transfer Efficiency 0.3 (as a fraction) represents typical estimate of the 

efficiency for fine bubble diffusers. 

Aeration Efficiency (AE), Standard Aeration Efficiency (SAE). As noted earlier, aeration is an 

electricity consuming process, thus usually 60% or more of the total energy cost is spent on 

blowers. The most important efficiency parameter is Aeration Efficiency (AE) – the mass of 

oxygen transferred per unit of power input. The value is equal to the oxygen transfer rate 

(OTR) divided by the power input (P). SAE (kgO2/kWh) is an oxygen transfer per power 

input utilized in the blower. 
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(10) 

The foundation of airflow in wastewater is the Whitman two-film theory. To imply the two-

film theory to WWTP, it is assumed that the main mass transfer resistance is in the liquid 

film in the bubbles. The phenomenon is described in the following equation that is based on 

the Whitman two-film theory. The theory assumes that the concentration gradients in the 

gas and particle phases are confined in the “films” adjacent to the interface. The mass-

transfer coefficients depends on the gas- and particle-side film thicknesses (δg and δp) 

(Fig. 20). The overall gas-side mass-transfer coefficient KL is characteristic of the process 

environment [89]. 

 
Fig. 20. The graphic representation of two-layer theory [89] 

The process of oxygen permeation on the phase borders is described by Whitman’s two-film 

theory [73].  

𝑑𝑊

𝑑𝑡
= 𝐾𝐿 ∙ 𝐴𝑡(𝑐𝑠𝑎𝑡 − 𝑐) 

Where: 

W – the weight of solute (g), 

𝑑𝑊

𝑑𝑡
 – rate of oxygen absorption (g/day), 

𝐾𝐿 – overall mass transfer coefficient (1/m3/day), 

csat  – dissolved oxygen saturation coefficient, 

c  – dissolved oxygen concentration, 

𝐴𝑐𝑡 – the total interfacial area, 

This parameter KL takes possible loss into consideration due to clogging, aging and 

deterioration. And a characterizes liquor transfer characteristics in the phase border[90]. 

Since it is difficult to measure the KL and a value separately, they are combined into one 

parameter. The two coefficients make the KLa strongly dependent on the process 

conditions. 
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The KLa parameter needs the laboratory tests of oxygen migration through the air-liquid 

surface. In publication [88], the author proposes a laboratory setup to define the values of 

this parameter. The publication develops an alternative model which includes more 

parameters than the standard ASCE method [91]. Fändriks [88] comes up with some 

alternative methods for evaluation of oxygen transfer performance in clean water. In this 

publication, five more complex equations are juxtaposed. 

 

3.4.2 Numerical representation of aeration in WWTPs – state of the art 

As mentioned in paragraph 3.4, the aeration system includes diffusers that blow the air into 

the sewage content. The numeric model of oxygen, transfer from the air in the bubbles to 

sewage is expected. The basic issue in the simulation of WWTP is the connection between 

bioreactors and blowers (Fig. 21). That issue is touched in several publications. 

 
Fig. 21. Schematic of blowing system in Płaszów WWTP 

Collector is a pipe connecting blowers with reactors. Authors in [77]–[80] propose the idea 

to model the collector as an electronic circuit (Fig. 22). Blowers are treated as a flow source, 

where the relationship between electric energy consumption and flow is determined from 

the characteristics of the devices. The collector is replaced by a condenser charged by the air 

stream generated by the blowers and discharged by the reactors. When the collector pipe is 

treated as a capacitance with negligible flow resistance, simple linear equation is established 

[77].  

? 
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(11) 

(12) 

 
Fig. 22. The electrical analogy to collector pipeline [92] 

 

The model can be expressed with the following equation: 

𝑑𝑝𝑐

𝑑𝑡
=

1

𝐶𝑐
(𝑄𝑏 − 𝑄𝑐) 

𝐶𝑐 =
𝑉𝑐

𝑝𝑐
 

Where: 

● 𝐶𝑐 – collector fluid-flow capacitance,  

● 𝑄𝑐 – collector flow,  

● 𝑉𝑐 – collector volume,  

● 𝑝𝑐 – collector pressure. 

Such an idea is discussed to simulate the dynamics of collectors in the presented model. In 

[93], authors propose a centralized nonlinear model predictive controller of dissolved 

oxygen tracking and aeration system control. The research is based on WWTP in 

Nowy Dwór Gdański. In [94], authors analyze that schematic in WWTP located in Swarzewo, 

Poland. In [95], the author implements such an idea in Mątowskie Pastwiska WWTP located 

in Northern Poland. 

Different authors around the world have also raised this issue. Casey [96] presents the 

diffused aerated systems and analyses the equations that can be used in the modeling of 

oxygen diffusion. The document [97] presents the theory of diffusion used in the 

construction of diffusers that are produced by OTT. In publication [98], the direct relation 

KLa-airflow is presented, as shown in the following figure below(Fig. 23). 
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Fig. 23. The plot describing KLa-airflow relation [98] 

In the thesis [61], the author models an aeration system that includes air distribution. The 

equation is presented below (Fig. 24). In [99], Arnell presents case studies of three full-scale 

WWTPs.The authors propose this equation relaying the relation between KLa and airflow. 

 

Fig. 24. The SOTE plots at actual submersion depths and diffusor densities presented in three references WWTPs [99] 

Authors in [85] review the control of continuous aeration systems in municipal wastewater 

treatment plants. The review is supplemented with a summary of comparisons between 

control strategies evaluated in full-scale, pilot-scale and simulations. The figure presented 

below was published (Fig. 25). 
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Fig. 25. Stages presenting how oxygenation affects wastewater treatment in reactors[99] 

In [100], the aeration cost has been calculated based on the Oxygen Uptake Rate (OUR) 

model. Mathematic models are applied to simulate the transient OUR and show the impact 

of varying load on OTE and aeration cost. 

Finally, Zhu [101] evaluates the control strategy of ASM1 model for reduction of electricity 

consumption. 
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(13) 

(14) 

(16) 

(15) 

3.4.3 Determination of airflow used in the dissertation 

In Sec. 3.5.1 of dissertation, the authors presented parameters SOTE and SOTR describing 

the aeration process in wastewater in standard conditions. In engineering, the OTR factor is 

used to describe the flow of oxygen between the phases [83]. Oxygen Transfer Rate at field 

conditions is expressed with the following equation.  

𝑂𝑇𝑅𝑇𝑂𝑇𝐴𝐿 = 𝐾𝐿𝑎 ∙ (𝑐𝑠𝑎𝑡 − 𝑐) ∙ 𝑉 

Where: 

OTR – oxygen transfer rate (mmol l-1h-1), 

𝐾𝐿𝑎 – volumetric mass transfer coefficient (1/m3), 

V – volume of wastewater in the reactors’ section, 

𝑐𝑠𝑎𝑡 – saturation value of the water or wastewater. 

In [86], he presents the estimation of airflow demand based in water using desorption and 

absorption methods. Standard conditions (20oC and 1 atm) in clean water airflow is 

calculated utilizing presented equations. The author proposes the equation: 

𝑆𝑂𝑇𝐸 =
𝑆𝑂𝑇𝑅

𝑊𝑂2
=

𝑆𝑂𝑇𝑅

0.2765 𝑄𝑆
 

Where: 

WO2 (kg/s) - the mass flow of oxygen in air stream, 

Qs - refers to air flow rate at standard condition.  

And after modification, the following relation is achieved: 

𝑄𝑆 =
𝑆𝑂𝑇𝑅

0.2765 ∙ 𝑆𝑂𝑇𝐸
 

According to the documentation of GPS-X [102] and [86], additional correction factors can be 

used to take into account the special correction factor that takes into consideration 

empirical research. 

𝐴𝐼𝑅𝐹𝐿𝑂𝑊 =
𝑂𝑇𝑅

𝑂𝑇𝐸 ∙ 𝐶𝐹1
 

Where: 

𝐶𝐹1 – conversion factor to account for the density, molecular weight and O2 mole 

fraction of the standard air (U.S. Standard = 277.6533841; European Standard = 

300.495893), 

OTE – standard oxygen transfer efficiency. 
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4 The case study of the Płaszów WWTP 

4.1 The general description of Płaszów Sewage Treatment Plant 

Validation of the numerical model has been carried out with the use of the existing Płaszów 

Sewage Treatment Plant in Kraków (Fig. 26).  

 
Fig. 26. Płaszów Sewage Treatment Plant in Kraków – reactor and settlers in the first plan 

The municipal WWTP in Płaszów is a modern facility that treats sewage from Kraków 

agglomeration located in the south of Poland (780,000 PE - population equivalent). The 

facility is located on the area of about 50 hectares. The object is a complex waste treatment 

system that consists of mechanical and biological cleaning. The object is equipped with a 

comprehensive control system with appropriate control, measurement and steering 

equipment. The sewage treatment plant has a capacity of 328,000 m³/day and average flow 

is 160,000 m3/day.  

The system responsible for complex wastewater treatment including mechanical and 

biological processes as well as the utilization and combustion of sludge allows reducing the 

impact of the treatment plant on the environment [103], [104]. Each of the above systems 

consists of numerous dispersed receivers, as described below [103], [105]. 

Mechanical treatment catches large wastewater fractions mechanically and through 

sedimentation. In Płaszów WWTP, this step includes rare grids, dense grates, latches, 1st, 

and 2nd-degree pumping stations, sand traps, pre-settling tanks and sand separator. 

The biological part of the treatment plant consists of 5 biological reactors supported by 10 

secondary clarifiers, a sewage recirculation and a blower station. The system additionally 

uses PIX station, methanol station, deactivation stations and control automatics[106]. 

The sedimentary part is responsible for sewage sludge management. Such installation 

consists of primary sludge thickeners, excess sludge operation tank, sludge thickening, and 
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dewatering system, sludge pre-pumping station, WKF sludge digestion chamber, sludge 

intermediate tank, pumping stations and sludge tank, chemical phosphorus removal station 

from the supernatant, sludge pumping stations after coagulation, biogas tanks, flares, 

desulphurization of biogas, overlaying water pumping stations, sewage pumping stations, 

pumping sludge and flotate pumping stations. 

The installation of thermal sludge utilization (STUO) in a fluidized bed consists of: storage 

and transport systems with sludge drying, thermal utilization node, heat recovery system, 

waste gas treatment system, process, and gas monitoring system waste, control system, 

solidification node. Such solidified wastes do not harm the natural environment. 

According to the report [14]and [1], wastewater treatment plant consumes a significant 

amount of electricity. The graphic below presents general decomposition of electricity 

consumption in a sewage treatment plant(Fig. 27). 

 

Fig. 27. Electricity consumption in Płaszów WWTP [14] and [1] 

As presented in figure, few crucial devices have the biggest impact on the total consumption 

of electricity. Those receivers are the independent stations that are controlled by 

independent control procedures. Those appliances are pumps and blowers that maintain the 

continuity of waste-water treatment. Based on the energetic study, the following groups of 

receivers have been distinguished: 

❖ pumping station I → 7pumps x 132 kW, 924kW in total), 

❖ pumping station II → 3 pumps x 160 kW (480kW in total), 

❖ blower station → 6 blowers x 400kW (2400kW in total). 
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4.2 Biological treatment in Płaszów WWTP in details 

As mentioned earlier, biological treatment is the basic stage of wastewater treatment. 

Płaszów WWTP consists of 5 biological reactors (Fig. 28). 

 
Fig. 28. Aerial photography ofthe Płaszów WWTP with reactor4 

In reactors, sewage continually recirculates in 10 sections both in aerobic and anaerobic 

environments. Each reactor cooperates with two secondary clarifiers in which activated 

sludge is collected for further utilization. The flow of wastewater in reactors is fully 

automated. The pumps enforce an appropriate circulation - both internal and external 

recirculation. The reactor’s layout presented below outlines the bioreactor with particular 

sections; additionally, the direction of effluent flow has been marked (Fig. 29). 

 

 
Fig. 29. Layout of the reactor in Płaszów WWTP – internal recirculation 

  

 
4https://wodociagi.Kraków.pl/o-firmie/infrastruktura/zaklad-oczyszczania-sciekow-Płaszów.html 

Reactor 

Settler 

https://wodociagi.krakow.pl/o-firmie/infrastruktura/zaklad-oczyszczania-sciekow-plaszow.html


51 
 

The wastewater flows through several internal sections sequentially as it flows through the 

reactor (Fig. 29 and Fig. 30). The pre-denitrification KPD chamber is to reduce the nitrates 

contained in the recirculation. The Redox probe indicatesthe degree of nitrate removal. KDF 

chamber is responsible for biological dephosphatation in aerobic conditions. Absolute 

oxygen conditions (presence of dissolved oxygen) and relative aerobic conditions (presence 

of nitrates) is used for signaling the Redox probe. The sludge concentration probe serves to 

determine the concentration of activated sludge in the chambers. After exceeding the preset 

sludge concentration, it switches off one recirculation pump. Denitrification chambers KDN1, 

KDN2, KDN3 are to reduce the total nitrogen by reducing nitrates. Exceptionally, 

denitrification chamber KDN3 has two functions. In the summer, it performs the analogous 

function of the KDN1 and KDN2 chambers, i.e. the removal of nitrates. In winters, KDN3 can 

act as an aeration chamber. In KDN3 nitrate-nitrogen (N - NO3), a sensor is installed. The 

nitrification chambers KN1, KN2, KN3 and KN4 are designed to reduce organic carbon, 

phosphate uptake and oxidation of nitrogen compounds to nitrates. Oxygen probes coupled 

with a control damper system with electric drives are used to control the appropriate 

amount of supplied oxygen. Deoxidation chamber KO is to remove dissolved oxygen 

contained in wastewater fed in the internal circulation stream to the KDN1 denitrification 

chamber.In the KO chamber, wastewater is divided into two independent streams. Volumes 

of sections implemented in Simulink model are listed in Tab. 8. 

 
Fig. 30. Layout of the reactor in Płaszów WWTP – sections naming 

 

Tab.8. Sections in Płaszów Sewage Treatment Plant. 

 Section Type Aeration Volume [m3] 

1 Predenitrification KDP Anoxic  1000 

2 Dephosphatation KDF Anaerobic  1700 

3 Denitrification KDN1 Anoxic  2600 

4 Denitrification KDN2 Anoxic  2600 

5 Denitrification KDN3 Anoxic / Aerobic x (sometimes) 2600 

6 Nitrification KN1 Aerobic X 2850 

7 Nitrification KN2 Aerobic X 2850 

8 Nitrification KN3 Aerobic X 2850 

9 Nitrification KN4 Aerobic X 3450 

10 Deaeration KO Deaeration  1000 
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In the KO chamber of the reactor, the wastewater is divided into two independent streams. 

Part of deoxidized material is returned inside the reactor, this process is called internal 

recirculation. The sediment debris is gathered in double secondary settling tanks that are 

integrated with each reactor. The process is called external recirculation. The second part is 

turned into two independent sedimentation tanks (secondary settler) in which a part of 

active biomass is recirculated and the other is removed. Secondary settler has a height of 

4.7m with diameter 44 m. 

Sewage parameters are measured during treatment by a SCADA control and monitoring 

system. Information about the ammonia and oxygen amount in the reactor has large 

importance on the treatment process control. 

The ammonia sensor measures the concentration of ammonium nitrogen using a gas-

sensitive electrode (GSE). The ammonium nitrogen present in the sample is converted into 

the ammonia gas form. Only NH3 gas passes through the gas-permeable electrode 

membrane and is detected. This method guarantees a wide measurement range and is less 

susceptible to interference [107]. 

Oxygen sensors are used for continuous measurement of oxygen dissolved in wastewater. 

Generally, there are two types of oxygen sensors. In the amperometric probe, there are 

reactions on the anode and cathode, and the reference electrode provides the right 

electrochemical potential. Optic sensor excites dissolved oxygen molecules according to the 

content of dissolved oxygen in the wastewater. 

The wastewater is aerated with compressed air using diaphragm diffusers. Due to the 

uneven distribution of oxygen demand, the number of diffusers varies in individual 

sections[97]. The diffusers installed in the reactors are Magnum 2000 tubular - diaphragm 

type [108]. 

The operator of Płaszów WWTP published the parameters of the sewage effluent in the 

treatment process in the treatment plant[106][109]. In the analyzed research, the author 

relies on the legal acts in force which regulate the permissible values of wastewater 

pollution indicators (91/271/EWG [110]). Such values are aggregated in Tab. 9.  

Tab. 9. Expected values of effluent parameters in mg/l 
(according to 91/271/EWG [111] and in Płaszów WWTP [106]) 

Parameter Expected values of effluent parameters in mg/l 

(according to 91/271/EWG [111]and in Płaszów WWTP [106]) 

BOD5  15 

COD 125 

Total suspended solids 35 

total nitrogen 10 

total phosphorus 1,0 
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4.3 Aeration system with reactors in Płaszów WWTP 

The photo below shows a blower station with an aeration system (Fig. 31). 

 
Fig. 31. Picture of reactors inPłaszów WWTP with air pipes in the first plan5 

Air is distributed to aeration tanks by diffusors that are controlled by throttling valves[112]. 

This demand airflow reduces the pressure pc in collectors, the value of which the blower 

must "catch up". Such pressure change is measured in blowers station. Blowers are operated 

by a PID controller. In blowers PID controller maintains the collector pressure (pc) at 

constant preset value. Nonetheless, some hysteresis is allowed. The schematic of the 

aeration controlsystem is presented below. The key step in the treatment is the oxygenation 

of the wastewater according to the diagram below (Fig. 32). 

 

Fig. 32. Control of aeration system 

 

 
5https://wodociagi.Kraków.pl/o-firmie/infrastruktura/zaklad-oczyszczania-sciekow-Płaszów.html 

Blower Station 

Air pipe 

Aerated reactor 

https://wodociagi.krakow.pl/o-firmie/infrastruktura/zaklad-oczyszczania-sciekow-plaszow.html
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In general, the blowers installed in each treatment plant are responsible for maintaining the 

proper air pressure flowing through the diffusers. In Płaszów WWTP, there are six blower 

sets installed in the blower station building. It is estimated that electricity consumption by 

blowers accounts for 15% of electric energy consumption in the whole treatment plant (6 

blowers of 400kW each have been installed)[1]. 

In details, the operation of the aeration system is to control the airflow by change of the 

pressure in the collector. The operation of the blowers is completely automated. The 

automation is supervised by a central controller cooperating with local controllers. The 

control process is two-step, as described below: 

1. First blowers are blowing air (Q) to a common collector. The target is to maintain 

constant pressure in the discharge manifold – it should be maintained at 0.845 bar 

above the atmospheric pressure. The task of the control algorithm is to maintain 

such constant pressure. Their operation is based on a PID controller that tries to 

maintain constant pressure (pc). To maintain pressure at a constant value, the 

controller operates blower blades inclination in 0-100% (the speed of the blower 

motor is constant). Supervision over automation is performed by characteristics that 

correlate efficiency, power and flow.  

2. The air compressed by blowers is delivered to reactors by throttling valves that 

control airflow. Each section in each reactor is controlled separately. The air blown 

into the reactor depends on the wastewater quality parameter. The flow sensor 

system that controls the operation of the dampers is responsible for controlling the 

flow of supplied air. The position of the damper depends on the oxygen demand of 

the individual reactor chambers. Compressed air is supplied to the aerated section in 

biological reactors through aeration diffusers controlled by oxygen probes installed in 

four KN chambers and the KDN3 chamber.  

The schematic of such process is presented below (Fig. 33). 

 
Fig. 33. Structure of the Płaszów WWTP aeration control [97] 
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To control blower a complex control algorithm is implemented. The number of running 

blowers is adjusted depending on the oxygen demand. The operation of the blowers is 

adjusted by switching on/off and the regulation of blades’ angle.  

The performance of each blower is a function of several operating conditions monitored on-

line. Its settings are selected so as to minimize electric energy consumption while 

maintaining the assumed pressure within the defined limits. More precisely, the controller 

adapts to possible changes in blower performance due to changing weather conditions or 

degradation problems. 

It should be noted that the exact implementation of the blower control system algorithm on 

the plant is unknown to the author. Therefore, approximate characteristics have been 

determined based on SCADA measurements in accordance with the assumption presented in 

Sec. 5.2.  
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4.4 Example SCADA measurements 

During the implementation of the GEKON project, measurement data has been obtained 

from the operation of the sewage treatment plant6. 

Measurements of oxygen and NH4
++NH3 nitrogen (ammonia) in the discussed period are 

presented below (Fig. 34).  

 
Fig. 34. Measurements of oxygen and NH4

++NH3 nitrogen 

  

 
6 Data obtained for two first quarters of 2017 
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Wastewater flow is measured at the outlet of the treatment plant. The measured quantity 

sewage effluent is presented below (Fig. 35). Such industrial facilities have negligible 

possibilities of storing sewage during treatment process. Therefore, a simplification is 

adopted - it is assumed that the measured quantity of the effluent is equal to the influent at 

the moment. This practice allows the available measurements to be taken as a quantitative 

characterization of the waste water influent. 

 
Fig. 35. Sewage influent 

The airflow and power consumption values are pictured below, summing up the values for 

all sections. It is worth noting that increasing the flow results in an increased consumption of 

electricity (Fig. 36). 

 
Fig. 36. Total airflow demand and total power consumption 
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Registered airflow in particular blowers is presented below (Fig. 37). 

 
Fig. 37. Airflow registered in particular blowers 
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Power consumption in particular blowers is presented below (Fig. 38). 

 
Fig. 38. Power consumption in particular blowers 

 

It is worth adding that the signals of the airflow in blowers and the corresponding demand 

for power are used to determine the characteristics of the device. 

The available SCADA measurements have been used to investigate the characteristics of the 

blowers. The following figures (Fig. 39) show the measured values of the blower power 

consumption. Therefore, they will be considered independently. These calculations will be 

used in the next chapter to determine the characteristics of individual blowers (Sec. 5). 
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Fig. 39. Measured blower power consumption for different airflow measures and blade angle values 

For next figure (Fig. 40) blowers’ characteristic curves are expressed as power consumption 

per airflow. 

 
Fig. 40. Blower characteristic curves expressed as power consumption per airflow unit 

 

 

Minimal utilization 

Maximal utilization 
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5 Numeric model of Płaszów WWTP 

5.1 BSM1 model of reactors in Płaszów WWTP 

5.1.1 General layout of the BSM1 model of Płaszów WWTP 

The BSM1 environment presented in the previous paragraph has been implemented in the 

case of the sewage treatment plant in Kraków. To perform the task, the Matlab/Simulink 

model structure has been adapted to the conditions of the Płaszów Sewage Treatment Plant 

(Fig. 41).  

 
Fig. 41. Model of reactors of wastewater treatment plants based on the BSM1 model  

To simulate the operation of the reactor, a numerical model has been made using BSM1 as 

foundation. The publicly available BSM1 package published on the website and in the [62] 

has been implemented for this purpose.  

While modifying the BSM1 model, the following changes have been adopted: 

❖ Sections names and volumes are obtained from Płaszów documentation; 

❖ Internal and external recirculation is unknown, thus values of recirculation in 

reactor are adopted in proportion to BSM1; 

❖ Secondary settlers stay as in the BSM1 model, except for the fact that in the 

Płaszów, there were settling tanks connected (the author entered depth as in 

Płaszów WWTP with a doubled surface area); 

❖ The carbon content in the process is not included (carbon combiner is 

deactivated); 

❖ The aeration applies to sections KN1, KN2, KN3, KN4. Oxygenation in KDN3 is off 

(KLa = 0); 

❖ Implementation of the Petersen equation in reactors (Tab. 5) remains unchanged. 
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The diagram below presents a single oxygenation section of a reactor (Fig. 42).  

 
Fig. 42. Simulink block diagram presenting the oxygenated section (KN1, KN2, KN3 or KN4) 

The oxygenation controller provided in the BSM1 model has been modified, as described 

below: 

❖ NO sensor has been replaced by an NH4
++NH3 nitrogen sensor by measuring this 

signal, characteristics describing sensors’ operation have not been changed (they 

are compatible with the BSM1 model documentation); 

❖ The oxygen sensor has not been changed; 

❖ The value of the expected oxygen model is based on the dependency below 

(Fig. 43). The Min and Max values for oxygen and ammonia are defined for each 

section separately; 

 
Fig. 43. Relationship between the amount of expected oxygen in the reactor section and  

the ammonia content in the wastewater 

❖ KLa is calculated based on the expected oxygen difference from the current one 

and determined similarly to the original BSM1 model based on the difference in 

actual oxygen content (O2means) and expected one (O2ref). 
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5.1.2 Quality supposition of the influent wastewater 

Sewage influent parameters are very difficult to measure experimentally and therefore, the 

plant is generally operated without knowing the parameters. To visualize the operation of 

the Płaszów Sewage Treatment Plant, a BSM1 simulation framework has been developed 

and its parameters adapted to the WWTP under investigation. The author collected available 

data to make such an estimation. 

It is assumed that at a given time the amount of outgoing sewage and amount of flowing 

sewage are the same. The author therefore assumes that sewage influent coincides with 

outfluent in the wastewater treatment plant in Płaszów. Hence, sewage flow is corrected by 

outfluent volume obtained from measures of SCADA in Płaszów WWTP – the inflow in the 

BSM1 model is scaled to the values observed in the outfluent of the treatment plant. Finally, 

Fig. 44 and Fig. 45show the sewage flow through the WWTP [109]. These values oscillate 

around 170,000 m3/day with daily volatility. It can be seen that the weather influences the 

volume of influent. 

In addition, authors use other measurements of the sewage treatment plant from the SCADA 

system presented in Sec. 4.4 (oxygen reading in the reactor for KDN3, KN1, KN2, KN3, KN4 

sections, air flow in the blowers, and estimates of electricity consumption by blowers). 

Nevertheless, the parameters of the influencing waste water are missing. 

Originally default data published within BSM1 are used as sewage parameters (published by 

IWA7). The wastewater parameters can be modelled with constant values of parameters 

(CONSTANTINFLUENT) or parameters changing characteristics daily (DRYIFNLEUNT, 

RAININFLUENT, STORMINFLUENT). Both constant and variable input parameters are 

analyzed in influent signals. These data are considered as input to the BSM1 model of the 

Płaszów Sewage Treatment Plant. It is worth mentioning that the parameters describing the 

wastewater will be investigated in the following paragraphs. Fig. 44 and Fig. 45 present 

exemplary time series of wastewater influent characterizing modelled Plaszów WWTP. 

To sum up, wastewater flowing into the treatment plant is described by a matrix called 

DATAINFLUENT. The structure of the matrix is characteristic for BSM1 model (Sec. 3.3.3), so 

it consists of the following columns: 

❖ Column 1 – Time vector – changing depending on the length of simulation, 

❖ Columns 2-15 – Wastewater parameters – characteristic for ASM1 model, 

❖ Column 16 – The sewage flow adjusted to the SCADA readings of the sewage 

treatment plant in Płaszów. 

  

 
7 Source http://iwa-mia.org/benchmarking/#BSM1  

http://iwa-mia.org/benchmarking/#BSM1
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First, the treatment plant model has adopted a flow consistent with SCADA data and fixed 

parameters described in the CONSTANTINFLUENT example (Fig. 44). 

 
Fig. 44. Sewage influent parameters based on CONSTANTINFLUENT used in the simulation 
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In the second case, the sewage treatment plant has been examined under the influence of 

sewage with variable daily parameters simulating dry conditions (Fig. 45).  

 
Fig. 45. Sewage influent parameters based on DRYINFLUENT used in the simulation 

The data is used in the course of their comparative analysis with simulations in the following 

chapters. 
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5.1.3 Simulation of reactors in Płaszów Sewage Treatment Plant 

Simulations have been performed on the BSM1 model (described in Sec. 3.3) using input 

signals based on SCADA data (as in Sec. 4.4). The view of the Matlab/Simulink program with 

the description of individual parts is shown below (Fig. 46). 

 

 
Fig. 46. Schematic of simulation with measurement points marked 

 

The model has been tested in terms of the quality of the outflowing sewage (Fig. 47). As it 

can be perceived, the variability of the effluent results from the variability in influencing 

sewage. A constant volume of secondary recirculation has been assumed. 

 
Fig. 47. Sewage flow during cleaning process in the reactors  

 

Sewage influent Internal 

recirculation 

Settler effluent to river 

External 

recirculation 

Settler effluent to reactor 
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The simulation results illustrate the plots below in which the author points out the 

registered amount of oxygen and ammonia contrasted with SCADA data obtained during the 

operation of the treatment plant. 

In the first case, the constant values of the CONSTANTINFLUENT input signal have been 

used. The resulting oxygen concentration is presented in Fig. 48. 

 
Fig. 48. Simulation results using CONSTAINFLUENT signal as input to WWTP 
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Further simulation using VARIABLEINFLUENT signals as input to WWTP has been performed. 

The Fig. 49 presents the plots of both simulations. 

 

Fig. 49. Simulation results using CONSTAINFLUENT and VARIABLEINFLUENT signals as input to WWTP –  

O2 and NH4
++NH3 nitrogen (ammonia) 

  



69 
 

The airflow demand calculated during the WWTP’s operation allowed to set the airflow 

demand (as described in Sec. 5.1.1). The results of simulation presents Fig. 50. 

 
Fig. 50. AIRFLOWDEMAND calculeted with use of CONSTAINFLUENT and VARIABLEINFLUENT signals  

as input to WWTP 

It can be noticed from the given graphics that the variable signal VARIABLEINFLUENT 

introduces more daily dynamics to the simulation than CONSTAINFLUENT. Moreover, these 

changes are in line with the measurements. Nevertheless, the wastewater flow, which is 

given on the basis of SCADA measurements, has a key influence on the characteristics of the 

treatment process. 
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Additionally, the treatment process has been explored in terms of the quality of the 

outgoing sewage. Fig. 51 shows how the value of the NH4
++NH3 parameter (SNH) changes 

during the treatment. A significant improvement in the effluent compared to the influencing 

value can be seen. The graphic below shows that the effluent reaches the expected degree 

of purity (less than 15 mg/l content).  

 
Fig. 51. NH4

++NH3 nitrogen in cleaning process 
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5.2 Aeration system and its integration with reactor 

5.2.1 Elaboration of blowers’ control algorithm 

The wastewater treatment plant reactor model presented above is based on well-

documented numerical models. The SCADA data, on the basis of which the characteristics of 

the blowers have been developed, are helpful in the implementation of the task. The model 

of operation of blowers has been acquired on the basis of data obtained during the 

implementation of the GEKON project. 

As described in the paragraph (Sec. 3.1), oxygenation control is a key consideration in the 

operation of wastewater treatment plants. More precisely, the condition of each section of 

each reactor forces the demand for aerated air at a certain value ("airflow demand"). To 

fulfill the need, blowers are adjusted to supply the necessary amount of air. The task is 

carried out in two stages: throttling valves regulate the airflow that is introduced into the 

wastewater and the pressure of the collectors is adjusted by adjustment of blowers’ means. 

Such a system of operation is also installed in the Płaszów sewage treatment plant (Fig. 52). 

 
Fig. 52. General scheme of the purification process presented in the dissertation 

The control algorithm of Płaszów Sewage Treatment Plant in Kraków is very complex and 

depends on many parameters. Unfortunately, some cannot be determined by measurement 

(as described in Sec. 4.3). Therefore, there is a need to make some simplifications. First, 

blower control based on pressure measurement in the reactor has been replaced by airflow. 

In this case, the blower controller adjusts the pitch of the blades based on the air demand 

and not on the basis of pressure as in the original. In operation of real WWTP blowers are 

controlled by a PID controller. In the case of the modeled blower system, PID control is 

replaced by a purely proportional controller. 

For such a simplified model of blowers, the author proposes a control strategy that controls 

blowers and their efficiency, giving priority to the most efficient ones. An idea of control is to 

implement scheduling policy that tries to run the blowers no later than necessary. The 

assumed solution allows the reduction of electricity by switching off the blower operating 

for a long time at "idle capacity." 
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(17, 18) 

(19, 20) 

The diagram below demonstrates the implementation of blowers’ controller in modelled 

WWTP (Fig. 53).The operation algorithm presented here is a proprietary approximation of 

the actual blower control of the sewage treatment plant. This example will be used later in 

the study.  

 
Fig. 53. The scheme of blowers’ controller 

The controller raises the blowers’ utilization (BLADEANGLE) by increasing blades’ angle for 

the longest operating blower as long as airflow in controller airflowPROVISION is lower than 

expected airflowDEMAND. Controller turns on next blower if the previously activate blowers 

are already working at 100% blade angle(sum(BLADEANGLE)>BACTIVE*100)for a certain 

amount of time (TMAX>TON_DELAY, TON_DELAY is a constant user defined parameter).However, 

it is limited by the maximum number of blowers that can be turned on (BACTIVE<4).When a 

new blower is to be started(BON),a controller chooses the first blower in the queue of 

waiting blowers ordered according to their efficiency (as described in Sec. 4.3).More 

formally, the rules of implementing the above dependencies are listed below: 

𝐵𝐿𝐴𝐷𝐸𝐴𝑁𝐺𝐿𝐸(𝑛) ↗ ⇔ (𝐴𝐼𝑅𝐹𝐿𝑂𝑊𝑃𝑅𝑂𝑉𝐼𝑆𝐼𝑂𝑁 < 𝐴𝐼𝑅𝐹𝐿𝑂𝑊𝐷𝐸𝑀𝐴𝑁𝐷) 

𝐵𝑂𝑁(𝑛) = 1 ⇔ (sum(𝐵𝐴.) > 𝐵𝐴𝐶𝑇𝐼𝑉𝐸 ∗ 100)⋀(𝑇𝑀𝐴𝑋 > 𝑇𝑂𝑁_𝐷𝐸𝐿𝐴𝑌)⋀ (𝐵𝐴𝐶𝑇𝐼𝑉𝐸 < 4) 

On the contrary, if airflowPROVISION is higher than airflowDEMAND, the controller decreases the 

blades’ angle (BLADEANGLE).A blower working at lower utilization is switched off for user 

defined TOFF_DELAY constant(TMIN>TOFF_DELAY) when the sum of the blowers’ utilization 

(BLADEANGLE)will not exceed the capacity of the blowers after turning off one blower 

(sum(BU.)<(BACTIVE-1)*100).Likewise, the minimum number of blowers turned on is a 

limitation (BACTIVE>1).The blower that is being stopped (BOFF)is the one currently operating 

for the longest time at lower utilization. The equations describing the rules: 

𝐵𝐿𝐴𝐷𝐸𝐴𝑁𝐺𝐿𝐸(𝑛) ↘ ⇔ (𝐴𝐼𝑅𝐹𝐿𝑂𝑊𝑃𝑅𝑂𝑉𝐼𝑆𝐼𝑂𝑁 > 𝐴𝐼𝑅𝐹𝐿𝑂𝑊𝐷𝐸𝑀𝐴𝑁𝐷) 

𝐵𝑂𝐹𝐹(𝑛) = 1 ⇔ (sum(𝐵𝐴.) < (𝐵𝐴𝐶𝑇𝐼𝑉𝐸 − 1) ∗ 100)⋀(𝑇𝑀𝐼𝑁 > 𝑇𝑂𝐹𝐹_𝐷𝐸𝐿𝐴𝑌)⋀(𝐵𝐴𝐶𝑇𝐼𝑉𝐸 > 1) 

The equations presented above are my implementation of tasks scheduling (Sec. 2.4.3).   
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5.2.2 Blowers’ characteristics 

In the section 4.4, the author presented available SCADA data used in simulations. The 

blower station contains 6 fixed-speed blowers.  

Available measurement data have been used to measure the efficiency of the blower. To 

estimate the efficiency of blowers available data are used –vectors of power of the blower in 

the relation to air flow. As presented in [113] and [114],  this is one of estimates describing 

blowers efficiency in engineering. Having these two values will allow the performance curve 

of the blower to be determined (Fig. 54). 

 
Fig. 54. Method to assess the blowers characteristic[113] 

On the basis of available SCADA measurements the plots presenting power consumption for 

different airflow and blade angle values are presented. For the last blower 6, the acquired 

data was scarce due to its rare usage. Thus, its characteristic has been assumed to be the 

same as that of the blower with most similar specifications (blower 3). The results of such 

simulation are presented in Fig. 55. 

 
Fig. 55. Measured blower power consumption for different airflow measures and blade angle values 

Minimal  

utilization 

Maximal 

utilization 
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The signals presented above, based on SCADA measurements, are tested. On the basis of 

these signals, for non-zero probes the linear regression has been calculated[115]. Later, the 

coefficient of determination R2 has been determined. Values close to 1 indicate the 

correctness of the fit for performed linear regression[116].Power consumption and airflow 

are related one to another. The results are presented in the following table (Tab. 10).The 

linearised characteristics are presented below (Fig. 56).  

Tab. 10. Coefficients used in the simulations  

Blower Standard deviation linear regression Coefficient of determination 

Airflow [m3/h] Power cons.  
[kW] 

1 751.2 23.2562 y=0.0278*x+31.445 0.8056 

2 3498.3 75.8611 y=0.0212*x+107.63 0.9588 

3 2937.5 86.7573 y=0.0243*x+74.904 0.6775 

4 4153.4 76.2592 y=0.0181*x+106.93 0.9682 

5 2646.8 81.1222 y=0.03*x+36.567 0.9597 

6 2937.5 86.7573 y=0.0243*x+74.904 0.6775 

 

 
Fig. 56. The characteristics are obtained by fitting SCADA data – proposal 

  

0% 

Minimal 

Utilization 

100%  

Maximal  

Utilization 
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The above graphic shows that the control of the blower utilization affects the air flow and 

the electricity consumption in a linear relation. It is assumed that the utilization of the 

blowers is adjusted in the range of 0-100 achieving the lowest and the highest flow 

respectively. Therefore, blowers’ operation point becomes strongly simplified by 

linearisation (Fig. 57). 

 
Fig. 57. The characteristics are obtained by fitting SCADA data – summary 

To sum up, the following characteristics are used in the simulation. The efficiency curve for 

individual blowers shows the difference in the achieved flow depending on the efficiency. 

The first plot presents the airflow in relation to efficiency(Fig. 58). 

 
Fig. 58. Control of blowers adopted in the numeric model – airflow in relation to utilization 

0% (minimal utilization) 

100% (maximal utilization) 
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The power consumption characteristic shows the change in electric energy consumption of 

the blower depending on its utilization. Here, the differences for individual blowers are 

similar (Fig. 59). 

 
Fig. 59. Control of blowers adopted in the numeric model – power consumption in relation to utilization 

To sum up, characteristics of airflow and power consumption for efficiency of the blowers 

between 0-100% rates (Fig.58 and Fig. 59) are implemented in look-up tables used in a 

numeric model used in the construction of blower control. At the lowest efficiency 0% rated 

each blower generates some constant flow. On the other hand, 100% rated efficiency means 

reaching the maximum capacity. The airflow provision and power consumption discussed 

above depend on the amount of working blowers and their utilization is determined by the 

control system (Fig. 60).  

 
Fig. 60. Control of blowers adopted in the numeric model  
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Next, in Fig. 61 airflow demand has been demonstrated in the relation to power 

consumption per airflow unit. The author indicates the lines outlining the particular 

characteristics. This has been done by calculation of power consumption at unit airflow [in 

kW/(m3/h)]. The lines are mapped in one figure to match characteristics of particular 

blowers (Fig. 62). 

 
Fig. 61. Blower characteristic curves expressed as power consumption per airflow unit 

 
Fig. 62. Blower characteristic curves expressed as power consumption per airflow unit vs airflow - summary 
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Finally, on the basis of values describing efficiency of particular blowers are calculated. The 

analysis demonstrates the difference in operation of particular blowers. Presented in this 

paragraph, estimation of blowers is implemented in numeric model of Płaszów WWTP. On 

the basis of the efficiency factors in Tab. 11, the performance of particular blowers can be 

determined (as presented in section 4.3). 

Tab. 11. Coefficients used in the simulations  

Blower No. Mean efficiency estimation 
(blower power/blower airflow) 

[kW/(m3/h)] 

1 0.0305 

2 0.0315 

3 0.0275 

4 0.0264 

5 0.0340 

6 0.0275 

 

Blowers’ control strategy is expected to prioritize the most efficient blower. More precisely, 

the queue of blowers scheduled to start is proposed on the basis of their efficiency estimate. 

One can observe that blower with highest efficiency is blower 4, on the other hand blower 5 

has the lowest efficiency. In practice, a maximum of 4 blowers are started. Hence, it is fair to 

conclude that blowers 2 and 5 do not work at all. They can be activated in case of failure of 

the blower with better efficiency. 

  



79 
 

5.2.3 Model of blowers in Płaszów WWTP and its simulation 

In order to illustrate the operation of the blowers, the author implemented the 

MATLAB/SIMULINK model that has the characteristics of the air flow and electricity 

consumption for each blower described depending on the control utilization expressed in 

percentages (0-100%). The graphic below shows the structure of a single blower (Fig. 63). 

 
Fig. 63. Internal structure of blowers in model of WWTP in Matlab/Simulink 

As blowers control adjustable set points are following: 

❖ the angle of the blades  – the angle of the blades (𝐵𝐿𝐴𝐷𝐸𝐴𝑁𝐺𝐿𝐸),  

❖ start/stop signal – signals setting switching the blower operation of blower, 

adjusted by  TON_DELAY  and TON_DELAY  defined in controller (Sec. 5.2.1). 

 

The blowers’ model outputs with the following operational parameters: 

❖ t_min – working time of blowers with minimal activity (adjusted by TON_DELAY), 

❖ t_max – working time of blowers with maximum activity (adjusted by TOFF_DELAY), 

❖ t_tot – working time, 

❖ t  – current activity time, 

❖ nt – current inactivity time,  

  

Block implementing the 

blowers’ characteristics 
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A simulation has been performed in which the input signal is the air flow obtained from the 

SCADA. The model of the entire aeration system is presented in the graphic below (Fig. 64). 

 
Fig. 64. The detailed plan blower’s simulation  

In this introductory simulation, the author uses SCADA measurements. The diagram below 

shows assumed values. The values of summarized airflow demand is presented in graphic 

below (Fig. 65). The second graphic presents the total power consumption registered during 

the period. An interesting observation is that the increase in air demand proportionally 

increases electricity consumption. Simulations are performed with airflow measurement as 

input. Available power consumption is compared with real data. 

 
Fig. 65. Observed signals – total airflow in blowers and total power consumption 
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Simulations have been performed using the blower controller implemented as described 

above and in chapter 5.2.1.Initially, the blowers’ set points, i.e. delay times are the following: 

TOFF_DELAY  equals 1h, TON_DELAY  equals 1h.There is a high convergence of results. The first 

graph shows such parameters and describes obtained characteristics (Fig. 66).  

 
Fig. 66. Results of simulation for TOFF_DELAY equals 1h, TON_DELAYequals 1hwith SCADA – total airflow and power consumption  

The graphic below (Fig. 67) shows the variability of the blowers' efficiency which affects the 

number of blowers turned on. To summarise, the algorithm that turns the blowers on and 

off will do its job. 

 
Fig. 67. Results of simulation for TOFF_DELAY equals 1h, TON_DELAY equals 1h– number of blowers working and their utlization 
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(21) 

(22) 

It is worth mentioning that during this 21 day-long period only 4 blowers are working (are 

activated in accordance with the efficiency demonstrated in Sec. 5.2.2). As presented in 

previous paragraphs, this practice is expected. 

 

5.2.4 Simulation utilizing blowers with BSM1 model 

The presented approach describes how the control of blowers affects the processes in the 

reactor. The reverse approach is assumed in this implementation (Fig. 68).The oxygen 

demand is determined based on the known oxygen and ammonia content in the reactor. 

Then airflow demand is calculated. Such airflow to reactors lowers the pressure in the 

collector. The decline in pressure forces blowers to adjust utilization to cover the demand. 

Finally this blowers’ operation is converted into specific electric energy consumption. 

 
Fig. 68. General scheme of the purification process presented in the dissertation 

As presented in Sec. 3.2, the BSM1 model, which simulates the operation of the reactor, 

derives the demand for oxygen in the form of the time-varying parameter KLa. Further, this 

parameter is used to develop the oxygen demand in the reactor. The following equation 

presents in details converting the KLa into airflow (Sec. 3.5.5)  

𝑂𝑇𝑅𝑇𝑂𝑇𝐴𝐿 = 𝐾𝐿𝑎 ∙ (𝑐𝑠𝑎𝑡 − 𝑐) ∙ 𝑉 

𝐴𝐼𝑅𝐹𝐿𝑂𝑊 =
𝑂𝑇𝑅

𝑂𝑇𝐸 ∙ 𝐶𝐹1
 

 

The value of the correction factor is chosen empirically so that the ranges of obtained 

oxygen flow correspond to the measurements of SCADA sensors readings. In this case, this 

value is 3600. Oxygen transfer efficiency is assumed to be 0.3. CF value of parameter was 

empirically selected so that the results of the BSM1 model and the actual SCADA readings 

coincide. In this case, this value is 3600. 
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The following graphic presents the layout of simulation containing reactors and blowers 

(Fig. 69). 

 

 
 

 

 

 

Fig. 69. Model of Płaszów WWTP including the blowers 

 

To sum up, the diagram presented above consists of the following groups: 

❖ REACTORS – the numeric model of the 5 reactors based on the BSM1 model. 

Estimation of oxygen demand based on sewage quality correlated with SCADA 

read-outs. Block combines the reactor and blowers by numeric translation of the 

value of KLa measured by the reactor to airflow demand expected in blowers; 

❖ COLLECTOR – block calculating airflow demand on the basis of KLa, O2sim;  

❖ BLOWERS – numerical model of blowers. In the treatment plant, the oxygen 

demand reported from the reactor level is input. The electric power demand is 

calculated based on the blower operation. 

Input and output of the system: 

❖ SEWAGE INFLUENT – values based on literature data and SCADA measurements 

obtained from a working sewage treatment plant, the output is the value of the 

KLa factor; 

❖ WORKING PARAMETERS – values observed during WWTP’s operation; 

❖ ELECTRIC ENERGY CONSUMPTION – value of power spent during aeration. 

REACTORS COLLECTOR BLOWERS 

SEWAGE 

INFLUENT 

WORKING 

PARAMETERS 

ELECTRIC ENERGY 

CONSUMPTION 
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A sewage treatment plant model has been prepared along with the analysis of control 

systems.  

The previous paragraphs describe all components of a complete biological wastewater 

treatment system: input data (Sec. 4.4), reactor model (Sec. 5.1), oxygenation model 

(Sec. 5.2). In this paragraph, the author considers the case of simulation performed for the 

system combining BSM1 reactors and blowers(Fig. 70). This description of influent is used for 

estimation of airflow demand. 

 
Fig. 70. Matrix DATAINFLUENTused in this simulation  
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The simulative results are juxtaposed with real SCADA measurements to validate the results 

of airflow estimation. The simulation model based on BSM1 reflects the internal processes in 

reactor and airflow demand is estimated on the basis of results. The resulting airflow 

demand is presented below (Fig. 71). 

 
Fig. 71. Airflow demand – real and results of simulation 

 

Later, such estimation of airflow demand is used in model of blowers. This estimation of 

airflow demand is used by the virtual model of blowers to estimate total power consumed 

by the blowers. It is worth mentioning that the blowers’ characteristics are as in Sec. 5.2.3. 

The results of such simulations are presented in graphics below. Fig. 72 presents simulation 

results that are similar to the measurements of the real object. In particular, it is worth 

noting that sometimes large changes in influencing wastewater are noticeable in air flow 

readings and in blower control. This confirms the compliance of the entire facility with the 

reality. The simulation environment prepared in this way is the subject of further analysis in 

which the operation of the entire system has been checked in terms of energy 

optimization. Fig. 73 presents characteristics for parameters describing the operation of 

blowers’ during their operation in simulation. It is worth noting that between 2 and 4 

blowers operate in one moment, their performance fluctuates adapting to the demand. 

Summing up the efficiency of working blowers’ (2-4 blowers operate in the range of 0%-

100%), the control in the range of 200%-400% of the total efficiency is obtained. 

. 
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Fig. 72.Results of blowers simulation with control algorithm – measurements 

 
Fig. 73. Results of blowers simulation with control algorithm – characteristics 
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5.3 Optimizing WWTPs’ operation control – state of the art 

The model of sewage treatment plant shown in the previous paragraph allows for testing the 

performance characteristics of the system under various conditions. An interesting topic 

remains the study of the properties of the treatment plant in terms of reducing electricity 

consumption in blowers. Thus, how has it been done? 

The issues of energy optimization of sewage treatment plants are a broad object of scientific 

research. It seems right because the process of pumping and blowing air is the most energy-

consuming aspect of the treatment plant operation. This paragraph presents the scientific 

state of the art in this field. Authors propose various optimization techniques to reduce the 

use of electricity.  

Most of the WWTP aeration systems involve a proportional-integral-differential (PID) 

controller. PID parameters regulation has been done utilizing: 

❖ aeration profiles [117], [118], 

❖ adaptive on-line tuning [119], 

❖ scheduling adjustment of the gain parameter [120], [121], 

❖ neural networks [122], 

❖ model predictive control [123], 

❖ fuzzy controller [95]. 

In [118], authors optimize aeration profile using MINLP programming technique (Sec. 2.4.2) 

based on the model of activated sludge tank calibrated and validated with data from a real 

plant. Authors analyze the profits achieved after utilizing non-uniform aeration (NUA) 

control instead of uniformly distributed aeration (UDA). 

In [119], authors demonstrate an algorithm focused on auto-tuning the PI control 

parameters to satisfy effluent quality condition and optimizing the nitrogen removal at the 

same time. Authors research the system utilizing the numeric model performed in BSM1. 

Control is portioned into two separate PID controllers. 

In [117] and [118], authors analyze the modernization of Kaapla WWTP using dissolved 

oxygen feedback. Authors conclude that large reductions in air consumption can be made 

with a simple DO control strategy. It increases the process sensitivity to influents’ dynamics 

and impacts the reduction of volumes of aerated air. 

Brdys 2002[123] deliberates the hybrid model predictive controller (HMPC) to schedule the 

efficiency of blowers. The example of the Kartuzy WWTP is described. In [124], authors 

describe other WWTPs in Poland. The issues connected with fuzzy modeling of the chemical-

biological processes for the MPC control strategy of the electrical blowers are presented. 

In [125], the author points  out some degree of insight into the problem of energy overuse in 

the activated sludge process at the wastewater treatment plant at Perth, Scotland. The 

ASM1 model has been used to describe the level of dissolved oxygen in three aeration 

sections, each containing one mechanical aerator. To solve that issue the KLa value is 

calculated using the Simulink schematic below (Fig. 74). 
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Fig. 74. Representation of Perth Mechanical Aeration system in Matlab/Simulink 

In [126], authors base on the analysis that has been obtained from the Detroit Water and 

Sewerage Department (DWSD), the largest single-site wastewater treatment facility in the 

United States. The WWTP has been optimized using the Simulated Annealing (SA) algorithm. 

The publication [127] presents the energy audit of membrane bioreactor (MBR) in Schilde, 

Belgium. The publication [128] analyses the benchmark simulation model for membrane 

bioreactors (BSM-MBR). Aeration energy (AE) is presented in the equation that split into the 

contributions from fine bubble aeration in the bioreactors and coarse bubble aeration in the 

membrane unit. The publication [129]shows another version of the AE equation which has 

been used in SBR WWTPs. 

In [130], Larrson analyses the savings with a new aeration and control system. The 

implementation of ASM1 in WWTP in Sternö, Swedishis is utilized. The author proposes a 

method to calculate standard aeration efficiency (SAE) (Fig. 75). 

 
Fig. 75. Overview of calculations to find the SAE [130] 

In [131], the author describes the Lancaster (UK) wastewater treatment that works for 

around 100 000 population. Authors discuss the implementation of the model predictive 

control (MPC) for wastewater treatment plants to reduce the costs of aeration. A process 

efficiency of approximately 0.8 kWh/kg BOD is considered to be a good operation. 

Olsson and Carlsson[132] presents the step-by-step schematic how level of NH4
++NH3 

nitrogen in influent is regulated by valve position in diffusors supporting air (Fig. 76). 
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Fig. 76. The interpretation of process from valve position to effluent ammonium concetration [132] 

In series of publications Methods for Energy Optimization in Wastewater Treatment 

Plants[91] and [134], authors demonstrate the energy optimization case study of WWTP in 

San Pedro Del Pinatar, Spain. The reactor is a membrane biological reactor (MBR). The first 

document discusses variables used in control of processes in the activated sludge system. 

The adoption of a real-time control system makes the oxygen demand lower and reduces 

overall energy consumption of the installation to more than 15%. In the second paper, 

authors present reductions of energy consumption of the San Pedro del Pinatar WWTP using 

flow modeling and simulation techniques. Authors propose the following stages of 

optimization: selection of best operating conditions and regulation of airflow injection by the 

diffusers. Additionally, the determination of age and conditions of air injecting components 

is important. Their results allow to reach more than 35% of reduction in the overall energy 

consumption of the facility. Fig. 77 outlines the stages of process that can be optimized 

(according to [90]). 
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Fig. 77. The electrical analogy of the aeration system model [90] 

5.4 Methods used to validate the model 

After reviewing the literature, the author notes that the available resources do not show 

comprehensive models simulating the process of the Krakow-Płaszów wastewater treatment 

and oxygenation in biological reactors. Previous paragraphs describe the implementation of 

this sewage treatment plant model based on the BSM1 numerical model. Sample runs 

present the operation of  the numerical model. The modification of parameter could 

significantly impact the behavior of the simulated treatment plant. The problem concerns 

both the parameters of the inflowing sewage and parameters. Changing parameters can 

significantly change the behavior of the model. Moreover, the model requires adoption of 

parameters to match the real SCADA signals. 

The author has performed the following test in order to study the model:  

❖ Characterization of uncertainty with Morris simulation – the sensitivity of 

wastewater parameters in BSM1 has been examined in terms of their 

importance in the purification process. For this purpose, the Morris method of 

sensitivity assessment has been used. More details are in chapter 6; 

❖ Performance check with Kalman filter and its derivatives – in relation to the 

above assumptions, optimization algorithms have been used to reduce 

electricity consumption in the sewage treatment plant. Then, in the BSM1 

model, critical parameters have been estimated using identification 

procedures based on the Extended Kalman Filters. The procedure has been 

initially tested by using synthetic feed rate and concentrations proposed in 

BSM1. Later, it has been applied to a real object, the Płaszów Sewage 

Treatment Plant located in Kraków. The analyses described above are 

described in chapter 7; 
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❖ The operation of reactor with blowers modeled in dissertation has been 

examined in terms of minimization of electric energy consumption. The 

author analyses how influent characteristics affect the electricity 

consumption. The example of simulations with statement of results is 

presented in chapters 8. 

 

5.5 Potential to exploit the model in order to optimize energy 

consumption 

Eventually, the author exploits  the model implementing the characteristics of the treatment 

plant. The author proposes an approach aimed at optimizing the operation of wastewater 

treatment plants, taking into account the reduction of electricity consumption. In the 

presented dissertation, the  author puts forward control optimization exploiting criteria of 

electric energy consumption minimization. The blower control algorithms is proposed to 

reduce electricity consumption in this facility. More precisely, the method of blower 

efficiency control by adjusting the on/off time of the blowers in the wastewater treatment 

plant has been implemented. This solution allows to achieve favorable operating points of 

the blowers guaranteeing lowering electricity consumption. The details of the optimization 

are presented in the chapter 9. 
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6 Characterization of model sensitivity 

6.1 General description of sensitivity algorithms 

Global sensitivity analysis is a numerical tool widely used in computer simulations to check 

the effect of a set of parameters on the response of a such non-linearities in a numeric 

system. These methods enable  fast testing of a numeric model. Practice proves that 

importance of some factors can differ significantly. It mainly concerns determining the 

sensitivity of a given project's profitability to changes in the input parameters of a given 

numeric model. Three kinds of methods are distinguished [134]:  

❖ the screening – coarse sorting of the most influential numerous inputs,  

❖ the measures of importance – quantitative sensitivity indices, 

❖ deep exploration of the model behavior – measuring the effects of inputs on their 

all variation range. 

Screening methods arebased on discretization of input data in levels. The purpose of this 

identification is to assess how subtle changes in the input parameters impact simulation 

results. The numerous combinations of input allow for the selection of the most affecting 

influent parameter -it allows to reduce the number of input parameters only to the most 

important ones. Such analysis allows to research realistic structure of the complex models. 

Such a simple screening simulation is used before other more complex optimization 

algorithms [135]. 

A variance-based sensitivity analysis can be performed using the following screening 

sampling techniques: Sobol and Morris [136]. 

6.2 Morris screening method 

This analysis is based on series of simulations performed with heterogeneously changing 

parameters to assess the influence of a particulate parameter to the system. A trajectory is 

set of simulations, in every one parameter it is changed and the parameter changes one at a 

time. Thus, the number of simulations in the trajectory equals to the number of variables 

plus one [137]. This is how the trajectories are created. On the basis of these simulations, 

the elementary effect is calculated [139] and [140]. The elementary effect is the measure of 

response for a particular parameter that is changed in simulation. The elementary effect is 

calculated with the equation: 

𝑒𝑒𝑗
(𝑖)(𝑥) =

[𝑓(𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … , 𝑥𝑗−1
(𝑖)

, 𝑥𝑗
(𝑖)

+ ∆, 𝑥𝑗+1
(𝑖)

, … , 𝑥𝑘
(𝑖)

) − 𝑓(𝑋(𝑖))]

∆
 

Where j is the variable obtained at the i-th repetition. ∆ is predetermined multiple of 1/(n-

1) where nrepresents number of “levels” of the design. Then, the ee thus calculated is 

submitted to the statistical analysis (sum of all ee, mean). On the basis of these indicators, 

the influence of parameters’ changes to the operation of the model is characterized.  
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6.3 Uncertainty algorithms in WWTPs – state of the art 

As mentioned above, numeric models of WWTPs are strongly non-linear. Thus, numeric 

models of WWTP’s are widely researched in literature. 

The study of uncertainties in models of WWPS is presented in [140]. In this document, three 

uncertainty sources are discussed: caused by stoichiometric, bio-kinetic and influent 

parameters; due to hydraulic behavior of the plant and mass transfer parameters or due to 

the combination of both of them. The Latin hypercube sampling (LHS) is proposed and 

Monte Carlo simulation procedure is used. 

The systematic application of regression analysis to ASM is presented in [141], where the 

sensitivity of the BSM1 wastewater quality indicator to bio-kinetic parameters and the inflow 

ASM1 fractions is examined. Regression analysis is also used in [62] to investigate the 

sensitivity of other process variables, such as nitrate and ammonia in waste water, sludge 

production and aeration energy.  

In [142], a variance-based decomposition method is proposed to investigate the role of 79 

ASM2d parameters on the amount of chemical properties of wastewater inside wastewater 

treatment plant reactors. In this study, sensitivity analysis is used as a way to obtain 

information about the observability of the model. Indeed, it is expected that parameters 

that show a significant influence on the model response can be also identified.  

In [143], the revised version of Morris method is presented. In this research. DESASS 

simulator is used. Authors emphasize the significance of sampling. Screening is adopted to 

most influential parameters of fuzzy control of WWTP. Random sampling can lead to 

discordant coverage of the parameter space. On the other hand, Morris approach provides 

sufficient results. Authors propose 70 trajectories in this simulation.  

The description of the practical implementation of the algorithm is marked in the next 

paragraph. The procedure calculates a sensitivity for changes in model’s properties. Morris 

analysis can be performed on many aspects of purification.  

The author of the study uses Morris analysis implemented in the novel model of Płaszów 

WWTP. In particular, such simulation is used to analyze the sensitivity of sewage influencing 

the treatment process and to validate the impact of process parameters for treatment 

quality. 
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6.4 Sensitivity analysis of BSM1 process 

6.4.1 Validation of process variables 

The dynamics of wastewater treatment based on BSM1 is described with 19 parameters 

whose values must be considered in simulation. Thus, parameter screening can be carried 

out to assess the influence of the stoichiometric and kinetic parameters on the BSM1 

response, namely the average value of NH4
++NH3 nitrogen (SNH) and O2 (SO) levels in the 

reactor sections.  

In Tab. 12, the assumed variability ranges are presented (based on [140] and [144]). The 

question to be solved now is to specify the parameters with a key impact on the operation of 

the treatment plant. 

Tab.12. Values of stoichiometric and kinematic parameters considered in the sensitivity analysis ([140][144]) 

Parameter  Unit Min St. Val. Max 

Autotrophic yield 𝑌𝐴 gCOD/gN 0.23 0.24 0.25 

Heterotrophic yield 𝑌𝐻 gCOD/gCOD 0.64 0.67 0.70 

Fraction of biomass yielding part. products 𝑓𝑃  - 0.015 0.08 0.2 

Mass N/mass COD in biomass𝑖𝑋𝐵 gN/gCOD 0.04 0.08 0.12 

Mass N/mass COD in products from biomass 𝑖𝑋𝑃 gN/gCOD 0.05 0.06 0.07 

Heterotrophic max. specific growth rate 𝜇𝐻 day-1 3.0 4.0 5.0 

Half-saturation coefficient (hsc) for heterotrophs 𝐾𝑆 gCOD/m3 5.0 10.0 15.0 

Oxygen hsc for heterotrophs 𝐾𝑂,𝐻  gO2/m3 0.1 0.2 0.3 

Nitrate hsc denitrifying heterotrophs 𝐾𝑁𝑂  gNO3/m3 0.25 0.5 0.75 

Heterotrophic decay rate 𝑏𝐻 day-1 0.29 0.3 0.32 

Corr. factor for anoxic heterotrophs growth 𝜂𝑔 - 0.6 0.8 1.0 

Correction factor for anoxic hydrolysis 𝜂ℎ - 0.6 0.8 1.0 

Max. specific hydrolysis rate 𝑘ℎ  gXs/gXBHCODday 2.25 3.0 3.75 

Hydrolysis hsc of slowly biodeg. substrate 𝐾𝑋 gXs/gXBHCOD 0.075 0.1 0.125 

Autotrophic max. specific growth rate 𝜇𝐴 day-1 0.48 0.5 0.53 

Ammonia hsc for autotrophs 𝐾𝑁𝐻  gNH3/m3 0.5 1.0 1.5 

Autotrophic decay rate 𝑏𝐴 day-1 0.04 0.05 0.06 

Oxygen hsc for autotrophs 𝐾𝑂,𝐴 gO2/m3 0.3 0.4 0.5 

Ammonification rate 𝑘𝑎  m3/gCOD/day 0.03 0.05 0.08 
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In the Morris analysis pictured below, a set of simulations taking into account the variability 

of input parameters are executed. To make this simulation, the set of trajectories is 

prepared. In each trajectory, n+1 simulations are performed, where n is the number of 

parameters. In each subsequent simulation, the value of one random parameter changes. 

Therefore, for 19 wastewater parameters 20 simulations must be performed (Fig. 78). 

 
Fig. 78. Example trajectory based on parameters changing in successivesimulations  
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The presented simulation consists of 10 trajectories. In total, 200 simulations of the sewage 

treatment plant operation has been made. Values of PAR stoichiometric and kinetic 

parameters on the Tab. 12have been adopted as in the figure above (Fig. 78). Only one of 

the 19 analyzed values changes in each simulation. The results of the simulation are SNH and 

SO measurements (NH4
++NH3 nitrogen in KDN3 and O2 in sections KDN3, KN1, KN2, KN3, 

KN4). The sum of absolute values has been calculated for the measurements’ time vectors. 

This value becomes an elementary effect and becomes the basis for further analysis. The 

resulting elementary effects are presented in the graphic (Fig. 79). 

 
Fig. 79. The matrixes of elementary-effects achieved in Morris simulation 
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Finally, after calculating the mean value and standard deviation, the effect of particular 

parameters on the operation of the treatment plant can be assessed. The first 

graphic(Fig. 80) manifest mean values and standard deviation for NH4
++NH3 nitrogen values. 

The second one (Fig. 81) shows the mean values and standard deviation for O2 values in 

individual sections of the rector. 

 
Fig. 80.The mean and standard deviation for NH4

++NH3 nitrogen (SNH) and O2 (SO) in Morris simulation 

 
Fig. 81. The mean and standard deviation for NH4

++NH3 nitrogen (SNH) and O2 (SO) in Morris simulation 

The analysis reveals that ammonia half-saturation coefficient for autotrophic biomass (𝐾𝑁𝐻) 

has a decisive role in the wastewater treatment. Indeed, the parameter directly impacts 

aerobic growth of autotrophs. It is also worth noting that the change in half saturation 

coefficient 𝐾𝑁𝐻 for autotrophs has the highest impact comparing with other half 

heterotrophic saturation coefficients (𝐾𝑁𝑂, 𝐾𝑂,𝐻). Moreover, it should be observed that the 

means and standard deviations of elementary effects for both NH4
++NH3 nitrogen (SNH) and 

O2 (SO) responses show the same trend. It means that the process is in general non-linear 

(as expected) due to the complexity of the biological process. Finally, sensitivity diagrams say 
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that several process parameters are not reflected in the values of NH4
++NH3 nitrogen (SNH) 

and O2 (SO) [145]. 

 

6.4.2 Validation of influent parameters 

BSM1 model defines several key parameters that affect both influent and the purification 

process themselves. Thus, it can be assumed that the selected quality parameters in 

incoming sewage have a key impact on the treatment process.  

Tab. 13 presents the nominal value set in Płaszów that is based on BSM1. Those values are 

included to the DATAINFLUENT reference signal that is included in the ASM1 package[78]. 

The minimal and maximal values are defined as reference values limiting the possible range 

of parameter variation in the Morris simulation. 

Tab.13.List of ASM1 variables[71] and their values considered in the sensitivity analysis [62] 

No Parameter Influent 
paramete
r 

Constant value 
set in BSM1 

Płaszów WWTP 

Minimal value Nominal value 

set in Płaszów  

Maximal 
value 

1 Soluble inert organic matter SI 30 29 30 31 

2 Soluble inert organic matter SS 69.5 64.5 69.5 74.5 

3 Particulate inert organic matter XI 51.2 46.2 51.2 56.2 

4 Slowly biodegradable substrate XS 202.32 192.3 202.32 212.3 

5 Active heterotrophic biomass XBH 28.17 25.17 28.17 31.17 

6 Active autotrophic biomass XBA 0 0 0 0 

7 Particulate products arising from 
biomass decay 

XP 0 0 0 0 

8 Oxygen SO 0 0 0 0 

9 Nitrate and nitrite nitrogen SNO 0 0 0 0 

10 NH4
++NH3 nitrogen SNH 31.56 26.56 31.56 46.56 

11 Soluble biodegradable organic 
nitrogen 

SND 6.95 6.55 6.95 7.55 

12 Particulate biodegradable organic 
nitrogen 

XND 10.59 9.59 10.59 11.59 

13 Alkalinity SALK 7 6 7 8 

14 Total Suspended Solids TSS  211.2675 191.26 211.2675 231.26 

15 Flow rate Q  18 446 111 000 120 000 130 000 

 

This part analyses the effect of the above influent parameters on the value of NH4
++NH3 

nitrogen (SNH) and O2 (SO) in the treatment plant. In total, 160 simulations of the sewage 

treatment plant operation have been made. Influent parameters based on the Tab. 12 have 

been adopted as in the figure above. Only one of the 15 analyzed values changes in each 

simulation. Next, the simulation results in measurements in reactor - NH4
++NH3 nitrogen 

(SNH) in KDN3 and O2 (SO) in sections KDN3, KN1, KN2, KN3, KN4. 
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Simulation presented below consists of 10 trajectories(Fig. 82). In each trajectory, 15 

parameters are changed. As in previous simulation, the sum of absolute values has been 

calculated for the measurements’ time vectors.  

 
Fig. 82. Example trajectory based on parameters changing in successive simulations 
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This value becomes an elementary effect and becomes the basis for further analysis. The 

resulting elementary effect is presented in the graphic below(Fig. 83).  

 
Fig. 83. The matrixes of elementary-effects achieved in Morris simulation 
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Finally, after calculating the mean value and standard deviation, the effect of particular 

parameters on the operation of the treatment plant can be assessed. Fig. 84 shows mean 

values and standard deviation for values of NH4
++NH3 nitrogen (SNH). Fig. 85 pictures the 

mean values and standard deviation for O2 (SO) values in individual sections of the rector. 

 
Fig. 84. The mean and standard deviation for NH4

++NH3 nitrogen (SNH) and O2 (SO) in Morris simulation  

 
Fig. 85. The mean and standard deviation for NH4

++NH3 nitrogen (SNH) and O2 (SO) in Morris simulation 

To sum up, the analysis of sewage treatment plant sensitivity to change of influent 

parameters, several conclusions can be drawn. As in the analysis of the variables of the 

BSM1 process (stoichiometric and kinematic parameters respectively), the value 

representing ammonia compounds is of the greatest importance. It seems obvious that the 

content of ammonia and dissolved oxygen in sewage is influenced by sewage into treatment 

plants. 
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Finally, the author validates how mean and standard deviation of airflow demand is affected 

by changes of parameters in influent. Here, as in the above considerations, influent 

NH4
++NH3 nitrogen (SNH) has the greatest contribution. Figure below(Fig. 86) presents the 

results. 

 
Fig. 86. Mean and standard deviation airflow demand in Morris simulation 

 

6.5 Summary of Morris validation 

Summarizing the above observations, the author can conclude that Morris sensitivity 

analyses have proved that the parameters describing the NH4
++NH3 nitrogen in wastewater 

(SNH) have the greatest impact on the treatment process. Therefore, a considerable 

attention must be paid for ammonia parameters during wastewater treatment process. 
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7 State estimation based on Kalman filter 

7.1 Procedures based on Kalman filter - introduction 

7.1.1 Bayesian optimization implemented in model validation 

In the first two paragraphs of the work, a numerical model of the treatment plant is 

presented which unfortunately is very non-linear. Therefore, the analysis of the operation of 

such an object requires the use of special techniques that will be resistant to the 

nonlinearities of the model's operation. 

The Bayes’ observer is used with the assumption that the treatment process has the 

properties of the Markov chain (equation 24). Reactors’ state depends only upon the current 

state and not upon all the previous history of state.  

𝑝(𝑥𝑡|𝑥0:𝑡−1) = 𝑝(𝑥𝑡|𝑥0𝑡−1) 

Recursive Bayesian Estimators (RBE) is a method for estimation of an unknown probability 

density function, which is recursive over time, using mathematical model of process and 

incoming measurements. The main feature of the Bayes’ filter is the ability to recursively 

determine the state probability distribution based on a known input history and 

observation[146].  

Bayesian optimization consists of main components [147]: 

❖ Prior – Choose some prior measure over the space of possible objectives f; 

❖ Innovation - Combine prior and the likelihood to get a posterior measure over the 

objective given some observations; 

❖ Use the posterior to decide where to take the next evaluation according to some 

acquisition/loss function. 

State estimation with Bayesian probability process consists recirculating calculation as 

presented above. The most likely xt value can be determined from such probability 

distributions p. So in the model the previous state from the moment t-1 is taken into 

account and includes the update from the measurement. 

The Bayesian optimization described above has been used to develop various numeric 

methods that are used for state estimation of various nonlinear models. Bayesian 

optimization techniques are implemented in Kalman filters that are used in model validation. 
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7.1.2 Mathematical concept of Kalman Filters 

One can imagine a situation where uncertain measurements of the processes can be 

simultaneously visualized by a numerical model that is expressed by transition and 

observation equations. The calculations based on such a model allow implementation of the 

dedicated algorithms correcting the measurements even in high uncertainty. 

Kalman Filter (KF) can be used to reconstruct variables that are not measured or to reduce 

the effect of noise in the available measurements. The idea was invented by Hungarian 

scientist Kalman in 1960[148]. Kalman filter is based on linear equations discretized in the 

time domain. Filters based on Kalman idea are the numeric algorithms computing the state 

estimates of the nonlinear system using the specified state transition and measurement 

likelihood functions. The idea can be presented with the following diagram (Fig. 87). 

 
Fig. 87. Kalman filter used in optimal state estimation 

We assume the following variables: 

❖ state x, state estimation �̂�  

❖ input u,  

❖ output m,  

❖ process noise w,  

❖ measurement noise y, 

❖ time k. 

Mathematically, the Kalman filter model assumes the new state 𝑥𝑘 at time k evolved from 

the state𝑥𝑘−1 at (k−1) according to equation below. Matrix A is a state transition model, 

matrix B is an input observation model [149]. 

𝑥𝑘 = 𝐴 ∙ 𝑥𝑘−1 + 𝐵 ∙ 𝑢𝑘 + 𝑤𝑘 

At time k an observation (or measurement) 𝑦𝑘 of the true state 𝑥𝑘 is made according to the 

equation below. Output function maps the simulated state into space observed by 

measurements. 

𝑦𝑘 = 𝐶 ∙ 𝑥𝑘 + 𝑣𝑘 
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Vector 𝑤𝑘is the process noise and vector 𝑣𝑘 is measurement noise. They are assumed to be 

zero mean Gaussian white noises with covariance matrices 𝑤𝑘~𝑁(0, 𝑄𝑘) and 𝑣𝑘~𝑁(0, 𝑅𝑘) 

respectively. The Kalman algorithm is a two-step process: prediction and correction 

(measurement update). 

In the prediction step, the Kalman Filter produces estimates of the current state variables, 

along with their uncertainties using model expresses in matrix A. Prediction is expressed in 

the following equations: 

✔ Project state ahead 

𝑥′𝑘(𝑝𝑟𝑒𝑑𝑖𝑐𝑒𝑑) = 𝐴 ∙ 𝑥𝑘−1 + 𝐵 ∙ 𝑢𝑘  

✔ Project the error covariance ahead 

𝑃′𝑘(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) = 𝐴 ∙ 𝑃𝑘−1 ∙ 𝐴𝑇 + 𝑄 

Correction (measurement update) is the next stage when state prediction is compared to 

measured state values.  

✔ Compute the Kalman gain 

𝐾𝑘 =
𝑃′𝑘(𝑝𝑟𝑒𝑑𝑖𝑐𝑒𝑑) ∙ 𝐻𝑇

𝐻𝑃′𝑘(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝐻𝑇 + 𝑅
 

✔ Upgrade the state estimate using measurement 𝑧𝑘 

𝑥𝑘 = 𝑥′𝑘(𝑝𝑟𝑒𝑑𝑖𝑐𝑒𝑑) + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥′𝑘(𝑝𝑟𝑒𝑑𝑖𝑐𝑒𝑑)) 

✔ Update the error covariance 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃′𝑘(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) 

The Kalman gain is the relative weight given to the measurements and current state 

estimate. The product of Kalman gain and difference between the predicted and measured 

state indicates the signification of simulation to the output value. A new state estimation 

and its error covariance are output. After update of state estimate 𝑥𝑘 and error covariance 

𝑃𝑘, the cycle begins again. The overview of Kalman filter is presented below (Fig. 88).  

 
Fig. 88. The overview of Kalman Filter (based on [150]) 
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(32) 

(33) 

(34) 

Symbols used in equations are: 

❖ 𝑢𝑘 , 𝑧𝑘 – control and measurement vector, the first one indicates the magnitude of 

any input state value controlled in the situation; the second one contains real-

world measurement received in moment k,  

❖ 𝑥𝑘, 𝑥𝑘−1 – newest and previousestimate of the current „true” state, 

❖ 𝑃𝑘,𝑃𝑘−1 – newest and previous estimate ot the average error covariance matrix, 

❖ 𝐴, 𝐵, 𝐻, 𝐶 – state transition matrix, control matrix, conversion matrix, observation 

matrix respectively,  

❖ 𝐾𝑘 – Kalman gain in step k, 

❖ 𝑄, 𝑅 – estimated covariance matrices of 𝑢𝑘 (process noise) and 𝑣𝑘 (error noise). 

 

State measurements are needed for satisfactory performance in many applications. 

For linear systems, standard solution are available like Kalman filter. Prediction 

for non-linear systems is much more challenging. One can take two approaches 

[132]: 

❖ One approach is to linearize the nonlinear system at each sampling time and then 

apply the linear solutions to the linearized model (Extended Kalman Filter). This 

approach is ad-hock solution for non-linear systems; 

❖ Observer designs that explicitly account for nonlinearities can use deterministic 

approaches (sample based methods like a particle filter) or stochastic observers 

(moving horizon estimation). 

Extender Kalman Filter (EKF) can be used for non-linear functions of the state. Extended 

Kalman Filter (EKF) simplifies non-linear function to linear using linear transition in a selected 

point [151]. Values 𝑤𝑘and𝑣𝑘correspond to estimated noise and error in the system and 

measurements. 

The literature [152]describes the process 𝑤𝑘 and observation 𝑣𝑘 disturbances in two ways. 

First, it takes into account in state transition and observation functions as non-additive noise 

formulation. Secondly, it extracts it as the component of the sum of the equation (additive 

noise formulation). 

In the case of non-additive noise formulation process function f() depends on both previous 

state 𝑥𝑘−1 and input 𝑢𝑘. Output is described with observation function h() that is non-linear 

reaction based on state 𝑥𝑘 and observation noise 𝑣𝑘 (Fig. 89). 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘, 𝑤𝑘) 

𝑦𝑘 = ℎ(𝑥𝑘, 𝑣𝑘) 

In further considerations only the case of additive noise is analyzed – process and 

observation noises are both assumed to be zero mean multivariate Gaussian noises with 

covariance Qk and Rk respectively (Fig. 89). 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘) + 𝑤𝑘 
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(35) 

(36) 

(37) 

(38) 

(39) 

𝑦𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘 

 
Fig. 89. The overview of Extended Kalman Filter (based on [149]) 

Extended Kalman Filter makes the non-linear function into linear function using Taylor 

Series, it helps in getting the linear approximation of a non-linear function. This way best 

available linear estimate is achieved. We are assuming that functions F and H are 

differentiable at a points xkand xk-1. 

For state function f() 

𝑓(𝑥𝑘−1, 𝑢𝑘) ≈  𝑓(𝑥𝑘−1, 𝑢𝑘) +
𝜕𝑓(𝑥𝑘−1,𝑢𝑘)

𝜕𝑥𝑘−1
(𝑥𝑘−1 − 𝑢𝑘)  

For measurement function h() 

ℎ(𝑥𝑘) ≈ ℎ(𝑥𝑘−1) +
𝜕ℎ(𝑥𝑘−1)

𝜕𝑥𝑘
(𝑥𝑘−1) 

The partial derivatives lead toJacobian functions - the best linear approximation of the 

function F and Hnear the point x in time k. 

𝐽𝐹 =
𝜕𝑓(𝑥𝑘−1,𝑢𝑘)

𝜕𝑥𝑘−1
 – state transition Jacobian 

𝐽𝐻 =
𝜕𝑓(𝑥𝑘−1)

𝜕𝑥𝑘
 – measurement Jacobian 

Finally the non-linear function can be presented linearly as in classic Kalman filter  

𝑓(𝑥𝑘−1, 𝑢𝑘) ≈  𝑓(𝑥𝑘−1, 𝑢𝑘) + 𝐽𝐹(𝑥𝑘−1 − 𝑢𝑘) 

ℎ(𝑥𝑘) ≈ ℎ(𝑥𝑘−1) + 𝐽𝐻(𝑥𝑘−1) 

A nonlinear task can be replaced with a linear one after calculating the cost of the Jacobian 

matrix value at each step of the simulation. Such a task can be solved with the classic Kalman 

filter described in the previous paragraphs. Although linearization used in the EKF filter gives 

correct results in the case of small non-linearities. Although it is worth noting that the 

Kalman filter limits issues like: difficulties in analytical calculation of the Jacobian matrices in 

state transition or measurement functions, high computational cost to find the numerical 

version of Jacobian and finally EKF is not optimal if the system is highly nonlinear. 
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(40) 

(41) 

(42) 

EKF is suitable for parameter estimation of complex non-linear numeric models. As such 

following numeric problems must be solved with EKF [153]: 

❖ determination of the structure of the dynamic relationships between inputs u, 

state variables x, and outputs y (model structure identification), prediction 

especially when measurement data has a lot of noise, 

❖ determination of the current and future values of the state variables (state 

estimation and prediction), 

❖ estimation of the inaccessible state variables that are not measured (state 

reconstruction), 

❖ computation of values for the parameters that appear in the identified model 

structure (parameter estimation); In this dissertation second EKF will be 

implemented to estimate the unknown parameters (paragraph below), 

❖ simultaneous determination of the values of x and (combined state and 

parameter estimation, or adaptive estimation and prediction). 

Another modification of Kalman Filter for non-linear systems is Unscented Kalman Filter 

(UKF). This concept was introduced in 1997 by Julier and Uhlman[154]. It is expected to deal 

with the most non-linear cases. Unscented transformation captures the propagation of the 

statistical properties of state estimates through nonlinear functions.  

The basic idea underlying the algorithm is to apply unscented transformations to a set of 

points (Sigma Points) representing a random variable, to estimate the probability density 

function of another random variable: the state in the next step (time update), or the output 

of the system (measurement update). Each sigma point stores mean and covariance of the 

estimated state that is used as input to the state transition and measurement functions. UKF 

filter is implemented in software by following equations [155]: 

𝑥[𝑘 + 1] = 𝑓(𝑥[𝑘], 𝑢𝑠[𝑘]) + 𝑤[𝑘] 

𝑦[𝑘] = ℎ(𝑥[𝑘], 𝑢𝑚[𝑘]) + 𝑣[𝑘] 

𝑤[𝑘]~(0, 𝑄[𝑘]),𝑣[𝑘]~(0, 𝑅[𝑘]) 

The nonlinear measurement function h relates x to the measurements y at time step k. 

By us and um denoted are additional input arguments. The state transition and 

measurement equations are for an M-state discrete-time nonlinear system and have 

additive process and measurement noise, w and v with zero mean and respectively Q and R 

covariance matrices. Value of �̂� is the state estimate and �̂� [ka|kb] denotes the state estimate 

at time step ka using measurements at time steps 0,1,...,kb. 

Like the EKF, the unscented Kalman filter can be used only for models with Gaussian noises. 

For the estimation of the state with non-Gaussian noises particle filters are used which are 

based on the sequential Monte Carlo method [156]. 
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To sum up, the table below (Tab. 14) shows the computational cost associated with the 

discussed Kalman filter and its modifications[157]: 

Tab.14. Comparison of Kalman Filter with its modifications[157] 

State estimator Model Assumed distribution Computational cost 

Kalman filter (KF) Linear Gaussian Low 

Extended Kalman Filter 
(EKF) 

Locally linear Gaussian Low (without numerical Jacobians) 

Medium (with numerical Jacobians) 

Unscented Kalman Filter 
(UKF) 

Nonlinear Gaussian Medium 

 

This model’s linearity is a crucial issue. A significant non-linearity of the numerical model of 

WWTP’s has been demonstrated. Thus, in further simulations implementations of EKF and 

UKF are investigated.  

 

7.1.3 State estimation using Kalman filter 

The Kalman filter consists of two stages - prediction and correction. During the prediction, 

the numeric model is used to calculate the behavior one step ahead. During the correction, 

the model uses the measured data. In the case when one state in vector does not have 

equivalent in measurements, the covariance "entails" unmeasured state during the 

correction step [158] and[159]. Such a phenomenon allows for the determination of the 

parameter value by entering one into the model as a state. 

In models like WWTP not all state variables are measured, so we have only output 

measurements and state estimation provides a way to reconstruct the state of the system. 

Therefore, the literature has been checked for the implementation of such an approach in a 

sewage treatment plant and an own solution has been proposed. 
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7.1.4 State estimators in WWTPs – literature review 

The concept of state estimation of WWTP to reduce consumption using the Kalman filter is 

presented in numerous publications.  

The first attempts of state estimation took place at the beginning of the 80’. Beck [153] 

presents on-line real-time state estimation and prediction in operational control of the 

activated sludge process. Mass balance across the aerator yield the 5 nonlinear ordinary 

differential equations simulating the dynamic nitrification mode. States consist of the 

following sewage parameters xt: ammonium-N, nitrite-N, nitrate-N, Nitrosomonas bacteria; 

Nitrobacter bacteria (all in g/m3). 

In publication [160], an on-line estimation of suspended solids in pilot-scale Membrane Bio-

Reactor (MBR) using a Kalman observer is presented. Authors construct state-space model 

X(t) that is n-dimensional state vector of the suspended solids (SS) concentration in the 

reactors. The test of Kalman State Observer has been designed for the dynamic estimation of 

SS in the biological tanks of WWTPs’ reactors. 

In publication[161], state estimation for large-scale wastewater treatment plants is 

presented. Authors utilize two numeric techniques: Extended Kalman Filter and Moving 

Horizon Estimation. 

Chai [162]investigates the use of the standard Kalman Filter, the Extended Kalman Filter, and 

the Unscented Kalman Filter in state estimation of a typical biological WWTP and compare 

the differences in performance of these estimation approaches. Author analyses the states 

of the model grouped into the concentration of soluble components Sj and particulate 

components Xj. 

The concept of the Kalman filter has been used many times in the task of sewage treatment 

plants simulated with ASM models of reactor. Some examples are highlighted below. 

Zeng and Liu [163]develop a distributed state estimation scheme for wastewater treatment 

processes in the context of extended Kalman filtering. In presented control algorithm is 

based on ASM1. Authors have extracted state vector X(t) that contains 78 state variables 

with 48 variables measurable. The distributed scheme is compared with a centralized 

extended Kalman filtering scheme under dry conditions.  

One of the first works addressing the problem of model state and parameter estimation is 

[164], where the Extended Kalman Filter (EKF) was applied to the ASM nr.1 in 1991. E. Ayesa 

published a detailed explanation of using modified non-linear Kalman Filter (EKF). EKF is 

implemented in model of WWTP based on IAWPRC and uses unknown numerical values of 

the state and parameter of sewage parameters as states. In the proposed application, 

measurement vector consists of 7 measurable parameters such as: COD, TKN, NH. 

In [165], EKF has been used in ASM2 model, in [166] with a reduced ASM, in [167] with 

ASM2 and in [162] with ASM3. In [168], a proper orthogonal decomposition of BSM1 is 

carried out for estimating as many as 145 state variables of all reactors of the plant via EKF. 

A measurement vector counts 49, 3 states are uncontrolled input to the WWTP plant. 
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7.2 State estimation to check performance of WWTP model 

7.2.1 Sewage influent estimation using Kalman filters 

The previous paragraph (Sec. 4.3.7) introduces a parameter estimation using Kalman filter. 

This method can be an effective way of estimating the unknown parameters of wastewater 

affecting only and exclusively on the basis of measurements made within the process. In 

order to validate the algorithm in this task, a simulation study on synthetic data has been 

performed. The process consists of two independent approaches. 

Performance check simulation. First, the reference simulation is performed. Based on the 

assumed input data, the NH4
++NH3 nitrogen (SNH) and O2 (SO) values in the reactors are 

counted. Such measurements show what values of the state of the reactor are expected 

with the known inflow sewage. This task is illustrated by the Fig. 90 below.  

 

Fig. 90. The reference run calculating synthetic data 

Parameter estimation simulation. In the second step, parameter of NH4
++NH3 nitrogen (SNH) 

istreated asunknown, its value is adopted from synthetic sensor measurements obtained 

during the reference simulation. The simulation begins with the initialization value of the 

SNH influent state and sensors’ measure. Next, the simulation aims to estimate the value of 

the influent of SNH to validate whether it matches the measurements obtained from 

previous simulations. The comparison of the estimated SNH value with the value for 

reference stimulation allows estimating the effectiveness of the algorithm. This task is 

presented by the Fig. 91. 

 

Fig. 91. The schematic of parameter estimation based on synthetic data  

 

This idea of state estimation using Kalman filters is presented in [169].  
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7.2.2 Implementation of Kalman state estimator in Płaszów WWTP 

Discussed in p. 6.2 sensitivity analysis has shown that the NH4
++NH3 nitrogen (SNH 

parameter) has the greatest impact on the purification process. Therefore, the analysis will 

be limited to SNH estimation in the inflowing sewage. The parameters will be adopted 

according to the Tab. 15. 

The paragraph describes the implementation of Kalman state estimator. In this case, the  

state estimation is based on the reference simulation.  

Tab.15. List of ASM1 variables[71] 

No Parameter Influent parameter Constant value set in BSM1 

1 Soluble inert organic matter SI 30 

2 Soluble inert organic matter SS 69.5 

3 Particulate inert organic matter XI 51.2 

4 Slowly biodegradable substrate XS 202.32 

5 Active heterotrophic biomass XBH 28.17 

6 Active autotrophic biomass XBA 0 

7 Particulate products arising from biomass decay XP 0 

8 Oxygen SO 0 

9 Nitrate and nitrite nitrogen SNO 0 

10 NH4
++NH3 nitrogen SNH 31.56 

11 Soluble biodegradable organic nitrogen SND 6.95 

12 Particulate biodegradable organic nitrogen XND 10.59 

13 Alkalinity SALK 7 

14 Total Suspended Solids TSS  211.2675 

15 Flow rate Q  18 446 

 

As presented in previous chapters (Sec. 6), selected parameters pay a crucial role during the 

operation of the wastewater treatment. In the discussed solution, the estimation procedure 

is used to estimate the NH4
++NH3 nitrogen of incoming sewage (SNH parameter). More 

precisely, two states are assumed in this implementation of the Kalman filter: 

❖ NH4
++NH3 nitrogen (SNH) influent as a parameter to be estimated,  

❖ NH4
++NH3 nitrogen (SNH) measured in KDN3 section in WWTP. 

In Sec.7.1, the idea of using the Kalman filter in wastewater treatment plant is discussed. It is 

mentioned that for the analysis of non-linear objects such as sewage treatment plants the 

following options can be considered: 

❖ Extended Kalman filter, 

❖ Unscented Kalman filter. 
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The following parameters have been used in the particular Kalman simulations (Tab. 16): 

Tab.16. Parameters used in the particular simulations 

Simulation length 

Pre run period 

Process noise covariance matrix 

Measurement Noise covariance matrix 

Alpha 

Beta 

Kappa 

 

The simulation has been performed on synthetic data, which was obtained along with the 

documentation of the BSM1 model (Fig. 92). Sewage flow increased in proportion to the 

conditions of the Płaszów WWTP (here the average of sewage flow is around 200 000 m3/h). 

Other parameters due to a lack of reliable comparative points remain original.  

 
Fig. 92. Plots presenting synthetic data used in the reference simulation  

 

 

 

 EKF 

 
UKF 
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Each week we can distinguish different weather conditions. These three weeks are the basis 

for further analysis in which the operation of the reactor model is examined (Fig. 91). 

❖ Week 1 (dryweek) is characterized dry weather conditions. In practice, the values 

change throughout the day cycle. This week is designed to allow a week long 

period to stabilize the simulation; 

❖ During week 2 (rainweek) two-day rains have been introduced. Under these 

conditions, the flow increases to approx. 250 000m3/h and as a result of 

separation the waste water contamination parameters are reduced; 

❖ Week 3 (stormweek) contains a storm in which the impact of sewage increases 

dynamically and sewage parameters change. 

The results of the above simulation are the reference base for further simulations in which 

the inflow sewage parameters are estimated. The results of the simulation of the parameter 

estimation algorithms are discussed below. The simulation lasts 21 days.  

The first week is devoted for "a start-up" - establishing a steady state (as described in the 

documentation of the BSM1 model [57]). Exactly at the beginning of day 7, a new value of 

SNH influent is “injected.” Thus, a two-week simulation is carried out in which the SNH 

influent value is dynamically estimated. The task of the parameter estimation algorithm is to 

bring the model state out of distortion and return to equilibrium. At this point, a reference 

simulation is used as equilibrium and it shows how the simulation should look like in a no-

disturbance case. Therefore, for SCADA measurements, additional tests have been carried 

out to show the operation of the simulation for the ranges discussed in Tab. 17. 

Tab.17. Parameters set in the simulation 

PARAMETER TYPE Low Value Intermediate Value High Value 

Process noise covariance matrix [0.20.20.20.2] [0.20.20.20.2] [0.20.20.20.2] 

Measurement Noise cov matrix [0.2] [0.7] [1.2] 

Alpha 0.2 0.7 1.2 

Beta 1 1.5 2 

Kappa 0.5 1 1.5 

Initial influent NH4
++NH3 nitrogen (SNH) 0 -100 

 

Two independent simulations are performed: reference simulation and an estimation. 
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First, a reference simulation is performed. As already mentioned, the reactor model is based 

on the BSM1 model. It has been proved in the previous sections  that NH4
++NH3 nitrogen 

(SNH) in influent and its volume affects the cleaning process the most. Thus, 

NH4
++NH3 nitrogen (SNH) has been estimated for incoming sewage (Fig. 91). A reference 

simulation has been performed in which it has been checked what values of ammonia in the 

reactor are registered. The idea of reference run are shown in the graphs below(Fig. 93). 

❖ NH4
++NH3 nitrogen influent is taken from BSM1 model, 

❖ NH4
++NH3 nitrogen sensor are saved as a result of the simulation, 

 
Fig. 93. Values of NH4

++NH3 nitrogen for influent and sensors - reference simulation  

Then, the results obtained in this way will be used to check whether the parameter 

estimation using the Kalman filter coincides with the simulation results (Fig. 94). 

❖ NH4
++NH3 nitrogen sensor from the reference simulation (a reference point for 

further analyzes), 

❖ NH4
++NH3 nitrogen influent is considered unknown and therefore is the object of 

the estimation. 

 
Fig. 94. Values of NH4

++NH3 nitrogen for influent and sensors – idea of state estimation 

Results of simulation 

Influent taken from BSM1 model  

nitrogen from the reference simulation  

 

Deliberate signal disturbance 

  

 
Evaluate if return to the values consistent 

with the influent taken from BSM1 model 
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7.2.3 Determination of EKF covariance matrices in simulation 

The operation of the estimation depends on the settings of the Kalman filter parameters. 

Therefore, the simulations with different values of process and measurement noise 

covariance matrices are performed.  To validate the values of the noise covariance matrices, 

the author considers running simulations with variable covariance matrices. The following 

values are taken into consideration: 

❖ Process noise covariance matrices:  

[0.02, 0.02;  0.02 0.02], [0.8, 0.8;  0.8, 0.8], [0.32, 0.32;  0.32, 0.32], 

❖ Measurement noise covariance matrices:  

[0.25], [1], [4]. 

 

Next simulation presents the test of covariance matrices (Fig. 95). 

 
Fig. 95. Results of EKF estimation for different values of process noise covariance matrices 



117 
 

(43) 

Additional calculations are made to investigate the shown ones. Importantly, the only 

meaningful reference is to measure the SNH in the reactor. Therefore, this value is checked 

for each estimation against the reference (measured) values. In order to represent the 

mathematical relationship, root mean square error (RMSE) is calculated[170]. 

𝑅𝑀𝑆𝐸 = √
∑ (𝐴𝑡 − 𝐹𝑡)𝑛

𝑡=1

𝑛
 

Where: 

𝐴𝑡– actual data 

𝐹𝑡 – forecast 

𝑛 – number of probes 

In Fig. 96 result with a lower RMSE in reference with measurement is marked and the 

appropriate value of the covariance matrix has been written. 

 
Fig. 96. Results of EKF estimation for different values of process noise covariance matrices – with minimal RSME marked 
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7.2.4 EKF in estimation for different initial values of influent 

In the analyzed case, extreme values of NH4
++NH3 nitrogen (SNH) influent are "injected," they 

correspond to the state of complete purity of the wastewater and extreme pollution: 

❖ 0 mg/l, 

❖ 100 mg/l. 

The first simulation results are performed for EKF with initial conditions between 0 – 100. 

The precise values are 0-25-50-75-100 (Fig. 97).Lines presenting the corrected NH4
++NH3 

nitrogen (SNH)  are approaching one value. Importantly, this line coincides with the reference 

values (drawn in the background). 

 
Fig. 97. Simulation results for EKF with initial conditions between 0 – 100  

 

It can be noticed that the EKF correctly estimates the value of NH4
++NH3 nitrogen (SNH) in the 

sewage. The convergence of the estimate is correct, while the value converges to the value 

of 50 mg/l. 



119 
 

7.2.5 UKF in estimation for different initial values of influent 

The next simulation implements the previously discussed Unscented Kalman Filter 

(Sec. 7.1.2). In this case, a reference simulation was also used as described for EKF (Fig. 98).  

 
Fig. 98. Simulation results for UKF with initial conditions between 0 – 100 

 

It can be noticed that the UHF simulation, like EKF, correctly estimates the value of 

NH4
++NH3 nitrogen (SNH) in the sewage. Nevertheless, from the above figures it can be 

concluded that in this case UKF works worse than the analogous simulation from EKF. The 

Performance of UKF is rather disappointing. Therefore, only EKF will be used for further 

identification. 
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7.3 Parameter identification using EKF 

7.3.1 Description of the analyzed numeric cases 

The sensitivity analysis in Sec. 6 has demonstrated sensitivity of WWTP to change of influent. 

However, only selected influent parameters have a greater impact on the operation of the 

treatment plant. Hence, the number of parameters has been limited to 1. The 

implementation of EKF and UKF filters discussed in Sec. 7.2estimates NH4
++NH3 nitrogen 

(SNH) influent parameters in relation to NH4
++NH3 nitrogen in the reactor calculated in the 

reference simulation. It is only validation of the performance of the model on the basis of 

synthetic data. The conclusions of the analysis indicate that EKF can be used to estimate 

incoming sewage parameters. 

In this case, available SCADA measurements describing the operation of a real object have 

been used. More specifically, the available measurements of NH4
++NH3 nitrogen (SNH) in the 

reactor are used. State estimation is implemented to identify the unknown parameter. The 

influent NH4
++NH3 nitrogen (SNH) is chosen as the second unknown state in this case. A 

correctly configured Kalman filter should lead to the estimation of the unknown parameter 

to possible values despite the lack of precise measurements. This idea of simulation is 

presented  below (Fig. 99). 

 

Fig. 99. Schematic of parameter estimation based on synthetic data  
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7.3.2 Selection of 21-day SCADA signal 

Unknown parameters of sewage influent are presented on the basis of BSM1 model data. 

Parameters describing CONSTANTINFLUENT signal from BSM1 are selected (Sec. 3.3.3). This 

is how DATAINFLUENT variable that simulates the influent to the WWTP is built (Fig. 100). 

In this simulation the unknown influent NH4
++NH3 nitrogen (SNH) is estimated on the basis of 

available measurements of this parameter in the reactor. 

 
Fig. 100. Example of SCADA measurements – influent data based on sensors 

The above input data requires validation. Out of the above data, the SNH, which describes 

the content of ammonia flowing into the wastewater, seems to be of particular interest. In 

CONSTANTINFLUENT input signal value of parameter is assumed constant (more precisely, 

this value is 31.56). This value originates from the BSM1 model, so it is worth customizing  

this value to the case of the sewage treatment plant in Płaszów Sewage Treatment Plant in 

Kraków. Therefore, simulations of the Kalman state estimators are performed in order to 

estimate the unknown influent parameters. For such estimation EKF and UKF are 

implemented.  

Estimated parameter  

SNH - NH4
++NH3 nitrogen in influent 
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At this point, measurements obtained in the reactors’ SCADA system are used as a 

reference. First, the data presented in the figure below have been obtained (based on the 

available SCADA data from 2015). To perform next analyses, 21- day period (3 weeks) has 

been selected as presented in the graphics. SCADA measurements are: sewage flows (in 

effluent), O2 in reactors’ sections KDN, KN1, KN2, KN3 and finally NH4
++NH3 nitrogen in KDN4 

(as described in Sec. 4.2). The author presents these measurements data below (Fig. 101).  

 
Fig. 101. Example of SCADA measurements – in each section O2 (SO) sensor andNH4 

+ +NH3 nitrogen (SNH)  
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Fig.102 pictures the measurements in NH4
++NH3 nitrogen (SNH) and sewage flow. It is worth 

underlining variability WWTP’s operation depending on the day of observations. Such 

unpredictability is caused by variations in environmental conditions - day, rain, storm etc. (as 

described in 3.2.1). 

 
Fig. 102. Example of SCADA measurements – NH4 

++NH3 nitrogen (SNH)and sewage flow sensors 

 

The corresponding airflow is presented in the Fig. 103. 

 
Fig. 103. Example of SCADA measurements – airflowsensor 
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7.3.3 Determination of EKF covariance matrices in simulation 

For this simulation, the estimation plan is similar including inter alia covariance matrices 

presented in Sec. 7.2.3. Thanks to this, the consistency of the results can be compared. The 

results of simulations are presented in the following figure (Fig. 104). 

 
Fig. 104. Results of EKF estimation for different values of process noise covariance matrices 

 

It is worth mentioning that the value of NH4
++NH3 nitrogen (SNH) is slowly setting down to 

optimum despite the lack of measurements in the Kalman filter. One can find that the 

measure of NH4
++NH3 nitrogen reaches optimum for all simulations performed with different 

values process noise covariance matrices.  
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Out of the above results, the most favorable value of process noise covariance matrices has 

been. More precisely, each result is compared with the result of the reference simulation. 

The minimal root mean square error (RMSE) is calculated (Fig. 105)and its track is marked 

with the dashed line. Noise covariance matrix parameter, equal to 0.25, has  given the best 

results. 

 
 

Fig. 105. Results of EKF estimation for different values of process noise covariance matrices – with minimal RSME marked 
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7.3.4 EKF in estimation for different initial values of influent 

Results of EKF simulations with different starting initial NHTINFLUENT are presented below. 

The values of NH4
++NH3 nitrogen (SNH) influent are as follows: 0, 25, 50, 75, 100 mg/l. Results 

are presented in Fig. 106. Presented results are in line with previous results (Sec. 7.2.3). 

 
Fig. 106. Simulation results for EKF with initial conditions between 0 – 100 
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7.4 Summary of state estimation based on Kalman filter 

Taking into account the earlier validation based on Morris, it is worth noting that the key 

parameters of the influencing wastewater are their volume and the NH4
++NH3 nitrogen 

parameter (Sec. 6).  

Summarizing the above observations, the author can conclude that the analysis of the state 

observer using the Kalman filter proves the convergence of the BSM1 model to the assumed 

value of NH4
++NH3 nitrogen (31.56 mg/l) in influent (Sec. 7). 

Taking into account the above facts, it can be said that the model is ready for further analysis 

taking into account the energy minimization criterion. The figure below shows how the 

above simulations are used in an optimization task (Fig. 107). 

 
Fig. 107. The idea of optimization based on the discussed model 
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8 Testing the operation of reactor with blowers under variable conditions 

8.1 Introduction to this paragraph 

Heretofore, some theoretical issues of optimization in the field of energy have been 

presented and numeric model of a sewage treatment plant has been described and 

validated. The previous chapters present the operating procedure of a biological reactor in a 

sewage treatment plant. Contamination of sewage influent can vary which affects the 

treatment process. Thus, depending on the quality of sewage, expected oxygen level in 

reactors changes. The content of oxygen in reactors is controlled by air pumped to reactors. 

Blowers adjust the pressure to maintain the expected airflow. Their operation consumes 

significant amount of electric power and its adjustment is expected. The question of the 

impact of the quality of wastewater affecting the operation of wastewater treatment plants 

remains open. 

In this paragraph, the author presents the results of simulations carried out to reduce the 

electricity consumption of facilities such as sewage treatment plants. 

Taking into account the above-described models of the reactor (based on BSM1) and 

blowers (based on the characteristics), they have been used to simulate the complete 

treatment process (Fig. 108). 

 

 

 

Fig. 108. General view of the optimization task 

Such system is the object simulation that allows to analyze the process in terms of 

minimization of electric energy consumption. Such numeric process is based on the 

complex implementation of wastewater treatment integrated with aeration. 

Using the numerical model of the wastewater treatment plant together with oxygenation 

presented above, which is based on the wastewater treatment plant in Płaszów Sewage 

Treatment Plant in Kraków, the author will discuss control options to reduce electric energy 

consumption during the purification process. Potentially, the modernization of pumps can 

give even 30% of savings and aeration can save up to 50% of electricity [9]. 

 

 

  

TESTED  CRITERIA: 

* ENERGY CONSUMPTION 

 

INPUT PARAMETER: 

* NH4
++NH3 NITROGEN INFLUENT  

* VOLUME 
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In the analyses presented in this chapter, parameters of the influencing sewage presented 

below are used (Fig. 109).  

 
Fig. 109. Parameters of sewage influent used in simulations 

The simulation is performed for a presented influent. First, the airflow demand is calculated. 

Such resulting airflow is the influent to blowers in Sec. 8.2and8.3. 

  

Modified parameter: 

* SNH - NH4
++NH3 nitrogen in influent 

 

Modified parameter: 

* Sewage effluent 
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8.2 How quality of sewage influent impacts the electricity consumption 

In previous chapters, it has been investigated that NH4
++NH3 nitrogen (SNH) in influent has 

the greatest influence on the process. Thus, this value is changed to validate the impact on 

electricity consumption. The values of SNH influent are: 20,30,40 and 50 mg/l. 

A detailed results of simulations for extreme values are presented below. 

The first figure (Fig. 110) presents the simulation for lowest NH4
++NH3 nitrogen. It shows that 

total airflow demand and total power of blowers is low. This is due to the fact that low 

NH4
++NH3 nitrogen causes low air demand and thus only 4 blowers operate at minimal 

utilization. 

The second graphic (Fig. 111) presents the number of blowers and average utilization for a 

period of simulation  

Graphic (Fig. 112) presents the simulation for highest NH4
++NH3 nitrogen. In this situation, 

total airflow demand and total power of blowers significantly exceed SCADA measurements. 

The fact is that the blower needs to be operated at high utilization.  

Figure (Fig. 113) shows the variability of blower operation for this case. The blowers are 

dynamically turned on/off according to the previously presented algorithm. 

The performance of the treatment plant has been investigated at intermediate values of 

NH4
++NH3 nitrogen. The observed measurements are shown in the table below (Tab. 18).  

Tab. 18. Results of simulations with variable influent NH4
+ + NH3 nitrogen 

Influent Average effluent Average blowers operation parameters 
(stop and start delay: 1h) 

Mean of 
sewage 
volume 

NH4
++NH3 

nitrogen 
Nitrate and 
nitrite 
nitrogen 

NH4
++NH3 

nitrogen 

Average power Average 
number of 
blowers 

Average 
utilization of 
blowers 

[m3/day] [mg/l] [mg/l] [mg/l] [kW] [-] [%] 

107 203 20 0.41 0.68 931.77 2.81 60.46 

30 0.46 0.68 1045.28 3.04 65.05 

40 0.51 0.69 1144.05 3.12 76.87 

50 0.54 0.69 1240.81 3.31 82.31 

 

These results allow the assumption that the relationship between the NH4
++NH3 nitrogen of 

the influent and the NH4
++NH3 nitrogen content inside of the reactor is increasing. 

Moreover, NH4
++NH3 nitrogen monotonically (increasingly)affects the operation of the 

blowers and, consequently, the electricity consumption in the facility. 

  



131 
 

 
Fig. 110. Total airflow and total power for maximal NH4

++NH3 nitrogen 

 
Fig. 111. Characteristics of simulation for maximal NH4

++NH3 nitrogen 



132 
 

 
Fig. 112. Total airflow and total power for maximal NH4

++NH3 nitrogen 

 
Fig. 113. Characteristics of simulation for maximal NH4

++NH3 nitrogen 
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Results for average effluent parameters are demonstrated in the figures below (Fig. 114).  

 

Fig. 114. Plots presenting effluent parameters:  

1) Nitrate and nitrite nitrogen (SNO) 

2) NH4
++ NH3 nitrogen (SNH) 

The change in the quality of the sewage influent affects the performance of the observed 

blowers during the treatment process (Fig. 115). It can be seen that the utilization of the 

blower increases with the deterioration of the quality of the waste water. 

 

 

Fig. 115. Plot presenting average power needed to clean m3 of sewage in one hour 

 

Summarizing the calculations, it can be concluded that influent NH4
++NH3 nitrogen (SNH) 

strongly impacts the wastewater treatment process. Nevertheless, the deterioration of the 

influencing effluent does not significantly change the effluent. Such behavior is the most 

desirable. The controller adapts to changing wastewater quality maintaining the effluent in 

desirable quality. The customization of blowers’ use clearly indicates this operation in action.  
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8.3 How the volume of influent wastewater affects the consumption of 

electricity 

The second experiment investigates how volume change for wastewater influent affects the 

process. The flow values have been selected corresponding to the physically possible 

situations in the Kraków sewage treatment plant. The mean of sewage volume ranges from 

50 000m3/day to  200 000m3/day. The analysis assumes a constant quality of wastewater, 

regardless of its quantity. 

The graphics below show the results of individual simulations for the extreme values of the 

influencing wastewater. It is worth noting that the results have been compared to the 

SCADA measurements for this case. 

The first figure (Fig. 116) shows that total airflow demand and total power of blowers is low. 

This is due to the fact that low sewage flow causes low air demand and thus only 4 blowers 

operate at minimal efficiency are required. 

The second graphic (Fig. 117) presents the number of blowers and average utilization for a 

period of simulation.  

Graphic (Fig. 118) presents the simulation for highest sewage influent. In this situation, total 

airflow demand and total power of blowers significantly exceed SCADA measurements. The 

situation results from the fact that the increased influence of sewage causes an increase in 

the total demand for air.  

This situation is well reflected in the next drawing (Fig. 119). Such a high demand for oxygen 

forces the maximum number of blowers (four) to operate at maximum utilization. As before, 

the first 7 days the model spends to stabilize.  

Finally, the performance of the treatment plant has been investigated with mean of sewage 

volume at intermediate values. The set of results is shown in the table below (Tab. 19). 

Tab.19. Results of simulations with variable volume of influent 

Influent Average effluent Average blowers operation parameters 
(stop and start delay: 1h) 

Mean of 
sewage 
volume 

NH4
++NH3 

nitrogen 
Nitrate and 
nitrite 
nitrogen 

NH4
++NH3 

nitrogen 

Average power Average 
number of 
blowers 

Average 
utilization of 
blowers 

[m3/day] [mg/l] [mg/l] [mg/l] [kW] [-] [%] 

50 000 31.56 0.30 0.63 623.45 2.07 52.59 

100 000 0.46 0.67 1003.95 2.97 63.09 

150 000 0.67 0.71 1371.94 3.89 69.21 

200 000 0.91 0.74 1609.57 4.00 92.18 

 

As in the previous chapter (Sec. 8.2), on the basis of these results, a monotonically increasing 

dependence of the amount of wastewater influencing the internal measurements of 

wastewater quality in the reactor has been assumed. This also monotonically 

(increasingly)affects the electricity consumption.  
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Fig. 116. Total airflow and total power for minimal mean of sewage volume 

 
Fig. 117. Characteristics of simulation for minimal mean of sewage volume 
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Fig. 118. Total airflow and total power for maximal mean of sewage volume 

 
Fig. 119. Characteristics of simulation for maximal mean of sewage volume 
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The plot below (Fig. 120) presents the average effluent on mean of sewage volume flowing 

to the reactor. It can be seen that with increased inflow into the treatment plant, the quality 

of the effluent in the reactor deteriorates. 

 

Fig. 120. Plots presenting effluent parameters:  

1) Nitrate and nitrite nitrogen (SNO) 

2) NH4
++NH3 nitrogen (SNH) 

 

The characteristic of the power in the relation to the mean of influent is similar. For low 

mean of sewage volume (50 000 m3/day) blowers only use half of their rated power. For  the 

highest assumed influent (200 000 m3/day) the expected performance of the blowers 

increases to almost 100%. It can be easily observed that the change of influent affects the 

average power needed to clean m3 of sewage in one hour (Fig. 121). 

 

 

Fig. 121. Plot presenting average power needed to clean m3 of sewage in one hour 
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8.4 Discussion of results 

The paragraph presents the operation of the numerical model of the sewage treatment 

plant as a whole. The modeled sewage treatment plant has been launched under various 

operational conditions. The quality of the wastewater and volume of influent affect the 

electricity consumption. This action is reflected in the characteristics for the simulation (the 

number of blowers connected and their efficiency). 

The runs with introduced extreme values of the diagnosed key parameters in the influencing 

sewage (NH4
++NH3 nitrogen and flow volume).In particular, it has been shown that the 

NH4
++NH3 nitrogen (SNH parameter) of influent wastewater has a key impact on the 

treatment process and therefore on energy demand. Moreover, the volume of effluent 

significantly influences the electricity consumption of the blowers. The results for all 

simulations are shown in the tables. 

Observing the graphs showing the total air flow and electricity consumption of blowers, it 

can be seen that in the full compliance of simulations with the SCADA measurements has not 

been achieved. Nevertheless, the results satisfied the author– the observed cyclicality of the 

simulation results coincides with the actual observations. The results presented in this 

paragraph confirm the expected behavior of the numerical environment of the sewage 

treatment plant. 

The model developed in this way is the basis for launching optimization algorithms aimed at 

reducing the consumption of electricity. The report [1] shows the operation of the control 

system in an actual wastewater treatment plant. 



139 
 

9 Control optimization for minimization of energy consumption 

9.1 Influence of blowers delay times on energy consumption 

Earlier chapters of the work inspected the operation of the sewage treatment plant model. 

The operation of the reactor system with blowers was demonstrated in accordance with the 

measurement data. Now the blowers themselves are analyzed in terms of their performance 

to optimize electricity consumption. This study investigates in particular the electric energy 

consumption  in relation to real airflow (Fig. 122). 

 
Fig. 122. Scheme of action simulated in this analysis 

Sec. 5.2.1 mentions controlling the blowers by changing the efficiency and turning them on 

and off after some delay. What is their impact on  electricity consumption? Is there any good 

criterion for optimizing electricity consumption? The analyses in this chapter perform to 

answer these questions. In this case, the author uses  the airflow registered in SCADA system 

as input to model of blowers. The aforementioned model of blowers in WWTP is used in 

comparison with the values of electricity consumption obtained in simulation with the values 

from real measurements. The simulation has been performed for different values of the 

switch-on (TON_DELAY) and switch-off (TOFF_DELAY) delay times (Fig. 123). The presented 

algorithm is an original implementation of task scheduling (sec. 2.4.4).This blower switch 

delay algorithm is  a form of the tasks scheduling algorithm implementing the lazy approach. 

 
Fig. 123. Detailed plan of performed simulation  

  

VALIDATED 

PARAMETERS 

Validated 

operation of 

the blowers 
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The values of TON_DELAY and TOFF_DELAY have been selected based on the observation of the 

SCADA signal. The following times are specifically proposed: 1h, 2h and 4h. In this 

simulation, the input value is airflow demand based on the SCADA measurement. 

The result of the analyses are shown in the Tab. 20 with Fig. 124 and Tab. 21 with Fig. 125. 

Tab. 20. Average power for different delay times during simulation 

TOFF delay [h]  

TON delay [h] 

1 2 4 

1 969.60 993.66 1015.12 

2 938.93 960.54 983.52 

4 886.58 912.02 993.08 

 
Fig. 124. Average power for different delay times during simulation 

Tab. 21. Average utilization of working blowers during simulation for different delay times during simulation 

TOFF delay [h]  

TON delay [h] 

1 2 4 

1 74.52 71.11 65.58 

2 75.76 73.56 67.52 

4 78.44 75.76 71.09 

 

 
Fig. 125. The detailed plan of performed simulation 
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The results presented above (Tab. 20 with Fig. 124 and Tab. 21 with Fig. 125) clearly show 

that the delay in switching the blowers on and off has a significant impact on the operation 

of the blowers, which results in a change in electricity consumption.  

Let’s assume that electric energy consumption for TON_DELAY and TOFF_DELAY equal 1h will be 

denoted as 100%. In this case TON_DELAY (switch on time) increased to 4h will reduce the 

electricity consumption to 91,43% of its initial value. On the other hand, prolonging the 

TOFF_DELAY(switch off time) of the blowers to 4h increases low utilization runtime, causing 

increase of electricity usage to 104,69% of the initial value. Generally speaking, on the basis 

of these charts one direct conclusion can be proposed. Forcing the blowers to procrastinate 

switching (higher TON_DELAY) causes operation of the blowers at more favorable operating 

points, resulting in a reduced power of the installation. At the same time, forcing the 

blowers to run longer (higher TOFF_DELAY) causes the operation at lower efficiency points 

resulting higher electricity consumption. 

It is worth highlighting one fact. When the blower operates for elongated time (higher 

TOFF_DELAY) airflow supplied by blowers (airflowPROVISION) covers one expected from BSM1 

(airflowDEMAND).On the other hand, delaying the moment when the blower switches on 

(higher TON_DELAY) slightly worsens the quality of the airflow supplied by blowers 

(airflowPROVISION) compared to one expected from BSM1 (airflowDEMAND). It can be assumed 

that delayed switching on (higher TON_DELAY) of a new blower might force those already 

operating to work with maximal, however still insufficient capacity. This deficiency of airflow 

will be taken into account as one of the optimization criteria in the next chapter (Sec. 9.2). 

The simulation results for the cases giving two marginal results of electricity consumption 

are described below. 

Fig. 126 presents the airflow and power for blowers operating with 1h for start 

delay(TON_DELAY) and 4h for stop delay (TOFF_DELAY). However, periodic deviations of airflow 

can be noticed. This happen when the blower shuts down and other blowers have to 

overcompensate the missing airflow. The characteristics of blowers’ operation are shown in 

Fig. 127. Here as well, one can observe that this blowers’ configuration causes the blowers 

to turn on quickly and then it is turned off after a longer period. 

By contrast, Fig. 128 presents the simulation results for blowers operating with 4h for start 

(TON_DELAY) and 1h for stop (TOFF_DELAY). One may notice that at certain periods the blown air 

does not cover the demand. The situation is caused by an extended switch-on delay of the 

blower which has been previously switched off. Fig. 129 shows that there are often fewer 

blowers in operation at any given time. This action is due to the elongation of time when the 

blowers are turned on. 
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Fig. 126. Total airflow and total power for TON_DELAY equal 1h and TOFF_DELAY equal 4h 

 
Fig. 127. Characteristics of simulation for TON_DELAY equal 1h and TOFF_DELAY equal 4h 
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Fig. 128. Total airflow and total power for TON_DELAY equal 4h and TOFF_DELAY equal 1h 

 
Fig. 129. Characteristics of simulation for TON_DELAY equal 4h and TOFF_DELAY equal 1h 
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9.2 Control optimization to reduce electricity consumption 

During the simulation presented in Sec. 9.1, it can be observed that the blowers do not turn 

on time, which causes delayed activation and a certain period of insufficient oxidation. 

However, temporary hypoxia is acceptable when it is replenished in later periods. It is clearly 

seen in the for TON_DELAY equal 4h and TOFF_DELAY equal 1h (cited Fig. 130 from Sec. 5.2.4). 

 
Fig. 130. Total airflow and total power for TON_DELAY equal 4h and TOFF_DELAY equal 1h 

Finally, this section examines the case of the control optimization of the blower reactor 

system (as presented in Sec. 2.4). The analysis of electricity consumption by blowers for 

various parameters of influencing sewage is the final stage of the dissertation. This time, all 

analyzed input parameters have been taken into account. The cost criterion is electricity 

consumption. The modelled case is described graphically in the figure below (Fig. 131). 

 

 

 

 

Fig. 131. The idea of simulations used in this chapter 

 

Airflow deficiency caused by 

blower’s delayed start 

COST CRITERION: 

* energy consumption 
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CONSTRAINTS: 

* deficiency of airflow  

OPTIMISED PARAMETERS: 

 * start/stop delay times 
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It should be borne in mind that the model of sewage treatment plant is very complex. 

Electricity consumption is not linearly dependent on input parameters including imposed 

constraints. The task can present optimization problem with following characteristics: 

❖ COST CRITERION➩The goal of optimization is to reduce power electric energy 

consumption in the model of WWTP. (Sec. 5.2); 

❖ INPUT➩ Influent NH4
++NH3 nitrogen and volume – the different qualities of the 

incoming waste water must be taken into account in the operation of the treatment 

plant (Sec. 6 , Sec. 7 and Sec. 8); 

❖ INTERNAL CONSTRAINTS➩The value of airflow expected by BSM1 model 

(airflowDEMAND) it is not fully covered by airflow feed from blowers (airflowPROVISION). 

The disturbance differ for different delay times of the controlled blowers (Sec. 9.1); 

❖ OPTIMISED PARAMETERS ➩ Start/stop delay times in blowers’ control allow for 

considerable energy savings. The longer the delay time of the blowers, the lower the 

electricity consumption. 

The limitations described above are considered as the boundary conditions for this 

optimization. In a sense, the problem appears to be the optimal control task. Unfortunately, 

the classic case of optimal control requires a continuous function (implementation of the 

equations shown in Sec. 2.4.3).However, the relation between the continuous function of 

electricity consumption as a relation of influent NH4
++NH3 nitrogen and volume is very 

complex. Therefore, the author chooses grid search approach– calculation of specific cases 

in order to determine the directions of optimal control. The adopted calculations are for a 

small number of samples. Hence, this algorithm will prove successful despite the fact that 

the computational complexity of this algorithm has been demonstrated [59], [171]. 

A set of 81 simulations has been performed in which the input parameters of wastewater 

change in accordance with quality of influent(as in Sec. 8.2) and volume of influent (as in 

Sec. 8.3). For each simulation, it has been checked how the value of airflowDEMAND and 

airflowPROVISION differ for various delay times of sewage treatment plants(as in Sec. 9.1). 

The result of simulations is presented below (Tab. 22). 

The simulation result for TON_DELAY = 4 and TOFF_DELAY = 1 is in bold. In accordance with 

Sec. 9.1 for these blower control parameters, the most efficient blower operation points are 

obtained, resulting in the highest energy savings. 
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Tab. 22. Result of simulations 

SIM 
NR. 

BLOWERS’ DELAY INFLUENT PARAMETERS MEAN SUPPLIED AIRFLOW ENERGY 
CONSUMPTI
ON 

TON_DELAY 
 

TOFF_DELAY 
 

NH4
++NH3ni

trogen 
Influent volume Reactor 

demand 
Provision  by 
blowers 

[h] [h] [m3/h] [mg/l] [m3/h] [m3/h] [kW] 

1 1 

 

1 

 

20,00 

 

50000 17937,15 18078,87 587,12 

2 100000 29733,42 29624,52 886,19 

3 150000 40789,44 40754,58 1202,54 

4 30,00 

 

50000 20390,50 20449,22 650,94 

5 100000 34072,01 33930,84 1026,80 

6 150000 46784,68 46717,65 1393,56 

7 40,00 

 

50000 22821,16 22782,76 710,55 

8 100000 38344,04 38144,63 1136,24 

9 150000 52146,26 51453,29 1502,56 

10 2 

 

20,00 

 

50000 17937,15 18079,35 587,68 

11 100000 29733,42 29572,42 888,27 

12 150000 40789,44 40736,00 1205,61 

13 30,00 

 

50000 20390,50 20497,73 652,93 

14 100000 34072,01 33910,85 1030,44 

15 150000 46784,68 46713,20 1396,53 

16 40,00 

 

50000 22821,16 22854,88 714,35 

17 100000 38344,04 38088,19 1140,51 

18 150000 52146,26 51384,93 1503,16 

19 4 

 

20,00 

 

50000 17937,15 18091,27 590,02 

20 100000 29733,42 29601,13 893,39 

21 150000 40789,44 40703,02 1211,42 

22 30,00 

 

50000 20390,50 20488,32 654,23 

23 100000 34072,01 33958,92 1038,54 

24 150000 46784,68 46647,33 1399,58 

25 40,00 

 

50000 22821,16 22880,83 718,94 

26 100000 38344,04 38140,22 1151,04 

27 150000 52146,26 51426,01 1506,81 

28 2 

 

1 

 

20,00 

 

50000 17937,15 18067,31 586,71 

29 100000 29733,42 29581,73 885,87 

30 150000 40789,44 40714,63 1201,10 

31 30,00 

 

50000 20390,50 20481,44 650,93 

32 100000 34072,01 33754,87 1017,31 

33 150000 46784,68 46507,54 1381,15 

34 40,00 

 

50000 22821,16 22657,92 703,61 

35 100000 38344,04 37607,29 1115,40 

36 150000 52146,26 51384,37 1499,93 

37 2 

 

20,00 

 

50000 17937,15 18065,54 586,95 

38 100000 29733,42 29441,10 881,86 

39 150000 40789,44 40680,97 1203,84 
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40 30,00 

 

50000 20390,50 20494,85 653,43 

41 100000 34072,01 33633,78 1017,89 

42 150000 46784,68 46696,23 1394,76 

43 40,00 

 

50000 22821,16 22714,15 708,40 

44 100000 38344,04 37603,58 1121,03 

45 150000 52146,26 51190,43 1495,56 

46 4 

 

20,00 

 

50000 17937,15 18091,27 590,02 

47 100000 29733,42 29461,52 890,61 

48 150000 40789,44 40627,68 1208,66 

49 30,00 

 

50000 20390,50 20523,25 655,95 

50 100000 34072,01 33865,37 1031,08 

51 150000 46784,68 46713,05 1401,13 

52 40,00 

 

50000 22821,16 22747,56 711,38 

53 100000 38344,04 37978,18 1142,42 

54 150000 52146,26 51391,11 1505,49 

55 4 

 

1 

 

20,00 

 

50000 17937,15 18050,58 585,44 

56 100000 29733,42 29191,60 870,61 

57 150000 40789,44 40512,83 1193,53 

58 30,00 

 

50000 20390,50 20294,06 639,31 

59 100000 34072,01 33294,65 997,09 

60 150000 46784,68 46031,96 1359,50 

61 40,00 

 

50000 22821,16 22280,57 687,43 

62 100000 38344,04 36985,19 1094,05 

63 150000 52146,26 51173,31 1491,96 

64 2 

 

20,00 

 

50000 17937,15 18060,56 586,76 

65 100000 29733,42 29175,74 870,64 

66 150000 40789,44 40576,81 1200,12 

67 30,00 

 

50000 20390,50 20307,60 641,81 

68 100000 34072,01 33313,37 1002,47 

69 150000 46784,68 46456,54 1378,66 

70 40,00 

 

50000 22821,16 22246,14 687,38 

71 100000 38344,04 36750,14 1091,31 

72 150000 52146,26 51180,11 1494,41 

73 4 

 

20,00 

 

50000 17937,15 18087,92 589,57 

74 100000 29733,42 29187,61 875,80 

75 150000 40789,44 40478,57 1203,57 

76 30,00 

 

50000 20390,50 20340,94 645,77 

77 100000 34072,01 33397,62 1010,68 

78 150000 46784,68 46690,34 1399,40 

79 40,00 

 

50000 22821,16 22357,73 695,40 

80 100000 38344,04 37349,52 1117,41 

81 150000 52146,26 51313,10 1502,66 
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The average for particular blowers switch on/off delay times (TON_DELAY and 

TOFF_DELAY) is calculated in order to simplify the analysis of results. Table below presents 

the average results for individual TON_DELAY and TOFF_DELAY parameters (Tab. 23). 

Tab. 23. Abstract of simulation results 

SIM 
NR. 

BLOWERS’ DELAY SUPPLIED AIRFLOW ENERGY CONSUMPTION 

TON_DELAY 
 

TOFF_DELAY 
 

Reactor 
demand 

Provision  
by blowers 

Mean 
Deficiency 

Mean 
Deficiency 

Mean 
Energy  

Change of 
Energy  

[h] [h] [m3/h] [m3/h] [m3/h] [%] [kW] [%] 

1-9 1 1 33668,74 33548,48 120,26 0,46 1010,72 100 

10-18 2 33668,74 33537,50 131,24 0,54 1013,27 100,25 

19-27 4 33668,74 33548,56 120,18 0,53 1018,22 100,74 

28-36 2 1 33668,74 33417,46 251,29 0,83 1004,67 99,40 

37-45 2 33668,74 33391,18 277,56 0,91 1007,08 99,64 

46-54 4 33668,74 33488,78 179,96 0,70 1015,19 100,44 

55-63 4 1 33668,74 33090,53 578,22 1,70 990,99 98,05 

64-72 2 33668,74 33118,56 550,19 1,66 994,84 98,43 

73-81 4 33668,74 33244,82 432,92 1,34 1004,47 99,38 

 

Turning to the analysis of the presented results, it can be concluded that evidently the case 

of operation with TON_DELAY=4h and TON_DELAY=1h gives lower energy consumption for 

operation for different influent quality. Extending the TON_DELAY value from 1 hour to 4 hours 

can reduce the electricity consumption by 1,95% (the situation is similar to that described in 

Sec. 9.1). 

Fig. 132 presents the summary how the quality of sewage influent differentiates 

airflowPROVISION pushed by blowers from airflowDEMAND from BSM1. TON_DELAY=4h and 

TOFF_DELAY=1h results with maximal around 600m3/h deficiency of supplied airflow (at the 

same time, the average air flow is approximately 35000-40000m3/h). 

 
Fig. 132. How variable influent differentiates airflowPROVISION fromairflowDEMAND 

for for the case of TON_DELAY=4h and TON_DELAY=1h 
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This gives an airflowPROVISION from airflowDEMAND  difference  up to 1,70% (Fig. 133). The 

momentary oxygen deficiency in the reactor can be made up for later once the necessary 

number of blowers has been turned on (after TON_DELAY).The authors of the work [126] 

indicate that the potential energy gains outweigh the costs of such an operation. 

 
Fig. 133. Airflow deficiency (how variable influent differentiates airflowPROVISION from airflowDEMAND) 

for for the case of TON_DELAY=4h and TON_DELAY=1h 

 

Finally, in the Fig. 134, the author shows how variable influent impacts mean power of 

installation for TON_DELAY=4h and TON_DELAY=1h. 

 

Fig. 134. How variable influent impactsmean power of installation 

for for the case of TON_DELAY=4h and TON_DELAY=1h 
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To sum up, elongation the blower activation time (TON_DELAY) will bring real savings. The 

potential airflow deficiency must be taken into account. Nevertheless, increased efficiency in 

order to maintain the necessary amount of blown air is a possibility to reduce airflow almost 

without being scarified by effluent quality. The potential gains outweigh the costs. The 

conclusions are in line with the study [126] which describes the similar case. Nevertheless, 

the indicated deterioration in the quality of wastewater in the process means that such 

changes should be introduced very carefully. 

 

9.3 Conclusion of simulations respecting optimization of blowers control 

A numerical model of blowers in the WWTP has been used to control oxygenation in order 

to reduce electricity consumption. The validation of the model confirms the correctness of 

the model in terms of the tested characteristics. The simulation environment significantly 

simplifies the conduct of experiments. Thanks to this solution, the experiments can go 

beyond the standard scenarios available in a real sewage treatment plant. 

The blowers are checked in terms of the control algorithm. The simulations performed in 

Sec. 9.1 suggest the implementation of task scheduling in control of blowers in WWTP. The 

entire range of operating conditions of the sewage treatment plant has been taken into 

account in the simulations. At the beginning, the blower activation time (TON_DELAY and 

TOFF_DELAY) are sat as 1h. Changing their values to 4h have an impact on the electricity 

consumption of the blowers, allowing a slight change in the electric energy consumption. 

The simulation results show the average power of the blowers can be reduced even to 

91,43% of original value. At the same time, the power of blowers increases up to 104,69% of 

initial value. Based on these results, it can be concluded that in order to reduce electric 

energy consumption the period of operation of the blowers should be extended at the 

maximum capacity and at the same time the working time at the minimum capacity should 

be shortened. 

It should be borne in mind that experimenting with oxygenation affects the sensitive process 

of bacterial growth in wastewater. Therefore, this risk must be taken into account in the 

further implementation of this control. The problem has been examined in Sec. 9.2.To solve 

the task, 81 simulations have been carried out in the treatment plant facility as a whole 

(from the impact of wastewater to electricity consumption).The calculations are a practical 

attempt to solve the optimal control for this object. Due to complexity of the model, the 

optimal solution has been found with the use of grid search. Based on paragraph 9.1, it is 

known that the blower delay should be as long as possible. Extending the switch-on value 

will reduce the electricity consumption to 98,05% of its initial value. On the other hand, 

prolonging the shutdown time of the blowers increases airflow deficiency, reaching 1,70%. 

To sum up, the discussed results are ambiguous. After elongation of TON_DELAY time reduction 

in consumption of electric energy can be observed, whereas such action worsens the 

oxygenation process. Nevertheless, forcing the blower of the sewage treatment plant to be 

turned on later brings real savings, even after taking into account the increased efficiency in 

order to maintain the necessary amount of blown air. 
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10 Summary 

10.1 Numeric model of wastewater plant as the basis of optimization 

The work presented above discusses the issues of optimization of control in industrial 

utilities exploiting criteria of electric energy consumption minimization. The sewage 

treatment plant has been selected for analysis due to the large share of total electricity 

usage. The author has undertaken the study of blowers model in terms of electric energy 

consumption. The rightness of the choices has been confirmed by the high electric energy 

consumption with simultaneous environmental impact. The work uses available data from 

the wastewater treatment plant in Płaszów Sewage Treatment Plant in Kraków. 

Complex standard simulation algorithms, such as ASM1 model and its implementations are 

used to model wastewater treatment plants. The review suggests the use of a BSM1 

environment for plant simulation. A detailed analysis of the model and measurement data 

allowed to build a model of reactors and blowers. The study has shown a complexity of 

internal operation and non-linearity of the sewage treatment plant. This numerical object is 

the basis for further optimization of operation in terms of reducing electricity consumption. 

A review of the available tools and algorithms for model validation is presented. To 

accomplish the task, the author prepared his own implementation of some of them. The 

properties of the treatment process are examined. 

More specifically, Morris' analysis has revealed the most crucial parameters. Summarizing 

the observations, the author can conclude that Morris sensitivity analyzes have proved that 

the parameters describing the NH4
++NH3 nitrogen in wastewater (SNH) have the greatest 

impact on the treatment process. Therefore, a considerable attention must be paid for 

ammonia parameters during wastewater treatment process.  

Later, the author implemented the state estimation to check the performance of WWTP and 

parameter identification utilizing the observations of state estimators grounded on Kalman 

Filter (EKF and UKF). The changed values of the NH4
++NH3 nitrogen and value of influencing 

coincided with the expected values. By these calculations, the author proves the 

convergence ofBSM1 model. The state of the art proves that the task of determining the 

energy optimal control in a facility is not a trivial task.  
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10.2 General conclusions and reference to thesis 

The author starts his work with the thesis: 

Comprehensive modeling of the industrial facilities like wastewater treatment 

plants can be used in optimization of control leading to minimization of electric 

energy consumption. 

The following calculations are performed in order to validate this statement. 

First, the operation of the numerical model of the sewage treatment plant as a whole has 

been examined. The modelled sewage treatment plant has been launched under various 

operational conditions – the runs with introduced extreme values of the diagnosed key 

parameters in the wastewater treatment process and in influencing sewage. The quality of 

the influencing effluent affects the consumption of electricity. Based on the above analyses, 

it has been demonstrated that the quality of the influent wastewater has an impact on the 

electricity consumption in the treatment plant. In particular, it has been proved that the 

NH4
++NH3 nitrogen (SNH parameter) of influent wastewater has a key impact on the 

treatment process and energy demand. Later, it is noted that the volume of influent is 

another factor affecting the process by increasing consumption of electricity. Moreover, the 

volume of influent also impacts the electricity consumption of the blowers. The results 

presented in the work confirm the expected behavior of the numerical environment of the 

analyzed installation. This behavior is consistent with common sense, thus confirming the 

correctness of the design assumptions adopted earlier. The results are similar to the 

observations presented in SCADA measurements. 

Next, the author focuses on control respecting the minimization of electricity 

consumption. The analyzed object has been researched in terms of the control algorithm. 

The results of the conducted simulations suggest that the change of the of start/stop delay 

times of the blowers has an impact on the electricity consumption. Extending the start delay 

time of the blowers allows a significant reduction in the consumption of electric energy. The 

simulations performed use task scheduling control technique. The procedures tested with 

validated model underline the rationality of the conducted investigation. 

Finally, the author utilizes the model to optimize electric energy consumption in 

blowers. The author proposed optimal control on the basis grid search to solve non-

linear optimal control problem. Nevertheless, the optimization algorithm shown in this way 

has been limited to running a simulation for selected input values. The optimization solution 

is therefore a suboptimal solution. Delaying the activation of the blowers leads to short 

situations in which the amount of oxygen deviates from the demand. The difference 

between the reactor demand and the actual airflow reaches a noticeable level. However, 

hypoxia in the rectors of biological wastewater treatment plants must be taken into 

consideration during optimization reducing electric energy consumption. Fortunately, the 

amount of oxygen in the reactor can slightly fluctuate. Hence, oxygen deficiencies can be 

made up by increasing the efficiency of blower after it is switched on.  
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Summarizing, the author describes some specific conclusions from the work: 

❖ The influent quality, especially NH4
++NH3 nitrogen,  and its volume lead to the 

observation of the impact of to the consumption of electricity; 

❖ Better operation points can be achieved by blocking the blowers leading to switching 

in better performance. Technically, simulation blowers with extended delay in 

switching on reduces electric power of the installation to 91,43% of its initial value; 

❖ It should be noted that for blowers’ station use more than 1MWof electric energy 

consumption. Saving 1%in their operation corresponds to10kW of electric 

energy. When the blower operates continuously a whole year with a similar power it 

translates to 87.6 MWh. A reduction of 8.57% of electric energy consumption has the 

potential to save up to750 MWh yearly; 

❖ The simulation of the treatment plant as a whole has shown the possibility of 

reducing the consumption to 98.05% of the initial value. On the other hand, delaying 

the activation of the blowers leads to short situations in which the amount of oxygen 

deviates from the demand. The airflow deficiency reaches1,70%; 

❖ Hypoxia in the rectors must be taken into consideration. Oxygen deficiencies can be 

made up by increasing the efficiency of blower after it is switched on because the 

amount of oxygen in the reactor can slightly fluctuate; 

❖ It ought to be concluded that complex optimization algorithms can be used to model 

wastewater treatment plants and optimize their operation in terms of energy to 

decrease its consumption leading to reduction operational costs andCO2 emission. 

With the above results the author confirms the assumption of thesis that comprehensive 

modeling of the industrial facilities like wastewater treatment plants can be used in 

optimization of control leading to minimization of electric energy consumption. 

The author declares the following issues are characterized by originality: 

❖ The implementation discussed in the dissertation is an in-depth case study of an 

existing sewage treatment plant in Kraków Płaszów. The presented work is a 

complete realization that integrates various issues in this WWTP. What is worth 

emphasizing is that such a comprehensive numerical model of Płaszów Sewage 

Treatment Plant in Kraków is the novelty. The previously described literature 

examples deal with other objects and do not cover operation of this wastewater 

treatment as a whole; 

❖ The author presents a novel method of controlling the blowers by changing the time 

that on/off blowers turn on and off. This control algorithm allows some savings of 

several percent in electricity consumption. The method of changing the control itself 

has been described in the literature, but the implementation of it in a comprehensive 

position is another innovative part of the dissertation. 

The conducted experiments do not exhaust the possibilities. It is easy to imagine other 

scenarios that can be carried out using the numerical model of the treatment plant. 

However, the author is limited to the experiments described in detail above. Further 

research may be done in the future. 
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10.3 Implementation of research and commercialization potential 

Presented dissertation touches important issue in all wastewater treatment plants – the 

process of blowing air during wastewater treatment is being studied in more detail. This is 

the crucial process in wastewater treatment in municipal installations. Due to the high 

electricity consumption of the blowers, even a small reduction of the amount of electric 

energy consumed can achieve significant savings. The saving declared in the report can be 

achieved by changing the method of switching on/off the blowers. The implementation 

presented in the dissertation is adopted to the case of one existing object of Płaszów WWTP. 

The proposed control assessment complements the work already carried out under the 

GEKON project.  

The author is limited to the detailed experiments discussed above. There is a scope for 

further model development. The analyses modelling wastewater treatment can be extended 

by another parameters observed within treatment. Process simulations may consider other 

parameters, such as the presence of carbon and assessment of the amount of phosphorus in 

the effluent sewage. Nevertheless, every change required an in-depth configuration of many 

aspects. 

The presented control algorithm is not the only way to modify the operation of blower. 

Other scenarios can be validated by using the numerical model of the treatment plant. In 

particular, validation of other control techniques and the implementation of additional 

criteria for assessing seems promising. 

There is potential for commercialization since the solution of switching blower on/off is 

deployable in other facilities. A reader can propose the implementation of such optimization 

algorithms for reduction of electricity consumption in other wastewater treatment facilities. 

This is due to the fact that in each wastewater treatment plant there is a field to tune the 

control parameters taking into account electricity consumption without any observable 

impact on the purification process. Nevertheless, all such changes must be made after a 

detailed analysis of the object. Each treatment plant is specific, therefore an implementation 

based on the numeric model requires an independent in-depth analysis. 
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