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Abstract

As modern industrial plants are instrumented with a large number of sensors, advanced monitoring
algorithms are required to extract actionable insights from the vast quantities of process measurements.
The main intention of this thesis is to provide a workflow which is able to handle the monitoring of
processes with different range of complexity.
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Figure 1: Main achievements in this thesis

This workflow is shown as the flowchart in Fig. 1. It is possible to choose a suitable monitoring
approach according to the number of operating modes in the monitored systems. For monitoring a sin-
gle mode process, a Binary Classifier for Fault Detection (BaFFle), is designed, featuring adaptability
to smoothly accommodate itself to monitor single mode systems. In addition, the BaFFle can mitigate
the influence of an inappropriate monitoring model by continuously incorporating the incoming data.
In terms of monitoring a process with multiple operating modes, this thesis investigated various ap-
plication scenarios. In the situations where process models are needed, but unknown, a data clustering
method, Dirichlet Process-Gaussian Mixture Models (DP-GMMs), was introduced to automatically par-
tition measured data with respect to operating modes without the number of clusters being known in ad-
vance. Additionally, this thesis explored the ways of exploiting recorded data for process modelling. The
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Multivariate Autoregressive State-Space (MARSS) method is used for deriving the state-space models
with the clustered data. Given process models, the Field Kalman Filter (FKF) algorithm can be used for
monitoring processes. The modules in Fig. 1, data clustering and data-based process modelling, can also
be incorporated into other monitoring algorithms. When there is no need of explicit mathematical pro-
cess models, a monitoring framework is proposed, in which cluster-based Multivariate Statistic Process
Monitoring (MSPM) approaches are the core technique for detecting faults from multimode processes.
To validate the BaFFle and the FKF algorithms, industrial-scale multiphase flow data are used. The re-
sults show that these two algorithms can improve the detection performance, particularly shortening the
detection time and reducing the false and missed alarm rates.

T. Cong Statistical reasoning analysis of fault occurrences in industrial applications



Streszczenie

Nowoczesne instalacje przemysłowe są wyposażone w dużą liczbę urządzeń pomiarowych, stąd też
potrzeba zaawansowanych algorytmów monitorujących. Pozwolą one na ekstrakcję praktycznych infor-
macji z ogromnej liczby pomiarów zmiennych procesowych. Głównym celem tej pracy jest przedstaw-
ienie sposobu postępowania, który pozwoli monitorować procesy o różnym stopniu złożoności.
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Rys. 1. Główne osiągnięcia w rozprawie.

Ten sposób przedstawiono w postaci schematu blokowego na rys. 1. Istnieje możliwość wyboru
odpowiedniego podejścia do monitorowania w zależności od liczby trybów pracy w monitorowanych
systemach. Do monitorowania procesu jednomodowego zaprojektowano klasyfikator binarny do wykry-
wania usterek (BaFFle, Binary Classifier for Fault Detection), charakteryzujący się możliwością adap-
tacji do płynnego dostosowania się do monitorowania systemów jednomodalnych. Ponadto BaFFle może
złagodzić wpływ niewłaściwego modelu monitorowania poprzez ciągłe uwzględnianie napływających
danych. Dla obszaru monitorowania procesu o wielu trybach pracy, w tej pracy badano różne scenar-
iusze zastosowań. W sytuacjach, w których modele procesów są potrzebne, ale nieznane, wprowadzono
metodę grupowania danych, Dirichlet Process-Gaussian Mixture Models (DP-GMMs), aby automaty-
cznie dzielić zmierzone dane w odniesieniu do trybów pracy bez znanej z góry liczby klastrów. Ponadto
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w pracy rozważano sposoby wykorzystania zarejestrowanych danych do modelowania procesów. Metoda
wielowymiarwych autoregresywnych równań stanu (MARSS, Multivariate Autoregressive State-Space)
służy do tworzenia modeli w przestrzeni stanów z danymi z klasteryzacji. Jeżeli modele procesów są
dostępne, algorytm Field Kalman Filter (FKF) może być używany do ich monitoringu. Moduły z rys.
1, grupowanie danych (ang. data clustering) i modelowanie procesów w oparciu o dane, można również
włączyć do innych algorytmów monitorowania. Gdy nie ma potrzeby stosowania jawnych matematy-
cznych modeli procesów, proponuje się metodykę monitorowania opartą na klasteryzacji. Podstawową
techniką wykrywania błędów w procesach wielomodalnych jest wtedy statystyczne monitorowanie pro-
cesów wielowymiarowych (MSPM, Multivariate Statistic Process Monitoring). Do walidacji algoryt-
mów BaFFle i FKF wykorzystuje się dane z wielofazowego przepływu w skali przemysłowej. Wyniki
pokazują, że te dwa algorytmy mogą poprawić wydajność wykrywania, w szczególności skrócić czas
wykrywania i zmniejszyć częstość fałszywych i pominiętych alarmów.

Istnieje możliwość wyboru odpowiedniego monitorowania podejście w zależności od liczby trybów
pracy w monitorowanych systemach. Do monitorowania pojedynczego pliku Proces trybu, Binary Clas-
sifier for Fault Detection (BaFFle), został zaprojektowany z możliwością adaptacji płynnie dostosowuje
się do monitorowania systemów jednomodowych. Ponadto BaFFle może złagodzić wpływ niewłaści-
wego modelu monitorowania poprzez ciągłe uwzględnianie napływających danych. Jeśli chodzi o mon-
itorowanie procesu w wielu trybach pracy, w tej pracy badano różne zastosowania scenariusze. W sytu-
acjach, w których modele procesów są potrzebne, ale nieznane, grupowanie danych metoda Dirichlet
Process-Gaussian Mixture Models (DP-GMMs), została wprowadzona w celu automatycznego podziału
zmierzone dane w odniesieniu do trybów pracy bez wcześniejszej znajomości liczby klastrów. Pon-
adto praca ta dotyczyła sposobów wykorzystania zarejestrowanych danych do modelowania procesów.
Metoda wielowymiarowej autoregresywnej przestrzeni stanów (MARSS) służy do tworzenia modeli w
przestrzeni stanów z danymi skupionymi. Przy danych modelach procesów można zastosować algorytm
Field Kalman Filter (FKF) monitorowanie procesów. Moduły na rys. 1, grupowanie danych i mode-
lowanie procesów w oparciu o dane, również mogą być włączone do innych algorytmów monitorowa-
nia. Kiedy nie ma potrzeby stosowania wyraźnego procesu matematycznego W modelach proponuje się
ramy monitorowania, w których oparty na klastrach wielowymiarowy proces statystyczny Podejścia do
monitorowania (MSPM) są podstawową techniką wykrywania błędów w procesach wielomodowych.
Do walidacji algorytmów BaFFle i FKF wykorzystuje się wielofazowe dane przepływu na skalę prze-
mysłową. Wyniki pokazują, że te dwa algorytmy mogą poprawić wydajność wykrywania, zwłaszcza
skracając czas wykrywania i zmniejszenie liczby fałszywych i pominiętych alarmów.

T. Cong Statistical reasoning analysis of fault occurrences in industrial applications
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1. Introduction

Process industries are concerned with conversion of raw materials into useful products. It is essential
to guarantee the safety and efficiency of processing operations. For this purpose, monitoring systems are
required to reflect the health status of operations in real-time. Nowadays, such monitoring systems may
take into account the readings from a wide range of sensors that are distributed across the process plants.

The availability of massive amounts of process measurements, produced by the sensors, leads to
the prosperity of data-based Process Condition Monitoring (PCM). The use of these measurements can
directly or indirectly reflect the health index of processes. Still, simultaneously supervising multiple
process variables might be inefficient and cumbersome. Also, in the course of operation, the number of
measurements is continuously growing. Thus, data analytics are required to manage information from
different sensors, and to draw interpretable monitoring results.

Additionally, due to the varying loading conditions or production regimes, the recorded data would be
a mix of various operating modes. There is a need to separate them according to the operating modes such
that the characteristics of each individual mode can be further analysed. To alleviate the effort required
to manually label the data according to operating modes, the data partition methods should be able to
work in an automatic manner and require little prior knowledge regarding the processes, e.g. the number
of operating modes. Then, the efficiency of data management could be improved as much as possible.

One of the barriers of applying model-based PCM methods is the process modelling of modern
industrial processes. The modelling difficulty arises from the growing complexity of industrial plants.
For example, it is challenging to describe the physics of the intricate interlinked equipment with first-
principles. With data analytics, the process models might be obtained using historical data.

Due to the demand of more reliable monitoring, new methods and algorithms are required to be
developed for PCM. This thesis investigates new monitoring approaches from following aspects:

- Development of data-driven monitoring algorithms which are practically relevant: when applied
to monitoring industrial-scale processes, besides the accuracy of monitoring results, the desirable
behaviour of monitoring algorithms should also take data management, computational efficiency,
the scalability and complexity of algorithms and other implementation issues into account.

- Investigation of nonparametric methods for describing the probability distributions of process data:
this aims to allow the estimation of probability distributions with generalisation.

- Development of monitoring algorithms with Bayesian statistic decisions: the decision given by
monitoring algorithms should be intuitive, traceable and interpretable to assist end-users to make
decisions with more confidence.
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- Development of monitoring algorithms which can perform fault diagnosis, mode identification and
anomaly detection: the algorithms should distinguish various faults or operating modes with low
misclassifications, and identify anomalies with acceptable numbers of missed and false alarms.

- Development of monitoring algorithms accounting for the dynamics of time-series measurements.

- Validation and evaluation of monitoring algorithms in real-life case studies.

The organisation of the thesis is as follows. Chapter 2 gives an overview of the fundamental concepts
and techniques of PCM, also identifies the opportunities and challenges in PCM. Chapter 3 proposes a
novel heuristic algorithm, named the Binary Classifier for Fault Detection (BaFFle), for monitoring a
single mode process. In Chapter 4, a clustering algorithm, Dirichlet Process-Gaussian Mixture Models
(DP-GMMs), is reviewed, which is a prerequisite for cluster-based monitoring algorithms. Furthermore,
to improve the clustering results, a discussion regarding how to properly initialise the parameters of
DP-GMMs is presented. In addition, the DP-GMMs is incorporated into a monitoring framework for
clustering historical data and identifying new healthy operating modes. Chapter 5 introduces the theory
behind the Field Kalman Filter (FKF) and its use in PCM with simulation examples. Chapter 6 shows
the applications of the BaFFle to fault detection, and of the FKF to mode identification and anomaly
detection, using industrial-scale PRONTO benchmark data. Chapter 7 concludes the achievements and
contributions of this thesis, as well as the potential future work.

T. Cong Statistical reasoning analysis of fault occurrences in industrial applications



2. Process Condition Monitoring (PCM)

This chapter introduces Process Condition Monitoring (PCM). The chapter begins with an overview
of PCM with respect to its motivations, tasks and characteristics. After the overview, this chapter reviews
the methodologies of process modelling and analyzes their strengths and weaknesses. Next, the definition
of multimode processes is given and the main critical characteristics of data from such processes are
summarised. Subsequently, as a pre-processing step in PCM, methods of labelling data are introduced.
The methods for building monitoring models are revisited and examples of available monitoring indices
are provided. In order to draw monitoring results, decision-making methods in PCM are reviewed from
multiple-monitoring-model scheme and single-monitoring-model scheme. Also, this chapter discusses
the opportunities and challenges of PCM in industrial practice and ends with a summary. Frequently
used terminologies and concepts in the context of PCM in industry can be found in Appendix A.1.

2.1. Overview of PCM

2.1.1. Motivations of PCM

Venkatasubramanian et al. (2003) noted that the advent of computer-aided process control has made
enormous advances in the discipline of process industries, however governing process plants still remains
largely manual activities to avoid the occurrence of abnormal events. To provide suitable control deci-
sions and actions to maintain a process in a normal and safe operating state, two traditional supervision
schemes used in industry are corrective maintenance and preventive maintenance. Corrective mainte-
nance is “only fault repair” approach (Wang et al., 2016), intervening a system only when a failure has
occurred. For a severe fault, the maintenance cost, for example, the time cost to fix the degraded com-
ponents and to recover the production line, will significantly increase, compared with a moderate fault.
Nevertheless, corrective maintenance is still an economic option for systems in which the interconnec-
tions are less complicated and the replacement cost of components is cheap. The preventive strategy is to
schedule maintenance actions, such as system condition check and replacement of system components,
at a periodic time interval (Wang et al., 2016). In this way, the failure-caused breakdowns become fewer,
relative to the corrective strategy. However, the unnecessary scheduled preventive maintenance operation
may happen even if the system state is healthy, which will result a high maintenance cost (Jardine et al.,
2006), particularly for sophisticated apparatus and equipments.

In an ideal situation, maintenance is planned when a fault is detected. To this end, sensors installed
across process plants facilitate in measuring process conditions. Given process measurements, Condition-
Based Maintenance (CBM) has gained increasing attention both in theory and applications. In CBM,
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the physical parameters of a process plant, such as pressure and flow rate, are detected, measured and
recorded (Rao, 1996).

Due to the large scale of industrial plants and complexity of process control and optimisation, indus-
trial processes are prone to hard failure and soft operational faults which will result in economic losses
(Qin, 2012). Available incident prevention measures include PCM, reconfiguring system, installing safety
instrumented systems, establishing maintenance and repair routines (Niu et al., 2010). PCM plays an im-
portant role in preventing plants from failure and shutdown whilst at the same time maintaining plant
functionality (Liu and Bazzi, 2017), sustaining efficiency and safety (Dasani et al., 2015) and yielding
high product quality (Zhou et al., 2014) and profitability.

2.1.2. Tasks of PCM

Diagnostics

Diagnostics in PCM involves fault detection, fault type diagnosis, fault severity diagnosis, root cause
analysis of a fault and many other analysis operations. In high-cost and safety-critical processes, fault
detection has enjoyed considerable attention. Increasing demands on reliability and safety of process
plants requires that faults are detected as early as possible. This is because early detection can help
with the interruption of abnormal events, then timely maintenance can be applied, so as to reduce the
possibility of severe damages to industrial facilities and avoid large productivity loss.

Various types of faults may happen in a process plant. Data from one sensor source may contain lim-
ited diagnosis information constrained to the type of sensor, physical location, range and other miscella-
neous factors. Process plants instrumented with a spectrum of sensors are able to provide heterogeneous
data. This helps with a more comprehensive understanding of the behaviours happening in the moni-
tored systems, and allows the determination of the fault type. Fault severity analysis enables to grade
the level of fault evolution within an identified fault, which is complementary information for mainte-
nance scheduling. For instance, a Self-Organizing Map (SOM) (Moshou et al., 2010) can be used for
visualising the fault severity. Another task in fault diagnosis is root cause analysis which can be aided
by identifying influential variables to the detected fault, based on which, practitioners can directly exe-
cute maintenance work targeting the degraded components. For example, one of the methods that can be
employed to pinpoint the critical variables is contribution plots (Chiang et al., 2000).

Prognostics

Rather than indicate the current health state of monitored systems, PCM also may be used to pre-
dict the health state of a system and assess the remaining life of the system. When PCM is used in
this way, the function is called prognostics. The motivation of prognostics includes alerting the user of
impending faults (e.g. system fatigue, crack propagation, and spall growth), minimising repair and main-
tenance costs and associated operational disruptions and mitigating the risk of unscheduled downtime
(Kothamasu et al., 2006). Prognostics supports the decision-making in terms of an early warning for
future degradation and allows appropriate prevention actions prior to material damages to systems. It
efficiently extends operation term and life cycle of systems.

T. Cong Statistical reasoning analysis of fault occurrences in industrial applications
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2.1.3. Characteristics of PCM

Considering the desirable characteristics of a fault diagnosis system (Venkatasubramanian et al.,
2003; Akhlaghi et al., 2017), the following requirements are put forward to guarantee the reliability and
efficiency of PCM.

– Sensitivity: the PCM system should quickly respond to an abnormal operation in a process. To
evaluate the response, detection time is used for measuring the lag between the fault starting time
and fault detected time. Usually, shorter detection time is desired. However, PCM with high sen-
sitivity will incur high false alarm rates because they are also sensitive to noise. Frequent false
alarms will result in frequent process disruptions. Thus, a trade-off between sensitivity and noise-
tolerance is required.

– Distinguishability: it is the ability of distinguishing various healthy and/or faulty operations. Un-
der ideal conditions free of noise and modelling uncertainties, PCM should have a 100% certainty
associated with the class label generated according to the current operation condition. Venkata-
subramanian et al. (2003) also pointed out that it is usually challenging for PCM with high distin-
guishability performance to tackle modelling uncertainties. The uncertainties will cause misiden-
tification.

– Robustness: to reduce the false alarm rate and mis-identification, PCM is required to be robust
to noise and uncertainties. To avoid false alarms caused by noise, monitoring limits should be
set conservatively. Moreover, PCM should preclude deterministic classification in the presence of
uncertainties.

– Adaptability: adaptability here include two aspects. First, due to varying operation demands and
loading conditions on equipments, process changes often occur in real industrial plants. To adapt to
the potential changes, PCM should timely update the monitoring scope of systems as new process
behaviours emerge. Second, the designed PCM should be user friendly and applicable to a wide
range of practical scenarios, requiring minimal re-training and adjustments. This is also called
modularity and scalability in Chapter 2 of the thesis of Stief (2019).

– Interpretability: Apart from monitoring the plant, the duties of the operators also include making
decisions based on real-time data interpretation, knowledge and past experience (Adhitya et al.,
2014). Therefore, PCM should provide interpretable monitoring results so as to assist operators in
learning about the health state of processes, identifying fault types, locating fault causes and other
condition-based tasks. Consequentially, operators can make appropriate decisions and actions.

– Storage and computational requirements: Some algorithms need to utilise historical process
data and historical monitoring results, thus PCM should consider its storage ability. Also, on-line
PCM usually requires algorithms featuring less computational complexity so as to output results
within desirable time. In particular, the occupied time caused by fetching and processing huge
amount of data is one important concern.

T. Cong Statistical reasoning analysis of fault occurrences in industrial applications
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Figure 2.1: Illustration of the differences between process modelling methods (based on Czop et al. 2011)

2.2. Methodologies of process modelling

In the process industries, the use of modelling as a decision-making tool has a long history (Cameron
and Ingram, 2008). Process models are the foundation that many applications build upon, including the
planning and design of process plants, process monitoring, model predictive control and others related
to process operations. In this thesis, we tightly define process model as a description of the process
behaviour. The behaviour under certain conditions may have strong auto-correlations (static relationship)
and cross-correlations (dynamic relationship). Therefore, one critical problem should be considered in
modelling and monitoring is how to effectively model static and dynamic characteristics.

Common modelling methodologies can be categorised into first-principles methods, data-driven
methods, and hybrids of both. According to the extent to the availability of prior process physical knowl-
edge, the resulting models are white-, black-, and grey-box models (Bhutani et al., 2006). First-principles
modelling is a white-box method as the physics of the process are well-known. Conversely, data-driven
modelling is extensively used in black-box situations. Hybrid methods are viewed as grey-box. The dif-
ferences between these modelling methodologies are illustrated in Fig. 2.1.

2.2.1. First-principles methods

Process models derived using first principles take the form of explicit mathematical equations. The
first-principles model has the advantage of encapsulating a large amount of process knowledge. The
purpose of using these equations is to provide a detailed description of the effects of the process inputs
on the process outputs.

Large-scale industrial plants are usually multi-layer structured: a plant is composed of several sub-
systems (e.g. mechanical, electrical and process subsystems) and each subsystem is composed of several
units. The multi-layer structure results in the high complexity of interactions. On one hand, the complex-
ity, at a minimum, will increase the difficulty in the physics-based description of plant-wide operations
which is typically time consuming. On the other hand, it may also indicate the existence of nonlinear-
ity. The solvability and tractability of such nonlinear models within a desirable timeframe is of central
importance in terms of their real-time applications (Pantelides and Renfro, 2013).

Usually, more expert knowledge at advanced level contributes to higher accuracy of first-principles
models. Moreover, sophisticated models, which capture and deploy process knowledge across the process

T. Cong Statistical reasoning analysis of fault occurrences in industrial applications
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lifecycle, reduce the cost of future model development and maintenance. However, due to a limited
understanding of process mechanisms and possible unknown process parameters, first-principles derived
models in terms of describing process dynamics are not reliable (Wu et al., 2019), for example, in certain
classes of applications such as those that involve chemical reactions.

To summarise, inevitably, the issues related to model sustainability, which include complexity, solv-
ability, tractability and maintainability, still remain more or less, and have to be considered to practical
and satisfactory performance. This requires the tradeoff between model sustainability and applicability
needs to take account of where the models are to be used.

2.2.2. Data-driven methods

A large number of sensors are usually installed in industrial processing plants. The main goal of
installing such sensors is to deliver critical process measurements for process monitoring and control.
Industrial practitioners believe that most process industries, particularly chemical industry, are in a “data
rich and information poor” state, and benefits can be gained from analysing the available process data
(Piovoso and Owens, 1991; Kosanovich and Piovoso, 1991). The availability of these data, the increasing
computational power and improved modelling algorithms alter the traditional modelling ways to cost-
effective data-based approaches. Most data-based modelling methods can be divided into two categories:
one is the use of Statistical Data Analysis (SDA) and another is the use of Artificial Neural Networks
(ANNs) (Qin and McAvoy, 1993).

Statistical Data Analysis (SDA)

SDA can process a huge amount of process data efficiently. Probability distribution models (e.g.
Gaussian distribution) are easy to build and suitable to describe stationary statistics of processes. How-
ever, strong assumptions, for example, Gaussian distribution or non-Gaussian distribution, will result in
a decrease in accuracy of process models. Besides, dynamic characteristics cannot be represented using
probability distribution models. It has been proven that other SDA methods, such as Principal Compo-
nent Analysis (PCA) and Partial Least Squares (PLS), can extract cross-correlations between process
variables effectively (Zhou et al., 2018). Furthermore, dynamic PCA/PLS (Li and Qin, 2001; Russell
et al., 2000, 2012), recursive implementation of PCA(Li et al., 2000)/PLS (Qin, 1998), fast moving win-
dow PCA (Wang et al., 2005) and multiple-mode PCA (Garcia-Alvarez et al., 2012) have been developed
in order to deal with the dynamics in processes. In terms of the nonlinearity problems, Jiang and Yan
(2015) developed kernel PCA and Zhang et al. (2009) introduced the kernel PLS model.

Artificial Neural Networks (ANNs)

ANNs are a kind of biology inspired computer tool which excels at analysing complicated nonlinear
associations among data (Agatonovic-Kustrin and Beresford, 2000). The modelling sources for ANNs
are input and output measurements of system and network topology (Bhutani et al., 2006). Owing to
the ready-to-be-used data and its attractive ability of capturing nonlinearity, ANNs-based modelling has
been widely studied and employed in various fields. For example, Bialic et al. (2009) utilised the ANNs
to describe the nonlinear relationships between the input and output mass flow in a fuel feeding system.
Patan (2008) pointed out that in industrial process field, ANNs can aid in fault diagnosis without specific
mathematical process models.
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2.2.3. Hybrid methods

As discussed in Section 2.2.1, complete and fine-tuned first-principles models are difficult to obtain.
In reality, for the sake of simplicity, a number of assumptions are applied to derive first-principle methods.
In addition, the data in the process industry can be incomplete and uninformative, while additional tests
on demand may be expensive (de Prada et al., 2019). A hybrid way is viable, allowing the integration of
process knowledge and valuable information contained in the data (Bhutani et al., 2006).

2.3. Multimode processes

2.3.1. General definition of multimode processes

A single mode process operates in quasi steady-state while its variable values fluctuate slightly; the
mathematical description of such process is as follows (Srinivasan et al., 2004):

����
x(t)� x(t0)

t� t0

���� < Tx, 8t 2 [t0 ��t, t0 +�t] (2.1)

where Tx is a threshold defined by users and x(t) is a random process variable. Eq. (2.1) shows that for
a steady variable, its changing rate should be small, restricted to Tx.

Srinivasan et al. (2004, 2005) defined that a process is multimode if at least one variable violates the
steady mode condition. Multimode processes are often found in process industries. There are numerous
factors resulting in multimode behaviour, such as the alternations of feedstock and compositions, the
changing of manufacturing strategies, the adjustment of set points, the ageing of equipment and the
disturbance in the external environment (Yu and Qin, 2008; Lou and Wang, 2017; Shang et al., 2017).
Multimode processes are characterised with time-varying, dynamic and nonlinear properties (Quiñones-
Grueiro et al., 2019).

2.3.2. Data characteristics in the multimode processes

Computer-aided data acquisition and storage systems allows companies to organise large databases
which record measurements relating to the machine, process and plant operation. Measurements from
multimode processes have following main critical characteristics:

– High dimensionality: modern industry plants are composed of a suite of sub-systems, featuring
high connectivity and functionality. Each subsystem embedded with a series of sensors may have
a number of measured variables. As a result, industrial processes may generate a massive amount
of data samples in high dimensions (Amini and Chang, 2018).

– Multimodality: typically, healthy process data recorded from a single mode follows a unimodal
Gaussian distribution. However, due to the varying of process conditions, multimodality can appear
in normal operating data (Tan et al., 2019).

– Nonlinearity: it is common that the relationships between process variables are nonlinear (Ge
et al., 2013), for instance, the relationships between mass and energy balance. Moreover, various
modes may have different relationships among process variables (Tan et al., 2019), which further
complicates the analysis of data from multimode processes.
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– Time-series correlation: generally, samples are generated from measurements over time and the
data are presented in chronological order. As a result of the underlying nature of processes, feed-
back control systems and time correlated disturbances, dynamic behaviours will arise between
process variables, and different samples of each variable are autocorrelated with each other (Ge
et al., 2013).

2.3.3. Methods of data labelling

Data labelling has been addressed in many contexts and by researchers in many disciplines. The ob-
jective of data labelling is to assign unique labels to data groups within each of which the observations
are matched with certain predefined characteristics. For example, labels for data consisting of various
faults would be fault types. After labelling, the differences among groups become distinct while the
common characteristics within each group emerge. Thus, users can have insights into process perfor-
mance and operation, then put forward effective solutions to the problems encountered. Chegini et al.
(2019) overviewed the methods supporting the labelling of multivariate records, and categorised these
methods into visual clustering, clustering, classification and active learning. Yet, since active learning is
more of a mechanism to improve the labelling results, this thesis only discusses the labelling methods
from following three categories.

Visual clustering

Visual clustering is to visually inspect and explore the similarities/dissimilarities in the data. For ex-
ample, scatter plots are commonly used to display two-dimensional data where clusters can be discerned
by spacial proximities of samples, and labels can be assigned accordingly. To present multivariate data
in scatter plots, dimensionality reduction steps are performed. Other approaches for visualising data in
higher dimensions, such as parallel coordinates (Wang et al., 2004) and high density plots (Thornhill
et al., 2006), can be used. Nevertheless, the criteria and process of label assignment proceeds fully under
user governance and requires the input of user knowledge and experience.

Classification

Classification-based methods is a mapping operation, from a set of unlabelled data x1,x2, . . . to a
finite set of J discrete class labels c1, c2, . . . , cJ , written as f(xi) 2 {c1, c2, . . . , cJ} where f() is a map-
ping function. The prerequisite of data labelling using classification methods is to have a comprehensive
understanding of the process performance and operation as well as an accurate and robust mapping func-
tion. Given this information, classification is a convenient and effective tool to partition raw data into
several groups.

Clustering

In clustering analysis, there are no class labels available but raw data x1,x2, . . . . The goal of cluster-
ing is to separate a set of unlabelled data into an appropriate number of subsets. The clustering methods
can operate either with the number of clusters specified or without. In the former manner, the fundamental
problem is to determine the number of clusters, J . For some applications, J can be provided by expertise
of users. Under some circumstances, the estimate of J are exclusively from the data themselves. For ex-
ample, a heuristic scheme (Tseng and Yang, 2001) and a Monte-Carlo cross validation method (Smyth,
1997) were proposed for estimating J . Many clustering algorithms require J to be provided as a-prior,
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and the quality of resulting clusters largely dependent on the estimation of J (Rui Xu and Wunsch, 2005).
To minimize the influence from pre-specified J , some clustering algorithms are developed to adaptively
and dynamically adjust the number of clusters. For instance, adaptive resonance theory networks create a
new cluster only when the characterisation match between the data and their expectations is below some
given confidence value (Carpenter and Grossberg, 1987). Dirichlet Process (DP)-based clustering analy-
sis, starting with a large specification of the number of clusters, works in an iteration way, and gradually
converges to an appropriate small value (Escobar, 1988, 1994).

2.3.4. Monitoring models

Traditional multivariate statistical monitoring approaches apply many assumptions to data (Joe Qin,
2003; Ge et al., 2013; Kruger and Xie, 2012; Zhao and Gao, 2014), for example, process variables
of linear, deterministic, normally distributed and operated under single mode. These assumptions will
cause a decrease in the accuracy of process monitoring. Hence, monitoring approaches designed for
multimode processes need to consider all the above-mentioned characteristics. There are three frequently
used methods for building monitoring models:

– Local model-based method builds several sub-models corresponding to the monitored operating
modes. Some examples can be found in the literature of Zhao et al. (2004), Zhao et al. (2006) and
Natarajan and Srinivasan (2010).

– Global model-based method builds a unified model to fit all the given operating modes. Hwang
and Han (1999) proposed to apply PCA to build a global model which accounts for various modes,
however, it requires that across all the modes, covariance structures share common process be-
haviour characteristics in the meanwhile nonlinearity characteristics are weak. Deng et al. (2017)
and Zhang et al. (2017a) have applied Kernel PCA to account for multiple operating modes, and
lead to a single monitoring model.

– Adaptive model-based method is to adaptively update the model according to the mode changes.
Xie and Shi (2012) developed an adaptive monitoring scheme in which the real-time model update
was performed by tracing process variations. Ma et al. (2014) introduced a two-step adaption mon-
itoring approach to keep the monitoring model up-to-date. Rather than fixed monitoring models,
adaptive methods behave more flexible to the changes in the process.

The above methods are also suitable for the situation where explicit mathematical models are required.

2.3.5. Monitoring indices

In this subsection, a number of monitoring indices are introduced. These indices are usually used to
determine the health of plants.

Model-based indices

The most commonly followed Fault Detection and Isolation (FDI) algorithm structure for model-
based PCM is to generate residuals, compute thresholds, and make decisions (Ding et al., 2009). Due
to the development of advanced system and control theory, model-based process condition monitoring
techniques are widely applied to highly dynamic systems and control loops which are typically located at
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the process level, aiming to provide an efficient and powerful tool to detect faults and to diagnose faults
(Ding, 2014). A highly effective FDI algorithm is often the result of highly complex process models
(Ding, 2014). In particular, the model-based PCM for Linear Time Invariant (LTI) systems has been
well-researched and established (Gertler, 1998; Blanke et al., 2006; Ding, 2008; Chen and Patton, 2012;
Patton et al., 2013). Given process models, numerous standard methods are available for designing the
fault detection and isolation systems (Frank and Ding, 1997; Venkatasubramanian et al., 2003).

Model-based FDI methods are mainly based on analytical residuals which describe the discrepancy
between the real and estimated system information. Usually, the real system information are given (e.g.
system parameters) or indirectly read from sensors (e.g. system measurements). The residual techniques
have the advantage of dealing with process dynamics, robustness issues and structural fault isolation
problems effectively and systematically (Ding et al., 2009). According to Calado et al. (2001) and
Kothamasu et al. (2006), there are three ways to generate residuals:

– Observer-based methods compare the actual system state with those estimated by either Luen-
berger observers or Kalman filters (Simani et al., 2003). Lower residual values indicate healthy
operation whereas higher values indicate the likely presence of a fault.

– Parameter estimation methods evaluate and analyse the changes in system parameters with mea-
sure inputs and outputs. For example, variation in reaction rate of a chemical process may indicate
the occurrence of a fault. However, the reaction rate is a system parameter that is difficult to mea-
sure directly. To deal with this issue, the measurements, such as pressure and temperature, can be
used for estimating the reaction rate.

– Parity space methods rely on the measurements from the system, generating residuals by compar-
ing the model and the system behaviour when the explicit system models are known.

Statistics-based indices

Generally, the multivariate statistical approaches are designed to perform process monitoring in static
or dynamic processes in the steady-state, and are able to deliver optimal performance for high-level fault
detection and diagnosis in large-scale systems (Ding, 2014).

Statistics-based methods aim to use statistics to indicate the variability in multivariate processes.
Assuming that data of normal operation are available and subject to a specific probability distribution, a
statistic for a given data sample can be calculated using distribution properties. Other most commonly
used statistics are Hotelling’s T 2 and Squared Prediction Error (SPE) (Joe Qin, 2003). Hawkins’ T 2

H

statistic is a symmetric implementation of T 2 in the residual subspace (Hawkins, 1974). The sum of
T 2 and T 2

H
is the Mahalanobis distance (Joe Qin, 2003) which is also a widely used detection index. A

combined use of T 2 and SPE was proposed by Yue and Qin (2001) as a fault detection index.

2.4. Decision-making process

2.4.1. Multiple-monitoring-model scheme

Commonly, local model-based methods generate a monitoring indicator for each of operating modes/
faulty operations. An additional decision-level fusion step, which maps the multiple indicators into a
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single, consensus monitoring decision, is often performed to identify the current operating mode or
diagnose faults. Monitoring performance benefits from this decision-making process. For example, given
a data sample, its indicator values of two or more fault types may have similar values. Without further
analysis, it is hard to determine which type of fault the data sample belongs to. After implementing
decision-level fusion, correct values are amplified, and incorrect ones are reduced (Ghosh et al., 2011).
Hence, the final decision is easy to be determined, and would be more reasonable and convincing.

More general, a decision-fusion framework usually comprises a set of classifiers. Each classifier is
able to recognise several class labels, and choose one of them as its sub-decision. The aim of a fusion
framework is to integrate the sub-decisions of all the classifiers and to conclude the final class decision. A
review of decision-level fusion in the applications of condition monitoring can be found in (Stief, 2019).
Decision-level fusion can be broadly categorised as utility-based and evidence-based methods (Ghosh
et al., 2011; Tidriri et al., 2016). For each category, one representative fusion method is introduced.

Utility-based fusion

Voting-based fusion is a utility-based method, which is easy and simple to implement. Aggregat-
ing all of the sub-decisions, the final decision is drawn through a voting fashion. Based on the voting
strategies, voting-based fusion has following variants (Ghosh et al., 2011):

– Unanimous voting: there are two status of the final decision, accept or reject. If all sub-decisions
are in agreement, the final decision accepts them; otherwise, rejects.

– Simple majority voting: the final decision is determined by at least one more than 50% the number
of sub-decisions.

– Plurality/Majority voting: the sub-decision with highest vote counts is the final decision, whether
or not the agreement exceeding 50%.

Evidence-based fusion

Bayesian fusion is an efficient evidence-based method, applied to the classifier where each class label
is estimated in a posterior probabilistic way. Bayes’ theorem is used to calculate the posterior probability.
The final label is determined based on the class with the maximal posterior value. Ghosh et al. (2011)
summarised that the Bayesian fusion method follows a four-step process: compute individual probability
of each class; compute overall probability of each class; compute Bayesian probability value of each
class; and apply decision rule.

Bayesian fusion has been successfully and widely used in diverse fields, ranging from medical testing
(e.g. disease diagnosis based on image processing (Zheng et al., 2005)), to machine condition monitoring
(e.g. fault diagnosis in a power transformer (McArthur et al., 2004) and in a motor (Niu and Li, 2017))
and to pattern recognition (e.g. Fingerprints and handwritten signature recognition (Yang et al., 2013))

For multimode PCM within a probability framework, a mixture modelling approaches have been
proposed in many research works (Ge and Song, 2010a; Yang et al., 2015; Zhu et al., 2015). As a result,
fusing mixture models in a bayesian way is able to naturally tackle noisy data of industrial processes (Ge
and Song, 2010b; Ge, 2018) and implement robust process monitoring (Zhu et al., 2014).
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2.4.2. Single-monitoring-model scheme

The development of a single monitoring model for FDI has attracted attention because of the reduced
modelling effort. This effort becomes prominent in the cases where data are of multiple operating modes.
The traditional multiple-monitoring-model scheme generates several indicators, a single model scheme
usually has one indicator. The most simple and easy way of its application to FDI is to set a threshold for
testing the indicator to identify if a data sample is normal or abnormal. For a continuous and stationary
process, the threshold can be a predefined fixed value, and the determination of it can be from expert
experience or from statistical knowledge. Alternatively, in the monitoring progress, the threshold value
can be adjusted automatically to adapt to the operating conditions (Isermann, 2006). However, it is diffi-
cult to build a single monitoring model incorporating all of the static and dynamic characteristics across
various process conditions.

2.5. Opportunities and challenges in industrial practice

The industrial processes have been hugely increasing their degree of automation ever since the 1960’s
owing to both more demanding performance requirements and the need to reduce human exposure to
repetitive, tedious and often dangerous tasks (Dos Reis and Costa, 2013). In the meantime, the evolution
in industrial automation also requires CBM to detect and diagnose abnormal operation in order to ensure
system reliability, productivity and safety. Furthermore, the industrial use of CBM has its economic
feasibility. Rastegari and Bengtsson (2014) analysed a pilot case study of a major manufacturing site in
Sweden and found that great paybacks can be gained after the implementation of CBM. There are also
many other research efforts on economic feasibility analysis of implementing CBM, and Al-Najjar and
Alsyouf (2004) have long promoted the idea that CBM can convert maintenance to a profit centre.

The performance of CBM substantially relies on the accuracy of selected PCM algorithms. Accord-
ing to Kline (1991), there are two types of errors in detection algorithms, namely false alarms and missed
alarms. The difference between these two kinds of errors is that false alarms occur in normal operation
while missed alarms appear in faulty operating conditions (Zhang et al., 2017b).

In normal operation, the operator might be too distracted or overwhelmed by false alarms to properly
carry out work duty. Some literatures investigated the causes of this alarm overload. Borowski et al.
(2011) noted that the occurrence of false alarms might be caused by irrelevant noise and outliers in
measured data. In addition, false alarms may result from the way that an adaptive monitoring method is
implemented. One frequent occasion for such false alarms to occur is during the transition between two
operating modes (Ge and Song, 2012). Tan et al. (2019) discussed the impact of overfitting issue on the
number of false alarms. The presence of missed alarms might originate in following causes. Due to the
nature of a given decision-making mechanism, a faulty data sample might be considered as normal. For
example, unanimous voting strategy for drawing detection conclusion is prone to missing faults (Stief,
2019). Another cause of the missed alarm might be that, the effect of the fault is minuscule (Stief et al.,
2019; Tan et al., 2019) or at a comparable level to noise. Moreover, a detection algorithm with a relaxed
monitoring threshold tends to have a rate of missed alarms (Yang et al., 2009). In practice, an overlooked
fault owing to missed alarms might develop into failure, further causing loss of production, equipment,
and impacting the safety of the process.
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To exploit the advantages of CBM, it is critical to design algorithms with acceptable levels of errors,
including both false and missed alarms. Additionally, the design of algorithms should be accountable
for the complexities of industrial processes, such as the noises and the multimodal operation. Normally,
noises come from processes themselves and sensors, the levels of which might be varying in distinct ap-
plications (Akhlaghi et al., 2017). Thus, PCM algorithms should be able to adapt to the various scenarios,
such that CBM might be more reliable and robust. On the other hand, for a specific application, there
can be multiple modes. Within each mode, the correlations between variables might be unique. Monitor-
ing models that can not fully capture these correlations might lead to poor detection results. Moreover,
the performance of data-driven monitoring approaches might be hindered by the training data that are
not representative of the true behaviours of processes. To address the issues of unrepresentative data,
adaptability should be considered.

2.6. Summary

In this chapter, an introduction to Process Condition Monitoring (PCM) has been given conceptually
and technically. Also, this chapter has presented the opportunities and challenges of the application
of PCM in industry. According to the investigation of the aforementioned knowledge, the following
requirements have been identified:

– The monitoring system/algorithms should be sufficiently adaptive to be used on processing systems
with a variety of complexity. The complexity might arise from the varying production demand and
loading conditions on equipments, which leads to multimodality issues. In addition, the highly
connected physical components and parts in industrial plants might also increase the complexity,
making first-principle modelling non-trivial. Thus, general solutions enable monitoring algorithms
to be easily implemented in practice.

– Monitoring algorithms should work regardless of the size of data, availability of data labels and
existence of mathematical process models.

– Fault detection algorithms should have acceptable levels of false alarms and missed alarms so as
to minimise downtime and maximise production efficiency.

– It is required that monitoring algorithms with classification ability should distinguish various op-
eration behaviours with low misclassification rate. This means that the classification is robust to
the noise and modelling uncertainties.

– The monitoring results has to be intuitive and interpretable for support engineers and operators to
make decisions regarding to Condition-Based Maintenance (CBM) with more confidence.
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3. Binary Classifier for Fault Detection (BaFFle) algorithm

Historical data might contain the measurements from start-up, transient or other unsteady phases. To
mitigate the influence of these measurements on the quality of monitoring models, monitoring algorithms
are required to accommodate the presence of unrepresentative data.

To this end, a fault detection algorithm, called the Binary Classifier for Fault Detection (BaFFle)
algorithm, is introduced in this chapter. The design of BaFFle aims to reduce false alarms and missed
alarms so as to improve the detection performance. To evaluate the detection performance, concepts,
such as sensitivity, specification and accuracy, are given in Section 3.1. The adaptability of fault detection
algorithms is discussed in Section 3.2. In Section 3.3, the uni- and multivariate Shewhart Control Charts
(SCC) are reviewed. Furthermore, a framework of applying multiple univariate control charts to monitor
a multivariate process is proposed. Principal Component Analysis (PCA) is reviewed and used in the
proposed framework. Section 3.4 introduces three widely-used univariate density estimation methods.
The details of the BaFFle algorithm are presented in Section 3.5. The chapter ends with a summary. This
chapter is developed based on (Cong and Baranowski, 2018a) and (Cong and Baranowski, 2018b).

3.1. Evaluation of the performance of fault detection algorithms

In fault detection algorithms, the detection outcomes are usually binary: healthy and faulty. When
comparing the true health state of a system against the state identified by a fault detection algorithm,
there are four possible outcomes, as shown in Table 3.1.

Table 3.1: Four possible cases of comparing the true health state of a system and the identified health state
(Márquez-Flores, 2010)

Cases True health state Identified health state

True Positive (TP) Anomaly Anomaly
True Negative (TN) Normal operation Normal operation
False Positive (FP)a Normal operation Anomaly

False Negative (FN)b Anomaly Normal operation
a FP is also called false alarm in fault detection;
b FN is also called missed alarm in fault detection.

In order to quantify the performance and reliability of fault detection algorithms, statistics, such as
sensitivity, specificity and accuracy, are often used. Zhu et al. (2010) and Baratloo et al. (2015) gave the
concepts and calculations of these statistics:
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– Sensitivity evaluates the performance of a monitoring algorithm in detecting anomalies. The cal-
culation is:

Sensitivity =
nTP

nTP + nFN
(3.1)

where nTP is the number of samples correctly identified as anomalies and nFN is the number of
samples incorrectly identified as normal operation.

– Specification evaluates the performance of a monitoring algorithm in recognising normal opera-
tion. The calculation is:

Specification =
nTN

nTN + nFP
(3.2)

where nTN is the number of samples correctly identified as normal operation and nFP is the number
of samples incorrectly identified as anomalies.

– Accuracy evaluates the performance of a monitoring algorithm in identifying normal and abnormal
samples correctly. The calculation is:

Accuracy =
nTP + nTN

nTP + nTN + nFP + nFN
(3.3)

Generally, fault detection algorithms which are performing well should have high sensitivity, specifi-
cation and accuracy. This indicates that the number of false alarms (FP) and missed alarms (FN) should
be low. In practice, false alarms usually lead to unnecessary maintenance actions while missed alarms
may result in severe failures. In order to avoid the economic losses due to equipment downtime, and to
reduce the time required to fix equipment, Orkisz (2017) suggested that monitoring systems should be
prone to tolerant of false alarms, but be less tolerant of missed alarms.

3.2. Motivations of the adaptability of fault detection approaches

In industry, due to the plant-wide installed sensors, multiple process-condition-related variables can
be collected, and be used to analyse the health state of plants. However, independently monitoring these
variables might result in misleading interpretation of the health index of plants (Bersimis et al., 2007).
On the contrary, Multivariate Statistic Process Monitoring (MSPM) techniques, for instance, Hotelling’s
T 2, aims to treat variables collectively and draw a unified monitoring limit. In such way, plant operators
do not need to inspect multiple variables simultaneously. Particularly, MSPM techniques are appropriate
for monitoring cases with massive amounts of measurement data. Nevertheless, high correlation between
variables might cause biased monitoring results. To deal with this problem, methods, such as Principal
Component Analysis (PCA), Partial Least Squares (PLS) and Canonical Variate Analysis (CVA), can
be adopted to minimise the correlation, as well as to extract features and reduce data dimensionality.
Furthermore, Jiang et al. (2015) pointed that given independent and identically distributed process noises,
PCA and PLS methods are suitable for process measurements. Due to the fact that the performance of
PLS method is largely dependent on the number of selected features (Guo et al., 2020), in this thesis,
PCA is selected for pre-processing measurement data.

In fault detection applications, typically, PCA models for feature extraction and control limits for
distinguishing faults from normal operation are trained in an off-line manner, then applied to on-line
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detection tasks. The monitoring models comprising of PCA models and control limits are fixed, thus are
suited to perform fault detection for time-invariant processes. However, in industrial practice, there are
many normal process changes over time, such as batch processes and changing external loading con-
ditions. The characteristics of time-varying industrial processes summarised by Li et al. (2000) include
changes in the mean, changes in the variance and changes in the correlation structure among variables.
Often, monitoring models which do not consider these time-varying characteristics will be prone to false
or missed alarms. To address this problem, various authors have investigated adaptive monitoring meth-
ods such that monitoring models can be adjusted on-line so as to reflect the real-time process behaviours.
Wold (1994) proposed the exponentially weighted moving average based-PCA method. Li et al. (2000)
used a recursive approach to update PCA-based monitoring models. Liu et al. (2009) applied a moving
window into recursive PCA methods.

In the online monitoring case, the number of collected data grows in the course of operation. The
newly acquired measurements can be used to improve the monitoring performance. However, it might be
unnecessary to continuously update PCA models, especially for a steady-state process. Also, frequently
updating PCA models online will decrease computation efficiency. Given a steady-state process, one
fixed monitoring model may be able to account for the entire process if the training data are sufficient.
Nevertheless, a process might be unsteady at the start-up phase and gradually evolve into steady state.
For such a process, the problem is that the control limits obtained using data including start-up will be
higher than the ones with only steady-state data. This problem may potentially be addressed by training
a monitoring model which is representative of the steady-state by excluding the data from start-up stage.
However, in multivariate data cases, due to signal delays and highly correlated relations between vari-
ables, data examination to remove the start-up data requires engineers and operators to be very familiar
with the monitored systems. Adaptive fault detection algorithms are promising to fit monitoring models
to normal changes in the signal measurements and to detect anomalies. In Alkaya and Eker (2011), a
threshold adjustment mechanism was designed to enable the monitoring models applicable for fault de-
tection in transient operating conditions. In this thesis a heuristic fault detection algorithm, called BaFFle,
is proposed to adaptively update monitoring models, particularly for control limits.

3.3. Process control charts

In order to distinguish abnormal operation in industrial processes, control charts are widely used.
According to the number of inspected variables, monitoring approaches can be generally divided into
univariate and multivariate categories. Shewhart Control Charts (SCC) are often used in online process
monitoring due to their low computational complexity and performance in detecting severe faults (Chaa-
bane et al., 2018). In this section, the univariate and multivariate SCC are reviewed. Moreover, the flow
diagram showing how univariate control charts may be applied to inspect multiple variables is proposed.

3.3.1. Univariate Shewhart chart

In the 1920s, Walter A. Shewhart devised the univariate SCC (Shewhart, 1926) which was often
applied to monitoring stable processes (Hryniewicz and Kaczmarek-Majer, 2018). There are two key el-
ements in the univariate SCC, the baseline and the control limits. The baseline represents the mean value
of a normal process (Hryniewicz and Kaczmarek-Majer, 2018). The control limits depict the boundary
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of a process under normal operation, which can be bilateral (two limits, the Upper Control Limit (UCL)
and the Lower Control Limit (LCL)) or unilateral (either UCL or LCL is selected for monitoring). Faults
defined in the univariate SCC are those samples falling outside the limits while samples within given
boundaries are normal operation.

An assumption for applying the univariate SCC is that the healthy samples are independent, and
follow a Gaussian distribution. Given univariate process measurements x1, x2, . . . , xn, the baseline and
the control limits are calculated by:

BL =
1

n

nX

i=1

xi

UCLu = BL + c�̂

LCLu = BL � c�̂

(3.4)

where BL represents the baseline, UCLu and LCLu are respectively the UCL and LCL of a univariate
control chart. c is a coefficient defining the level of deviation, usually set to 3 corresponding to a confi-
dence level of value 99.97% . The univariate SCC allows the detection of a possible mean shift above
UCLu or below LCLu.

3.3.2. Multivariate Shewhart control chart

In bivariate cases, when process data follow a Gaussian distribution, probability elliptical contours
can be derived. The probability elliptical contours are lines connecting points of equal probability, which
can be used as monitoring limits (Alt and Smith, 1988). However, when the number of inspected vari-
ables is more than 3, the elliptical contours are not applicable. This is because it becomes increasingly
difficult to visualise the contour plots (Liu, 1995). Thus, a multivariate SCC needs to be designed, which
is applicable to high dimensional (3+) cases. The basic idea of the multivariate SCC is to employ a uni-
variate monitoring statistics to extract the information in multiple variables. Assuming a random sample
x⇤ 2 Rm subject to a multivariate Gaussian distribution parameterised by µ 2 Rm and ⌃ 2 Rm⇥m,
Bersimis et al. (2005) gave the derivations of the monitoring statistics of x⇤ as follows :

– If µ and ⌃ are known,
C(x⇤) = (x⇤ � µ)>⌃�1(x⇤ � µ). (3.5)

where C(x⇤) is the monitoring statistics of x⇤, following a Chi-square distribution with m degrees
of freedom.

– If µ and ⌃ are unknown,
C(x⇤) = (x⇤ � µ̂)>⌃̂�1(x⇤ � µ̂) (3.6)

where µ̂ and ⌃̂ are the estimates of µ and ⌃ using historical data x1,x2, . . . ,xn. C(x⇤) in Eq.
(3.6) follows the distribution (Odiowei and Cao, 2009):

n(n�m)

(n� 1)(n+ 1)m
C(x⇤) ⇠ F (m,n�mx) (3.7)

where F denotes the Snedecor’s distribution.
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The multivariate SCC is the plot of monitoring statistics against time, along with control limits which
are determined by the chosen statistical significance level (e.g. 95%).

3.3.3. Apply univariate control charts to multivariate cases using PCA

The multivariate SCC might be inapplicable for high-dimension systems with collinearities (Bersimis
et al., 2005) since collinearities might result in model parameters with high uncertainty levels, and the
increase of inaccuracy in statistics (De Marco and Nóbrega, 2018). To address the collinearity issue, a
common method is the use of projection methods, such as Principal Component Analysis (PCA) and
Partial Least Sqaures (PLS). In this work, PCA is selected due to its abilities of extracting uncorrelated
features and reducing dimensionality (Jolliffe, 2011).

Feature extraction: Principal Component Analysis (PCA)

PCA has been successfully used in MSPM. The main objective of PCA is to derive a few indepen-
dent components from high-dimension data. The specific operation is to linearly project highly correlated
multivariate data to a lower dimension space in which variables are uncorrelated. The extracted compo-
nents are also known as features.

Let X̃ = [x̃1, x̃2, . . . , x̃n] 2 Rm⇥n denote a normalised measurement matrix with zero mean and
unit variance, where x̃i represents the i-th measurement vector of m-dimension. To linearly project X̃
from a m-dimension space to a v-dimension principal component space, eigenvectors of X̃ are required.
There are two popular methods to calculate the eigenvectors:

– Eigenvalue Decomposition (ED):
⌃̃ = VLV> (3.8)

where V 2 Rm⇥m is a matrix of eigenvectors. Each column of V is an eigenvector. L 2 Rm⇥mis a
diagonal matrix with eigenvalues in descending order. ⌃̃ 2 Rm⇥m is the sample covariance matrix
calculated by

⌃̃ =
X̃X̃>

n� 1
. (3.9)

– Singular Value Decomposition (SVD): X̃ can be factorised as

X̃> = USL> (3.10)

where U 2 Rn⇥n is a matrix containing orthogonal eigenvectors of X̃>X̃ , L 2 Rm⇥m is a matrix
containing orthogonal eigenvectors of X̃X̃> and S 2 Rn⇥m is a rectangular diagonal matrix with
square roots of eigenvalues in descending order (Baker, 2005) .

Denote v as the first v eigenvectors with a certain accumulated explained variance. v is selected by
P

v

i=1 liP
m

i=1 li
� Varacc (3.11)

where li is the ith eigenvalue corresponding to eigenvalues in the descending order and Varacc is the
value of accumulated explained variance. A reduced matrix V by selecting the first v columns of it is
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Data acquisition

Sensor 1 Sensor 2 ⋯

Process variable 1

Feature 1 Feature $

Sensor %

Process variable 2 Process variable %⋯

⋯

Pre-preprocessing: 
PCA feature extraction

Univariate control chart of 
feature 1

Univariate control chart of 
feature $

Figure 3.1: The diagram of generating multiple univariate control charts: data are recorded from various
sensors, each sensor documenting a specific process variable. Given the collected data, PCA is applied
to extract uncorrelated features. As features are independent to each other, univariate control charts can
be obtained according to Section 3.3.1, furthermore can be used for monitoring processes.

written as Vv 2 Rm⇥v which is also called the projection matrix. The projection is performed by:

Y = X̃>Vv (3.12)

where Y = [y1,y2, . . . ,yn]> 2 Rn⇥v is the projection of X̃> in a v-dimension space. yi 2 Rv is
the projection of xi. Let y{j,i} denote the j-th feature of yi where j = 1, . . . , v. The j-th feature of
Y is written as Yj = {y{j,1}, y{j,2}, . . . , y{j,n}}. Yj , 8j are independent to each other. Another way
to calculate Y is the product of Uv 2 Rn⇥v and Sv 2 Rv⇥v. Although both methods can obtain the
projection matrix, when ⌃̃ is either singular or numerically very close to singular, Erichson et al. (2016)
pointed out that SVD takes advantage of its numerically stable matrix decomposition.

Multiple univariate control charts

The objective of using control charts is to visualise the variation of a process with time stamps
displayed on the horizontal axis and monitoring statistics on the vertical axis (Stijn, 2018). When there
are a large quantity of inspected variables, to enable the visualisation, it is necessary to convert multiple
variables into a univariate monitoring statistics. The conversion can be achieved using the multivariate
SCC. However, if variables are correlated to each other, the monitoring statistics might bring bias to
detection results. Therefore, often pre-processing steps, for example, feature extraction, are employed to
mitigate the bias. In this thesis, due to the use of PCA, extracted features can be treated independently.
With this property, different from generating a univariate monitoring statistics via the multivariate SCC,
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this work retains the use of univariate control charts.

The diagram in Fig. 3.1 illustrates how univariate control charts might be generated. For a system
equipped with numerous sensors, there are a wide range of process variables generated, leading to high
dimensionality of process data. When the process is operating, sensor readings are collected in data
acquisition systems. After PCA is applied to process data, only features retaining most variances are
kept. The number of remaining features is less than the number of process variables. Thus, dimension
reduction is achieved. Also, since the features are independent to each other, the detection result given
by each feature should not be influenced by others. In this sense, it is possible to implement univariate
control charts over individual features instead of the original process variables, and to obtain individual
detection results.

3.4. Density estimation approaches for univariate data

The use of univariate control charts requires the probability distribution of each feature to be known.
In this section, three density estimation methods for univariate data are introduced and discussed.

3.4.1. Histograms

The histogram was first introduced by Pearson (1895), and considered one of the most sim-
ple and widely used density estimators (Bedoui, 2013). To plot the histogram, it is needed to spec-
ify an origin y0 and a bin width b. Given this information, bins of the histograms are defined as
Bk = [y0 + kb, y0 + (k + 1)b) where k = . . . ,�1, 0, 1, . . . . For a random feature sample y⇤ 2 Yj ,
the estimated density P̂ (y⇤) at interval Bk, follows:

P̂ (y⇤) =
n(y{j,i} 2 Bk)

nb
(3.13)

where n(y{j,i} 2 Bk) denotes the number of y{j,i} in the interval Bk.

The histogram is a useful tool to present the density of a set of univariate data. However, the choices
of the origin point y0 and the bin width may have quite an effect on the density estimation (Silverman,
1986). Moreover, any discontinuity in the histogram indicates that the derivatives of the Probability
Density Function (PDF) are not obtainable (Silverman, 1986).

3.4.2. Parameter estimation for Gaussian distributions

The Gaussian distribution is a continuous distribution and is an approximation of the probability
distribution of a large quantity of independent random samples according to the Central Limit Theorem.
The PDF is (Gubner, 2006):

P (y⇤) =
1q
2⇡�2

j

exp

"
�1

2

(y⇤ � µj)2

�2
j

#
(3.14)

where µj and �j are the Gaussian parameters for the j-th feature, and can be estimated from Yj according
to Lee et al. (2015):
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µ̂j =
1

n

nX

i=1

y{j,i}

�̂j =

vuut 1

n� 1

nX

i=1

(y{j,i} � µ̂j)
2

(3.15)

Given Gaussian distributions, the univariate SCC can be applied.

3.4.3. Nonparametric method: Kernel Density Estimation

The PDF estimation solution given in Section 3.4.2 is suitable in the cases where univariate data fol-
low Gaussian distributions. To deal with the non-Gaussian cases, Kernel Density Estimation (KDE) can
be applicable, particularly for univariate random processes (Bowman and Azzalini, 1997). The estimated
PDF at point y⇤ is

zj =
y⇤ � y{j,i}

h

P̂ (y⇤) =
1

nh

nX

i=1

K(zj)
(3.16)

where h is the bandwidth and K(·) is a kernel function. The overall performance of the distribution
estimation is significantly associated with the selection of bandwidth. Chen (2017) illustrated that an
excessively small value of h will result in a rough distribution plot whereas an excessively large h will
over-smooth the plot. There are many equally valid ways of determining the bandwidth (Odiowei and
Cao, 2009). The optimal bandwidth hopt can be roughly estimated by (Bowman and Azzalini, 1997):

hopt ⇡ 1.06�jn
�0.2. (3.17)

The choice of the kernel is less crucial for density estimation of independently and identically distributed
random variables (Shen and Agrawal, 2006). In this thesis, the Gaussian kernel is used:

K(zj) =
e

�z2j
2

p
2⇡

. (3.18)

3.5. BaFFle algorithm

3.5.1. Nomenclature

Table 3.2 lists the mathematical symbols used in the BaFFle algorithm as well as their definitions.
Please note that these symbols and definitions are only relevant for this chapter.

3.5.2. Fault detection across individual features

In traditional anomaly detection algorithms, any incoming samples exceeding control limits are con-
sidered as anomalies. Nevertheless, within such a detection mechanism, false alarm rates might be high.
For example, even if a process is under control, some individual samples falling outside the control limits
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will be identified as abnormal operation, due to random fluctuations. Reducing false alarms by setting
wide control limits might cause high numbers of missed alarms. To balance the false and missed alarms,
a mechanism of warning and detection is introduced in this work.

Table 3.2: Nomenclature for the BaFFle algorithm

Symbol Description

yt = [y{1,t}, . . . , y{v,t}]
> A vector containing v extracted features of a multivari-

ate data sample at time t

y{j,t} The j-th feature of yt

ŷ{j,t} A sample in the moving window associated with y{j,t}

l The width of the moving window

Ŷ{j,t} = {ŷ{j,t�l}, ŷ{j,t�l+1}, . . . , ŷ{j,t�1}} The data set for deriving control limits for y{j,t}

↵{1,j,t} The confidence level for calculating the control limits
to alert if y{j,t} is an anormaly

↵{2,j,t} The confidence level for calculating the control limits
to determine y{j,t} is normal or abnormal

UCL↵{1,j,t} Given ↵{1,j,t} , the UCL for y{j,t}

LCL↵{1,j,t} Given ↵{1,j,t} , the LCL for y{j,t}

UCL↵{2,j,t} Given ↵{2,j,t} , the UCL for y{j,t}

LCL↵{2,j,t} Given ↵{2,j,t} , the LCL for y{j,t}

� A contribution coefficient

s" The step rate of increasing ↵{2,j,t}

s# The step rate of reducing ↵{2,j,t}

W{j,t} Warning result of y{j,t}, 2 {0, 1}

D{j,t} Detection result of y{j,t}, 2 {0, 1}

nD{j,t}=1
The counts of D{j,t} equal to 1, j = 1, . . . , v

nD{j,t}=0
The counts of D{j,t} equal to 0, j = 1, . . . , v

Dyt The detection result of yt, 2 {0, 1}

Determination of control limits

As discussed in Section 3.3.3, multiple univariate control charts are adopted in the BaFFle algorithm.
Moreover, the control charts are designed to be adaptive to account for the changes over time.

Fig. 3.2 illustrates a sliding window may be used to calculate the adaptive control limits. The BaFFle
algorithm starts to function at the time stamp t = l + 1 due to the requirement of collecting l samples
for each extracted feature. When t = l + 1, the control limits for monitoring y{j,l+1} are derived from
a training set Ŷ{j,l+1} as the initial window shown in Fig. 3.2. The samples in Ŷ{j,l+1} are initialised by
ŷ{j,1} = y{j,1}, ŷ{j,2} = y{j,2}, . . . , ŷ{j,l} = y{j,l}. Given Ŷ{t,j}, the control limits for a confidence level
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Figure 3.2: Illustration of sliding window: to generate adaptive control limits, a sliding window is used in
the BaFFle algorithm. For each feature, a window of length l is created. Sub-figure (a) gives the window
of the j-th feature at time l + 1. The control limits for monitoring yj,l+1 is derived from Ŷ{j,l+1} =
{ŷ{j,1}, ŷ{j,2}, . . . , ŷ{j,l}} which are initialised with yj,1, yj,2, . . . , yj,l. yj,t is the j-th feature of yt. Given
Ŷ{j,l+1}, the control limits UCL↵{1,j,l+1} , LCL↵{1,j,l+1} , UCL↵{2,j,l+1} and LCL↵{2,j,l+1} are derived using
Eq. 3.19. To generate Ŷ{j,l+2} for calculating UCL↵{1,j,t} , LCL↵{1,j,t} , UCL↵{2,j,t} and LCL↵{2,j,t} , the
window slides to the next time stamp, resulting in ŷ{j,2}, ŷ{j,3}, . . . , ŷ{j,l+1}, as shown in sub-figure (b).
The value of ŷ{j,l+1} is determined according to Eq. 3.22, 3.23 and 3.24.

↵{1,j,t} are calculated by:

P (LCL↵{1,j,t} < ŷ⇤ < UCL↵{1,j,t}) =

Z UCL↵{1,j,t}

LCL↵{1,j,t}

p(ŷ⇤)dŷ⇤ = 1� ↵{1,j,t} (3.19)

where p(ŷ⇤) is the PDF of Ŷ{t,j}. In the same way, the control limits, UCL↵{2,j,t} and LCL↵{2,j,t} , for a
given confidence level ↵{2,j,t}, can be derived. When p(ŷ⇤) is subject to a Gaussian distribution, control
limits can be directly obtained by the univariate SCC in Eq. (3.4); otherwise, the KDE can be applied to
estimate the PDF, then find the confidence intervals for given ↵{1,j,t} and ↵{2,j,t}. In this thesis, ↵{1,j,l+1}

and ↵{2,j,l+1} are initialised with 99.7% and 99.9% corresponding to the deviation of 3�j and 4�j in the
Gaussian distribution.
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Fault detection

The alert system for y{j,t} works as

W{j,t} =

8
<

:
0, LCL↵{1,j,t} < y{j,t} < UCL↵{1,j,t}

1, otherwise.
(3.20)

where value 0 represents normal operation whereas 1 represents abnormal operation. The determination
of if y{j,t} is abnormal is according to

D{j,t} =

8
<

:
0, LCL↵{2,j,t} < y{j,t} < UCL↵{2,j,t}

1, otherwise.
(3.21)

where the values of 0 and 1 have the same meanings as in Eq. (3.20).

Update of monitoring models

For a new time stamp (see Fig. 3.2), the window of length l slides one sample to have Ŷ{j,l+2} =

{ŷ{j,2}, ŷ{j,3}, . . . , ŷ{j,l+1}} in which ŷ{j,l+1} is created according to the detection results of y{j,l+1} (see
Eq. (3.20) and Eq. (3.21)). Also, to increase the sensitivity of the detection algorithm, ↵{2,j,t} is adjusted
over time, depending on W{j,t} and D{j,t}. The update of monitoring models are shown as follows:

– W{j,t} = 1 and D{j,t} = 1. When y{t,j} is identified as an anomaly given ↵{1,j,t} and ↵{2,j,t}, the
calculations of ↵{2,j,t+1} and ŷ{j,t} follows:

↵{2,j,t+1} = ↵{2,j,t}

ŷ{j,t} = y⇤⇤.
(3.22)

where y⇤⇤ denotes a random sample from Ŷ{j,l+1}.

– W{j,t} = 1 and D{j,t} = 0. When y{j,t} is indicated as an anomaly by ↵{1,j,t}, but recognised as a
normal sample by ↵{2,j,t}, it is necessary to narrow the normal operation region defined by ↵{2,j,t}.
To this end, the value of ↵{2,j,t+1} should be adjusted smaller relative to the value of ↵{2,j,t} while
its minimum value is restricted to ↵{1,j,l+1}.

↵{2,j,t+1} = max(↵{1,j,l+1},↵{2,j,t} � s#)

ŷ{j,t} = �y{j,t} + (1� �)y⇤⇤.
(3.23)

where s# is the step rate. The value of s# is in the range [0,↵{2,j,l+1}�↵{1,j,l+1}]. When s# takes its
maximum value, UCL↵{2,j,t} and LCL↵{2,j,t} are invariant along time. In this work, s# = 0.01%.
� 2 [0, 1] is a coefficient which is used to determine the portion of y{j,t} contributing to ŷ{j,t}. �
is set with the value of 0.1 in order to mitigate the impact of a false negative y{j,t} on ŷ{j,t}

– W{j,t} = 0 and D{j,t} = 0. In this case,

↵{2,j,t+1} = min(↵{2,j,l+1},↵{2,j,t} + s")

ŷ{j,t} = �y{j,t} + (1� �)y{j,t�1}.
(3.24)
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Figure 3.3: Flowchart of the BaFFle algorithm: the initial monitoring model is trained with the first l
samples. PCA is applied to extract independent features Ŷj,t, 8j. Then control limits over each feature
are calculated using Eq. 3.19 to have UCL↵{1,j,t}, LCL↵{1,j,t}, UCL↵{2,j,t} and LCL↵{2,j,t}. Given these
control limits, the binary monitoring indicators Wj,t and Dj,t are determined for yj,t. yj,t is the j-th
feature of sample yt. If there are more Dj,t of value 1 than of value 0, sample yt is identified as abnormal.
In addition, the combinations of the values of Wj,t and Dj,t guide how to update the confidence level and
calculate ŷj,t for the next time stamp (see Eq. 3.22, 3.23 and 3.24).

where s" 2 [0,↵{2,j,l+1} � ↵{1,j,l+1}] is the step rate of increasing ↵{2,j,t}. Analogous to s#, for
s" with its maximum value, the control limits corresponding to ↵{2,j,t} are unchanged over time.
In practice, s" is set according to user requirements. It is suggested to let s" > s#, given which,
control limits would return back to previous values faster so as to limit the number of false alarms.
In this thesis, s" = 0.05%.

Decision-making in the BaFFle algorithm

In Chapter 2, three voting-based decision-making strategies have been briefly introduced, respec-
tively, unanimous voting, simple majority voting and plurality/majority voting. Since in multi-label clas-
sification, the majority voting is advantageous due to its low missed alarm rate comparing with the
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unanimous voting and simple majority voting. In the BaFFle algorithm, the majority voting strategy is
employed for determining if yt is normal. Nevertheless, for binary classification cases, simple majority
and majority votings are one and the same. The fault detection in the BaFFle is expressed as:

Dyt =

8
<

:
0, nD{j,t}=1

< nD{j,t}=0

1, nD{j,t}=1
> nD{j,t}=0

.
(3.25)

where values 0 and 1 respectively represents normal and abnormal. When nD{j,t}=1
= nD{j,t}=0

, it means
that yt is undetermined .

3.5.3. Workflow of the BaFFle algorithm

The flowchart shown in Fig. 3.3 summarises the procedure of anomaly detection using the BaFFLe
algorithm. The PCA-based feature extraction method is applied to a small amount of multivariate data
samples collected on-line. Over each retained feature, an initial window is created, the length of which is
same as the number of collected samples. Control limits for warning (UCL↵{1,j,t} and LCL↵{1,j,t}) and
identifying (UCL↵{2,j,t} and LCL↵{2,j,t}) anomalies are calculated based on the samples within each
window (see Eq. (3.19)). Subsequently, the values of warning and detection indicators are determined
by Eq. (3.20) and (3.21), respectively. The identification of whether or not a sample yj,t is anomalous is
performed by a majority voting strategy. If there are more features supporting the identify of normal, the
process operation of time t is considered as normal; otherwise, abnormal. In addition, the control charts
are variant along time, determined by the samples within monitoring windows and confidence levels.

3.6. Summary

Chapter 3 has investigated the statistics for evaluating the fault detection algorithms. The formulation
of these statistics have shown that reducing the number of false and missed alarms would contribute to
improving monitoring performance. Through literature review, it has been found that adaptability could
be a direction to work on. A Binary Classifier for Fault Detection (BaFFle) algorithm have been pro-
posed in this chapter, which can adaptively update monitoring thresholds. To derive unbiased multiple
univariate control charts, Principal Component Analysis (PCA) has been adopted. Kernel Density Esti-
mation (KDE) has been used to estimate the distribution of non-Gaussian data. A moving window has
been involved in the BaFFle to dynamically incorporate and discard data. A flowchart has been given to
demonstrate the use of the BaFFle algorithm.
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4. Dirichlet Process-Gaussian Mixture Models (DP-GMMs)

Production demand and loading conditions might be varying in the production course, resulting in
various operating modes. The characteristics of data generated by each operating mode might be different
from each other. Thus, rather than taking all the data as a whole, data of individual modes should be
treated as a cluster, and analysed individually.

In order to design cluster-based monitoring algorithms, it is necessary to partition unlabelled histor-
ical data into several groups. In this chapter, the focus is the Dirichlet Process-Gaussian Mixture Models
(DP-GMMs) as well as their application to the clustering analysis. At the beginning of the chapter, the
problem regarding DP-GMMs based clustering is stated. After that, several typical distributions, such as
the Multinomial distribution and the Dirichlet distribution, are revisited. Also, the concept of the con-
jugate prior is introduced in the context of Bayes’ theorem. The relationships between the Dirichlet
distribution and other distributions are highlighted. Next, finite GMMs are reviewed and the DP-GMMs
are introduced. A discussion on how to optimally choose the hyper-parameters in the DP-GMMs is
given. The derivation of the Normal Inverse Wishart (NIW) distribution is shown. The NIW distribution
is commonly used as the prior knowledge in DP-GMMs. The chapter continues with the review of Gibbs
sampling. Bayesian inference in the framework of the finite GMMs and the DP-GMMs are presented.
The implementation of the DP-GMMs clustering is demonstrated via a multimode simulation model.
Moreover, the parameter initialisation of the NIW distribution is analysed. An initialisation step of data
normalisation and specific parameter settings are proposed. The impact of various settings on the param-
eter estimation of Gaussian distributions as well as on clustering results is demonstrated. In addition, a
monitoring framework incorporating the DP-GMMs clustering is proposed. Finally, the chapter ends with
a summary. This chapter includes work which has previously been reported in (Tan et al., 2019, 2020).

4.1. Problem statement

Multimodality may exist in data recorded from multimode processes. To analyse the properties and
characteristics of data in each mode, it is necessary to partition multimodal data corresponding to their
modes. To this end, data clustering analysis based on the DP-GMMs is a prominent partition approach
without specifying the number of clusters/modes. Before implementing the DP-GMMs, there are two
hyper-parameters, concentration parameter ↵ and base function G0, to be assigned. The value of ↵ and
the form of the base distribution are important which will affect the clustering performance. Many re-
search efforts have focused on their assignments. Escobar and West (1995) proposed that learning about
↵ from the to-be-clustered data may be addressed by incorporating ↵ into the clustering analysis. In terms
of G0, its most widely used form is the NIW distribution which comprised four parameters, respectively,
mean vector u0, a positive scalar 0, the number of degrees of freedom ⌫0 and covariance matrix ⇤0.
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The value choices of u0, ⌫0 and ⇤0 have been mentioned and well-researched in literature (for example,
see (Görür and Rasmussen, 2010; Nydick, 2012; Alvarez et al., 2014; Schuurman et al., 2016)). A guide
of choosing 0 is to assign an extremely small, approaching zero value (Gelman et al., 2013). However,
how to determine a specific value of 0 as well as its effect on clustering performance have been afforded
less attention. Without this knowledge, the clustering results may be inaccurate and unreliable, the use of
which may also hinder the effectiveness of monitoring algorithms designed based on clustering results.
To solve this problem, the main contributions of this chapter are as follows:

– Investigate the influence of parameters on the accuracy of DP-GMMs clustering, particularly pa-
rameter 0;

– Propose a method to improve the accuracy of the DP-GMMs clustering, in which the determination
of 0 is addressed;

– Validate the proposed method in a multimode simulation model.

4.2. Preliminary

4.2.1. Discrete distributions

Grinstead and Snell (1998) gave the definition of Bernoulli trials process as follows: suppose that an
experiment has two potential outcomes, which can be success and failure. A Bernoulli trials process is
a sequence of n such experiments. The probability of success is p, and p is the same in each experiment,
not affected by any previous outcomes. The probability of failure is given by 1� p.

Bernoulli distribution

Let x be an independently and identically distributed random variable. The random binary outcome
x of a single experiment in a Bernoulli trials process follows a Bernoulli distribution. The Probability
Mass Function (PMF) of the Bernoulli distribution is (Bernoulli, 1713):

P (x) =

8
<

:
p, when x = 1 stands for success

1� p = q, when x = 0 stands for failure.
(4.1)

Binomial distribution

xi is the outcome in the i-th experiment. In a binary-outcome situation, xi = 1 if the outcome
is success and xi = 0 otherwise. The outcomes of n chance experiments can be expressed in the form
S = x1+x2+· · ·+xn. S is a random variable, counting the number of outcomes that are success, subject
to the Binomial distribution, written as S ⇠ Binomial(n, p). The probability of having s successes in n

experiments is (Gubner, 2006)

P (S = s) =

0

@n

s

1

A ps(1� p)n�s for s = 0, 1, . . . , n (4.2)
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where

0

@n

s

1

A = n!
s!(n�s)! . n = 1 leads to the Bernoulli distribution which is a special case of the Binomial

distribution.

Category distribution

When a single experiment has more than two mutually exclusive outcomes (e.g. x 2 {1, 2, . . . , J}),
the Bernoulli distribution turns into the Category distribution Cat(p1, p2, . . . , pJ) where J is the number
of possible outcomes and pj is a fixed probability value corresponding to the outcome x = j. The PMF
is (Murphy, 2012):

P (x = j) = pj 8j (4.3)

where
P

J

j=1 pj = 1

Multinomial distribution

The Multinomial distribution arises from a generalisation of the Binomial distribution to the situa-
tions where each experiment is subject to the Category distribution. It models the probability of a count
of observations in a sequence of independent experiments. Suppose that there are J possible outcomes
and their corresponding fixed probabilities are p1, p2, . . . , pJ . s1, s2, . . . , sJ are used for representing the
counts result after n experiments where sj is the counts of the j-th outcome. Following the Multinomial
distribution, the probability of the results s1, s2, . . . , sJ is (Murphy, 2012):

P (s1, s2, . . . , sJ) =
n!

s1! . . . sJ !
ps11 ps22 . . . psJ

J
(4.4)

where
P

J

j=1 pj = 1 and
P

J

j=1 sj = n.

4.2.2. Continuous distributions

In Section 4.2.1, p, p1, p2, . . . , pJ are fixed values. In this section, cases where p, p1, p2, . . . , pJ are
flexible are taken into consideration.

Beta distribution

p is assumed to be a random variable on the interval (0, 1), subject to the Beta distribution param-
eterised by a and b, written as p ⇠ Beta(a, b). The Probability Density Function (PDF) of the Beta
distribution is (Murphy, 2012):

P (p) =
�(a+ b)

�(a)�(b)
pa�1(1� p)b�1 (4.5)

where �() denotes the gamma function, �(a+b)
�(a)�(b) is a constant term, a > 0 and b > 0.

Dirichlet distribution

Assume a random PMF Q with J components having variables p1, p2, . . . , pJ accordingly:

JX

j=1

pj = 1, pj > 0, 8j. (4.6)
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In addition, let ↵1,↵2, . . . ,↵J have

JX

j=1

↵j = ↵, ↵j > 0, 8j. (4.7)

As the Dirichlet distribution can be considered as a distribution over PMFs (Frigyik et al., 2010), the PMF
Q of length J can be sampled from the Dirichlet distribution parameterised by ↵, denoted as Q ⇠ Dir(↵)
or (p1, p2, . . . , pJ) ⇠ Dir(↵1,↵2, . . . ,↵J) , with the probability

P (Q) =
�(↵)

Q
J

j=1 �(↵j)

JY

j=1

p
↵j�1
j

(4.8)

If (p1, p2, . . . , pJ) ⇠ Dir(↵1,↵2, . . . ,↵J), some key properties of the Dirichlet distribution are sum-
marised as follows (Xing, 2014):

– Coalesce rule for reducing the components of the Dirichlet distribution :

(p1 + p2, p3, . . . , pJ) ⇠ Dir(↵1 + ↵2,↵3, . . . ,↵J) (4.9)

– Expansion rule for increasing the components of the Dirichlet distribution: if (�1, �2, . . . , �n+) ⇠
Dir(↵1⌘1,↵1⌘2, . . . ,↵1⌘n+) and

Pn+
i=1 ⌘i = 1 where n+ denotes the number of the increased

components, then

(p1�1, p1�2, . . . , p1�n+ , p2, p3, . . . , pJ) ⇠ Dir(↵1⌘1,↵1⌘2, . . . ,↵1⌘n+ ,↵2,↵3, . . . ,↵J)

(4.10)

The density plots of the Dirichlet distribution in a three-dimension space obtained by setting various
values of the parameter ↵ are demonstrated in (Frigyik et al., 2010). For detailed derivations and inter-
pretations of the Dirichlet distribution, readers are guided to references, for example (Frigyik et al., 2010;
Gelman et al., 2013; Paisley, 2015; Lin, 2016)

When J = 2, the Dirichlet distribution is equivalent to the Beta distribution. To make the connection
clear, note that if a random variable p has a Beta distribution Beta(a, b), the Beta distribution can be
rewritten as (p, 1� p) ⇠ Dir(a, b)(Frigyik et al., 2010) .

4.2.3. Relationships between distributions

The probabilities p, p1, . . . , pJ in the discrete distributions described in 4.2.1 are fixed values. How-
ever, the values of p, p1, . . . , pJ are generally unknown. A common way to describe the uncertainties
concerning p, p1, . . . , pJ is the usage of a family of probability density distributions, which constitute an
approach to estimate p, p1, . . . , pJ . Section 4.2.2 gives two potential distributions.

Bayes’ theorem

Bayes’ theorem is formulated as (see, e.g., Stuart and Ord (1994)):

P (A|B) =
P (B|A)P (A)

P (B)
. (4.11)
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where A could be a parameter, hypothesis or assumption and B is an evidence. P (A) is a probability
measure about A, called the prior probability. P (B|A) is the likelihood probability, representing the
probability of evidence B being observed under hypothesis A. P (A|B) is the posterior probability of
hypothesis A is true given evidence B. P (B) is the probability of observing evidence B, also called
marginal likelihood. Bayes’ theorem describes how the probability of A changes when evidence B is
available.

Conjugate prior

The term, conjugate prior, was first introduced in the work (Schlaifer and Raiffa, 1961). A prior dis-
tribution is the conjugate prior distribution for a likelihood distribution when the prior and the posterior
distributions are from the same family. The advantage of the use of conjugate prior distributions is that
the calculation of the posterior probability in Eq. (4.11) will have an analytical closed-form (Orloff and
Bloom, 2018; Jordan, 2010; Fink, 1997).

Relationships between the Beta distribution and the Binomial distribution

Assuming that p 2 (0, 1) is a random variable and is modelled by the Beta distribution, from the
Bayesian perspective, the Binomial distribution is:

p|a, b ⇠ Beta(a, b)

s|p ⇠ Binomial(n, p).
(4.12)

According to Bayes’ theorem, the posterior probability P (p|s, a, b) of variable p given s, a, b is (Murphy,
2012):

P (p|s, a, b) / P (s|p)P (p|a, b)

/ (ps(1� p)n�s)(pa�1(1� p)b�1)

/ p(a+s)�1(1� p)(b+n�s)�1.

(4.13)

where P (s|p) and P (p|a, b) are respectively the likelihood probability and the prior probability.

Comparing Eq. (4.13) and Eq. (4.5), it can be seen that the posterior probability P (p|s, a, b) takes
the same form of the Beta distribution, written as Beta(a+ s, b+ n� s). Since the prior probability and
the posterior probability in Eq. (4.13) are from the same probability family, the Beta distribution is the
conjugate prior probability distribution for the Binomial distribution.

Fig. 4.1 also shows the relationships among the aforementioned distributions.

4.3. Gaussian Mixture Models (GMMs)

In practical problems, when the samples are generated from different subpopulations that can be
described by relatively simple models, this will result in mixture models (Gelman et al., 2013). Gaussian
Mixture Models (GMMs) are a kind of mixture model in which the simple model is assumed to be
Gaussian distribution.

In statistics, the Gaussian distribution is a commonly used continuous probability distribution, pa-
rameterised with mean vector µ 2 Rm and covariance matrix ⌃ 2 Rm⇥m. In the Gaussian distribution,
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Binomial distribution

Bernoulli distribution: 
J=2,n=1

Multinomial distribution

Category distribution

Dirichlet distributionBeta distribution

n>1

J>2

n>1

J>2

n times n times

Multi-class

Multi-class

Conjugate Conjugate

Figure 4.1: Relationships between the Bernoulli, Binomial ,Category, Multinomial, Beta and Dirichlet
distributions: J is the number of outcomes in one single experiment, n is the number of experiments, n
times denotes more than one experiment considered and Multi-class denotes more than two outcomes
considered (Jung, 2019).

the probability of drawing a random variable x 2 Rm can be obtained by:

P (x|µ,⌃) = 1

(2⇡)m/2det(⌃)1/2
exp


�1

2
(x� µ)>⌃�1(x� µ)

�
(4.14)

where det is a determinant operation.

4.3.1. Finite GMMs

Finite mixture models refer to the mixture models with finite mutually exclusive components. A
random variable x follows a finite GMM with J components:

x ⇠ N (µj ,⌃j) with probability ⇡j

s.t. ⇡j > 0 8j,
JX

j=1

⇡j = 1.
(4.15)

where µj 2 Rm, ⌃j 2 Rm⇥m are the mean vector and the covariance matrix of the j-th Gaussian com-
ponent, respectively. The mixing proportion ⇡j is the probability of drawing from the j-th component.

4.3.2. Infinite GMMs

In contrast to finite GMMs, infinite GMMs explore the GMMs in the limit where J ! 1 (Neal,
1992; Rasmussen, 2000). Typically, the parameters for finite GMMs can be estimated and illustrated
component by component. However, when there are an uncountable number of components, the illustra-
tion of these components becomes cumbersome, and nearly impossible. In this sub-section, the Dirichlet
Process (DP)-GMMs are introduced to cope with the specification of the priori over infinite components.
In addition, a method, the Chinese Restaurant Process (CRP), is described for constructing the DP.
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Dirichlet Process (DP)-GMMs

Assuming a collection of data samples that can be separated in any finite cluster, in GMMs, each
cluster is a Gaussian component. Note that as the number of collected data can be infinitely large, the
number of clusters could be countably infinite (J ! 1). G(·) is a discrete distribution assigning the
probabilities ⇡1, . . . ,⇡J of these individual Gaussian components, (µ1,⌃1), . . . , (µJ ,⌃J). According to
Escobar (1988, 1994), when the joint probability P (⇡1, . . . ,⇡J) follows the Dirichlet distribution (Forbes
et al., 2011), the priori over G(·) can be described with the base function G0 and the concentration
parameter ↵. The expression of the DP-GMMs can be written as:

G(·) ⇠ DP(↵, G0)

(µj ,⌃j) ⇠ G(·) for j = 1, . . . , J

⇡ ⇠ Dir(
↵

J
, . . . ,

↵

J| {z }
J

)
(4.16)

where J is the number of components in GMMs, ⇡ = {⇡1, . . . ,⇡J} is a vector of mixing proportions,
DP and Dir stand for the Dirichlet Process and the Dirichlet distribution, respectively. To sum up, the
DP-GMMs provides a way for defining the prior distribution of G(·) on the settings of mixture Gaussian
models, even in the situation that J ! 1. One of the applications of the DP-GMMs is data clustering.
The idea is to find a set of Gaussian components with a certain mixing proportion that can mimic the
to-be-clustered data. The DP-GMMs clustering is further detailed in Section 4.5 and 4.6.

Chinese Restaurant Process (CRP): a representation of DP

Aldous (1985) introduced an intuitive and efficient way for representing the DP, which is called
Chinese Restaurant Process (CRP). Assuming there is a Chinese restaurant which can contain as many
tables as possible, the CRP is about how to allocate a new customer to one of these tables. Denote that zi
is the table number selected by the i-th customer. Specifically, in this restaurant, the first customer will
always sit on the 1st table, marked as z1 = 1. For the incoming i-th customer, the table selection follows
the rule (Lu et al., 2018):

P (zi = j|z�i,↵)

8
<

:

nj

N+↵�1 , j 2 1, 2, 3 . . . , J

↵

N+↵�1 , j /2 1, 2, 3 . . . , J, j = J + 1
(4.17)

where N is the total number of customers seated in the restaurant. z�i is a collection of the table numbers
for the seated customers. nj is the number of customers already seated in table j. J is the number of
occupied tables. The occupied table means nj > 0. As presented in Eq. 4.17, the probability of the i-th
customer being assigned to one of the occupied tables is nj

N+↵�1 , while the probability of being assigned
to a new table is ↵

N+↵�1 .

The construction of the CRP takes N ! 1, J ! 1, however in practice as N is reasonably large,
only a finite of components can be observed (Navarro and Perfors, 2014). As the table assignment is a
random partition of customers 1, 2, . . . , N to J clusters, the CRP gives a prior distribution on partitions
of customers. This is analogous to partitioning data into clusters with the DP-GMMs.
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4.4. Hyper-parameters in DP-GMMs

An intuitive interpretation of ↵ and G0 in the DP given by (Teh, 2010) is that G0 is the mean of the
DP and ↵ is an inverse variance:

E [G] = G0

var [G] =
G0(1�G0)

↵+ 1

(4.18)

where E and var respectively represent the expectation and variance in probability theory.

4.4.1. Concentration parameter ↵

From Eq. (4.18), it can be seen that a smaller ↵ results in a larger variance, meaning that G(·) is a
sparser PMF, each component in which is more dispersive from one other. Given a set of observations of
size n, Escobar and West (1995) states that in practice, a suitable value of ↵ will typically be smaller than
n. West (1992) and Escobar and West (1995) proposed that ↵ might be inferred in tandem with Gibbs
sampling algorithms (the implementation of Gibbs sampling is discussed in Section 4.5.1). In this thesis,
↵ is set to a constant value 1.

4.4.2. Base function G0

The base function G0 is a hyper-parameter on which the Gaussian components from G(·) is cen-
tred(Antoniak, 1974). The means and covariance matrices of these Gaussian components are treated as
unknown, being modelled by placing prior distributions over them. There are many choices of the base
function. For the problem of DP-GMMs we are interested in, the prior knowledge concerning the mean
of the Gaussian distribution can be modelled by a Gaussian distribution, and the Inverse Wishart (IW)
distribution (Barnard et al., 2000) is used to model the covariance of the Gaussian distribution. The dis-
tribution of the mean is dependent on the covariance such that the joint prior distribution of the mean
and the covariance is conjugate to the likelihood distribution (Görür and Rasmussen, 2010).

To proceed the specification of the base function G0 in the DP-GMMs, the detailed prior knowledge
formulation in term of the IW distribution and the Gaussian distribution are introduced. Sequentially, the
derivation of the Normal Inverse Wishart (NIW) distribution is given. Furthermore, the NIW distribution
is proved that it is the conjugate prior of the Gaussian distribution, and can be used as the base function
in the DP-GMMs.

Inverse Wishart (IW) distribution

The covariance ⌃ of the m-dimension Gaussian distribution can be modelled with

⌃ ⇠ IW(⌫0,⇤0) (4.19)

where IW is the Inverse Wishart distribution, ⌫0 is the number of the degrees of freedom with the re-
striction that ⌫0 > m � 1 (Nydick, 2012; Alvarez et al., 2014; Schuurman et al., 2016) for ensuring an
invertible ⌃, and ⇤0 2 Rm⇥m is a positive definite matrix. The PDF of ⌃ following the IW distribution
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(Anderson, 2003) is

P (⌃|⌫0,⇤0) =
2

⌫0m
2 �m(⌫02 )

det(⌃)
⌫0+m+1

2 |⇤0|⌫0/2
exp


�1

2
tr(⇤0⌃

�1)

�

/ det(⌃)�
⌫0+m+1

2 exp

�1

2
tr(⇤0⌃

�1)

� (4.20)

where �m() is the m-dimension generalisation of the gamma function and tr() stands for the trace oper-
ation. The mean of IW(⌫0,⇤0) for ⌫0 > m+ 1 (Alvarez et al., 2014) is

E(⌃) = ⇤0

⌫0 �m� 1
. (4.21)

Gaussian distribution

The prior knowledge for the mean µ of the Gaussian distribution is a Gaussian distribution linked
with ⌃:

µ|⌃ ⇠ N (u0,
⌃

0
) (4.22)

where N represents the Gaussian distribution, u0 is the expectation of µ and 0 is a positive value. The
PDF of µ given Eq. (4.22) is:

P (µ|u0,
⌃

0
) =

1

(2⇡)m/2det( ⌃
0
)
1/2

exp

�1

2
(µ� u0)

>(
⌃

0
)�1(µ� u0

�

/ det(⌃)�1/2exp
h
�0

2
(µ� u0)

>(⌃)�1(µ� u0)
i

/ det(⌃)�1/2exp
h
�0

2
tr(⌃�1(µ� u0)(µ� u0)

>)
i
.

(4.23)

NIW distribution

Eq. (4.19) and Eq. (4.22) lead to the joint distribution of µ and ⌃ being the NIW distribution (Mur-
phy, 2007) parametrised with u0,0, ⌫0 and ⇤0:

(µ,⌃) ⇠ NIW(u0,0, ⌫0,⇤0). (4.24)

The PDF of the NIW distribution is the product of Eq. (4.20) and (4.23) :

P (µ,⌃|u0,0, ⌫0⇤0) = P (⌃|⌫0,⇤0)P (µ|u0,
⌃

0
)

= det(⌃)�
⌫0+m+2

2 exp

�1

2
tr(⇤0⌃

�1)

�
exp

h
�0

2
tr(⌃�1(µ� u0)(µ� u0)

>)
i

(4.25)

Relationships between the NIW distribution and Gaussian distribution

Let a set of observations Xn = {x1, . . . ,xn} 2 Rm⇥n be drawn independently and identically
from a Gaussian distribution N (µ,⌃). Eq. (4.14) gives the likelihood probability of observing a random
sample from a Gaussian distribution. The likelihood probability of observing x1, . . . ,xn when Gaussian
parameters µ and ⌃ are given is the product of the likelihood probabilities of individual samples, thus
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P (Xn|µ,⌃) is calculated by:

P (Xn|µ,⌃) =
nY

i=1

P (xi|µ,⌃). (4.26)

According to Eq. (4.14), Eq. (4.26) can be expanded as

P (Xn|µ,⌃) =
nY

i=1

1

(2⇡)m/2det(⌃)1/2
exp


�1

2
(xi � µ)>⌃�1(xi � µ)

�
. (4.27)

Extracting the common term in the multipliers, then applying the product rule of exponentiation deduces:

P (Xn|µ,⌃) =
1

(2⇡)nm/2det(⌃)n/2
exp

(
�1

2
tr

"
⌃�1

nX

i=1

(xi � µ)(xi � µ)>
#)

, (4.28)

in which
P

n

i=1 (xi � µ)(xi � µ)> can be rewritten as n(µ�X)(µ�X)>+
P

n

i=1 (xi �X)(xi �X)>

(Murphy, 2007) where X = 1
n

P
n

i=1 xi. Futhermore, Eq. (4.28) can be expressed as:

P (Xn|µ,⌃) = 2⇡�nm
2 det(⌃)�

n
2 exp

(
�1

2
tr

(
⌃�1

"
n(µ�X)(µ�X)> +

nX

i=1

(xi �X)(xi �X)>
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2 exp
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�1
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⌃�1

"
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nX

i=1

(xi �X)(xi �X)>
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.

(4.29)

Following Bayes’ theorem, the posterior probability of the Gaussian distribution N (µ,⌃) given
observations Xn is

P (µ,⌃|Xn) / P (Xn|µ,⌃)P (µ,⌃) (4.30)

where P (µ,⌃) = P (µ,⌃|u0,0, ⌫0⇤0). In this thesis, both µ and ⌃ are unknown, and parameterised
by the NIW distribution, the PDF of which is shown in Eq. (4.25). Substitution of Eq. (4.25) and Eq.
(4.29) into Eq. (4.30) gives

P (µ,⌃|Xn) / det(⌃)�
⌫0+m+n+2

2 exp

�1

2
tr(⇤0⌃

�1)

�
exp

h
�0

2
tr(⌃�1(µ� u0)(µ� u0)
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i

⇥ exp
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"
n(µ�X)(µ�X)> +
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(xi �X)(xi �X)>
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(4.31)
For Eq. 4.31, integrating terms containing µ together obtains:

P (µ,⌃|Xn) / det(⌃)�
⌫0+m+n+2

2 exp

(
⌃�1

"
⇤0 +

nX

i=1

(xi �X)(xi �X)>)

#)

⇥ exp
⇢
�1

2
tr
n
⌃�1

h
0(µ� u0)(µ� u0)

> + n(µ�X)(µ�X)>
io�
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(4.32)

The term tr
�
⌃�1

⇥
0(µ� u0)(µ� u0)> + n(µ�X)(µ�X)>

⇤ 
in Eq. (4.32), marked as A, can

be rewritten as follows:

A = 0(µ� u0)
>⌃�1(µ� u0) + n(µ�X)>⌃�1(µ�X) (4.33)
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= 0µ
>⌃µ� 0u

>
0 ⌃µ� 0µ

>⌃u0 + 0u
>
0 ⌃u0 + nµ>⌃�1µ� nµ>⌃�1X � nX

>
⌃�1µ+ nX

>
⌃�1X

(4.34)

= (0 + n)µ>⌃�1µ� µ>⌃�1(0u0 + nX)� (0u
>
0 + nX

>
)⌃�1µ+ 0u

>
0 ⌃

�1u0 + nX
>
⌃�1X

(4.35)

Adding terms 1
0+n

(0u0 + nX)>⌃�1(0u0 + nX) � 1
0+n

(0u0 + nX)
>
⌃�1(0u0 + nX) to

the right side of Eq. (4.33) gives

A = (0 + n)µ>⌃�1µ� µ>⌃�1(0u0 + nX)� (0u
>
0 + nX

>
)⌃�1µ+ 0u

>
0 ⌃

�1u0 + nX
>
⌃�1X

+
1

0 + n
(0u0 + nX)>⌃�1(0u0 + nX)� 1

0 + n
(0u0 + nX)

>
⌃�1(0u0 + nX)

(4.36)
which can be simplified to

A = (0 + n)tr

"
⌃�1

✓
µ� 0u0 + nX

0 + n

◆✓
µ� 0u0 + nX

0 + n

◆>#
+

n0
0 + n

tr
h
⌃�1(u0 �X)(u0 �X)

>
i
.

(4.37)

Therefore, the re-formulated Eq. (4.32) is

P (µ,⌃|Xn) /|⌃|�(
⌫0+m+n+2

2 )

⇥ exp

(
�1

2
tr

(
⌃�1

"
⇤0 +

nX

i=1

(xi �X)(xi �X)> +
n0

0 + n
(u0 �X)(u0 �X)

>
#))

⇥ exp

(
�0 + n

2
tr

"
⌃�1

✓
µ� 0u0 + nX

0 + n

◆✓
µ� 0u0 + nX

0 + n

◆>#)
.

(4.38)
Substitution of

1 = 0 + n

⌫1 = ⌫0 + n

u1 =
0u0 + nX

0 + n

⇤1 = ⇤0 +
nX

i=1

(xi �X)(xi �X)
>
+

n0
0 + n

(u0 �X)(u0 �X)
> (4.39)

into Eq. (4.38) gives:

p(µ,⌃|Xn) / |⌃|�(
⌫1+m+2

2 )exp{�1

2
tr(⌃�1⇤1)}exp{�1

2
tr(⌃�1(µ� u1)(µ� u1)

>))}. (4.40)

It can be seen that the posterior PDF in Eq. (4.40) and the prior PDF in Eq. (4.25) are from the same
probability distribution family. Hence, the NIW distribution is the conjugate prior of the Gaussian
distribution.
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NIW distribution as the base function G0 in DP-GMMs

From a Bayesian perspective, the base distribution G0 is the prior distribution of µj and ⌃j while
G(·) is the posterior distribution to be updated using observations. The NIW distribution is selected for
G0, formulated as Eq. 4.41.

⌃j ⇠ IW (⌫0,⇤0)

µj |⌃j ⇠ N (u0,
⌃j

0
)

(µj ,⌃j) ⇠ NIW (u0,0, ⌫0,⇤0)

for j = 1, 2, . . . , J.

(4.41)

The selection of the NIW distribution as the base function is that due to the conjugacy property, the
posterior distribution of G(·) can be expressed in close-form. In addition, the updated close-form of G(·)
using observations can have the same formulation as Eq. 4.41, but with u0,0, ⌫0,⇤0 updated to Eq. 4.40.

4.5. Computation of finite GMMs and DP-GMMs

4.5.1. Review of Gibbs sampling

Markov Chain Monte Carlo (MCMC) methods are a computer-driven sampling method (Green et al.,
1966; Gamerman and Lopes, 2006). A pronounced benefit from MCMC is to sidestep the analytic ex-
pression of a probability distribution. When it is difficult to summarise the PDF in a closed-form, the
desired distribution may be approximated by the samples drawn from it.

Gibbs sampling (Geman and Geman, 1984) is an MCMC technique for drawing samples from mul-
tivariate distributions. The idea is that for each variable, samples are generated from its conditional
distribution while the other variables are fixed to their current values (Yildirim, 2012). For example, if a
random three-dimension sample x = [x1, x2, x3] is assumed to follow a joint distribution P (x1, x2, x3),
then the conditional distributions P (x1|x�1), P (x2|x�2) and P (x3|x�3) can be easily obtained and
sampled. x�1 denotes all variables excluding x1. At iteration t, samples are x(t)1 ⇠ P (x1|x(t�1)

2 , x(t�1)
3 ),

x(t)2 ⇠ P (x2|x(t)1 , x(t�1)
3 ) and x(t)3 ⇠ P (x3|x(t)1 , x(t)2 ).

Algorithm 1 illustrates the procedure of a generic Gibbs sampling for m-dimension data is given. As-
sisted with distributions P (x1|x�1), P (x2|x�2), . . . , P (xm|x�m), instant sampling from a multivariate
distribution P (x1, x2, . . . , xm) is converted to conduct m samplings from univariate conditional distribu-
tions P (x1|x�1), P (x2|x�2), . . . , P (xm|x�m). The evidence of convergence in Gibbs sampling is that
the conditional distributions (e.g. P (xm|x�m) ) remains unchanged. In other words, for each variable,
the empirical distribution of the obtained samples is the true marginal distribution (e.g. P (xm)).

However, convergence is difficult to be verified. Gilks et al. (1995) pointed out that the samples gen-
erated by MCMC methods have a distribution that approaches the target joint distribution. In addition,
the empirical distribution of each variable converges to its true distribution as the number of iterations
approaches infinity (Casella and George, 1992; Tierney, 1994). However, it is impractical to let algo-
rithms enter an infinite loop. Usually in practice, a relatively large number of iterations is set to enable
the empirical distributions as close as possible to true distributions.

T. Cong Statistical reasoning analysis of fault occurrences in industrial applications



4.5. Computation of finite GMMs and DP-GMMs 40

Algorithm 1: Gibbs sampling algorithm for an m-dimension distribution (Gilks et al., 1995)

Initialise x = [x(0)1 , x(0)2 , . . . , x(0)m ], maximum number of iterations MaxItn and t = 1
while t  MaxItn do

Sample x(t)1 ⇠ P (x1|x(t�1)
2 , x(t�1)

3 , . . . , x(t�1)
m )

Update current variable values (x(t)1 , x(t�1)
2 , . . . , x(t�1)

m )

Sample x(t)2 ⇠ P (x2|x(t)1 , x(t�1)
3 , . . . , x(t�1)

m )

Update current variable values (x(t)1 , x(t)2 , . . . , x(t�1)
m )

...
Sample x(t)

m�1 ⇠ P (xm�1|x(t)1 , x(t)2 , . . . , x(t)
m�2, x

(t�1)
m )

Update current variable values (x(t)1 , x(t)2 , . . . , x(t)
m�2, x

(t)
m�1, x

(t�1)
m )

Sample x(t)m ⇠ P (xm|x(t)1 , x(t)2 , . . . , x(t)
m�2, x

(t)
m�1)

Update current variable values (x(t)1 , x(t)2 , . . . , x(t)
m�2, x

(t)
m�1, x

(t)
m )

t = t+ 1
end

4.5.2. Bayesian inference in finite GMMs

Assuming a set of data XN = {x1,x2, . . . ,xN} generated from a GMM model within which each
Gaussian component ✓j is parameterised by µj and ⌃j , a sample x⇤ 2 X is classified to the j-th com-
ponent with the probability calculated by Bayes’ theorem which is introduced in Section 4.2.3:

P (✓j |x⇤) =
P (x⇤|✓j)P (✓j)

P (x⇤)
(4.42)

where P (✓j) is the prior probability of the j-th Gaussian component, P (x⇤|✓j) is the likelihood proba-
bility of observing x⇤ in the j-th component, P (✓j |x⇤) is the posterior probability of the j-th component
when x⇤ is observed. P (x⇤) is the marginal likelihood probability

P (x⇤) =

Z
P (x⇤|✓)P (✓)d✓. (4.43)

In the case of discrete components, Eq. (4.43) turns into a summation of the form:

P (x⇤) =
JX

j=1

P (x⇤|✓j)P (✓j). (4.44)

Substitution of P (x⇤) in Eq. (4.42) into Eq. (4.44) gives

P (✓j |x⇤) =
P (x⇤|✓j)P (✓j)P
J

j=1 P (x⇤|✓j)P (✓j)
. (4.45)

Since the denominator
P

J

j=1 P (x⇤|✓j)P (✓j) in Eq. 4.45 is a constant, the posterior probability can be
simplified to

P (✓j |x⇤) / P (x⇤|✓j)P (✓j) (4.46)
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Based on the posterior probabilities P (✓1|x⇤), . . . , P (✓J |x⇤), the most likely component index is deter-
mined by

argmax
j

P (✓j |x⇤). (4.47)

4.5.3. Bayesian inference in DP-GMMs

In the rest of this chapter, the index i always runs over observations. The index j runs over Gaussian
components/clusters. A cluster indicator variable Ii 2 {1, 2, . . . , J} is introduced for encoding which
Gaussian component/cluster xi belongs to. Instead of the mixing proportions ⇡, the clustering analysis
employs a vector I = {I1, . . . , IN} 2 RN denoting the cluster indicators for each sample in XN . The
objective of the use of DP-GMMs is to find the number of Gaussian components/clusters underlying XN .
To this end, the inference in DP-GMMs is conducted using MCMC methods while relying on the Gibbs
sampling for updating the cluster indicator Ii.

Let I(t) 2 RN be a vector of the updated cluster indicators at iteration t of the Markov chain.
According to Theorem 2 given by Escobar (1994), the distribution P (I|XN ) is the stationary distribution
of the Markov chain and I(t) converges to the stationary distribution, P (I|XN ), regardless of the initial
values of the Markov chain. Therefore, MCMC can be utilised for inference on the number of Gaussian
components/clusters underlying XN . Gibbs sampling can be used for updating the cluster indicators I(t)

in turn (Neal, 2000).

In the context of DP-GMMs, the base function G0 is the NIW distribution parameterised with � =

{u0,0, ⌫0,⇤0}. In the initialisation step, the NIW parameter � and a vector of cluster indicators I are
assigned, respectively marked with �(0) and I(0). Each sample may be allocated to an individual cluster.
Usually, I(0)

i
= i. This implies that the initial guess of the number of the clusters is equivalent to the

number of samples. The initial parameter estimates of the Gaussian component associated with the j-th
cluster, µ(0)

j
and ⌃(0)

j
, are sampled from NIW(�(0)) given xi.

Over the procedure of Markov chain, the number of unique values in I(t) will reduce to typically
much fewer than the number of samples due to the clustering effect. Specifically, only a few clusters will
contain samples while the others become empty.

Görür and Rasmussen (2010) summarised the Gibbs updates for I(t)
i

through all the XN as (the
update of ↵ is omitted since ↵ is set constant):

– Update the identity vector I(t). It is equivalent to clustering the samples. According to Algorithm 2

given by Neal (1992), each sample x⇤ is assigned to a cluster with respect to the current clustering
result of all other samples, i.e. each identity I(t)⇤ is sampled given the existing clusters. If the j-th
cluster contains additional samples except for x⇤, the probability of a sample x⇤ being assigned to
this cluster is

p(I⇤ = j|I(t)
�⇤,� = {u0,0, ⌫0,⇤0},µ(t)

1 ,⌃(t)
1 , . . . ,µ(t)

J
,⌃(t)

J
,↵)

=
njp(x⇤|µ(t)

j
,⌃(t)

j
)

↵G0(x⇤) +
P

J

j=1 njp(x⇤|µ(t)
j
,⌃(t)

j
)
(4.48)

where for the j-th cluster, µ(t)
j

and ⌃(t)
j

are the mean vector and covariance matrix of the Gaussian
distribution associated with the j-th cluster at iteration t and nj is the number of samples in the
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j-th cluster. G0(x⇤) is the marginal likelihood of x⇤ evaluated at a Gaussian distribution whose
prior information is modelled using a NIW distribution:

G0(x⇤) =

Z
P (x⇤|µ,⌃)P (µ,⌃|u0,0, ⌫0,⇤0)dµd⌃. (4.49)

It should be noted that the clusters without samples in are treated equally. The probability of x⇤
being assigned to any empty cluster is

p(I⇤ 2 j?}|I(t)
�⇤,� = {u0,0, ⌫0,⇤0},µ(t)

1 ,⌃(t)
1 , . . . ,µ(t)

J
,⌃(t)

J
,↵)

=
↵G0(x⇤)

↵G0(x⇤) +
P

J

j=1 njp(x⇤|µ(t)
j
,⌃(t)

j
)

(4.50)
where j? denotes the index of an empty cluster.

– Update the parameters �(t)
j

for j /2 j?. �(t)
j

is the parameter of the posterior NIW distribution

associated with the j-th cluster at iteration t. Let X(j) = {x(j)
1 ,x(j)

2 , . . . ,x(j)
nj } be a set of samples

allocated to the j-th cluster. �(t)
j

= {u(j),(j), ⌫(j),⇤(j)} is updated using

u(j) =
0

0 + nj

u0 +
nj

0 + nj

X̄j

(j) = 0 + nj

⌫(j) = ⌫0 + nj

⇤(j) = ⇤0 +

njX

i=1

(x(j)
i

� X̄j)(x
(j)
i

� X̄j)
T

+

0nj

0 + nj

(X̄j � u0)(X̄j � u0)
T

where X̄j =
1

nj

njX

i=1

x(j)
i

.

(4.51)

– Update the parameter µ(t)
j
,⌃(t)

j
of non-empty clusters. The posterior distribution of µ(t)

j
and ⌃(t)

j

is derived based on Bayes’ theorem:

p(µ(t)
j
,⌃(t)

j
|X(j),�0) / p(X(j)|µ(t)

j
,⌃(t)

j
)p(µ(t)

j
,⌃(t)

j
|�0)

= p(µ(t)
j
,⌃(t)

j
|�(t)

j
)

(4.52)

Therefore, it can be implemented by sampling µ(t)
j

and ⌃(t)
j

from the updated posterior NIW

distribution NIW(�(t)
j
).

4.6. An investigation into the influence of parameters on the accuracy of
DP-GMMs clustering

There are four hyper parameters in the DP-GMMs. Inappropriate assignments of these hyper param-
eters might cause a failure in partitioning data as their natural clusters. This section investigates how
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the hyper parameters influence the clustering results. To clearly demonstrate these influences, simula-
tion data are used for illustration. Section 4.6.1 gives the expression of a four-mode simulation model.
Section 4.6.2 discusses the Jeffrey’s parameter initialisation and gives the commonly used parameter
settings. Section 4.6.3 presents the clustering results of data generated from the four-mode simulation
model, with the commonly used parameter settings. In addition, Section 4.6.3 evaluated the estimation
of Gaussian parameters associated to each cluster. The estimation is based on the DP-GMMs. Further-
more, Section 4.6.4 analyses how to improve the clustering results and the DP-GMMs-based Gaussian
parameter estimation. The analysis also incorporates a new mode into the 4-mode simulation model for
highlighting the improvements using the proposed hyper parameter settings.

4.6.1. Simulation model

The performance of clustering data using the DP-GMMs approach is validated on a bivariate simu-
lated model which is comprised of four modes. This simulated model was previously described by Tan
et al. (2019, 2020):

Mode 1:
x1 = e21

x2 = 1.5x1 + e22
(4.53)

where e21 ⇠ N (0, 1) and e22 ⇠ N (0, 9).
Mode 2:

x1 = e11 + 8

x2 = �0.2x1 + 5 + e12
(4.54)

where e11 ⇠ N (0, 2.25) and e12 ⇠ N (0, 0.25).
Mode 3:

x1 = e41 + 15

x2 = �x1 + 20 + e42
(4.55)

where e41 ⇠ N (0, 0.25) and e42 ⇠ N (0, 0.09).
Mode 4:

x1 = e31 + 9

x2 =
1

3
x1 � 4 + e32

(4.56)

where e31 ⇠ N (0, 1) and e32 ⇠ N (0, 0.25).
Each mode generates 100 samples. Fig. 4.2(a) shows the trend plot of x1 and x2. The corresponding

scatter plot is presented in Fig. 4.2(b).

4.6.2. Parameter initialisation for the NIW distribution

Similar to the introduction to the base function in the Section 4.4.2, the discussion of the parameter
initialisation in the NIW distribution develops based on a single Gaussian component N (µ,⌃). Xn =

{x1, . . . ,xn} are samples drawn independently and identically from N (µ,⌃). The prior and posterior
NIW distribution are NIW(u0,0, ⌫0,⇤0) and NIW(u1,1, ⌫1,⇤1), respectively.

As in Bayesian inference, parameters µ and ⌃ are sampled from the posterior NIW(u1,1, ⌫1,⇤1),
the most often appearing values of µ and ⌃ are of interest to be known. These values can be calculated
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Figure 4.2: Illustration of data generated from a bivariate simulated model (Tan et al., 2019): sub-figure
(a) gives the trend plot of two variables, showing that there are four distinct modes with different levels
for variable x1 and x2. The relative positions between samples are demonstrated in Sub-figure (b) in the
form of scatter plot. It is apparent that the data consists of four clusters.

by (Fraley and Raftery, 2007):

µsampled = u1 =
0u0 + nX

0 + n
=

0
0 + n

u0 +
n

0 + n
X

⌃sampled =
⇤1

⌫1 +m+ 2
=

⇤0 +
P

n

i=1 (xi �X)(xi �X)
>
+ n0

0+n
(u0 �X)(u0 �X)

>

⌫0 + n+m+ 2

(4.57)

where X is the sample mean of Xn, and µsampled and ⌃sampled respectively denote the most often sampled
µ and ⌃.

Jeffrey’s parameter initialisation

The base function G0 expresses an centroid around which the component parameters should be
centred. In the DP-GMMs where G0 is the NIW distribution, we expect that a draw (µ,⌃) from
NIW(u1,1, ⌫1,⇤1) will reflect the sample mean and sample covariance of Xn = {x1,x2, . . . ,xn}.
A non-informative assignment to u0,0, ⌫0,⇤0 is selected so as to have a negligible influence on the es-
timated parameters (Schuurman et al., 2016). Such an assignment given by Jeffrey (Gelman et al., 2013)
is 0 ! 0, ⌫0 ! �1 and det(⇤0) ! 0. Then, the parameters in the posterior NIW distribution become

u1,Jeff = X̄ (4.58)

1,Jeff = n (4.59)

⌫1,Jeff = n� 1 (4.60)

⇤1,Jeff =
nX

i=1

(xi � X̄)(xi � X̄)
>
. (4.61)

where u1,Jeff, 1,Jeff, ⌫1,Jeff and ⇤1,Jeff denote the parameters of the posterior NIW distribution given
Jeffrey’s assignments.
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However, the Jeffrey’s parameter initialisation may be problematic in the application of Bayesian
inference. According to Murphy (2007), the marginal likelihood of measurements Xn evaluated at a
Gaussian distribution parameterised by NIW(u0,0, ⌫0,⇤0) can be calculated by:

G0(Xn) =
1

⇡nm/2

�m(⌫n/2)

�m(⌫0/2)

det(⇤0)⌫0/2

det(⇤n)⌫n/2
(
0
n

)m/2. (4.62)

As mentioned in Section 4.5.3, G0(Xn) in clustering analysis is the probability of observations assigned
to an empty cluster. Given either 0 = 0 or det(⇤0) = 0 , G0(Xn) will be a constant value equal to
zero. This means that there is no change of sampling a cluster difference from current clustering result.
In addition, even if not taking the extreme values of Jeffrey’s parameter initialisation, it is difficult to
determine how small these values should be to guarantee the results in Eq. (4.58)-(4.61).

Default parameter settings

A default setting for ⇤0 and ⌫0 is ⇤0 = I 2 <m⇥m and ⌫0 = m + 1 where I is an identity matrix.
(Alvarez et al., 2014). The term

P
n

i=1 (xi �X)(xi �X)
> in Eq. (4.57) is the sample covariance, which

can be denoted as ⌃sc. u0 � X is a measure on the error between the guess of the u0 and the sample
mean X . Therefore, (u0 �X)(u0 �X)> is the residual sum of squares, denoted using RSS. Then Eq.
(4.57) can be rewritten as follows:

µsampled =
0

0 + n
u0 +

n

0 + n
X

⌃sampled =
⇤0

⌫0 + n+m+ 2
+

n� 1

⌫0 + n+m+ 2
⌃sc +

n0(⌫0 + n+m+ 2)

0 + n
RSS.

(4.63)

According to Eq. (4.63), µsampled can be interpreted as the weighted summation of u0 and X . In
addition, from Bayesian perspective, µ following the Gaussian distribution in Eq. (4.22) can be written
in a conditional form

P (µ|⌃) = N (µ|u0,
⌃

0
) (4.64)

where µ can be interpreted as 0 observations of u0 on ⌃ (Murphy, 2007). Given observations X , the
posterior µ written in conditional form is

P (µ|Xn) = N (µ|u1,
⌃

1
). (4.65)

Recalling 1 = 0 + n, 0 is equivalent to the prior sample size, playing a role analogous to n. To
give a non-informative prior distribution, 0 = 0 (Murphy, 2007). However, to make the fraction ⌃

0

have meaning, 0 should not be of value zero, in the meanwhile to represent the prior sample size of

less informative, 0 = 1. To make µsampled equal to the sample mean, u0 =

2

40

0

3

5. The inaccuracy in the

mode of µ caused by 0 = 1 may be negligible and eliminated as n ! 1.
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Table 4.1: Comparison of parameter estimations of Gaussian distributions: the sample means and sample
covariances are used as the true Gaussian parameters associated to each cluster. The estimates of Gaus-
sian parameters are derived using the DP-GMMs algorithm with the frequently used parameter settings.
The comparison shows that the sample means and estimated means are very close to each other, while
there are significant differences between sample covariances and estimated covariances, particularly in
the covariances of cluster 3.

Cluster index Estimation based on samples Estimation with u0 =

"
0

0

#
,0 = 1, ⌫0 = 3,⇤0 = I

Mean Covariance Mean Covariance

1

"
0.01

0.28

# "
0.99; 1.57

1.57; 9.74

# "
0.01

0.27

# "
0.92; 1.45

1.45; 9.02

#

2

"
7.95

3.45

# "
1.87;�0.30

�0.30; 0.27

# "
7.87

3.42

# "
2.32;�0.02

�0.02; 0.37

#

3

"
15.09

4.95

# "
0.23;�0.22

�0.22; 0.32

# "
14.94

4.90

# "
2.33; 0.48

0.48; 0.53

#

4

"
8.99

�1.00

# "
1.22; 0.35

0.35; 0.29

# "
8.90

�0.99

# "
1.89; 0.24

0.24; 0.29

#

4.6.3. Clustering results and parameter estimation for Gaussian distributions

This section conducts the clustering results using the DP-GMMs method, also evaluates the param-
eter estimation of Gaussian components associated to each cluster. The DP-GMMs is implemented in a
Gibbs sampling manner. In this implementation, the initial assignment to �(0) is u0 = 0,0 = 1, ⌫0 =

3,⇤0 =

2

41 0

0 1

3

5, which is the default parameter settings (see Section 4.6.2). Applied with the Gibbs

sampling in the framework of DP-GMMs, the simulated data are clustered according to their modes. The
clustering results are shown in Fig. 4.3(a) and (b). It can be seen that without specifying the number of
modes, DP-GMMs-based clustering algorithm is able to successfully partition the unlabelled data.

Table 4.1 shows the parameter estimations of the Gaussian components using the samples themselves
and the given parameter settings. Taking the sample means and sample covariances as the true parameters
of the obtained four Gaussian distributions, it can be seen that the estimated means using the given
parameter settings are accurate. However, the estimated covariance matrices, particularly for cluster 3,
are different from the sample covariance matrices. The differences between them are further illustrated
in Fig. 4.3(c) and (d). For cluster 2, the ellipse contour against 95% confidence level in Fig. 4.3(d) is
relaxed relative to the one in Fig. 4.3(c). For cluster 3, the directions of the long-axes of the ellipses in
Fig. 4.3(c) and (d) are opposite.

This is because for n ! 1 and ⌫0 ⌧ n, µsampled and ⌃sampled have the following results

lim
n!1

µsampled = X

lim
⌫0⌧n,n!1

⌃sampled = ⌃sc + 0nRSS.
(4.66)
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(b) Scatter plot of the clustered data
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(c) Plot of covariance ellipses based on the sample mean and
sample covariance. The calculation of sample mean and sample
covariance are using Eq. 4.67.
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(d) Plot of covariance ellipses based on the estimation of DP-
GMMs. The hyper parameters in DP-GMMs are initialised with
u0 = 0,0 = 1, ⌫0 = 3,⇤0 = [ 0 1

1 0 ].

Figure 4.3: Plots of clustered data based on the DP-GMMs algorithm and illustrations of covariance
estimation of the Gaussian distributions associated to each cluster: the simulation data are automati-
cally separated into four clusters using the DP-GMMs without specifying the number of clusters. These
clusters are consistent with the nature of the data. The clustering results are presented in both trend
and scatter plots as shown in sub-figures (a) and (b), respectively. To illustrate the covariance esti-
mation, the ellipse contours at 95% confidence level are used. In sub-figure (c), the covariance el-
lipse of each cluster is based on the sample mean and sample covariance, while in sub-figure (d), the
means and covariances are estimated using DP-GMMs algorithm, the initial parameters of which are
u0 = 0,0 = 1, ⌫0 = 3,⇤0 = [ 0 1

1 0 ]. Comparing the covariance ellipses in (c) and (d), it can be ob-
served that the DP-GMMs-based covariance estimation is biased. This estimation error is most apparent
in cluster 3.
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Because the mean of cluster 3 is far from the assigned u0 =

2

40

0

3

5, the RSS is large, leading to the

estimate of a covariance with large error. Therefore, it is recommended to re-estimate the mean and
covariance matrix of a Gaussian component by the sample mean and sample covariance of the cluster
that is associated to each Gaussian component (Chang et al., 2018), as shown in Eq. (4.67).

µ̂j = X̄j

⌃̂j =
1

nj � 1

njX

i=1

(x(j)
i

� X̄j)(x
(j)
i

� X̄j)
>.

(4.67)

4.6.4. Improving clustering performance: data normalisation and determination of 0

The reason of having errors in covariance estimation is discussed and analysed in Section 4.6.3.
Although the covariance estimated though the DP-GMMs can be replaced by sample covariances, the
covariance error will lead to mis-clustering. An additional mode as follows is added to the simulated
multimode model (see Section 4.6.1),

Mode 5:
x1 = e51 + 13

x2 =
8

25
x1 + e52

(4.68)

where e51 ⇠ N (0, 0.65) and e52 ⇠ N (0, 0.25). 100 samples are generated from this mode.
The trend plot and scatter plot of the data from 5 modes are illustrated in Fig. 4.4(a) and (b). Fig.

4.4(b) shows that in two-dimension panel, there is a close location relationship between modes 2, 3 and
5. If the covariance estimation of one of them is inaccurate, and with large error, the clustering results
may be influenced. For example, due to the direction error in Fig. 4.3(d), some samples from mode 5 will
be mis-classified to mode 3, and finally, this error will cause the failure in clustering mode 5 as shown
in Fig. 4.4(c). It can be seen that mode 3 and 5 are treated as one cluster. In addition, all the covariance
ellipses calculated by the given parameter initialisation are more relaxed than the ellipses in Fig. 4.3(c)
calculated by the samples. These inaccuracies are caused by the RSS term in Eq. (4.66)

To narrow the error in RSS, it is proposed to normalise the unlabelled data with each variable centred
to zero and with variance of one. An advantage of this normalisation way is that it can remain the
probability distribution in the original data. The sample covariance ellipses of normalised data are plotted
in Fig. 4.5(a), taken as the true covariances of these modes. Moreover, to avoid the RSS to be amplified
by 0n, an ideal 0 should be an extremely small value. The problem is how small 0 should be. In this
thesis, the value of 0 is determined by

0 =
1

N
(4.69)

where N is the number of data to be clustered. Sequentially, given Eq. (4.69), Eq. (4.66) turns into

lim
n!1

µsampled = X

lim
⌫0⌧n,n!1

⌃sampled = ⌃sc +
n

N
RSS.

(4.70)

Since the number of samples in certain cluster should be less than N , the error caused by the RSS is
diminished.
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(b) Scatter plot of simulation data
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(c) Scatter plot of clustered simulation data, and the covariance
ellipses associated to each cluster

Figure 4.4: Data clustering using the DP-GMMs algorithm. The parameter settings of the DP-GMMs are
u0 = 0,0 = 1, ⌫0 = 3, ⇤0 = [ 0 1

1 0 ]. The data to be clustered are generated from a 5-mode model. The
expression of this model is given in Section 4.6.1 and 4.6.4. The unlabelled data are presented in sub-
figures (a) and (b) in both trend and scatter plots. Sub-figure (c) highlights the labelled data, which does
not match the nature of these data. The samples from mode 3 and 5 are mistakenly grouped together.

Fig. 4.5(b) demonstrates the clustering results of normalised data using parameter settings u0 =

0,0 = 1, ⌫0 = 3,⇤0 =

2

41 0

0 1

3

5, while Fig. 4.5(c) shows the clustered data and covariance plots when

u0 = 0,0 =
1

500 , ⌫0 = 3,⇤0 =

2

41 0

0 1

3

5. Comparing the results in Fig. 4.5 (b) and (c), for cluster 3, the

inaccuracies in the direction of the ellipse are significantly reduced. Moreover, the covariance ellipses
of cluster 1, 2 and 4 calculated under the condition of 0 = 1

500 are tighter than the ellipses calculated
when 0 = 1. Most advantageous, mode 5 is successfully partitioned from mode 4. However, covariance
ellipses are more relaxed relative to the true covariances in Fig. (4.5)(a). To guarantee the Gaussian
statistics related to each mode are accurate, it is suggested to used the mean and covariance of samples.
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(a) Plot of covariance ellipse for the samples of each mode: data
are normalised to have zero mean and variable variance of one.
The covariance is calculated based on samples of each mode.
These covariances are treated as the ground truth.
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covariance ellipses. Parameter settings for clustering and co-
variance estimation: u0 = 0,0 = 1, ⌫0 = 3, ⇤0 = [ 0 1

1 0 ].
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(c) Data clustering based on the DP-GMMs and the plot of co-
variance ellipses. Parameter settings for clustering and covari-
ance estimation: u0 = 0,0 = 1
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Figure 4.5: Clustering results comparison: the unlabelled data are normalised with zero mean and variable
variance of one. Sub-figure (a) gives the true labels and covariance ellipses. Given different parameter
settings, the DP-GMMs algorithm leads to distinct clustering results and covariance estimation. Sub-
figure (b) shows that with inappropriate parameter settings, mode 3 and 5 still are identified as one
cluster. However, using the proposed assignment of 0, the clustering results in sub-figure (c) is similar
to the truth presented in sub-figure (a), having 5 clusters.

4.7. The application of DP-GMMs in a monitoring framework

Varying production demand and loading conditions on equipment often result in multiple operating
modes in process operation. Typically, multimodality exists in the data recorded from such processes,
and poses challenges to building monitoring models which may be trained from labelled historical data.
An anomaly detected using such monitoring models might be either a symptomatic of a developing fault,
or indicates the emergence of a new operating mode. Particularly, the appearance of a new operating
mode means that the trained monitoring models are not adequate to account for the normal operation.
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This situation necessitates the incorporation of the new healthy data into the monitoring model, thus
minimising future false and missed alarms.

A key step in the monitoring framework proposed in joint work Tan et al. (2019, 2020) is to handle
data multimodality in off-line training while being implemented on-line where the active update of a
monitoring model is also taken into consideration. Fig. 4.6 presents a flowchart summarising the frame-
work.

DP-GMMs clustering

On-line data

Process monitoring

Anomaly?

New mode?

Anomaly detection

Yes
Yes

No

No

Unlabelled 
historical data

Off-line training On-line monitoring

Monitoring model trained 
using the selected 

monitoring approach 

Number of clusters
Labelled data

Means & covariances

Figure 4.6: A monitoring framework for on-line anomaly detection and monitoring model update: the off-
line training procedure of monitoring model is shown on the left of the diagram while the on-line mon-
itoring is on the right part. For the off-line training, firstly, unlabelled historical data are partitioned into
several clusters using the DP-GMMs algorithm. Secondly, the derived number of clusters, labelled data,
means and covariances are passed to the selected monitoring algorithm for training monitoring model.
The MSPM algorithm candidate could be the Non-stationary Discrete Convolution (NSDC) kernel-based
method (Tan et al., 2019, 2020), which requires the clusters of data to be known and is suitable to ac-
count for multimode processes. Given the trained monitoring model, the incoming data can be identified
as normal or faulty operation. If the data are recognised as abnormal, and from new modes, the data will
be incorporated into the DP-GMMs clustering step along with historical data. The training model will be
updated using the new clustering results and Gaussian parameters associated to each cluster.

4.7.1. Off-line training

The left side of Fig. 4.6 is the work flow of the off-line training. The DP-GMMs approach clusters
the unlabelled data recorded from multiple normal operating modes. Then, the clustering results, such
as the number of clusters, labelled data and means and covariances of each cluster, are used in training
monitoring models.

Data labelling

The first step of most common frameworks for monitoring multimode processes is to explicitly label
each mode data (Zhang et al., 2018). If the class labels are available, the historical data can be classi-
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fied using classification methods. Widely used methods include Fisher discriminant analysis-based, sup-
port vector machine-based and Gaussian mixture model-based methods (Bishop, 2006; Ge et al., 2017).
However, class labels are hard and expensive to obtain because manually labelling a large quantity of
historical data requires massive time and manpower devotion. Therefore, clustering algorithms without
the prior knowledge of class labels are considered. Existing clustering methods, such as K-means (Lloyd,
1982), expectation maximisation method (Dempster et al., 1977), and hierarchical clustering (Murtagh
and Contreras, 2011), typically requires the number of clusters to be known in advance (Rui Xu and
Wunsch, 2005). In contrast, the DP-GMMs can automatically determine the number of clusters when
labelling the data.

Monitoring models

Various approaches in Multivariate Statistic Process Monitoring (MSPM) have been proposed for
processes with multiple operating modes. In the joint paper with Tan et al. (2019, 2020), a Non-stationary
Discrete Convolution (NSDC) kernel-based method was employed. This method is able to address the
covariance structure of each mode in the kernel design, and has been applied to multimode process
monitoring to build single monitoring models (Tan et al., 2019).

4.7.2. On-line monitoring

The right side of Fig. 4.6 is the work flow of on-line monitoring. In the on-line monitoring state,
the on-line data is determined as either normal or anomalous using the NSDC kernel-based monitoring
model. The detection of an anomaly indicates that the process has run at an operating mode that has not
been seen in the training. At this stage, additional expert knowledge is required to categorise the anomaly
as fault or a new mode. The confirmation of a new mode activates the clustering using the DP-GMMs
clustering methods described in this chapter making use of historical data as well as the data from the
new operating mode. Moreover, the monitoring model is re-trained using the updated number of clusters,
labelled data and means and covariances. If there is no evidence to support the detected anomaly is a new
operating mode, the end user will conclude that there is a fault in the process.

4.8. Summary

In this chapter, the Dirichlet Process-Gaussian Mixture Models (DP-GMMs) have been introduced.
The DP-GMMs take advantage of partitioning a set of unlabelled data into clusters that follow multivari-
ate Gaussian distributions without the number of clusters as a-prior. The Normal Inverse Wishart (NIW)
distribution is the commonly used priori for multivariate Gaussian distributions due to its conjugacy. Its
derivation has been presented. To implement the DP-GMMs clustering, Gibbs sampling was reviewed.
The Bayesian inference in the DP-GMMs has been introduced.

A prominent value of DP-GMMs clustering relates to the fact that there is no requirement to specify
the number of clusters. Such an approach may be used to automatically label historical data. However,
the NIW distribution has issues with its parameter initialisation, which may impact the parameter
estimation of the Gaussian distribution associated to each cluster, particularly for the covariance, and
clustering results. In this chapter, the DP-GMMs clustering algorithm was implemented on a multimode
simulation model. In addition, the potential impact with two kinds of parameter initialisation was
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analysed, one of which was tested in a simulated example. The simulation experiment showed that
improper parameter settings could lead to errors in covariance estimation; also, mis-clustering might be
caused using these settings.

The main novelty of this chapter is to propose a method to minimise the impact from improper
initialisation. Before clustering, it is advised that each variable of the unlabelled data are centred to
zero and adjusted to variance of one. For clustering, a determination method of 0 was given. After
clustering, the parameters of each cluster are re-estimated by the sample mean and sample covariance.
The re-estimation operation aims to provide accurate statistical information related to each cluster. The
proposed measures have been validated on a 5-mode simulation model. It showed that the clustering
performance could be greatly improved by using the proposed normalisation and parameter initialisation.

A monitoring framework incorporating the clustering ability of DP-GMMs was proposed in collabo-
ration work (Tan et al., 2019, 2020). Except for classifying the unlabelled historical data, the DP-GMMs
are also used in the situation that on-line data are detected as new operating modes. In this case the
historical data and on-line data are combined and clustered using the DP-GMMs approach in order to
update the information of normal operation required in training monitoring models.
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5. Field Kalman Filter (FKF) for process monitoring

In a process, various operating modes might have the same or similar steady-states, but with distinct
dynamics. Monitoring algorithms that do not take dynamics into account would fail to distinguish such
modes. In addition, there might be faulty operation occurring in a process. The ability of inferring the
anomalies should also be included in the algorithm design.

The Field Kalman Filter (FKF) is a model-based Bayesian algorithm, being capable of simulta-
neously estimating the state, system parameter and noise parameter. This advantage can be applied
to differentiating various operating modes both deterministically and stochastically. In addition, this
chapter investigates the potential of extending the FKF for anomaly detection from multimode processes.
The organisation of this chapter is as follows: Section 5.1 revisits the Kalman filter and introduces
the FKF. The existing methods of model-based multimode process monitoring are reviewed and the
challenges and opportunities are analysed in Section5.2. The Multivariate Autoregression State-Space
(MARSS) model is selected as the system identification method for modelling normal process operation
(see Section 5.3). Section 5.4 develops the applications of the FKF to fault/mode classification and
anomaly detection. The procedure of off-line training an FKF monitoring model and on-line monitoring
is illustrated in Section 5.5. To validate the proposed PCM approaches, two simulated case studies are
given in Section 5.6. A univariate model was used for a scenario of fault detection and fault isolation. A
multivariate multimode model was used for evaluating the performance of MARSS models in anomaly
detection and mode identification applications. This chapter builds upon the work of Baranowski et al.
(2017) and Cong et al. (2020).

5.1. Introduction to the FKF

5.1.1. Review of the Kalman filter

Theoretical formulation of the Kalman filter

The Kalman filter was introduced by Kalman (1960). His idea was to construct a state estimator
on the properties of conditional Gaussian random variables Roux (2003). Taking object tracking as an
example, the velocity and position of the object at a certain time is the state of the system. The estimation
criterion is that the current state is deduced from the previous state and current measurement. The Kalman
filter is an optimal state estimator (Anderson and Moore, 1979), and guarantees the variance of the state
estimation is minimal, when the following conditions hold (Matisko and Havlena, 2013):

- The system is Linear Time Invariant (LTI) and the mathematical model in state-space form of this
system is exactly known;
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- The state and the measurement noises are white processes;

- The covariance matrices of the state and the measurement noises are known.

Consider the discrete-time LTI system:

x[t+ 1] = A[t]x[t] +B[t]u[t] +w[t] (5.1)

y[t] = C[t]x[t] + v[t] (5.2)

w[t] ⇠ N (0,W )),v[t] ⇠ N (0, V ).

Eq. (5.1) is the state equation in which x[t] 2 Rm is the state to be estimated, u[t] 2 Rl is the system
input and w[t] 2 Rm is the state noise independent of x[t] which follows a Gaussian distribution with
zero mean and state noise covariance W 2 Rm⇥m. A[t] 2 Rm⇥m and B[t] 2 Rm⇥l represent the
state-transition matrix and the input-control matrix, respectively. Eq. (5.2) is the measurement equation
in which y[t] 2 Rr is the measurement and v[t] 2 Rr is the measurement noise and follows a Gaussian
distribution with zero mean and measurement noise covariance V 2 Rr⇥r. C[t] 2 Rr⇥m represents the
measurement-control matrix. N represents the Gaussian distribution.

Let yt = y[t] and xt = x[t]. Denoting y1,y2, . . . as a sequence of measurements, x1,x2, . . . as
the corresponding states and Yt�1 as the past measurements in the time interval (0, t]. The expression of
Yt�1 is:

Yt�1 =

8
<

:
{y1, . . . ,yt�1}, for t = 2, 3, . . .

?, for t = 1.
(5.3)

The details of the Kalman filter are presented in Algorithm 2. To estimate the state, there are two main
steps:

– Prediction of distribution P (xt|Yt�1). The optimal prediction of xt is described with x�
t

as Eq.
(5.4c) and S�

t
as Eq. (5.4d).

– Correction of distribution P (xt|Yt�1,yt) = P (xt|Yt). The corrected variables corresponding to
x�
t

and S�
t

are x+
t

and S+
t

, respectively, shown in Eq. (5.4i) and Eq. (5.4j). To implement the
Kalman filter in practice, for t = 0, x+

0 is initialised as a zero vector and S+
0 is an identity matrix.

Limitations of the Kalman filter

When implementing the Kalman filter, the evaluation of the covariance matrices with respect to
the physics of systems is non-trivial, especially for the state noise assessment (Formentin and Bittanti,
2014). The noise covariance matrices are typically identified using experimental data. Bishop et al. (2001)
commented that in practice, it may be possible to evaluate the measurement noise covariance through
recorded output measurements. However, the determination of the state noise covariance is challenging
due to the non-observability of the process states.

To address the estimation problem of noise covariances, the adaptive Kalman filter (Mehra, 1970;
Gao et al., 2012) was proposed. Odelson et al. (2006) introduced an Autocovariance Least Squares
(ALS) method. Modified ALS methods can be found in (Rajamani and Rawlings, 2009; Åkesson et al.,
2008). Matisko and Havlena (2013) put forward a Bayesian approach using Monte Carlo simulations.
An maximum likelihood method (Bar-Shalom, 1972) and an ensemble Kalman filter (Zhou et al., 2012)
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Algorithm 2: Kalman filter

Initialisation
t = 1, (5.4a)
x+
0 , S

+
0 (5.4b)

Prediction step
Predicted state:
x�
t
= A[t]x+

t�1 +B[t]u[t] (5.4c)
Predicted noise covariance of state:

S�
t
= A(t)S+

t�1A[t]> +W (5.4d)
Correction step (5.4e)
Predicted measurement:
y�
t
= C[t]x�

t
(5.4f)

Predicted noise covariance of measurement:

M�
t

= V + C[t]S�
t
C[t]> (5.4g)

Kalman gain:

Kt = S�
t
C[t]>M�

t

�1 (5.4h)
Corrected state:
x+
t
= Kt(yt � y�

t
) + x�

t
(5.4i)

Corrected noise covariance of state:

S+
t
= (I �KtC[t])S�

t
⇥ (I �KtC[t])> +KtV Kt

> (5.4j)
New time stamp:
t = t+ 1 (5.4k)
Go to prediction step until process stops

Note: superscript + denotes the corrected variable and � denotes the predicted variable.

were proposed to simultaneously estimate the state and parameter. However, the concurrent estimation
of state, parameter and noise covariance is not fully resolved.

5.1.2. Field Kalman Filter (FKF)

The FKF, rooted in a parameter-dependent state-space form, is an extension of the Kalman filter. The
parameter is from a continuous space. Its purpose is to simultaneously estimate the state, parameter and
noise covariance (Bania and Baranowski, 2016).

Theoretical formulation of the FKF

The state-space model defined in the FKF is :
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x[t+ 1] = A(✓)x[t] +B(✓)u[t] +w[t]

y[t] = C(✓)x[t] + v[t]

w[t] ⇠ N (0,W (✓)),v[t] ⇠ N (0, V (✓))

(5.5)

where ✓ 2 ⌦ ⇢ Rp is a vector of parameters and the matrix functions A,B,C,W, V are of C1 class 1

w.r.t. ✓. Of appropriate dimensions, A(✓), B(✓), C(✓), W (✓) and V (✓) respectively denote the state tran-
sition matrix, input-control matrix, measurement-control matrix, state noise covariance and measurement
noise covariance, and are associated with ✓.

The main objective of the FKF is to simultaneously estimate the distribution of state xt and parameter
✓, P (xt, ✓). The estimation of P (xt, ✓) is a recursive process incorporating the information of past
measurements Yt�1 as well as the current measurement yt. There are two main steps for each iteration
in the recursive process summarised as:

– Prediction of joint distribution P (xt, ✓|Yt�1) ;

– Correction of joint distribution P (xt, ✓|Yt�1,yt).

Readers who are interested in the detailed derivation of the FKF are guided to (Bania and Baranowski,
2016). The discrete FKF is elaborated in the Section 5.4.

5.2. Model-based multimode process monitoring

5.2.1. Existing methods

Most of modern industrial processes consists of multiple units and components to deliver the final
product. To describe the inherent interactions between the inputs and outputs of such processes, physical
or explicit mathematical models are applicable. Particularly, models in state-space form are practical
in process monitoring (Jin and Shi, 1999), due to their convenient approximation of finite-order Linear
Time-Invariant (LTI) systems in time-domain analysis (Yu and Falnes, 1995). Nevertheless, a single
model can only describe specific temporal relationships and correlations between variables. Considering
a process with multiple operating modes, there are a variety of connections between variables to be
described. For such cases, multiple state-space models are required for monitoring a multimode process
(Tan et al., 2012).

An example of multiple state-space models is a bank of Kalman filters which are able to formulate
a system with finite dimensional, usually discrete-time, linear dynamic subsystems. Each dynamic sub-
system can be expressed with a state-space model. Similar to traditional Kalman filter, a bank of Kalman
filters can recursively estimate the current state using the previous states and current measurements, yet
concurrently over multiple models. The discrepancies between the estimates and measurements are called
residuals. In a bank of Kalman filters, each model has its own distinct residuals. In practical applications,
the residuals from multiple models can be used for classification problems, such as differentiating various
sensors and actuators in aircraft engines(Kobayashi and Simon, 2005; Xue et al., 2007), degrees of free-
dom of a quad rotor (Pebrianti et al., 2016), detecting fading channels in mobile communications(Rong

1C1 class refers to all of the differentiable functions whose derivative is continuous.
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Chen et al., 2000) and mechanical failure and sensor failure(Huang et al., 2012). In addition, these resid-
uals can be further developed to statistical decisions by combining Bayes’ theorem. Alkahe et al. (2002)
and Meskin et al. (2013) used such statistical decisions for fault diagnosis.

The FKF can be treated as a bank of Kalman filters with infinite subsystems, the parameters and
noise parameters of which are continuously distributed. In the FKF, the state, parameter, and noise co-
variance of a system with infinite subsystems are simultaneously estimated using Bayesian methods. As
the estimation is a nonlinear problem, the FKF uses an appropriately selected bank of Kalman filters
and a Bayesian updating scheme to approximate the joint posterior of state and parameters. When the
system and noise parameters have discrete distributions, the nature of the FKF is a bank of Kalman
filters. Thus, no approximation is needed to reconstruct the posterior distribution. In the application of
the FKF to process monitoring, the FKF holds the following advantages over other comparable methods.
Firstly, as the FKF takes the distributions of noise parameters into consideration, the FKF-based monitor-
ing algorithm can differentiate various operating modes deterministically and stochastically. Secondly,
a forgetting factor is formulated into the FKF such that when system parameters changes, the FKF can
continue to perform monitoring reliably. Thirdly, the Bayesian monitoring statistics are interpretable and
traceable for end users.

5.2.2. Challenges and opportunities

Multimode process monitoring based on Bayesian statistical decision methods is advantageous be-
cause the decision results are interpretable and visualisable. However, Bayesian methods for anomaly
detection are limited to the known process operation. Therefore, unknown operation, such as the occur-
rence of faults or new operating modes, might be undetectable. Some research efforts have been paid to
such a problem. Considering a process with multiple operating modes, Song et al. (2007) built statisti-
cal models and designed monitoring indicators for each mode. The operating mode is classified using
Bayes’ theorem while anomalies are distinguished using the monitoring indicator of the classified mode.
Instead of working with multiple monitoring models and indicators, Yu and Qin (2008) and Ge and Song
(2010a) proposed strategies of unifying Bayesian statistical decisions into a single monitoring indicator
for anomaly detection.

However, it should be noted that in practice, the use of Bayes’ theorem might encounter numerical
problems. As introduced in Section 4.2.3 of Chapter 4, the Bayesian statistical decisions refer to pos-
terior probabilities. The denominator of posterior probabilities is the sum of products of the prior and
likelihood probabilities. The occurrence of anomalies will cause the denominator to approach to zero.
As a result, posterior probabilities cannot be calculated. Nevertheless, the denominator can be utilised as
a monitoring indicator, because it is the same across all the known operating modes. Additionally, such
a monitoring indicator can also avoid the numerical problem. If the monitoring indicator is extremely
small, the calculation of posterior probabilities for mode identification can be sidestepped.

5.3. System identification of process models of normal operation

In control engineering, system identification is a methodology to obtain the mathematical models
of dynamic systems from the input and/or output measurements of a system (Hong et al., 2008; Ding
et al., 2010; Westwick and Perreault, 2011; Dahunsi et al., 2010; Kolodziej and Mook, 2011). To imple-
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ment model-based methods, mathematical models are required. Multivariate Autoregressive State-Space
(MARSS) models are proposed to model normal operation. For linear systems, system identification has
been well-researched and practically solved. Hence, the presentation of LTI systems in state-space form
is available.

5.3.1. Motivations of the use of MARSS models

A large scale plant is complex due to a number of interacting subsystems. Given the complexity, it
is challenging to derive an explicit model via first-principles. In cases where there is minimal or no prior
knowledge of the physics of the system, having knowledge of the system inputs and outputs is a form of
prior knowledge of the physics of the system, it is able to build data-driven system models. Particularly,
from industrial plants, there are sufficient healthy data to be collected. In addition, the local dynamics
existing in the healthy data may be well described by linear discrete models.

According to the data source category, there are two mainstream ways of applying historical data
to system identification, respectively input-output data-based methods (Favoreel et al., 2000; Figwer,
2015; Larimore, 1990; Perreault et al., 1999; Risuleo et al., 2016) and output-only data-based meth-
ods(Bonciolini et al., 2017; Chang et al., 2017; Vicario et al., 2015; Holmes et al., 2012). When consid-
ering input-output system identification methods, it is necessary to clearly specify which variables are
inputs to the model and which variables are outputs. However, it is difficult to distinguish input vari-
ables from a number of measured variables. Output-only system identification is a generalised way for
historical data-based modelling. This method treats all the measured variables as output variables, thus
removes the necessity of the input variable selection. In this thesis, since the model in the FKF is in state-
space form, the output-only MARSS models is adopted. Autoregressive (AR) models have been used
for modelling a steady-state process (Akaike, 1969). An AR model may be converted to a state-space
form(Holmes et al., 2012).

5.3.2. Methodology of MARSS models

Data preparation

Typically, the first step of historical data-based approaches for monitoring a process with multiple
operating modes is data partitioning (Zhang et al., 2018). Mixed data of various operation modes can be
partitioned either manually by experts or by clustering algorithms such as the Dirichlet Process-Gaussian
Mixture Models (DP-GMMs) introduced in Chapter 4. Assuming that YH is the mixed multimode his-
torical data and Y (j)

H is the historical data for the j-th operating mode, according to the operating modes,
YH = {Y (j)

H , j = 1, 2, . . . , J} is the resulting data partitioning, where J is the number of operating
modes. For the j-th operating mode, historical data Y (j)

H are further split into a training dataset Y (j)
Tr and

a validation dataset Y (j)
Va . It should be noted that, either in the data partitioning step or in the splitting

step, the data samples are indexed in time order. y(j)
t

denotes the sample in Y (j)
H with time stamp t.

Multivariate Autoregressive (MAR) models

Having k autoregressive terms and a constant term, the MAR model of r-dimension takes the form

y(j)[t+ 1] = �(j)
1 y(j)[t] + · · ·+ �(j)

k
y(j)[t� k + 1] + �(j)

0 (5.6)
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where y(j)[t + 1],y(j)[t], . . . ,y(j)[t � k + 1] 2 Rr represents measurement vectors of the j-th mode
equally spaced in time. The measurement value corresponding to y(j)[t] is y(j)

t
. �(j)

1 , . . . ,�(j)
k

2 Rr⇥r

are coefficient matrices and �(j)
0 2 Rr is a coefficient vector, of the j-th mode.

The coefficients �(j)
1 , . . . ,�(j)

k
,�(j)

0 can be obtained by a least squares fitting procedure (Weis-
berg, 1980). The procedure is to fit the model in Eq. (5.6) to an ensemble of measurements Y (j)

H =

{y(j)1 , y(j)2 , . . . } (Thornhill et al., 1999).

Conversion of an MAR model to state-space form

For a process with J operating modes, the desired state-space form is

x(✓j)[t+ 1] = Â(✓j)x(✓j)[t] + B̂(✓j)u[t] +w(✓j)[t]

y(✓j)[t] = Ĉ(✓j)x(✓j)[t] + v(✓j)[t]

w(✓j)[t] ⇠ N (0, Ŵ (✓j)),v(✓j)[t] ⇠ N (0, V̂ (✓j))

j = 1, . . . , J

(5.7)

where Â(✓j), B̂(✓j) and Ĉ(✓j), Ŵ (✓j) and V̂ (✓j) respectively are the estimates of state transition matrix,
input-control matrix and measurement-control matrix, state noise covariance and measurement noise
covariance of the j-th mode.

As Eq. (5.6) is to be converted to a state-space model, it is necessary to choose some states. There
are many possible choices for the states (Holmes et al., 2012). In this thesis, the state are given by

x(✓j)[t] =

8
>>>>>><

>>>>>>:

x1[t]

x2[t]
...

xk[t]

(5.8)

where

xi[t] 2 <r =

8
<

:
y[t] 2 <r, for i = 1

x1[t� i+ 1] 2 <r, for i = 2, 3, . . . , k.
(5.9)

With these definitions, Â(✓j), B̂(✓j) and Ĉ(✓j) in Eq. (5.7) can be given as:

Â(✓j) =

0

BBBBBB@

�(j)
1 �(j)

2 . . . �(j)
k

I 0 . . . 0
...

...
. . .

...

0 . . . I 0

1

CCCCCCA
2 Rrk⇥rk

B̂(✓j) =

0

BBBBBB@

�(j)
0

0
...

0

1

CCCCCCA
2 Rrk (5.10)
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Ĉ(✓j) =
⇣

I 0 . . . 0
⌘
2 Rr⇥rk

where the dotted lines indicate that the vectors and matrices have sub-blocks, I 2 Rr⇥r is an identity
matrix and 0 2 Rr⇥r is a matrix with all elements of value 0. The variable u[t] is equal to 1, because
there is a constant term in Eq. (5.6).

When state xt(✓j) and measurement yt(✓j), t = 1, 2, . . . , are available, the covariance matrices
Ŵ (✓j) and V̂ (✓j) can be derived through a nonlinear optimisation:

min
Ŵ (✓j),V̂ (✓j)

tr

"
1

nj

njX

t=1

(xt(✓j)� x�
t
(✓j))(xt(✓j)� x�

t
(✓j))

>

#

s.t. Eq.(5.7) hold, 8t, and Ŵ (✓j) > 0, V̂ (✓j) > 0

(5.11)

where nj is the number of output measurements in the j-th mode, xt(✓j) is the measured value of x(✓j)[t]
and x�

t
(✓j) is the predicted value of x(✓j)[t] using the Kalman filter. Obtaining the global minima of

Eq. (5.11) is non-trivial because noises are highly stochastic. Formentin and Bittanti (2014) pointed
that Ŵ (✓j) and V̂ (✓j) can be designed as positive semi-definite diagonal matrices, the elements on the
diagonal of which are positive values. Besides, the diagonal form can significantly reduce the number of
elements being estimated. Thus, this thesis adopts this design of Ŵ (✓j) and V̂ (✓j).

5.4. FKF for process monitoring

Given ✓ 2 ⌦ = {✓1, . . . , ✓J}, the discretised Eq. (5.5), called the discrete FKF model, is

x(✓j)[t+ 1] = A(✓j)x(✓j)[t] +B(✓j)u[t] +w(✓j)[t]

y(✓j)[t] = C(✓j)x(✓j)[t] + v(✓j)[t]

w(✓j)[t] ⇠ N (0,W (✓j)),v(✓j)[t] ⇠ N (0, V (✓j))

j = 1, . . . , J

(5.12)

where the definitions of A, B, C, W and V here are the same as in Eq. (5.5), but the associated parameter
is ✓j . x(✓j)[t] and y(✓j)[t] respectively are the state and measurement given sub-model information
A(✓j), B(✓j), C(✓j), W (✓j) and V (✓j).

Under the assumption of P (✓1|Yt) 6= · · · 6= P (✓J |Yt), P (xt, ✓|Yt�1) and P (xt, ✓|Yt) are PMFs
with J distinct components. Generally, the parameter matrices in Eq. (5.12) are unknown. In this thesis,
the training of the discrete FKF model adopts the aforementioned MARSS method (see Section 5.3). It
also should be noted that the actual dependence of MARSS models on parameters ✓1, . . . , ✓j is strongly
implicit. In the considered monitoring approach, the necessity of explicitly estimating these parameters
is removed, as the interest is in the sub-model index j. More specifically, the discrete FKF model-based
monitoring approach is essentially a marginalisation of parameters and an estimation of the sub-model
index.

When the system information are fully known (e.g. for a J-mode process, j 2 {1, . . . , J} ), the mon-
itoring model trained with these information can be used for classification, for example, fault diagnosis
and mode identification. However, when the system information are limited, the monitoring techniques
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are required to identify the unlearned operation of the plant (e.g. j /2 {1, . . . , J} is related to the appear-
ance of anomalies).

5.4.1. Apply the FKF for classification

Given 8j, A(✓j), B(✓j), C(✓j), W (✓j) and V (✓j), the FKF algorithm with ✓ 2 ⌦ = {✓1, . . . , ✓J} is
presented in Algorithm 3. The recursive process in the FKF includes two main steps:

– Prediction step determines the joint probability of xt and ✓ using past measurements Yt�1:

P (xt, ✓|Yt�1) = P (xt|✓, Yt�1)P (✓|Yt�1) (5.13)

where xt 2 {x(✓1)[t], . . . ,x(✓J)[t]}. P (xt|✓, Yt�1) is a PMF within which each component fol-
lows a Gaussian distribution. Each Gaussian component is parameterised with mean vector x�

t
(✓j)

as Eq. (5.15f) in Algorithm 3 and covariance S�
t
(✓j) as Eq. (5.15g) in Algorithm 3. x�

t
(✓j) and

S�
t
(✓j) are predicted in the same way as in a Kalman filter. P (✓|Yt�1) is the distribution of Gaus-

sian components. At t = 1, P (✓|Yt�1) = P (✓|?) = P+
0 (✓) is presumed uniformly distributed as

Eq. (5.15e).

– Correction step determines the joint probability of xt, ✓ with Yt�1 and additional measurement yt:

P (xt, ✓|Yt�1,yt) = P (xt|✓, Yt�1,yt)P (✓|Yt�1,yt)

= P (xt|✓, Yt�1,yt)

⇥ P (yt|✓, Yt�1)P (✓|Yt�1)

(5.14)

where P (xt|✓, Yt�1,yt) is subject to a mixture of corrected Gaussian distributions where each
Gaussian component is parameterised by mean vector x+

t
(✓j) as Eq. (5.15j) and covariance

S+
t
(✓j) as Eq. (5.15k). Since Yt�1 = ? at t = 1, P (xt|✓, Yt�1,yt) = P (xt|✓,yt) in which

case x+
t�1(✓j) = x+

0 (✓j) and S+
t�1(✓j) = S+

0 (✓j). Often x+
0 (✓j) and S+

0 (✓j) are initialised as
a zero vector and an identity matrix, respectively. P (yt|✓, Yt�1) can be indirectly estimated by
P (xt|✓, Yt�1,yt) because yt is linearly linked to xt and both noise covariances of xt and yt are
Gaussian. Therefore, P (yt|✓, Yt�1) is also a mixture of Gaussian distributions with mean vector
y�
t
(✓j) as Eq. (5.15l) and covariance M�

t
(✓j) as Eq. (5.15m) for the j-th component.

Since ✓ 2 ⌦ = {✓1, . . . , ✓J}, there are J conditional probabilities yielded at each time instant with
respect to xt and ✓. Assuming that at a given time, only a sub-model functions in the system, only one
conditional probability is the best-fit to reflect the current system behaviour. The inference of the best-fit
conditional probability is equivalent to finding the sub-model information A(✓j), B(✓j), C(✓j), W (✓j)

and V (✓j) at time t to give the best estimates of measurement yt.

Let It 2 {1, . . . , J} be the sub-model index at time t. It = j implies that the system is running with
the j-th sub-model and the estimation of yt follows E(yt) = y�

t
(✓j) and cov(yt) = M�

t
(✓j) where

E and cov denotes the expectation and covariance, respectively. The posterior probability P (It = j|yt)

of a system running with the j-th sub-model given yt can be formulated according to Bayes’ theorem
(for brevity of the notation, we omit conditions on the past measurements Yt�1 and system information
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Algorithm 3: Field Kalman Filter (FKF)

Initialisation
✓ 2 {✓1, . . . , ✓J} (5.15a)
t = 1, 8j = 1, . . . , J (5.15b)
x+
0 (✓j), S

+
0 (✓j) (5.15c)

P+
0 (✓1) = . . . , P+

0 (✓J) =
1

J
(5.15d)

P+
0 (✓) = (P+

0 (✓1), . . . , P
+
0 (✓J))

> (5.15e)
Prediction step
Predicted state:
x�
t
(✓j) = A(✓j)x

+
t�1(✓j) +B(✓j)u[t] (5.15f)

Predicted noise covariance of state:

S�
t
(✓j) = A(✓j)S

+
t�1(✓j)A(✓j)

> +W (✓j) (5.15g)
Predicted prior distribution of It = 1, . . . , It = J :
P�
t
(✓) = F (↵)P+

t�1(✓) (5.15h)
Correction step
Kalman gain:

Kt(✓j) = S�
t
(✓j)C(✓j)

>M�
t
(✓j)

�1 (5.15i)
Corrected state:
x+
t
(✓j) = Kt(✓j)(yt � y�

t
(✓j)) + x�

t
(✓j) (5.15j)

Corrected noise covariance of state:
S+
t
(✓j) = (I �Kt(✓j)C(✓j))S

�
t
(✓j)

⇥ (I �Kt(✓j)C(✓j))
> +Kt(✓j)V (✓j)Kt(✓j)

> (5.15k)
Predicted measurement:
y�
t
(✓j) = C(✓j)x

�
t
(✓j) (5.15l)

Predicted noise covariance of measurement:

M�
t
(✓j) = V (✓j) + C(✓j)S

�
t
(✓j)C(✓j)

> (5.15m)
Posterior probability of It = j:
P+
t
(✓j) = P (It = j|yt)

=
P (yt|It = j)P�

t
(It = j)

P
J

j=1 P (yt|It = j)P�
t
(It = j)

(5.15n)

Posterior distribution of It = 1, . . . , It = J :

P+
t
(✓) = (P+

t
(✓1), . . . , P

+
t
(✓J))

> (5.15o)
New time stamp
t = t+ 1 (5.15p)

Go to prediction step until process stops
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A(✓j), B(✓j), C(✓j), W (✓j) and V (✓j)):

P (It = j|yt) =
P (yt|It = j)P (It = j)

P
J

j=1 P (yt|It = j)P (It = j)
(5.16)

where P (It = j) is the prior probability of a system running with the j-th sub-model before yt is
measured, and P (yt|It = j) is the likelihood probability of measuring yt when a system is running with
the j-th sub-model. The sub-model index at time t is determined by:

argmax
j

P (It = j|yt). (5.17)

The likelihood probability in Eq. 5.16 can be calculated by

P (yt|It = j) = P (yt|yt�1, yt�2, . . . , y1, A(✓j), B(✓j), C(✓j),W (✓j), V (✓j))

= P (yt|E(yt) = y�
t
(✓j), cov(yt) = M�

t
(✓j))

= det(2⇡M�
t
(✓j))

� 1
2

⇥ exp�
1
2 (yt�y�

t (✓j))
>
(M�

t (✓j))
�1

(yt�y�
t (✓j)) (5.18)

where det denotes the determinant calculation.

The common way of assigning P (It = j) is recursive. Before having any measurements, 8j, the prior
probability P (It = j) is set equal to 1

J
. Once measurements arrive, 8j, the prior probability P (It =

j) is updated with the posterior probability P (It�1 = j|yt�1). However, the drawback of this simple
posterior-to-prior updating is that if any prior is updated with its posterior of value zero (or numerically
indistinguishable from it), both prior and posterior values will be locked to zero for further computation.
This can be problematic in cases of mode switching.

In similar approaches, prior probabilities are artificially lower bounded by a small value (Maybeck,
1999; Alkahe et al., 2002; Meskin et al., 2013), which is a design parameter. Another solution is the
usage of a transition matrix describing the random change between sub-models. The choice of such a
transition matrix is not unique, for example, a symmetric matrix (Isaksson et al., 1999). In the case of
FKF to overcome this issue, a doubly stochastic matrix F (↵) is specified (Baranowski et al., 2017):

F (↵) =
1

2

0

BBBBBBBBBBBB@

1 + ↵ 1� ↵

1� ↵ 2↵ 1� ↵

1� ↵ 2↵ 1� ↵
. . . . . . . . .

1� ↵ 2↵ 1� ↵

1� ↵ 1 + ↵

1

CCCCCCCCCCCCA

2 RJ⇥J (5.19)

where the unfilled entries are zeros and ↵ 2 (0, 1) is a forgetting factor. The reason of choosing a doubly
stochastic matrix is that the stationary distribution for F (↵) is uniform:

lim
t!1

F (↵)tP0 = (
1

J
,
1

J
, . . . ,

1

J
)> (5.20)
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where P0 2 RJ is a random vector where all the entries sum to one. Also, the use of F (↵) can guarantees
that the sum of priors is 1. Then the prior values are predicted by Eq. (5.15h) in Algorithm 3 where

P�
t
(✓) =

0

BBBBBB@

P (It = 1)

P (It = 2)
...

P (It = J)

1

CCCCCCA
(5.21)

P+
t�1(✓) =

0

BBBBBB@

P (It�1 = 1|yt�1)

P (It�1 = 2|yt�1)
...

P (It�1 = J |yt�1)

1

CCCCCCA
. (5.22)

The value selection of forgetting factor ↵ determines the weights of posterior probabilities at time
t � 1 contributing to the current priors. When ↵ is set close to its lower bound value zero, P (It = J)

is predicted with weighted P (It = j), j = 1, 2 . . . , J � 1. When ↵ is set close to one, it means that
P (It = J) is only associated with its posterior probability at time t � 1, P (It�1 = J |yt�1). In this
thesis, ↵ = 0.99. Users can adjust the value of ↵ according to their experience or specific applications.

5.4.2. Application of the FKF for anomaly detection

This thesis also considers the case when j /2 {1, . . . , J}, related to the appearance of anomalies.
Bayes’ theorem has limitations when measurements have large variance (Baranowski et al., 2017), or
when the measurements are from a sub-model j /2 {1, . . . , J} (e.g. new operating modes or faults)(Song
et al., 2007; Ge and Song, 2010a). The likelihoods of the measurements given j /2 {1, . . . , J} will
be close to zero, leading to a numerical problem in calculating the posterior probability because the
denominator in Eq. (5.16) will be close to zero. Bayes’ theorem can still be applied to anomaly detection
by utilising a small value as the monitoring threshold.

A monitoring indicator proposed in this thesis is Lt

Lt =
JX

j=1

P (yt|It = j). (5.23)

An anomaly is detected when the following condition holds for Lt:

Lt < LLML. (5.24)

where LLML is the lower monitoring limit estimated from the validation data YVa = {Y (1)
Va , . . . , Y (J)

Va }.
LLML is set with the 5th percentile of the values of Lt. These monitoring indicators are obtained by
feeding YVa to the Algorithm 1 in which the calculation of the predicted and corrected prior probabilities
in Eq. (5.15h), (5.15n) and (5.15o) are skipped and Lt is calculated by Eq. (5.23). The usage of validation
data here is to simulate the on-line data of normal operation. The LLML is a cutoff point in the validation
data for flagging anomalies.
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Algorithm 4: Anomaly detection and mode identification
The FKF model as (5.7) is trained according to the Section 5.3.2.
The lower monitoring limit LLML is derived according to the Section 5.4.2.
while Process continues do

Lt =
P

J

j=1 P (yt|It = j)

if Lt < LLML then
yt is an anomaly, indicating It /2 {1, . . . , J}.
Instead of (5.15h) and (5.15n), the predicted and corrected prior
probabilities are calculated using the following equations:

P+
t
(✓j) = P (It = j|yt) = 0 8j (5.25a)

P�
t+1(✓j) = P (It+1 = j) =

1

J
8j. (5.25b)

else
yt is recognised as normal operation.
8j = 1, . . . , J , the predicted and corrected prior probabilities
are calculated using (5.15h), (5.15n) and (5.15o).
The mode identify It is determined by (5.17).
t = t+ 1

end
end

Algorithm 4 presents the workflow of anomaly detection and mode identification based on the FKF.
Given the FKF model and LLML, the monitoring indicator at time t for the measurement yt is calculated
using Eq. (5.23). If Lt < LLML, It /2 {1, . . . , J} denotes that yt is an anomaly. There is no need to
conduct mode identification. Hence, let P+

t
(✓j) = 0 8j as Eq.(5.25a) be indicative of the appearance

of anomaly. The predicted prior distribution of known sub-models for the next time instant are set to
uniform distribution as Eq.(5.25b). If yt is recognised as normal operation, the sub-model index is
determined by Eq. (5.17).

5.5. Workflow for anomaly detection and mode identification

Fig. 5.1 summarises the workflow of how to implement the FKF for monitoring multimode
processes. The dashed-box of off-line training shows the procedure of building a FKF monitoring
model, including historical data labelling corresponding to the operating mode, the identification of the
discrete FKF model and the determination of a monitoring threshold LLML. Identifying the discrete FKF
model entails MARSS learning using training data and noise estimation using validation data, resulting
in J sub-models. In the on-line monitoring step, the discrete FKF model is applied to the on-line data
yt to obtain the Lt. If Lt exceeds the monitoring threshold LLML, yt is considered as an anomaly and
the process is considered in anomalous operation. If Lt < LLML holds, yt is recognised as normal
operation. Sequentially, it will be classified to one of the known operating modes using Eq. (5.17). The
prior distribution of known operating modes is updated according to Algorithm 3 so that it may be used
for anomaly detection and mode identification of the next data sample.
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Figure 5.1: Flowchart of off-line training the FKF monitoring model and on-line monitoring: the off-
line part comprises training the discrete FKF model based on MARSS models and the determination
of a monitoring indicator; the on-line monitoring performs the FKF-based anomaly detection and mode
identification (the flowchart credit to Ruomu Tan).
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Table 5.1: Matrix specifications for simulated multimode processes

Simulated multimode model Model number Matrix A Matrix B Matrix C Steady-states

Behaviour 1a
Model 1.1

"
0.9267 �0.2183

0.3882 0.9558

# "
0.2917

�0.3440

# "
1 0

0 1

#
"
1

1

#

Model 1.2

"
0.8791 �0.4239

0.1884 0.9566

# "
0.5521

�0.1451

# "
1 0

0 1

#

Model 1.3

"
0.0418 �0.0703

0.1250 0.9796

# "
1.0285

�0.1047

# "
1 0

0 1

#

Behaviour 2b
Model 2.1

"
0.9267 �0.2183

0.3882 0.9558

# "
0.6550

0.1327

# "
1 0

0 1

# "
0

3

#

Model 2.2

"
0.9267 �0.2183

0.3882 0.9558

# "
0.5834

�0.6879

# "
1 0

0 1

# "
2

2

#

Model 2.3

"
0.9267 �0.2183

0.3882 0.9558

# "
�0.1450

�0.4324

# "
1 0

0 1

# "
1

�1

#

Behaviour 3c
Model 3.1

"
0.9267 �0.2183

0.3882 0.9558

# "
0.4375

�0.5159

# "
1 0

0 1

# "
1.5

1.5

#

Model 3.2

"
0.8791 �0.4239

0.1884 0.9566

# "
1.5280

�0.2468

# "
1 0

0 1

# "
2

3

#

Model 3.3

"
0.0418 �0.0703

0.1250 0.9796

# "
2.5712

�0.2616

# "
1 0

0 1

# "
2.5

2.5

#

a Models with same steady-states and different dynamics;
b Models with different steady-states and same dynamics;
c Models with different steady- states and different dynamics.

5.6. Simulated case studies

5.6.1. Performance of MARSS models

Dynamic and steady-state models

To evaluate the identification performance of MARSS models, a simulated multimode process is
pre-defined. Simulated models were in state-space form, defined to give a range of under-damped and
over-damped transient dynamics. Table 5.1 presents the matrix specifications of these models. Output
data from the process have the following behaviours: 1) same steady-state, with three different dynamics,
2) three different steady-states with the same dynamics and 3) three different steady-states and three
different dynamics.

Performance evaluation

In this thesis, the number of autoregressive terms is estimated using the Partial Autocorrelation
Function (PACF) against a confidence bound of 5% Adhikari and Agrawal (2013). For multivariate data,
the calculation of PACF can be based on the summed squares of all measurements. With zero initial
conditions and noise-free, the acquired MARSS models and predefined state-space models are excited
by step response. The results of step responses are plotted in Fig. 5.2. It can be observed that the step
responses of the models estimated using the MARSS learning agree well with the equivalent responses
obtained for the original state-space models.
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(a) Same steady-state, with three different dynamics

(b) Three different steady-states with the same dynamics

(c) Three different steady-states and three different dynamics

Figure 5.2: Step response comparison between the MARSS models (solid lines) and simulated models
(dashed lines).
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Table 5.2: System parameters dependent on operation conditions

j=1 (Normal) j=2 (Fault 1) j=3 (Fault 2) j=4 (Fault 3) j=5 (Fault 4)

A(✓j) 0.9 0.5 �0.5 0.8 0.7

B(✓j) 0.1 1 0.9 1 0.3

C(✓j) 1 2 1.2 0.5 0.6
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(a) Trend plot of output measurements
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(b) Bayesian statistical decisions: posterior probabilities are calculated using Eq. (5.16).
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(c) Monitoring results

Figure 5.3: Apply the FKF monitoring approach to a scalar system

5.6.2. Apply the FKF to classification

Univariate system: fault detection and isolation

A univariate system with changes in parameters is considered for testing the differentiability of the
FKF. Various system parameters are set for simulating one normal operation and four types of faulty
operation. The specific values are shown in Table 5.2.

Relative to the normal operation, Fault 1 corresponds to the increases in system dynamics, input gain
and output gain; Fault 2 introduces system oscillation while the increases in input gain and output gain
are also taken into consideration; Fault 3 has its system dynamics and output gain decreased and input
gain increased. Comparing with Fault 3, Fault 4 has larger system dynamics, smaller input gain and
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output gain.

The initial conditions of the FKF were set with x+
0 (✓1) = · · · = x+

0 (✓5) = 0 and S+
0 (✓1) = · · · =

S+
0 (✓5) = 0.01. The initial probabilities of these five cases are P+

0 (✓1) = 0.95 and P+
0 (✓2) = · · · =

P+
0 (✓5) = 0.0125. The operation scheme of the changes in parameters follows Normal, Fault 1, Fault 2,

Fault 3, Fault 4, Fault 3, Fault 2, Fault 1, Normal and Normal. The duration of each operation scenario
takes 200 samples. The system was excited by a sqaure input signal with zero mean, a period of 158, and
the amplitude as 1.

Fig. 5.3(a) presents the plot of output measurements generated by the univariate system with various
parameters. Applying the FKF algorithm to the univariate system, the Bayesian decisions plotted in
Fig. 5.3(b) are calculated using Eq. (5.16). The monitoring results are highlighted in 5.3(c). It can be
seen that the monitoring results are consistent with the planned operation scheme. Normal operation is
distinguished from faulty operation and faulty conditions are successfully classified.

Multivariate system: mode identification

The dynamic and steady-state models in Section 5.6.1 are also used for investigating the performance
of the FKF algorithm applied to mode identification. Applied with unit step inputs and uncorrelated,
white Gaussian noise N (0, 0.1), starting at zero initial conditions, all of the state-space models were
run separately to obtain training and validation data. Data of both transient response and fluctuations
around steady-states were included in training and validation datasets. The test data were generated by
running one of the simulation models with a unit step, noise N (0, 0.1) and a zero initial condition,
then sequentially running the other two models. Since the jump from one simulated mode to another is
instantaneous, the test data fluctuate around steady-state values.

Fig. 5.4 gives scatter plots of the test data described above. As the data points in each case overlap,
it is difficult to visually distinguish each mode from one another, particularly in the first case shown in
Fig. 5.4(a). Fig. 5.5(a) shows the trend plot of test data obtained by sequentially changing the operating
modes, with duration of 600 samples for each mode. The on-line monitoring indicator result is presented
in Fig. 5.5(b). The posterior probability of each model conditional on the measurements is calculated by
Eq. (5.16) and shown in Fig. 5.5(c). The results of using models 2.1, 2.2 and 2.3 in Fig. 5.6 and models
3.1, 3.2 and 3.3 in Fig. 5.7 are obtained following the same experiment operation.

Table. 5.3 presents the performance of mode identification for the described models. The Mode
Identification Accuracy (MIA) and False Alarm Rate (FAR) metrics are:

MIA =
nj,classified

nj � nj,FP

FAR =
nj,FP

nj

(5.26)

where j denotes the model number (e.g. 1.1, 2.1), nj,FP, nj,classified and nj are respectively the number
of false alarms, the number of correctly classified samples and the number of samples from the model j.
The results in Table 5.3 show that the FKF is capable of distinguishing data points derived from various
dynamic and steady-state models.
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(a) Behaviour 1: same steady-state, with three different dynamics
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(b) Behaviour 2: three different steady-states with the same dynamics
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(c) Behaviour 3: three different steady-states and three different dynamics

Figure 5.4: Scatter plot for test data from models defined in Table 5.1. The samples in each case are par-
tially or completely overlapped. As models 1.1, 1.2 and 1.3 have the same steady-state, it is challenging
to differentiate the samples of behaviour 1 without considering their dynamics.
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(a) Trend plot of samples

0 200 400 600 800 1000 1200 1400 1600 1800

Samples

0
1

2
3

4
5

(b) On-line monitoring indicator. Blue-solid line is Lt; red-dashed line is LLML.
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(c) On-line mode identification

Figure 5.5: Monitoring results: the true operation scheme is model 1.1, model 1.3 and model 1.2.The
training of monitoring model uses the data from model 1.1, 1.2 and 1.3 while the test data consists
of data from model 1.1, 1.2 and 1.3. Sub-figure (a) is the trend plot for two variables. Sub-figure (b)
plots the monitoring indicator Lt against samples. The red dashed line is the monitoring threshold. Lt

below the monitoring threshold indicates anomalies. Since the indicators only occasionally dip below the
monitoring threshold instead of remaining below the threshold for a prolonged period of time, thus there
is no anomaly detected. Sub-figure (c) presents the mode identification results. The current mode is the
one with the maximal posterior value.
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(a) Trend plot of samples.

0 200 400 600 800 1000 1200 1400 1600 1800

Samples

0
0
.2

0
.4

0
.6

0
.8

1

(b) On-line monitoring indicator. Blue-solid line is Lt; red-dashed line is LLML.
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(c) On-line mode identification

Figure 5.6: Monitoring results: the true operation scheme is model 2.1, model 2.3 and model 2.2. The
training of monitoring model uses the data from model 2.1, 2.2 and 2.3 while the test data consists
of data from model 2.1, 2.2 and 2.3. Sub-figure (a) is the trend plot for two variables. Sub-figure (b)
plots the monitoring indicator Lt against samples. The red dashed line is the monitoring threshold. Lt

below the monitoring threshold indicates anomalies. Since the indicators only occasionally dip below the
monitoring threshold instead of remaining below the threshold for a prolonged period of time, thus there
is no anomaly detected. Sub-figure (c) presents the mode identification results. The current mode is the
one with the maximal posterior value.
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(a) Trend plot of samples.
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(b) On-line monitoring indicator. Blue-solid line is Lt; red-dashed line is LLML.
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(c) On-line mode identification

Figure 5.7: Monitoring results: the true operation scheme is model 3.1, model 3.3 and model 3.2. The
training of monitoring model uses the data from model 3.1, 3.2 and 3.3 while the test data consists
of data from model 3.1, 3.2 and 3.3. Sub-figure (a) is the trend plot for two variables. Sub-figure (b)
plots the monitoring indicator Lt against samples. The red dashed line is the monitoring threshold. Lt

below the monitoring threshold indicates anomalies. Since the indicators only occasionally dip below the
monitoring threshold instead of remaining below the threshold for a prolonged period of time, thus there
is no anomaly detected. Sub-figure (c) presents the mode identification results. The current mode is the
one with the maximal posterior value.
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Table 5.3: Performance of mode identification on three multimode simulation models

Dynamic and steady-state models Model number nj,FP
a FAR b nj

c� nj,FP nj,classified
d MIAe

Same steady-state,
with three different dynamics

Model 1.1 23 3.83% 577 499 86.48%
Model 1.2 18 3.01% 581 562 96.90%
Model 1.3 35 5.83% 565 557 98.58%

three different steady-states
with the same dynamics

Model 2.1 26 4.33% 574 574 100%
Model 2.2 30 5.01% 569 569 100%
Model 2.3 37 6.17% 563 563 100%

three different steady-states and
three different dynamics

Model 3.1 49 8.17% 551 551 100%
Model 3.2 18 3.01% 573 573 98.79%
Model 3.3 12 2.00% 588 588 100%

a The number of false alarms w.r.t. model j;
b False Alarm Rate;
c The number of samples from the model j;
d The number of correctly classified samples from model j;
e Mode Identification Accuracy;
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(a) On-line anomaly detection. Blue-solid line is Lt; red-dashed line is LLML.
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(b) On-line mode identification

Figure 5.8: Anomaly detection and mode identification when a new operating mode appears: the training
of monitoring model uses the data from model 2.1 and 2.2 while the test data consists of data from model
2.1, 2.2 and 2.3. Sub-figure (a) plots the monitoring indicator Lt against samples. The red dashed line is
the monitoring threshold. Lt below the monitoring threshold indicates anomalies. Samples between 600
and 1200 are from mode 2.3, and are identified as anomalies. Sub-figure (b) shows the mode identification
results where the current mode is the one with the maximal posterior probability. Mode 2.1 and 2.2 are
correctly recognised. As mode 2.3 is abnormal operation, its posterior values are zeros.

5.6.3. Apply the FKF to anomaly detection

This subsection demonstrates the monitoring performance for a process containing known operating
modes and one new operating mode. Training and validation data were generated from state-space mod-
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els 2.1 and 2.2 while the data to be classified were generated from models 2.1, 2.2 and 2.3. The FKF
model only contains the dynamic and steady-state characteristics from models 2.1 and 2.2. Model 2.3
was treated as a new mode.

Fig. 5.8 shows the monitoring results of test data including known operating modes and an additional
mode. The on-line operating scheme is model 2.1, 2.3 and 2.2. Initially, the posterior probability and Lt

indicate that the process was operating in the mode described by known model 2.1. It can be seen that
Lt quickly responds to the occurrence of model 2.3, dropping down below the red-dashed line of LLML,
and posterior probabilities for model 2.1, 2.3 and 2.2 are zero. When model 2.2 occurs in the process, Lt

returns to a level above LLML and the maximal posterior belongs to model 2.2. The results show that the
proposed monitoring indicator Lt is able to detect the unknown operating modes.

5.7. Summary

In this chapter, the Field Kalman Filter (FKF) has been extended for the application of monitoring
multimode processes. The discretised FKF has been proposed for classification, for example, fault detec-
tion and isolation. Further, an extension of the discretised FKF incorporating a monitoring indicator has
been developed for anomaly detection and mode identification. Considering the implementation of the
FKF in practice, the Multivariate Autoregression State-Space (MARSS) models have been employed for
modelling the normal operation. To systematically apply the MARSS models and the FKF monitoring
approach, a framework has been designed. Through the simulated case studies, the proposed framework
and monitoring approach have been validated.
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6. Experiment case studies

This chapter investigates the monitoring performance of the Binary Classifier for Fault Detection
(BaFFle) algorithm, introduced in Chapter 3, and the Field Kalman Filter (FKF) algorithm described
in Chapter 5, respectively. Validation experiments are conducted with the PRONTO dataset which is
collected from an industrial-scale two-phase flow facility. With this dataset and a newly designed experi-
ment, compared with the experiment in publications (Cong and Baranowski, 2018a,b), the fault detection
performance is evaluated. The results obtained using the FKF algorithm have been previously reported
in Cong et al. (2020).

6.1. Introduction to the PRONTO benchmark case study

The PRONTO benchmark dataset (Stief et al., 2018a,b, 2019) was collected from a multiphase flow
facility. This multiphase flow case study simulated multiple normal operating modes and various types
of faults by utilising different set-ups of the facility. Fig. 6.1 highlights the configuration of flow controls
and valves in the facility. The derived dataset from this case study can be used for developing and testing
algorithms dedicated to mode identification, fault detection, fault diagnosis and other process monitoring
tasks. The usage of measured process variables are given in Table 6.1. The variables which are used in
the validation of the BaFFle and FKF algorithms are marked with 3.

V11

V10
U39

Water

Air

Atmosphere

Water flow control

Air flow control2′′ riser

Figure 6.1: The configuration of flow controls and valves V10, V11 and U39

78



6.1. Introduction to the PRONTO benchmark case study 79

Table 6.1: List of process variables recorded as part of the PRONTO benchmark dataset. Variables which
are used in the validation of the BaFFle and FKF methods are also highlighted.

Number Sensor tag Variable description unit BaFFle FKF

1 FT305/302 Input air flow rate m3 h�1 3 3

2 PT312 Air delivery pressure bar(g) 3 3

3 FT102/104 Input water flow rate kg s�1 3 3

4 PT417 Pressure in the mixing zone bar(g) 3 3

5 PT408 Pressure at the riser top bar(g) 3 3

6 FT406 2-phase separator output water flow rate bar(g) 3 3

7 PT501 3-phase separator pressure bar(g) 3 3

8 LI502 3-phase separator water level % 3 3

9 LI503 Water coalescer level % 3

10 LVC502-SR Water coalescer outlet level % 3

11 LI101 Water tank level m 3

Table 6.2: Details of normal operating modes

Mode identity Mode 1 Mode 2 Mode 3

Water flow rate (kg s�1) 0.1 0.5 1

Air flow rate (m3 h�1) 120 150 200

6.1.1. Normal operating modes

The simulated normal operation was performed by controlling the air and water flow rates. The
specific flow rates for each mode are presented in Table 6.2. The healthy data were used for training
monitoring models.

6.1.2. Faults

Three types of faults were simulated. These faults are developing fault, seeded in the system by
manually adjusting valves. The faulty operation are as follows:

– Air blockage: valve V11 controls the air volume into the pipelines. A progressively worsening
blockage fault was simulated by closing V11 from 90� to 10� in a stepwise fashion with a step size
of 10�. As a result, the portion of air in the flow mixture was gradually reduced. The same valve
closing operation was conduced both in Mode 1 and Mode 2.

– Air leakage: valve V10 controls the air volume exhausted into the atmosphere. The simulation of
air leakage was performed by adjusting the valve opening to 5�, 10� and 15� in Mode 1, and to 5�,
10�, 15�, 20�, 25�, 30�,40� and 90� in Mode 2.

– Diverted flow: valve U39 controls the flowing path of air and water mix. When U39 is open, the
mixed flow can be partially directed to the 200 riser. The adjustment of U39 valve ranges from 5�

to 60�.
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6.2. BaFFle for fault detection

6.2.1. Density estimation considerations

Two density estimation approaches, namely Gaussian distribution and Kernel Density Estimation
(KDE), are compared in this section. Since the control limits in the BaFFle algorithm are determined
based on the density estimation of Principal Components (PCs), the plots of distribution of PCs can
give insights to the precision of control limits. Fig. 6.2 and 6.3 demonstrate the distribution plots of
PCs, for Mode 1 and Mode 2, respectively. The number of PCs are determined with the cumulative
explained variance as introduced in Section 3.3.3 of Chapter 3. According to Jolliffe and Cadima (2016),
a commonly used cumulative explained variance is 70%. In this analysis, 70% process variations results
in 5 and 4 PCs, respectively in Mode 1 and Mode 2.

As shown in Fig. 6.2 and 6.3, there are three representations of the probability density of each PC,
which are histogram, Gaussian distribution, and KDE estimation. Taking the histogram plots as the true
probability distribution, it can be seen that the KDE curves are more fitting to the ground truth than the
Gaussian curves, especially when the probability distributions are not symmetric and bell-shaped (e.g.
Fig. 6.3 (a)). In addition, Fig. 6.2 shows that the Lower Control Limit (LCL) and Upper Control Limit
(UCL) obtained from the KDE cover a narrower range defining normal operation, compared with the
ones obtained from the Gaussian distribution. Nevertheless, the LCLs based on the KDE in Fig. 6.3
(c) and (d) are more relaxed than the LCLs based on the Gaussian distribution. This might be because
there are bars detached from the others. For example, the bar located at �0.87 in Fig. 6.3 (c) is isolated
from the other bars. The influences of the LCLs and UCLs, obtained with different density estimation
approaches, on monitoring performance will be further elaborated in Section 6.2.2.

6.2.2. Experiment results

Performance metrics

To measure the time lag between fault start and fault detection, Detection Time (DT) metric is used,
and defined as below:

DT = tFault detection � tFault start. (6.1)

where tFault detection indicates the time stamp from where a consecutive sequence of 30 data points are
recognised as faulty. The objective of this definition is to avoid false alarms caused by random fluctua-
tions. Other used performance metrics include Sensitivity, Specification and Accuracy, the calculation of
which are given in Section 3.1 of Chapter 3.

Monitoring demonstration under blockage fault

Fig. 6.4 illustrates the detection performance of the blockage fault in operating Mode 1. Before the
fault was seeded in the facility, there were few PCs voting faulty operation. The fault started at sample
251 (A1 in Fig. 6.4). In the course of blockage becoming severe (valve opening becoming smaller), the
number of PCs supporting the decision of fault occurring in the system increased gradually. From sample
936 (A2 in Fig. 6.4), there were 30 consecutive samples categorised as faulty, thus faulty operation was
confirmed in the system. When the valve opening was decreased to 20� and 10�, all 5 PCs gave the
decisions that the facility run at faulty operation.
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(a) Distribution plot of the 1st PC
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(b) Distribution plot of the 2nd PC
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(c) Distribution plot of the 3rd PC
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(d) Distribution plot of the 4th PC
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(e) Distribution plot of the 5th PC

Figure 6.2: Distribution plots:5 PCs are extracted for explaining 70% variance in normal data of Mode 1.
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(a) Distribution plot of the 1st PC
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(b) Distribution plot of the 2nd PC

-1 -0.5 0 0.5 1

Variable value

0   

0.02

0.04

0.06

0.08

0.1 

0.12

0.14

N
o

rm
a

lis
e

d
 d

e
n

si
ty

Histogram
Distrubution fit - KDE
Distribution fit - Gaussian
LCL/UCL-KDE
LCL/UCL-Gaussian

(c) Distribution plot of the 3rd PC
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(d) Distribution plot of the 4th PC

Figure 6.3: Distribution plots:4 PCs are extracted for explaining 70% variance in normal data of Mode 2.
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Figure 6.4: Blockage fault detection in operating Mode 1. A1: fault start. A2: fault detection.

T. Cong Statistical reasoning analysis of fault occurrences in industrial applications



6.2. BaFFle for fault detection 83

UCLs,	LCLs

PCA	model

Exceed	control	
limits	UCL,	LCL?

Fault detected

On-line	dataHistorical	data

Yes

No

Process	monitoring

Density	estimation	over	
individual	feature:

Gaussian	distribution/KDE

Figure 6.5: Gaussian/KDE-based fault detection with constant control limits: UCL and LCL are derived
from the historical data. The values of UCL and LCL are not updated over time.

Comparison study

A comparison experiment is designed to prove the advantages of the proposed BaFFle algorithm.
There are four algorithms involved in this experiment, Gaussian-based fault detection with constant mon-
itoring limits, Gaussian-based BaFFle, KDE-based fault detection with constant monitoring limits and
KDE-based BaFFle, respectively. Each algorithm was implemented for each type of fault under a specific
operating mode. The workflow of Gaussian/KDE-based fault detection with constant monitoring limits
is demonstrated in Fig. 6.5. The monitoring limits are fixed values.

Table 6.3 presents the fault detection comparison results using the aforementioned four monitoring
algorithms. For reference, Algorithm 1 is Gaussian-based fault detection with constant monitoring limits;
Algorithm 2 is Gaussian-based BaFFle; Algorithm 3 is KDE-based fault detection with constant mon-
itoring limits; Algorithm 4 is KDE-based BaFFle. Generally, Table 6.3 consists of two parts. The first
part presents the comparison results using blockage, leakage and diverted data of Mode 1 while the test
data for the second part are from Mode 2. There are six metrics, namely DT, FP, FN, Sensitivity, Specifi-
cation and Accuracy, to evaluate the performance of fault detection. The comparison is conducted from
following two aspects:

- Comparison between dynamic and constant monitoring limits: the comparison is Algorithm 1

vs. 2 and Algorithm 3 vs. 4. DT metric shows that, except for leakage fault of Mode 2, the four
algorithms all require a long time to detect the appearance of faults, no matter of the type of faults
and operating mode. The delay of fault detection also can be reflected by the high missed alarms
(FN). The delay likely results from a non-linear relationship between the fault severity and the as-
sociated valve adjustment. In the early stage, small valve adjustments cause minor variation in flow
regimes, thus it is difficult to distinguish the incipient faults from normal operation. Nonetheless,
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Table 6.3: Fault detection comparison results. The comparison experiment is conducted
among four algorithms which are Gaussian-based fault detection with constant monitoring
limits, Gaussian-based BaFFle, KDE-based fault detection with constant monitoring limits
and KDE-based BaFFle. The test data include two operating modes. Under each mode, there
are three types of faulty operation. The metrics for evaluating the monitoring performance are
namely, DT, FP, FN, Sensitivity, Specification and Accuracy.

Algorithm 1a Algorithm 2b Algorithm 3c Algorithm 4d

Mode 1

Bloackage DT 999 738 999 686
FP 0 0 0 0
FN 970 638 919 495

Sensitivity 28.68 53.09 32.43 63.60
Specification 100 100 100 100

Accuracy 39.97 60.40 42.95 69.72
Leakage DT 615 452 478 210

FP 0 0 0 0
FN 562 394 518 327

Sensitivity 38.91 57.17 43.70 64.46
Specification 100 100 100 100

Accuracy 52.01 66.35 55.76 72.08
Diverted DT Fail 723 Fail 103

FP Fail 0 Fail 0
FN Fail 535 Fail 119

Sensitivity Fail 61.65 Fail 91.47
Specification Fail 100 Fail 100

Accuracy Fail 67.50 Fail 92.77

Mode 2

Blockage DT 935 597 935 908
FP 6 1 4 7
FN 922 170 920 418

Sensitivity 26.83 84.52 26.98 55.72
Specification 98.54 99.74 99.03 98.12

Accuracy 44.46 88.52 44.70 67.71
Leakage DT 8 14 8 14

FP 6 1 4 7
FN 537 27 525 34

Sensitivity 68.80 98.38 69.49 97.98
Specification 98.54 99.74 99.03 98.12

Accuracy 74.53 98.64 75.19 98.00
Diverted DT 519 264 519 509

FP 6 1 4 7
FN 776 62 855 136

Sensitivity 29.45 93.79 22.27 85.77
Specification 98.54 99.74 99.03 98.12

Accuracry 48.25 95.47 43.15 89.23
a Gaussian-based fault detection with constant monitoring limits.
b Gaussian-based BaFFle.
c KDE-based fault detection with constant monitoring limits.
d KDE-based BaFFle.
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it can be seen that the algorithms with dynamic monitoring thresholds (Algorithm 2/4) achieve
fewer missed alarms than the algorithms with fixed monitoring thresholds (Algorithm 1/3). Taking
the blockage fault of Mode 1 as an example, compared with Algorithm 1, Algorithm 2 improved
DT by 261 samples while Algorithm 4 shortened DT from 999 (Algorithm 3) to 686 samples.
Similarly, FN dropped from 970 to 638 when using Algorithm 2 instead of Algorithm 1, and from
919 (Algorithm 3) to 495 (Algorithm 4). In addition, it should be noted that unsuitable constant
monitoring thresholds would result in the failure to detect faults, for example, the diverted case in
Mode 1. While, due to the adaptability of the monitoring limits, faults can be distinguished from
normal operation.

The improvement in detection response of dynamic monitoring algorithms is owing to the use
of the moving window (Section 3.5.2 of Chapter 3). The moving window can continuously learn
the process variation by incorporating new measurements while increasing the accuracy of mon-
itoring limits by discarding old measurements. Moreover, reduced DT and FN as well as low FP
contribute to improving Sensitivity, Specification and Accuracy. As Table 6.3 shown, Sensitivity,
Specification and Accuracy of dynamic algorithms (Algorithm 2 and 4) have been improved. For
instance, Algorithm 1 only achieved 29.45% Sensitivity and 48.25% Accuracy in monitoring di-
verted flow fault, yet these two metrics were significantly improved by a 64.35% and 47.22% rate,
respectively, using Algorithm 2. Similar improvements can also be observed in the comparison
between Algorithm 3 and 4.

- Comparison between Gaussian- and KDE-based BaFFle: the comparison is Algorithm 2 vs. 4.
It can be found that for Mode 1, the detection performance with Algorithm 4 outperforms the use
of Algorithm 2; however, the monitoring results of Mode 2 show that Algorithm 2 is more suitable
than Algorithm 4. These observations can be explained with the distribution plots in Fig. 6.2 and
6.3. In these figures, the LCL and UCL, given a confidence level of 99.7%, are marked. For all the
remaining PCs of Mode 1, the normal operation intervals defined by the KDE-based LCL and UCL
are narrower than the ones defined by Gaussian LCL and UCL. It means that KDE-based BaFFle is
more suitable to be applied to Mode 1. In Fig. 6.3, it can be observed that the data points located at
the edge of the dataset are detached from the majority. For example, in Fig. 6.3 (c), apart from the
main cluster of bars in the range of �0.64 and 0.57, there is a bar occurring at �0.87. In the cases
where there are separated bars, given a specific confidence level, the LCL and UCL derived from
KDE might draw a wider range defining normal operation. This is because the KDE is prone to
retain the information from all the individual points while under Gaussian distribution assumption,
the data samples with low occurrence frequency might be ignored. As a result, in Mode 2, the con-
trol limits calculated according to KDE probability density will be less sensitive to the occurrence
of abnormal operation, compared with the ones according to Gaussian probability density.

6.3. FKF for anomaly detection and mode identification

This thesis validates the monitoring performance of FKF using data from three normal operating
mode (see Table 6.2) and one blockage fault under Mode 1 (introduced in Section 6.1.2). Eight variables
are selected for monitoring, presented in Table 6.1. The workflow of the application of the FKF follows
Section 5.5 of Chapter 5.
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(b) Validation data

Figure 6.6: Trend plots of training and validation data

6.3.1. Data preparation

In the application of FKF to monitoring a process with multiple operating modes, explicit state-space
models for individual modes are required. To obtain these models, a data-based method, Multivariate
Autoregression State-space (MARSS), which was introduced in Chapter 5, is used. Since the data of
normal operation consists of multiple operating modes, it is necessary to partition the healthy data with
respect to operating modes. In this paper, the Dirichlet Process-Gaussian Mixture Models (DP-GMMs)
(see Chapter 4) is employed to automate the data partition.

Given data labels, normal data are separated into training set, validation set and test set. The training
set contains the first 500 samples (1, 2, . . . , 500) from Mode 1, Mode 2 and Mode 3, and the validation
set contains the second 500 samples (501, 502, . . . , 1000) from Mode 1, Mode 2 and Mode 3. Additional
samples from three normal modes, as well as all the samples from the air blockage fault, compose the
test set. Fig. 6.6 plots the values for process variables against the time index to present the process trends
in the training and validation sets.

The vertical axis of Fig. 6.7(a) shows the degree of valve openings. Fig.6.7(b) highlights the trends
of test data. The process begins with three different normal operating modes where the valve opening is
kept maximum. Then after Mode 3, an air blockage fault is seeded by gradually closing the valve.

6.3.2. Results

To differentiate anomalies from normal operation, the FKF introduces a unified monitoring indicator
Lt (Section 5.4.2 of Chapter 5). Fig. 6.7(c) and (d) plots the posterior probability and monitoring indicator
Lt against the time index, respectively. The process is considered to be running at faulty operating mode,
when Lt falls below the monitoring threshold (the dashed line in Fig. 6.7(d)) for an extended period of
time. When Lt remains at a normal level (above the monitoring threshold), the mode selection function
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(a) The sequences of valve opening
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(b) Trend plot of test data
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(c) On-line mode identification: the current mode is the one with the maximal posterior probability.
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(d) On-line anomaly detection: the monitoring threshold LLML is in the red dashed line. The solid line is the monitoring indicator
Lt. A1 and A2: the time stamp of mode switch. A3: the time stamp of fault occurrence. A4: the time stamp of Lt downward
shifting, but not yet triggering the alarm of fault occurrence. A5: the time stamp of fault detection. A6: the time stamp of Lt

approaching zero.

Figure 6.7: FKF for anomaly detection and mode identification on PRONTO benchmark dataset

works. The selection results are in posterior probabilistic form.
In this experiment, the initial conditions (at time 0) of the FKF algorithm are artificially set to zero,

which are distinct from the set points of the normal operating modes. The zero initialisation causes a
fast transient response in the Lt indicator. The transient responses also appear when mode switches take
place, such as at sample 503 (A1 in Fig. 6.7(d)) and 1185 (A2 in Fig. 6.7(d)). This is because the FKF
needs time to adapt to the current mode. During the adaption, Lt might travel across the monitoring
threshold. After the adaption, Lt returns back to normal, and the current operating mode is the one with
the maximal posterior probability. As seen in Fig. 6.7, both the monitoring indicators and the posterior
probability correctly indicate the periods where the process was operating in Mode 1, Mode 2 and Mode
3. The monitoring indicators Lt varies over a wider range at Mode 2 and Mode 3, compared with at

T. Cong Statistical reasoning analysis of fault occurrences in industrial applications



6.3. FKF for anomaly detection and mode identification 88

Mode 1. This is because the process variables have larger variances (see Fig. 6.6(b)).

At sample 1312 (A3 in Fig. 6.7(d)), the valve closure-caused fault is induced. However, till time
stamp 3375 (A5 in Fig. 6.7(d)), Lt continues to indicate the process running at normal mode, and the
maximal posterior probability points to Mode 1. The inconsistency between the true process operation
and the FKF results is likely due to the nonlinear relationship between the valve adjustment and the
associated flow variations. The changes in flow regimes are gradually developing. Small adjustments in
valve openings might cause minor and undetectable flow variations. Therefore, the incipient fault behaves
similar to Mode 1.

As the fault progresses, there is a downward shift in the monitoring indicator Lt between A4 (sample
2908) and A5 (sample 3375) in Fig. 6.7(d), but not yet triggering the alarm of fault occurrences. The
valve opening at degree of 30 further worsen the fault severity, causing a sharp fall in Lt below LLML. At
this stage, the fault is detected, and all posterior probabilities of value zero indicates that the operating
mode is unknown. From sample 3900 (A6 in Fig. 6.7(d)), the monitoring indicator approaches to zero
corresponding to a severe fault.

6.3.3. Comparison study

This section presents a comparison study among process monitoring methods, namely FGMM-BIP
index and PCA-based T 2 and SPE and the FKF method. In FGMM-BIP index (Yu and Qin, 2008),
multiple operating modes are described by Finite Gaussian Mixture Models (FGMM). BIP index is a
unified monitoring indicator which is defined by integrating Bayesian statistical decisions and distance-
based probability. The implementation of FGMM-BIP index followed the description by Yu and Qin
(2008). The PCA-based T 2 and SPE are commonly used fault detection algorithm in process industries
(Pilario et al., 2020). The computation of T 2 used the Matlab code from (Pilario, 2020) while SPE was
implemented according to Ruiz-Cárcel et al. (2015). In this comparison experiment, the training and test
data sets are the same as the ones in Section 6.3.1.

Fig. 6.8 and 6.9 give the monitoring results using FGMM-BIP index and PCA-based T 2 and SPE,
respectively. Fig. 6.8(a) shows the mode identification results. The running mode is determined by the
maximal posterior probability. The dashed line in Fig. 6.8(b) is the BIP control limit set as 95% according
to Yu and Qin (2008). When monitoring statistics exceed the BIP index, it means that there is faulty
operation in the system. B1 (sample 503) and B2 (sample 1185) in Fig. 6.8(b) represent the action of
mode switch. FGMM-BIP index mistakenly interprets the mode switch at B1 (sample 503) as faulty
operation, and persists this recognition until sample 658. This wrong recognition is also reflected in Fig.
6.8(a) as no mode is identified between sample 503 and 658. Starting from sample 1312, a blockage
fault is seeded in the system by gradually closing the valve. The fault is detected by FGMM-BIP at
sample 2394 (B4 in Fig. 6.8(b)). This detection is earlier 981 samples than by the FKF method. The
samples between B3 and B4 are identified as Mode 1 (see Fig. 6.8(a)). Since PCA-based T 2 and SPE
can not perform mode identification, Fig. 6.9 only plots the fault detection results. The fault is detected
at sample 2907 (E1 in Fig.6.9) and 4457 (E2 in Fig.6.9) by T 2 and SPE, respectively. It can be seen that
T 2 outperform SPE indicator in this fault detection case study.

Table 6.4 gives the quantitative comparisons among the FKF, FGMM-BIP index and PCA-based T 2

and SPE. As the FKF and FGMM-BIP are designed on the basis of individual operating modes, both
methods require the classification of training data. Furthermore, the monitoring models of the FKF and
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(a) On-line mode identification: the current mode is the one with the maximal posterior probability.
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(b) On-line anomaly detection: the monitoring indicator BIP (the solid line) above the monitoring threshold (the dashed line)
indicates that the process is at abnormal operation whereas below the monitoring threshold means normal operation. B1 and
B2: the time stamp of mode switch. B3: the time stamp of fault occurrence. B4: the time stamp of fault detection.

Figure 6.8: FGMM-BIP for anomaly detection and mode identification on PRONTO benchmark dataset
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Figure 6.9: PCA-based T 2 and SPE for anomaly detection on PRONTO benchmark dataset: the monitor-
ing indicators T 2 and SPE (the solid lines) above the monitoring thresholds (the dashed line) indicates
that the process is at abnormal operation whereas below the monitoring threshold means normal opera-
tion. Mode switches occur at C1 and C2 while fault occurs at C3. E1 is when T 2 detects the fault. E2

is when SPE detects the fault. It can been that in this case study, T 2 can identify the occurrence of fault
earlier that SPE.

FGMM-BIP index are able to perform mode identification while the unified monitoring indicators can
give a comprehensive understanding of the health state of process plants. In terms of the ability of mode
identification, FGMM-BIP index shortens the delay of anomaly detection, compared with the other two
algorithms. However, the FKF has less false alarm rate than the FGMM-BIP index and T 2 statistics, and
outperforms FGMM-BIP index at task of identifying Mode 2 and 3.

6.4. Summary

This chapter has validated two monitoring algorithms, the BaFFle and FKF, using industrial-scale
data. The results of the BaFFle in Section 6.2 has shown that for monitoring single mode processes,
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Table 6.4: Quantitative comparison among the FKF, FGMM-BIP index and PCA-
based T 2 and SPE. In this metric, the FKF outperforms the FGMM-BIP index and
T 2. DT metric shows that the FGMM-BIP can detect the occurrence of faulty opera-
tion earlier than the FKF, T 2 and SPE. However, it should be noted that the FGMM-
BIP index has a significant high false alarm rate. The operating mode is switched
to Mode 2 and 3 at time stamp 503 and 1185, respectively. The FKF detects the
mode switches a few time stamps later, whereas the delay of identifying the switch
to Mode 2 by the FGMM-BIP index is 155 time instances.

FKF FGMM-BIP index PCA

Classified training data? 3 3 7

Mode identification 3 3 7

Anomaly detection? 3 3 3

Process models necessary? 7a 7 7

Unified monitoring indicator? 3 3 7

False alarm rate 2.67% 26.01%
T 2: 3.05%

SPE: 0.53%

DTb 3375 2394
T 2: 3907

SPE: 4457

Time stamp of identifying Mode 2 507 658 N/A
c

Time stamp of identifying Mode 3 1190 1185 N/A

a Incorporating an MARSS learning step in the proposed FKF removes the neces-
sity of acquiring process model with first-principles;

b DT stands for Detection Time, the calculation of which is based on Eq. 6.1.
c N/A means that the capability of mode identification is not applicable to the

PCA-based T 2 and SPE.

- Gaussian- and KDE-based BaFFle approaches, featuring dynamic monitoring limits, are capable
of reducing both false and missed alarms;

- The use of moving window not only benefits the adaptability by incorporating new measurements
and removing old measurements, but also eliminates the need of large-scale data preparation and
analysis. Users can employ this algorithm to monitoring single-mode processes without large-scale
data as a-prior. The adaptability of the BaFFle algorithm enables control limits to be updated while
the process is running;

- KDE is able to estimate the probability density distributions of non-Gaussian data.

- The fusion of multiple univariate control charts by a majority voting strategy can be successfully
applied to monitoring multivariate processes. In addition, the fusion results are interpretable, and
might indicate the severity of fault.

T. Cong Statistical reasoning analysis of fault occurrences in industrial applications



6.4. Summary 91

However, it should be noted that although KDE method can handle the probability density estimation
of non-Gaussian data, the control limits based on KDE might be relaxed due to data samples that are
detached from the majority. Such relaxed control limits will cause missed alarms. Thus, there still is
space to improve the sensitivity of KDE-based monitoring limits.

Section 6.3 has proved the proposed FKF workflow (Section 5.5 of Chapter 5) in practical settings.
Also through the experiments in Section 6.3, the strengths of the FKF for monitoring multimode pro-
cesses can be concluded as follows.

- The proposed systematic framework can be applied to process condition monitoring when explicit
mathematical process models are required. Process models in state-space form can be obtained
using measurement data of individual operating modes.

- The FKF possesses the capabilities of both mode identification and anomaly detection.

- The FKF is capable of having a low false alarm rate while performing quick response to mode
identification.

- The unified monitoring indicator eases fault detection by inspecting one index instead of a series
of indices.

To conclude, the experiments presented in this chapter have confirmed the effectiveness of the BaFFle
algorithm in fault detection, of the workflow of applying the FKF in practice, and of the FKF in mode
identification and anomaly detection.
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7. Conclusion

7.1. Summary of thesis

This thesis focused on systematically designing novel monitoring methods and algorithms for de-
tecting abnormal behaviours from measurement data. This includes considering processes with a variety
of complexity such that, with the newly designed approaches, monitoring systems would respond to the
occurrence of faults and anomalies with more reliability and efficiency.

Chapter 2 firstly reviewed the key points of Process Condition Monitoring (PCM), such as the tasks
of PCM, the categories of PCM and characteristics of PCM, to have a conceptual framework. Secondly,
Chapter 2 investigated the development of techniques that are frequently involved in PCM, for example,
process modelling. In addition, the processes with multiple operating modes were well studied with re-
spect to their mathematical definition, data characteristics, data labelling, monitoring models as well as
monitoring indices. Moreover, the decision-making methods were reviewed. Through the understanding
of the concepts and techniques of PCM, Chapter 2 confirmed that for the sake of reliability and efficiency,
the required monitoring algorithms should have acceptable levels of missed alarms and false alarms.
Chapter 3 developed a single mode monitoring algorithm, named Binary Classified for Fault Detection
(BaFFle). An adaptability design is involved in the BaFFle to enable it to work on any single mode system
with only a small amount of historical data. For data management, Chapter 4 introduced the Dirichlet
Process-Gaussian Mixture Models (DP-GMMs) for automating the data clustering without specifying
the number of clusters in advance. The DP-GMMs-based clustering results were also discussed. In addi-
tion, a monitoring framework which incorporates cluster-based Multivariate Statistic Process Monitoring
(MSPM) was proposed. Chapter 5 reviewed a model-based algorithm, the Field Kalman Filter (FKF).
Moreover, the practical issues of the FKF, when applied to monitoring a process with multiple operating
modes, were addressed. The training of the FKF monitoring model have been achieved using clustered
historical data. Bayesian statistics have been used for differentiating various operation behaviours while
a unified monitoring indicator has been designed to extend the FKF for anomaly detection. Chapter 6
gave the validation of the BaFFle and FKF algorithms with the PRONTO dataset.

7.2. Contributions and future work

As her main contributions in the thesis, the author considers:

- Development of the BaFFle algorithm with adaptability for fault detection. The adaptability of
the BaFFle is apparent when there are only a small amount of measurements, particularly if these

92



7.2. Contributions and future work 93

measurements are insufficiently representative. In such cases, the BaFFle can adjust its monitoring
thresholds;

- Development of a method for applying univariate control charts in monitoring multivariate pro-
cesses. The Principal Component Analysis (PCA) technique is used for extracting uncorrelated
features from multivariate data so as to have multiple unbiased univariate control charts. To fuse
the decision across individual control charts, a majority voting strategy is adopted;

- Investigation of the approaches of probability density estimation. Considering the non-Gaussian
distributions, the Kernel Density Estimation (KDE), a nonparametric method, is employed;

- Creation of a mechanism of warning and detection, where the warning indicator is used for adjust-
ing control limits while the detection indicator is used for determining whether a process is healthy
or not;

- Application of the BaFFle algorithm for fault detection. The fault detection results have presented
the effectiveness and interpretability of the BaFFle algorithm. The effectiveness of the dynamic
control limits in reducing false and missed alarms have been demonstrated in the comparison with
constant control limits;

- Investigation of the DP-GMMs in the use of data clustering. Since the number of operating modes
might be unknown, the DP-GMMs algorithm is selected for clustering recorded measurements
corresponding to the operating modes. The quality of clustering is dependent on the initial values of
the parameters of DP-GMMs. A discussion on how to properly initialise the parameter is presented;

- Development of a monitoring framework. In the collaboration work (Tan et al., 2019, 2020), a
monitoring framework was proposed, in which the monitoring model is trained off-line by the
DP-GMMs clustering and a kernel-based MSPM algorithm. Another function of the DP-GMMs
in this framework is to identify if the incoming data are from new modes. The identified data of
new modes will be incorporated in the training of monitoring model. In such a form, missed alarm
caused by new modes might be significantly reduced;

- Development of the FKF algorithm for fault isolation. The FKF is an example of the integration
of process models and Bayes’ theorem, thus has the advantage of differentiating various faults or
operating modes deterministically or stochastically. Additionally, as Bayesian decision statistics
are traceable and interpretable, it would be convenient for process inspectors to spot anomalies or
identify the fault type;

- Investigation of process modelling in the absence of prior knowledge of process industries. With
large-scale historical data, data-based process modelling methods can be used. As the FKF mon-
itoring model for a multimode process is a set of state-space models, the MARSS approach is
employed in this thesis;

- Development of the FKF algorithm for anomaly detection. The anomaly detection is an exten-
sion of the FKF, from inferring within known process conditions to recognition of new process
operation. This is achieved by designing a novel unified monitoring indicator;
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- Development of a workflow for systematically using the FKF in the industrial applications of
anomaly detection and mode identification. Practical issues, such as the difficulties in data la-
belling, first-principle modelling and interpretability of the monitoring results, have been taken
into consideration;

- Application of the proposed workflow for monitoring a multimode process. The effectiveness of
proposed workflow has been proved using the PRONTO benchmark data. The experiment results
have shown that the use of Bayesian statistic decisions can differentiate various operating modes,
and that anomalies can be detected with the unified monitoring indicator. In addition, the compar-
ison experiment has highlighted that the FKF monitoring model can achieve a relative low false
alarm rate, and outperforms the two selected approaches at mode identification.

Based on the research in this thesis, a few directions might be worthy of further exploration.

- The dynamics in data has not been considered in the BaFFle algorithm. The extraction of dynamic
features might give more insights into the variations in the data. Therefore, rather than the PCA
used in this thesis, dynamic feature extraction methods, such as dynamic PCA and Canonical
Variate Analysis, might be of interest in future work.

- Development of the FKF for monitoring nonlinear operating modes. In the proposed FKF, data
from normal operation are described with linear models. Nevertheless, nonlinearity might also
appear in the data, thereby linear models would be insufficient to monitoring nonlinear processes.
Thus, it is worth to work on the extension of the FKF to monitor nonlinear processes.

- Development of the FKF for predicting the health state of the monitored system. The design of the
FKF takes the dynamics of processes into account. The knowledge of dynamics might be further
utilised for prognosis of potential harmful behaviour in the process so as to take actions in advance.
Furthermore, the prognosis result can be incorporated into the FKF-based fault detection in order
to increase the accuracy of detection.
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A. Appendix

A.1. Definitions of terms in Process Condition Monitoring (PCM)

- Normal operation refers to the system performance under a desired function (Tidriri et al., 2016).
In PCM, “normality”, “normal condition/operating mode”, “healthy state”, “standard condition/-
operation”, and “fault-free” all mean that a process plant is running at normal operation.

- Failure refers to, under specified operating conditions, the permanent inability of a system to imple-
ment a required function (Isermann, 2006). Venkatasubramanian et al. (2003) categorised failures
into three classes according to the sources of a failure: parameter-caused failure arises when a dis-
turbance from a single or multiple external variables exceeds acceptable normal range; structure-
caused failure arises in the structure itself; sensor- and actuator- caused failure arises due to errors,
such as a constant bias and an out-of-range malfunction, occurring with sensors and actuators.

- Malfunction is defined by Isermann (2006) as an intermittent irregularity in the fulfilment of de-
sired function of a system.

- Fault is a non-permitted deviation of at least one characteristic property or feature of the system
from the normal operation (Isermann, 2005, 2006). Moreover, a fault can be classified as hard
faults and soft faults depending on whether it is predicable or not (Martin, 1994). The occurrence
of a hard fault is instantaneous and unpredictable, depicted in Fig. A.1. A soft fault is progressive
over time, shown in Fig. A.1 as a gradual time-continuous trajectory. A fault, if left unresolved,
will develop to a failure or a malfunction.
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Figure A.1: Hard and soft faults (Martin, 1994)

- Degradation, which is considered as a normal, but detrimental, physical change (Gonzalez et al.,
1997), is a representative soft fault. Remaining undetected, a soft fault may lead to severe defects
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occurring in mechanical components (e.g. engines and motors) or in physical structures (e.g. cracks
in pipelines and leakage in valves), eventually leading to critical failures.

- Anomaly refers to the cases where the system performance is not in conformity with normal opera-
tion. An anomaly might be indicative of, for example, a fault. Some literature, for example, (Cateni
et al., 2008), also uses “outliers” instead of “anomaly”. Without additional domain knowledge, it
is typically not possible to distinguish between a fault and a change. Domain knowledge can be
obtained from experienced operators or domain experts.
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OŚWIADCZENIE AUTORKI PRACY
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