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Abstract 

Soft processor cores, which are widely used in SRAM-based FPGA (Field Programmable Gate 
Arrays) applications, are candidates for SEU-induced (Single Event Upset) faults and therefore these 
cores need to be thoroughly tested. In user applications, processor cores are normally tested  
by executing some kind of functional test in which the individual processor's instructions are tested 
with a set of deterministic test patterns, and the results are then compared with the stored reference 
values. For practical limitations the number of test patterns and corresponding results are usually small, 
which inherently leads to low fault coverage. 

The proposed approach is based on a data-sensitive path with slightly different meaning as known 
from bibliography. In this work the author has developed a concept that combines the whole 
instruction-set test into a bijective test sequence. According to this strict rule a novel test-sequence 
generation principle was introduced, where the test sequence requires one-to-one bijective 
correspondence between the input test pattern and the result. In this way the author has activated high 
percent of data sensitive paths. Hence, the program composed from bijective blocks achieved 
significantly better fault coverage (85,6%) than well-known computing application or test programs  
with simpler architectures. Definitively, the author has achieved the best fault coverage (94,76 %)  
by creating bijective test program, which generates simultaneously complete cycle of local test vectors. 
     The approach is illustrated by an experimental case study and evaluated by simulating faults  
in the HDL (hardware description language) description of the processor core. In order to determine  
the fault coverage of SEU-induced faults a model of fault injection must be provided.  
As an alternative to the statistical-based radiation tests, an original simulation-based solution was 
invented by the author. The faults in an HDL description of a system are modeled by automated 
modifying the individual bits in LUT (Look Up Table) memory. Behavior of  each  functional block is 
described by an HDL model, after a fault has been injected. Their HDL descriptions reflect  
the FPGA structure in order to efficiently use the FPGA resources. One of  the most important novelty 
introduced hereby is a novel model of injected faults. Benefits of novelty proposed in this work are 
double, because in this way it is possible to model natural SEU faults in LUTs, which lead to different 
implementations of logical functions as these intended. The second benefit is, that these faults can be 
interpreted in particular cases as a stuck-at ,,0” or  stuck-at ,,1” faults at inputs or output of LUTs, so 
the FPGA routing resources are also simulated. The injected faults are equivalent to SEUs. The HDL 
model reflects the change of configuration, which is a consequence of the SEU effect. Using this model 
the author has elaborated complete system to evaluation test programs dedicated to test of processor 
cores implemented in FPGAs. 

The further part of the dissertation is devoted to development of the test optimization methods.  
This part proves, that the set of test vectors can be minimized nine times. Three optimization strategies 
are presented herein. These methods saved up memory resources and shortened testing time. 
The author has proposed an approach to testing of individual blocks of processor and  optimization  
of sets of local test vectors.  
     The last chapter describes the problem of logical and hardware redundancies, which make 
impossible achievement of 100% fault coverage for any complex system implemented in FPGA.  
This chapter presents methods, examples and results of detailed author’s researches in this matter.  
A comparison of these optimization methods is made at the end of the dissertation.  
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Streszczenie 

Rdzenie soft procesorowe, które są szeroko stosowane w układach programowalnych FPGA (Field 
Programmable Gate Arrays) bazujących na pamięciach SRAM, są szczególnie podatne na błędy 
indukowane typu SEU (Single Event Upset) i dlatego soft procesory powinny być gruntownie  
testowane. W aplikacjach użytkowych, rdzeń procesora jest normalnie testowany poprzez 
wykonywanie testu funkcjonalnego, podczas którego poszczególne instrukcje procesora są 
weryfikowane zestawem deterministycznych wzorców testowych i rezultaty są porównywane  
z zapisanymi referencyjnymi wartościami. Z powodu praktycznych ograniczeń, liczba wzorców 
testowych i odpowiadających im rezultatów jest zwykle mała, co naturalnie prowadzi do niskiego 
pokrycia błędów.  

Nowe podejście proponowane przez autora bazuje na ścieżce wrażliwej na dane, która ma nieco 
inną interpretacje jak ta, znana z bibliografii. W tej pracy autor rozwinął koncept który formuje 
bijektywną sekwencję testową złożoną z prawie wszystkich instrukcji procesora. Efektywność tego 
rozwiązania jest osiągnięta poprzez twardą zasadę, według której nowatorski sposób generacji 
sekwencji testowej wymaga bijektywnej relacji ,,jeden do jednego” pomiędzy wejściowymi wzorcami 
testowymi oraz rezultatami. W ten sposób autor aktywował duży procent ścieżek wrażliwych na dane. 
Związane z tym lepsze pokrycie błędów (85,6%) zostało osiągnięte przez program złożony  
z bijektywnych bloków (85,6%). Zdecydowanie najlepsze pokrycie błędów (94,76%) autor osiągnął 
kreując bijektywny program testowy, który generuje jednocześnie pełny cykl lokalnych wektorów. 

Podejście autora ilustruje eksperymentalny przypadek studyjny oraz ewaluację poprzez symulację 
błędów w rdzeniu procesora opisanym w języku HDL (Hardware Description Language).  
W celu określenia pokrycia błędów wymagane jest określenie sposobu wstrzykiwania błędów. Jako 
alternatywa do testów statystycznych bazujących na eksponowaniu FPGA na promieniowanie 
jonizujące, zostało opracowane oryginalne rozwiązanie oparte na symulacjach. Błędy w opisie HDL są 
modelowane poprzez zautomatyzowaną modyfikację indywidualnych bitów pamięci LUT (Look Up 
Table). Zaproponowana zautomatyzowana symulacja wszystkich możliwych 1804 wstrzykniętych 
błędów jest bardzo bliska rzeczywistych błędów typu SEU co stanowi znaczące osiągnięcie tej pracy. 
Nowatorski model błędów przynosi podwójne korzyści: po pierwsze w ten sposób modelowane są 
błędy indukowane w pamięciach LUT typu SEU, które prowadzą do innej niż zamierzona 
implementacji funkcji logicznych. Drugą korzyścią jest możliwość interpretacji tych błędów  
w szczególnych przypadkach jako stuck-at na wejściach lub wyjściu LUT. Zatem zasoby 
programowalnych połączeń również są testowane. Stosując ten model, autor rozwinął kompletny 
system do ewaluacji programów testowych dedykowanych rdzeniom procesorowym 
implementowanym w FPGA. 

Dalsza część tej dysertacji jest poświęcona rozwijaniu metod optymalizacji. Zostały 
zaproponowane trzy metody optymalizacyjne. Ta część udowadnia, że zestaw wektorów testowych 
może być znacząco redukowany (dziewięć razy), co prowadzi do redukcji zasobów pamięci i czasu 
testowania. Autor zaprezentował również podejście do testowania poszczególnych bloków procesora i 
optymalizację zestawów lokalnych  wektorów testowych.  

Ostatni rozdział przedstawia problem redundancji logicznych i hardwarowych, które 
uniemożliwiają uzyskanie 100% pokrycia błędów złożonego systemu implementowanego w FPGA. 
Rozdział ten przedstawia metody, przykłady, wyniki szczegółowych badań w tym zakresie oraz 
porównanie metod optymalizacyjnych i rezultatów pokrycia błędów uzyskanych przez różne aplikacje 
testowe z odniesieniem do  bibliografii dziedziny. 
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1. Introduction 

1. FPGA characteristic and  applications 

Testing of soft-processor cores implemented in SRAM based FPGA circuits. Field 

Programmable Gate Arrays (FPGAs) are semiconductor devices containing programmable logic   

components, such as multiplexers, look up tables (LUTs) and programmable interconnections. Logic 

blocks can be programmed to implement any function of basic logic gates such as AND, OR, XOR, or 

more complex combinational functions such as decoders or simple arithmetic and logic functions.  

In most FPGAs, the logic blocks also include memory elements, which may be simple flip-flops or 

more complex block of memories.  

FPGAs already provide ability of reconfigurability, more performances for Digital Signal 

Processing (DSP) applications, and finally implemented microprocessor’s cores. Consequently FPGAs 

are increasingly applied to spacecraft electronics for reason of achieving multiple requirements: high 

performance, low cost of non-recurring engineering, etc. FPGAs are fabricated usually employing 

SRAM memory cells. FPGAs can change their functions by reprogramming, which is especially useful 

for low volume devices or for adaptive functions. Thus FPGAs operate often under difficult 

environmental conditions, such as: on the Earth orbit, spaces with increased radiation, when 

reprogramming can correct  corrupted SRAM-based configuration memory. 

 

2. Motivation 

Quick development of integrated circuits technologies, rapid growth of structural and functional 

complexity of devices cause inseparable need for development of testing methods. Testing FPGAs 

requires solutions different from those applicable to Application Specified Integrated Circuits (ASICs), 

(Teng 2009), (Michinnishi 1997), (Huang 1996). Production structural test techniques concentrate on 

testing individual types of functional blocks (Abramovici 2000), (Abramovici 1999) and their 

interconnections (Suthar 2006), (Tahoori 2004 A), (Michinishi 1996), (Renovell 2002), (Doumar 
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1999). The device is programmed with a number of test configurations and specific test stimuli are 

applied at each test configuration.      

SRAM-based Field Programmable Gate Arrays (FPGAs) are relatively sensitive to Single Event 

Upsets (SEU), which limits their widespread adoption  in safety  or mission-critical applications. Single 

Event Upset can have serious influence on operating FPGAs in space of radiation. SEU occurs when 

charged particles from the radiation belts or from cosmic rays pass through the silicon and deposit 

enough energy to induce a fault in the system (Gaspard 2017), (King 2014), (Wegrzyn 2014 A), 

(Wegrzyn 2009), (Holbert 2006). SEUs play an increasingly important role when technological 

dimensions of devices decrease and due to more and more complex architectures. Already  

for dimensions less than 16 nm and very low supply voltages, the rate of random errors produced  

by neutrons from solar rays would be unacceptable at sea level. The situation becomes worse and 

worse when altitude increase. Since 45nm other types of circuits as discrete logic (ASIC) are 

progressively being replaced by FPGAs. Nowadays, microprocessors and memories are implemented 

in the FPGA matrix (King 2014), (Xilinx 2019), (Kastensmidt 2006). In the last decade design 

solutions containing MicroBlaze or complex ASIC-FPGA cores as ZYNQ are disseminated. Chips 

containing one or more ZYNQ,  ARM microcontroller cores along Artix or other Ultra SCALE+ FPGA 

in the same chip are used increasingly. Dimensions of transistors of contemporary FPGAs technology 

are in the range 45nm as Spartan6, 28nm as Spartan7, Artix7, Kintex7, Virtex7, 20nm – families Ultra 

SCALE Virtex and Kintex. Finally most modern families Ultra SCALE+ utilizes 16nm and 7nm 

FinFET technology. 

Radiation-hardened FPGAs are often too expensive and either contain usually not enough resources 

for implementation of more complex designs. Some examples of the radiation-hardened FPGAs are 

families: PolarFire, ProAsic3 or Fusion Mixed Signal manufactured by Actel company. They are 

considerable smaller than these offered by Xilinx or Altera (Intel). Some of them are merely proper  

for CPLD replacement. 

Processor cores, which represent one of the basic blocks between FPGA applications, are subjected 

to SEU-induced faults. In critical applications, an embedded system that is performing its mission 

should therefore be occasionally tested and reconfigured whenever faults are detected. 
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3. Purpose and theses of the dissertation 

Deeply embedded processor cores are usually hardly accessible from outside. Therefore, testing 

them is a difficult task, because their inputs are harder to control and their behavior is harder  

to observe.  For the reason of the communication bottleneck between the high-performance Automatic 

Test Equipment (ATE) and the device under test (DUT), and the limited ATE resources, testing 

environments are based on Built-in Self-Test (BIST) mechanisms. Professional ATE is usually 

extremely expensive. The BIST requires designing of additional specialized hardware, developing  

of advanced optimization algorithms and writing large software applications to build a complete test 

environment. These very high technologies do not often bring fully satisfying results.  

In this work,  an attempt of generating compact and efficient, functional test of embedded processor 

cores implemented in SRAM-based FPGAs is taken up. The solution should be suitable  

for application oriented BIST. Instruction sequence is composed on the base of data sensitive path 

principle, thus providing means for randomizing processor operations and consequently increasing  

the probability of faults detection (Wegrzyn 2009). The developed experiments are targeted  

at maximal fault coverage, achieved by the developed test program at its as compact as possible 

architecture. Second important issue is evaluation of this fault coverage. I apply the definition often 

used in the electronic test domain: The fault coverage is a ratio of detected faults to all injected faults 

and is expressed as a percentage. 

 

Theses  

 In view of the need for soft-processor’s test, and  based on the above assumptions, the following 

theses have been formulated:  

Thesis1.  Using sensitive path principle which employs the bijective property of test program may 
considerably simplify testing procedure and improve fault coverage. 

Thesis2. Optimization heuristics combined with the proposed fault injection methodology can 
significantly reduce the number of test vectors required to achieve maximal fault coverage of soft-
processors implemented in FPGAs. 
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4. Organization of the dissertation 

I have divided this work into then chapters devoted to issues of modeling SEU induced faults  

in FPGAs,  testing of FPGAs when such sort of faults occur,  analyzing of fault masking mechanisms.     

 

Chapter 2: ,,Radiation-induced errors in microelectronic circuits.” describes  the mechanisms 

for generation of radiation-induced errors in microelectronic circuits. Herein these effects are classified 

into three types, depending on the extent to which they affect the operation of the FPGA. This chapter 

introduces the physical mechanisms of Single-Event Upsets (SEUs). Further the propagation  

of a single-event upset in combinational circuits and flip-flops is illustrated. Single-Event Upset  

in memory cells and eventually SEUs manifestation in FPGA circuits is considered regarding to basic 

architectures of FPGA. Different types of SEU induced faults in FPGA and issues related to SEUs 

modeling  in Look-Up-Table (LUT) are introduced in this chapter too.   

 

In chapter 3: ,,Software-based self-test of embedded processor cores” the author introduces  

the topic related to testing processor cores. A few solutions from bibliography of the subject  

of structural self-tests of embedded processor cores and functional self-test of embedded processor 

cores are described herein. In structural self-testing, test-pattern sequences are developed for each 

processor component, based on the gate-level net list of the individual core components. Since the gate-

level details of the processor cores are, in most cases, not available to the designer because their 

intellectual property is protected. For this reason test patterns are generated in pseudo random way. 

Alternatively, when the gate-level information of a processor core is available, a deterministic test 

methodology can be applied, and deterministic test patterns can be generated by an Automatic Test 

Pattern Generator. During a functional self-test the processor cores are tested by executing a sequence 

of instructions that exercise the functional behaviour of the processor. The design of this functional 

self-test is related to the functional description of the processor’s instructions. 

     

Chapter 4: ,,Fault Injection” familiarizes the reader with techniques of Fault Injection (FI)   

applied for effective evaluation and validation of developing test methods. These methods are classified 

as simulation based and experimental. Both of them can be hardware based and software-implemented. 

Often the fault injection constitute serious technical challenge and requires advanced dedicated 

designing. 
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Chapter 5: ,,Proposed Solution: Sensitive-Path Approach” in this chapter the author has 

proposed the approach, where the goal is to generate a compact test sequence that detects permanent 

SEU-induced faults of embedded processor cores in SRAM-based FPGAs. The developed experiments 

are targeted at maximal fault coverage, achieved by  developed test program architecture as compact as 

possible. A new concept of  sensitive path of data through the whole program is introduced herein. Test 

programs for two microprocessors MicroBlaze and PicoBlaze were written. The whole initial idea was 

creation of a data sensitive path by invention of such an assembler program, which preserves all data. 

The compact test programs were composed of bijective blocks. Refinements to achieve of full 

bijectivity are  elaborated and described.  Experimental results achieved by the test program at various 

stages of its development are presented in this chapter.  

 In  Chapter 6 ,,Reduction of number of test vectors” The author presents optimization heuristics 

targeted at reduction of the number of test vectors (Towards bigger processor testing). Meaning  

of these methods increases considerably in case of more sophisticated processors. Three optimization 

algorithms were developed: ,,First the vectors which detect the largest number of faults - Greedy 

Algorithm”, ,,First the vectors which detect the hardest to detect faults”, Hybrid Algorithm that 

combines features of first and second Algorithms. Also cyclic usage of results are proposed  

in this chapter. The author has determined optimal sets of global and local test vectors for testing  

of whole processor hardware and individual functional processor blocks respectively.  

These experiments were designed to optimize testing of individual blocks when a need arises, and  

when the other blocks are beyond the interest of the designer e.g. during the design process.  

These experiments showed significant differences between testability of individual processor blocks.  

During work upon the cyclic usage of results method a problem of non-full cycle appeared.   

Author has solved this problem by application of the Linear Feedback Shift Register. Results  

of refinement of the PicoBlaze test program using LFSR for all shifts instructions are gathered  

in this chapter. 

 

Chapter 7: ,,MicroBlaze case study” describesthe experiments with MicroBlaze processor core 

chosen by author. The idea of implementation of first test program and the main principles was 

presented. The data sensitive paths theory is applied, similarly as in case of  the PicoBlaze test program 

composition. Some code examples of  initial version of the MicroBlaze test program are explained. 

Next, problems  with evaluation of  the test program efficiency are approximated. Despite of these 
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problems, certain results of researches upon this efficiency, which can be compared  

with the bibliography of subject are presented. Finally results of researches on PicoBlaze are applied  

to composition of the MicroBlaze test program and examples of code are presented at the end  

of this chapter.  

Chapter 8: ,,Evaluation of the test program” presents evaluation schemes of test program.  

This chapter discusses such  topics as: environment composition for experiments,  proposed technique 

and environment for dedicated FPGAs fault injection. It also  describes PicoBlaze structural VHDL, 

and  auxiliary scripts. 

 

Chapter 9: ,,Problem of faults masking” analyses in details problem of faults masking. 

The problem of faults masking is considered due to every block of the microprocessor. Herein 

undetected faults remained after testing program execution are classified into a few categories. 

Different kinds of  logic and HW redundancies are investigated. Certain mechanisms of fault detection 

are explained on examples.  Methods to solve the fault masking problem are proposed in some cases. 

 

5. Thanks 
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2. Radiation-induced errors in microelectronic circuits 

This chapter describes in more detail the mechanisms for the generation of radiation-induced errors 

in microelectronic circuits. The effects are classified into three types, depending on the extent to which 

they affect the operation of the FPGA.   

 

2.1. Single Event Effects 

Radiation from space can cause major errors in integrated circuits. A so-called single-event effect 

(SEE) occurs when charged particles pass through the silicon and emit some of their energy.  

Such particles can be classified into two main types: 

 charged particles (e.g. electrons, protons, and heavy ions),  

 photons of electromagnetic radiation (e.g. x-rays, gamma rays, and ultraviolet rays). 

 

These  particles mainly originate from the Van Allen belt, although the heavy ions have their origin 

in solar flares, the magnetosphere and cosmic rays. When the high energy particles pass through  

the integrated circuit they induce the phenomena of ionization and excitation inside the semiconductor.   

SEEs are classified into three types in reference (Gaspard 2017), (King 2014), (Holbert 2006), 

based on the amount of energy lost by the charged particles in the devices:  

 a single-event upset (a soft error),   

 a single-event latch up (a soft or hard error),   

 a single-event burnout (a hard failure), 

 a single-event transients (a soft error). 

 



18 
 

A single-event upset (SEU) is a radiation-induced error in a microelectronic circuit.  

The phenomenon of a SEU occurs when the charged particles lose their energy by ionizing  

the semiconductor which they pass through. SEUs are classified in the first category, as soft,  

non-destructive errors. They manifest themselves in different, unexpected operations of the circuit, and 

in order to restore the correct operation of the circuit it is only necessary to reset it or reprogram it. 

Semiconductor devices, such as MOS transistors, BJTs, resistors, capacitors, optical devices, etc. and 

hence both analogue and digital circuits are sensitive to SEUs. In practice, SEUs manifest themselves 

as bits-flop in a sequential part of a system and as transient pulses in logic circuits. Sometimes, it is 

possible for one ion to cause multiple errors on more than one bit, which is, as a result, in most cases 

easier to detect. Multiple SEUs occur, for example, in SRAM-based FPGAs, which leads  

to the incorrect operation of an application implemented in the FPGA.  

A single-event latch up (SEL) is a radiation-induced error that can damage a device. A SEL 

phenomenon manifests itself as an increase in the operating current above an acceptable threshold.  

A SEL can decrease the supply voltage or overheat a device, which can then result in damage  

to the device and the power supply. This phenomenon is usually caused by heavy ions. Only in devices 

with very small dimensions  protons can cause a SEL. It is possible to power-off and then power-on  

a device in order to prevent the catastrophic results occurring as a result of a SEL.  

A single-event burnout (SEB) is a more powerful phenomenon then a SEL and its manifestation is 

mostly critical in power MOSFET transistors. A SEB manifests itself as a current increase and leads  

to the destruction of the device. A SEB causes the burnout of power transistors, gate rupture, and 

as result the freezing of bits. Moreover, a SEB can cause the device to switch itself on.  

These phenomena, which have been known since the 1980s, tend to occur at low temperatures. 

At higher temperatures they occur less frequently. The phenomenon of a single-event gate rupture 

(SEGR) occurs in power MOSFETs. It consists of the breakdown of a gate insulator and conduction 

through a layer of the gate insulator, which subsequently leads to destructive burnout. SEGRs were also 

observed in other semiconductor devices, such as bipolar junction transistors.  

A Single Event Transients (SET)  can appear in combinational logic or may be latched into memory 

or a flip-flop. According to (Gaspard 2017) deposited charge as result of ionization, can be collected  

by the transistor’s source and drain junctions. In a case of  off - state transistor, the node voltage can be 

temporarily changed. This results in a Single Event Transient (SET). Such a phenomenon is possible  

if deposited by ionization charge is enough to recharge the associated with the transistor node 

capacitance. Then the SET amplitude can swing from rail to rail or wire to wire. The SET pulse width 
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is proportional to the charge collected by the off-state transistor, the transistor node capacitance,  

and  value of restoring current, which drives the transistor. 

2.2. The physical basis of a SEU 

For practical reasons I take into consideration single-event upsets (SEUs), because they are  

non-destructive and there are ways of alleviating the problems caused by them. We can distinguish  

two main physical mechanisms that lead to the occurrence of a SEU (Gaspard 2017), (King 2014), 

(Holbert 2006), (Ohlsson 2002): 

 ionization, induced by the heavy ions from cosmic rays and solar radiation. The ionization  

      mechanism is illustrated in Figure 2.2.1,  
 
 complex nuclear reaction, leading to spallation induced by the high-energy protons. 

 

Spallation is a nuclear reaction that involves the ejection of particles from the nucleus. It occurs 

naturally in earth’s atmosphere, owing to the impacts of cosmic rays. Spallation is the process in which 

a heavy nucleus emits a large number of nucleons as a result of being hit by a high-energy particle. 

Usually, it is heavy nuclei ions, like 25Mg, that have the ability to induce a SEU by spallation.  

Other particles that also have such an ability are Si(n, α)Mg, Si(n, p)Al,  Si(p, 2pAl),  Si(p, p, α).  

The mechanism of spallation is illustrated in Figure 2.2.2. 

 

Figure 2.2.1: Radiation-induced errors in microelectronic circuits: Ionization 
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Figure 2.2.2: Radiation-induced errors in microelectronic circuits: Spallation 

 

SEU induced errors are critical in space applications and have been subject of intensive studies.  

Recent researches have revealed that 90% of all SEUs in interplanetary space are induced by protons. 

This fact emphasizes the significance of the phenomena induced by protons, as opposed to the initial 

assumption that SEUs would be induced mainly by cosmic rays. The experiments reported in (Holbert 

2006) were carried out in space, above the South Atlantic. 

More recent physical experiments were led by NASA, and were reported in paper (Megan 2012). 

These researches upon susceptibility of electronic elements and IC to cosmic radiation proceeded  

on a deck of space aircraft during space missions. Electronic elements have been ionized  

by high-energy electrons trapped within the Jovian radiation belts. These electrons have energy and 

mission flounce orders of magnitude higher than observed in the Earth’s trapped radiation belts.  

For instance a popular P JFET transistor 2N5116 was exposed to radiation. Four elements were 

irradiated with gammas, two were irradiated with electrons, and two were used as controls. Results  

of the experiment are presented in Figure 2.2.3 (Megan 2012) bellow. Diagrams in this figures are  

an average of four parts irradiated by gamma rays, two parts irradiated by electrons, and two control 

parts. It is visible, that the rate of the magnitude changes of the parts irradiated with electrons is faster 

than the magnitude of the parts irradiated with gamma rays. Degradation Level is expressed  

in [krad(Si)]. - unit of absorbed radiation dose [1 krad = 10 J/kg]. The error bars indicate one standard 

deviation. 



21 
 

 

Figure 2.2.3: Changes of magnitude of the Gate-Source voltage of  JFET transistor irradiated  

with electrons and gamma rays 

2.2.1. Critical charge 

The particles from the radiation disturb the balance of the electric field inside a semiconductor 

device by generating a large number of free electron–hole pairs in a bipolar transistor. As a result,  

a large electric field exists across a reverse-biased p-n junction. The free carriers that appear  

as a consequence are collected by this field, which results in the generation of a transient noise pulse, 

which can then generate an SEU in flip-flops (Kastensmidt 2006). The charge-deposition mechanism 

is often represented by charge-deposition waveforms. These waveforms are different for different 

radiation sources, depending on their incoming angle, which sets the technological parameters, i.e. 

the doping profile. 

According (Gaspard 2017), (King 2014), the critical charge (Qcrit) is the minimum amount  

of charge that must be collected to result in a SEU. Qcrit of a flip-flop decreases if decrease node 

capacitance, supply voltage or current which drives transistor. Because CMOS technology feature sizes 

continuously decrease, which follows supply voltages, node capacitance and driving current,  

this results in decreasing Qcrit. Estimation of critical charge as a function of technology node feature 

size is presented in Figure 2.2.4:  
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Figure 2.2.4: Estimation of critical charge as a function of technology node feature size 

 

2.2.2.  The propagation of single-event upsets in combinational circuits 

A particle from a cosmic ray can cause a glitch in the output voltage of a logic gate  

in combinational logic. This so-called single-event transient (SET) can be propagated  

in a combinational circuit (King 2014), (Hellebrand 2007), where it acts like a single-event upset 

(SEU). These phenomena occur when the propagation paths are sensitized in the logic, and the glitch 

arrives at the flip flop during a latch window. The simple example in Figure 2.2.5 below explains  

the propagation of the glitch.  
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a) SEU error occurs                b) SEU error does not occur 

Figure 2.2.5: Radiation-induced errors in microelectronic circuits. SEU in a combinational circuit 
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If a particle hits the AND gate and produces a glitch at the output, it can be propagated exclusively 

through the OR gate for w = 0 as is shown in Figure 2.2.5a. If the glitch at the end of the OR gate 

occurs before the next rising edge of the clock, it cannot be propagated as presented in Figure 2.2.5b.    

The single-transient fault (STF) is defined in reference (Hayes 2007) by Hayes et al. They assume 

 a circuit with a number of logic lines equal to k. This circuit possesses a certain number of inputs and 

outputs. Moreover, the circuit is described by the set of internal states, the next state’s function and  

the output state’s function. A single transient fault in the circuit causes line l to be stuck at zero or stuck 

at one for a single clock cycle (Bushnell 2000). This leads to an interesting question: what is  

the probability of an SEU producing an erroneous output from the circuit within a certain number  

of cycles after the fault has occurred? The authors assume that the faults appear and disappear within  

a single clock cycle. However, it is possible that the faults tend to occur at random times and are likely 

to affect all the states of the circuit. Let us assume that a circuit possesses k lines, n primary inputs, and 

a single primary output y, and assume that the probability of each STF is the same. The probability  

of STF is defined as the total number of possible errors produced at y by STFs, divided by the total 

number of possible STFs (Hayes 2007): 

 

)( zPerr = (
l

No. of tests for the faulty line l) / k 2 1n  

 

If the circuit has n inputs it means an ,,elementary” gate G of the N (AND) or (N) OR type, and 

then the above equation takes the form:  

 

)( zPerr = (n+2 1n ) / (n+1)2 1n  

 

The example of  logical functor is presented in Figure 2.2.6.  

 

 

Figure 2.2.6: Radiation-induced errors in microelectronic circuits.  Example of logical functor 
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The analysis of erroneous behaviour is a very complex process, because it depends on many 

physical factors (Maheshwari 2004). For this reason the research in this area requires the use  

of electrical and probabilistic models that are technology- or application dependent.  

For practical reasons I consider an example that makes clearer the mechanism of the incorrect 

operation of logical gates. For instance, I consider the three-input CMOS gate NAND3 depicted  

in Figure 2.2.7.    

 

Figure 2.2.7: Radiation-induced errors in microelectronic circuits. Transient flip-flop error  

                                 in a NAND gate 

 

There is a probability that charged particles will strike one or more transistors of a gate. A radiation 

strike can upset one or more of its transistors, causing the output Z to undergo a transient flip-to-0 or 

flip-to-1 error. The specific error depends in part on the input pattern ABC when the strike occurs.  

The input ABC = 111 flips Z from 0 to 1 if one of the gate’s p-transistors is upset, as is the case  

in Figure 2.2.7. The strike can cause flip-to-1. Inversely, when the output Z = 1, under the input 

patterns 110, 101 and 011 only one n-transistor (i.e. the one with logic 0 at the gate) is susceptible  

to the strike. Similarly, with the input equal to 000, all the three n-transistors must be upset to produce 

an output bit flip-to-0.  
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2.2.3.  The propagation of single-event upsets in flip-flops 

Flip-flops are usually used for temporary storage of data between operations inside a processor.  

As an especially visible example can serve here pipelining processor architecture. Single Event 

Transient (SET) can manifest itself in two ways (Gaspard 2017). First of them is when a SET occurs 

within the latch, and second if SET is propagated from logic circuit and can be latched into the flip-flop 

at a clock edge. In this way a SET can create a SEU. This occurs if the SET continues  longer than  

the feedback loop delay of the flip-flop latch. Many architectures of flip-flops reminds SRAM cells, 

because they uses often a feedback loop similar as inside SRAM. For the reason, that some flip-flop 

latches are almost identical to SRAM cells, mechanisms that cause SEUs in flip-flops is similar to this 

in SRAM cells. Figure 2.2.8 (Gaspard 2017) presents mechanism of generation SEUs inside a latch. 

 

 

 

Figure 2.2.8: Mechanism of generation SEUs inside a latch 

 

2.2.4.  Single-event upset in memory cells 

A transient current pulse is generated if a charged particle strikes one of the sensitive nodes  

of a memory cell, such as the drain in an off-state transistor. Such a current pulse can turn on the gate 

of the opposite transistor. This Single Event Transient current pulse can result in an SEU if the pulse 

width is longer than the feedback loop delay of the design (Gaspard 2017). Memory cells have two 

stable states: one that represents a stored ,,0” and one that represents a stored ,,1”. In each state, two 

transistors are turned on and two transistors are turned off. A bit-flop in the memory element occurs 
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when an energetic particle strikes the drain. This event can produce an inversion in the stored value, 

which means a bit flip in the memory cell. This effect is called a single-event upset (SEU). The classic 

architecture of a SRAM memory cell with the area sensitive to particle strikes marked is illustrated  

in Figure 2.2.9, (Gaspard 2017), (Kastensmidt, 2006).    

 

 

Figure 2.2.9: Radiation-induced errors in microelectronic circuits. Single Event Upset (SEU)   

                       effectin a SRAM Memory cell 

 

2.3. SEU manifestation in FPGA circuits 

The susceptibility of current technologies to SEUs ranges from CMOS/SOS (the least susceptible), 

to CMOS, to standard bipolar, to low-power Schottky bipolar, and then to NMOS DRAMs (the most 

susceptible). A long list of papers has been published on the subject of SEU-induced errors  

in microelectronic circuits, among them (Katz 1997), (Katz 1999), (Karp 1993), focusing  

on the radiation effects related to current field-programmable technologies. 

SRAM-based field-programmable gate arrays (FPGAs), which are nowadays massively used  

in different embedded-system applications, are relatively sensitive to single-event upsets (SEUs), 
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(Xilinx 2013). The testing of a FPGA is a difficult and important problem. The testing strategy and  

the associated procedures depend on the target fault types and the operating modes (off-line test,  

on-line test, concurrent test), (Abramovici 1999), (Abramovici 2000). In the following I briefly 

describe the most common types of faults in SRAM-based FPGAs, and in the next chapter, I review  

the methods for testing FPGA circuits. The typical architecture of the FPGA circuit is presented  

in Figure 2.3.1. 

The edges of the chip-FPGA are surrounded by programmable I/O block (IOB) resources.  

The blocks of RAM are near the edges of the chip. At the centre of the chip is a two-dimensional array 

of configurable logic blocks (CLBs). A CLB consists of a certain number of slices, and each slice 

contains a certain number of look-up tables (LUTs), flip-flops, carry and routing logic. Figure 2.3.1. 

presents a simplified top-level overview of the architecture. 

 

 

Figure 2.3.1: Radiation-induced errors in microelectronic circuits. Simplified block scheme  

                               of a FPGA 

 

The routing of the signals for the CLB array is ensured by wires that connect the CLBs. However, 

although there are a lot of different architectures, generally a FPGA consists of an N×N array  

of configurable logic blocs (CLB) and programmable I/O blocks. Between these blocks, there 

are  programmable interconnections  which are provided by a single-switch box (SSB). 

The programmable interconnections are provided by a single-switch box (SSB). A SSB consists  

of a matrix of programmable interconnect points (PIPs), with each PIP being a pass transistor that can 

connect two wire segments.  
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As described in (Rebaudengo 2002 A), the internal architecture of the configurable logic block is 

shown in Figure 2.3.2, below: 

 

k

 

Figure 2.3.2: Radiation-induced errors in microelectronic circuits. SEU resources inside CLB 

 

The basic internal architecture of a CLB, shown in Figure 2.3.2, is built by three components:  

a look-up table (LUT), multiplexers and D flip-flop. A LUT can be programmed to implement any  

k-input combinational function. The CMC box in Figure 2.3.2 represents configuration memory cells. 

Depending on the value applied to the input lines, the table selects a CMC addressed by the input 

pattern, and the cell’s output provides the function’s value. A LUT can therefore implement any of 2n 

functions of its n input, where n ≤ k, k is LUT address bus bit width. In programming the FPGA  

the CMCs corresponding to the LUTs are loaded with the bit pattern corresponding to the function 

truth table. In the CLB, the connections among the input and output lines, the LUTs, and D flip-flops 

are controlled by CMCs. The interconnection structure, surrounding the CLB, is composed of 

connections configured as pass transistors, also controlled by a CMC. 

In practice a typical logical unit has a more complex architecture. For example, the Xilinx Virtex 

5+
TM

series has a CLB consisting of  two slices. Every slice possesses four six-input LUTs, carry 

logic, eight flips-flops, wide-function multiplexers.   
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2.3.1.  Fault model in FPGA 

In earlier references (Renovell 2000 A), (Tahoori 2004 B) only an approximate model  

with possible faults affecting the configuration memory is described. However, this approximation does 

not consider the faults affecting the values of the memory cells composing each LUT. It takes into 

consideration only the faults affecting the output value of the LUT.  

Another approach (Rebaudengo 2002 A) proposes a more accurate fault model to test.  

This approach takes into account the stuck-at faults affecting the memory bits composing the LUTs, 

and the coverage of the defects affecting the memory bits composing the LUTs is improved. The model 

analyses more accurately the functional effects induced by the faults affecting the logic elements  

in a logical unit (see Figure 2.3.3):   

 

 the LUT’s address lines (AD),

 the inputs and outputs of the LUT’s memory cells (LUT),

 the LUT’s output (L),

 the data input (I),

 flip-flop input (D),

 flip-flop output (Q),

 multiplexer inputs (M1(0), M1(1), M2(0), M2(1)),

 multiplexer outputs (M1, M2),

 multiplexer control signals (M1A, M2A),

 CLB output (F).  

 

All these faults are stuck-at-0 and stuck-at-1. It is important to emphasize that the faults which 

belong to the same net are equivalent. In the example of Xilinx Virtex FPGAs, we can define  

the classes of equivalence composed of the following signals:  

 

 I and M1(0), 

 M1 and D, 

 Q and M2(1), 

 M2 and F. 
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Figure 2.3.3: Radiation-induced errors in microelectronic circuits. Fault model in a FPGA 

 

For example, if the multiplexer configuration inputs and the LUT memory-cell inputs are set  

to constant values their value cannot be modified during the test. This results in a redundancy of faults 

in these resources. These faults may be removed from the fault list. 

As a contrasting example I can demonstrate that the relevant stuck-at faults alter the value  

of the LUT bit cells which cannot be classified as being equivalent to the fault affecting the LUT’s 

output. For instance, I can take into consideration a LUT implementing the function, F = AB + C where 

A, B and C are the inputs of the function. This function is described by the truth table 2.3.1.  

The stuck-at-1 fault alters the value of the memory-bit cell stored at the address A = 0, B = 1 and 

C = 1. This modifies the LUT function into  F’ = AB + (~B)C, which is not equivalent to a stuck-at-1 

or stuck-at-0 fault affecting the LUT output and the elimination of the above fault leads to a shortage  

in the range of possible faults. In contrast, the stuck-at-0 alters the value of the memory-bit cell stored 

at the address A = 0, B = 0 and C = 0. However, this does not modify the function and thus it is  

a redundant fault.  
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Table 2.3.1: Radiation-induced errors in microelectronic circuits. An example of a LUT  

                              with SEU induced error for A = 0, B = 1, C = 1 

 

A radiation-induced error may affect the application configuration, which may lead to a faulty 

application operation. A SEU may alter the content of a configurable logic block or produce 

modifications in the interconnections, thus giving rise to totally different circuits from those intended.  

SEUs may modify the memory elements the design embeds as the content of a register in the data path, 

or the content of the state register in a control unit. Accordingly, the bibliography of the fault effects 

can be classified in the following classes: 

 

 effect less: the output behavior of the  faulty circuit is the same as the  fault-free system,     

 malfunction: the output behavior of the faulty circuit differs from that of the fault-free circuit.  

       

2.3.2. Types of errors induced by SEU in FPGA circuits 

SEU-induced faults can be categorized according to their location into two broad classes 

(Rebaudengo 2002 B), ( Suthar 2006), (Renovell 1997), (Renovell 1998), (Syam 2005): 

 

 Inter-CLB resources: a fault modifies the routing of the signals between two or more  

            presented  in Figure 2.3.4. This results in the cutting off the existing connections  

            between the CLBs before the manifestation of the fault. Moreover, additional  

            connections between CLBs may originate as a result of the appearance of a SEU.  
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 Intra-CLB resources: a fault modifies the configuration of the resources inside a single CLB  

of the FPGA. On the basis of the architecture presented in Figure 2.3.5 we can classify  

the resources that can be altered in two classes:  

 

1. Routing: the SEU modifies one of the configuration bits of the multiplexer that the  CLB embeds     

    (resources A, B and C in Figure 2.3.5),  

      2. Look-up tables: the SEU modifies one bit in the look-up table that the CLB embeds (resources   

          LUT in Figure 2.3.5).  

 

 

 

 

 

 

Figure 2.3.4: Radiation-induced errors in microelectronic circuits. Routing SEU resources 
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Figure 2.3.5: Radiation-induced errors in microelectronic circuits. Intra-CLB resources 
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3. Software-based self-test of embedded processor cores 

Complex systems-on-chips (SoC) are usually composed of many embedded processor cores.  

A processor core downloaded into FPGAs-based designs possesses several advantages, for example, 

the reuse of the chip, adopting the number of cores to a specific task and the possibility  

of implementing a complex design exclusively by programming. Hence, the cores can be applied  

in various applications and this then lowers the cost (Batcher 1999), (Chen 2000). 

Testing a core that is deeply embedded and has poor accessibility is a difficult task. Embedded 

processor cores are difficult to test because their inputs are harder to control and their behaviour  

is harder to observe. For this reason, the communication bottleneck between the high-performance 

Automatic Test Equipment (ATE) and the device under test (DUT), and the limited ATE resources, 

lead to solutions based on built-in self-test mechanisms. With this approach, both the test-pattern 

generation and the evaluation of the test results are performed by the processor under test,  

i.e. Built-in-Self-Test (BIST) methodologies. However, BIST methodologies rely on a scan to deliver 

the test patterns and are often effective enough, but they cannot be applied to systems containing 

embedded processors. The approach to Built-in Self-Test is described with practical examples 

 from bibliography (Renovell 2000 C), (Renovell 2001). Since FPGA circuit resources are not 

normally 100% occupied by the design, the defects located in some areas of the chip that are not used 

by a particular design may be tolerated. These problems are described in chapter 3.2. 

 There are two main approaches to software-based self-testing: the structural approach and  

the functional approach. 
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3.1.  Structural self-test of embedded processor cores 

In structural self-testing, test-pattern sequences are developed for each processor component, based 

on the gate-level net-list of the individual core components. Since the gate-level details of the processor 

cores are, in most cases, not available to the designer because their intellectual property is protected, 

there are serious restrictions when it comes to practical applications. A high-level structural self-test 

methodology (Kranitis 2002 A) tries to overcome this problem, based on knowledge of the Instruction 

Set Architecture (ISA) of the processor and its Register Transfer (RT) level description. Additionally, 

the gap between the operating frequencies of the ATE and the operating frequencies of the System  

on Chip (SoC) can lead to a large number of undetected faults. Knowledge of ISA is indispensable 

 for the developed methodology. In the considered case of MicroBlaze microcontroller, I use ISA 

moreover for PicoBlaze, I gathered knowledge about structure of implemented hardware. 

 In the structural testing methodology, pseudo-random pattern sequences are developed for each 

processor component before the test. In the test-execution phase, the pseudo-random test patterns  

are usually expanded on-chip by a software-emulated Linear Feedback Shift Register (LFSR) and then 

stored in the embedded memory. Then, the test patterns are applied by software-test-application 

programs and the responses are collected in the memory again. The gate-level details of the processor 

architecture are required for this methodology (Renovell 2000 C), (Renovell 2001). The instruction set 

imposes a constrained test generation of the deeply embedded functional modules of the processor.  

This task consumes an excessive amount of time and may sometimes lead to unacceptable low level  

of fault coverage. Additionally, the pseudo-random test methodology leads to a large self-test code.  

I applied the software-emulated Linear Feedback Shift Register (LFSR) to test pattern generation, but 

in deterministic way and exclusively for specified blocks of a processor core, where this  actually has 

given a good effect, as will be showed in chapter 6.3.1. This application of  the LFSR differs from 

typical applications. 

The paper (Kranitis 2002B) presents Instruction-Based Self-Testing of Processor Cores.  

The methodology consists of three steps: 

 

 information extraction from the processor’s instruction-set architecture and the RT level  

            description. In this step the effects of the execution of each instruction, for every component  

            are extracted,  
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 instruction selection - for every component  the set of operations is selected. Identified    

      (decoded)  are instructions which given component performs,  

 operand selection - in this step the deterministic operands are considered, that must be  

      applied to each component to achieve high structural fault coverage.  

 

Alternatively, when the gate-level description of a processor core is available, a deterministic test 

methodology can be applied, and deterministic test patterns can be generated by an Automatic Test 

Pattern Generator. This method is efficient only when the number of test patterns is low. The Register 

Transfer (RT) level description represents the connections among the functional parts of the processor, 

such as Arithmetic Logic Unit (ALU), multiplexers, and shifters, and the storage elements, 

 such as registers, flags and steering logic modules such as bus elements. 

To implement a high-level structural self-test program, there is no need for a synthesis and  

gate-level description of the tested components, which is its important advantage. On the contrary 

for a deterministic methodology, a basic knowledge of the functionality and the functional blocks 

inside the component is required. This information can be easily obtained from the control signal 

applied to the block or a related output. The method makes possible a significant reduction  

in the number of processor instructions, the program size (the number of bytes that have to be 

downloaded by an external ATE to the memory or stored in the ROM) and the response data size  

(the number of test response bytes that are stored in the memory and later uploaded by an external ATE 

or compressed by a test-response-analysis program). 

 

3.2.  Functional self-test of embedded processor cores 

During a functional self-test the processor cores are tested by executing a sequence of instructions 

that exercise the functional behaviour of the processor. The design of this functional self-test is related 

to the functional description of the processor’s instructions. In earlier implementations, individual 

instructions were tested with a set of deterministic test patterns and the results were compared  

with stored reference values. 
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Functional testing is an effective solution that can overcome the limitations mentioned  

at the beginning of this chapter. The solution involves forcing the microprocessor to execute a specific 

test program. The testing of microprocessor cores is a challenging task. Hence, new testing methods  

are being developed, such as at-speed testing, an automatic test generating program, which exploits 

e.g. an evolutionary algorithm.  

I defined a new model of faults dedicated for FPGAs (Wegrzyn 2009). The model is Single Event 

Upsets (SEUs) based, and consist in changes of logical functions implemented by Look Up Tables 

(LUTs) in FPGA in case of SEU fault occurrence. The mechanism of fault generation is detailed 

described in chapter 2 and analysis of the influence of faults on operation of specified blocks and 

assembler instructions is described in chapter 8.3. 

The at-speed testing of microprocessors with external testers becomes increasingly difficult 

 as the frequency increases (Batcher 1999), (Chen 2001). A proper solution to the problem  

is a built-in self-test (BIST). This has been developed over the past several years. In his earlier work 

(Batcher 1999), developed methods for the efficient compilation of self-test programs for embedded 

processors. However, these methods do not make possible the generation of self-test programs  

for the test engineers. Also, Shen and Batcher (Batcher 1999) have attempted to develop the functional 

self-testing of processors. Their approach consists of generating and applying random-instruction 

sequences to the processor core. I also carried out such experiments with instructions of PicoBlaze 

processor, and I evaluated fault coverage of such a test program. These effects were disappointing. 

However this approach may be classified as supplement to deterministic self-instruction program. 

Built-in-self-test methods (Batcher 1999) consist of a scan, to deliver the test patterns,  

which are effective enough. This may often be difficult to apply to systems containing embedded 

processors. Access to the embedded core for scan insertion can be difficult. The processor architecture 

itself may make it impossible to use scan test methods, even the design for test rules for such methods 

requires the design of test rules. The structure of the microprocessor is usually complicated (flip-flops, 

asynchronous logic, internal three state, gated clocks), and this structure can cause a lot of problems  

for scan-based testing.  

The Instruction Randomization Self-Test (IRST) (Batcher 1999) methodology utilizes  

the functional behaviour of a microprocessor and a stuck-at fault model to obtain high fault coverage. 

The test is performed by continuously executing a random stream of processor instructions and 

compressing the execution results using internal test hardware. The advantage of the method is  

that it can be applied to various processor architectures with the following features: 
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 the processor must fetch instructions from a read/write memory, 

 the instructions must perform operations on an internal register and/or memory, 

 a single instruction cycle is required, 

 the processor must be able to execute a branch instruction. 

 

The disadvantage of functional testing is low fault coverage, for the reason that it does not consider 

the RTL structure and the excessive power consumption in the BIST mode. This can be reduced  

by suitable techniques, such as scheduling. The fault coverage can be improved with techniques  

of deterministic BIST. The BIST overhead is usually reduced by generating pseudo-random test 

patterns, using circuits as accumulators, embedded processors, sequential circuits, etc. In scan-based 

BIST, the test overhead is usually reduced by a partial scan (Chen 2001). The circuit under test 

is driven by random test patterns and using some non-functional mode may cause a problem  

with the bus connections (Chen 2001).  Moreover, functional testing that uses some RTL information 

is not exactly correct for embedded microprocessor cores (Batcher 1999). The testing methods used  

for the fault validation utilize gate-level information. They can be applied in industry for processor 

testing, which is their main advantage. There is a difference between these methods and the Instruction 

Randomization Self Test (IRST), because the IRST is executed at-speed and its algorithms utilize 

hardware information. The instruction randomization is performed with dedicated hardware,  

which modifies certain instruction fields, and in this way the instruction remains full of meaning and its 

operand gets randomly permuted. In this way the operation of the processing is explored in a larger 

number of situations, which increases the fault coverage. The IRST solution is based on hardware and 

software. The functions of the hardware are as follows: 

 to modify the test software to provide a pseudo-random sequence of instructions,  

 to monitor the instruction fetch and R/W activity, 

 to provide a source of randomized seed data, which the test software uses to randomize  

the register operands.  

 

The test hardware consists of a randomizer, modifiable instruction storage (MIS) memory, a fixed 

test-instruction (FTI) memory and a Test Response Compression Device (TRCD) (Batcher 1999).  

The test software program is highly optimized for detecting faults. There are many techniques  

for increasing the controllability and the observability of the test software. The initial test program  

is important for the controllability of the MIS software. The main task of the software program  
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is to provide a source of random stimulus for control over various data and the control path  

in the processor core. Below is the overview of several test approaches. 

The solution (Chen 2000), (Chen 2001) consists of two steps. The pre-test step is the generation  

of realizable component tests and the encapsulation of component tests in self-test signatures.  

In this step the tests are developed for individual components of the processor, such as ALU, PC, etc. 

The faults are injected into the structure during the component test generation. There are two types  

of component tests: random tests and deterministic tests. For the random tests, the test for each 

component is characterized by the self-test signature. The seed and pseudo-random generators are used, 

and so-called self-test signatures are loaded into the processor memory before the test instead of during 

the actual tests. The signature can be expanded on-chip into test sets using a pseudorandom number  

of generation programs. For the deterministic tests, the tests are loaded directly into the processor 

memory before the test. The use of self-test signatures reduces the loading time for loading the test sets 

into the memory for storing all the test patterns at the same time.  

Application of the signature analysis seems to be one of possible solutions to testing more 

sophisticated processors and their components as my case study of MicroBlaze/SecretBlaze. (There 

 is a huge number of 2 to the power of 32 of possible test vectors, what is considered 

 in the next chapters). Whereas in case of small eight-bit processors I am able to lead exhaustive tests 

using all 256 test vectors. 

The approach uses a software tester embedded in the processor memory. The software tester 

consists of a group of programs for the test generation and the test application. The main feature  

of the solution is that the instructions in the software tester are carefully chosen in order to deliver 

 the previously prepared structural tests.  

In the self-testing, the step of applying on-chip tests and the response collection use  

the functionality of the processor under test. At the component level a structural faults model is applied. 

At the processor level the method uses the functionality of the processor for the structural tests of each 

component at-speed. In my case I have to consider implementation of processor inside FPGA 

additionally. 

 It is impossible to deliver some test patterns when the delivery of the component tests consists  

of the functionality of the circuit. Thus, component tests are constrained by the processor’s instruction 

set, the validity of the input values, etc. When the component tests are developed under the constraints 

imposed by the processor’s instruction set, they can be generated by delivery programs to apply  

the component tests (Chen 2000). Figure 3.2.1 bellow explains the self-test methodology.  
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When self-test signatures are used, an on-chip test-generation program emulates a pseudo-random 

pattern generator and expands the signatures into test patterns. The test patterns are applied  

to components by a test-pattern delivery program at the speed of the processor, which also collects  

the tests and saves them to the memory. 

 

 

 

Figure 3.2.1: Software-based self-test of embedded processor cores. Self-test methodology 

 

The test responses can be compressed into response signatures using a test-response analysis 

program. The responses are stored in the memory and can later be downloaded and analysed 

by an external tester. The method possesses the fault-coverage advantage of deterministic structural 

testing. The test application is performed at-speed if the component test application and the response 

collection are achieved with instructions instead of with scan chains.  

 In Bernardi (Bernardi 2004) work, this problem is exposed that hardware-based self-test 

procedures may negatively affect the performance of the processor. For these reasons software-based 

self-test methodologies seem to be better for testing embedded processor cores. Because the software-

based self-tests consist of executing test programs, no extra hardware is required and no modification 

of the processors is needed. An economic benefit of the software-based self-test is in the reduced 

automatic test equipment control requirement and the better independence from the test frequency.  

A well-known problem is that each embedded core should be reachable from the top layer of the chip.  

 

 



41 
 

The basic idea of the self-test program is executed in an interrupt service procedure. Similarly my 

test program is dedicated to execution in an interrupt. The wrapper circuitry controls the interrupt 

signals by converting the high-level command coming from the ATE to the activation sequence  

of the processor-interrupt mechanism. The solution is presented in Figure 3.2.2. 

 

 

 

 

Figure 3.2.2: Software-based self-test of embedded processor cores. The architecture  

of the CPU 

 

To overcome the problem of reach-ability of embedded cores many solutions use additional 

 test-control components, the so-called wrappers. In reference (Safi 2003) an infrastructure IP (I-IP) is 

used to support a software-based self-test of the embedded processor cores. This solution is able  

to completely test the functionalities of the processor. Through I-IP the test program is uploaded  

to the instruction memory and the test procedures acting on the interrupt service procedure 

 are activated. The structure of the approach is shown in Figure 3.2.3. 
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Figure 3.2.3: Software-based self-test of embedded processor cores.  Test architecture with I-IP 

 

The main features of the solution are as follows:  

 no modifications to the processor’s internal structure are allowed, 

 the test must be performed at the same working frequency as the processor, 

 a low-cost ATE is in charge of performing the test, through a low-speed interface, 

 automated the generation of the final test program for the whole SoC starts from a knowledge  

      of the test features supported by the composing cores is desirable. 

 

A similar method of functional testing, proposed by E. Safi (Safi 2003), is based on pre-computed 

structural test sets for the functional components of a processor. The Architecture Description 

Language (ADL) is used to collect information about the hardware. The information is used  

to implement a set of instructions, which is referred to as a macro. The difference of my approach 

(Wegrzyn 2009) consist in that the sub-sets of instructions are dedicated primary to test specified 

individual blocks of the processor. These macros are helpful at determining the input test vectors  

of the functional units and propagating the outputs of the functional units to the processor’s output 

ports. The ADL language is used to describe the structure of a system composed of software and 

hardware components. It usually describes the functional interfaces of components for control and data 

flows and non-functional aspects of the components, such as timing and the safety level.  

The ADL language can be used at a higher level that describes how systems are composed  
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of components. The advantages of ADL are improved software, the system documentation, 

the flexibility and the modification of the design (Figure 3.2.4). 

 

 

 

Figure 3.2.4: Software-based self-test of embedded processor cores. The features of an ADL model 

 

In the ISA model each operation is described in terms of its opcode, operands and behavior.  

This is particularly interesting for the development of the method hereby presented. Each operand  

is classified either as a source or a destination. In the ISA model the opcodes and the addressing modes 

are included. They are important for defining the instruction formats. The fields provide information 

about the binary widths, the source versus the destination specification and the hardware components 

that the fields correspond to. The behavior of an instruction specifies its computational task,  

the assembly syntax of instruction, the mnemonics and the operands. The method relies on hierarchical 

testing using pre-computed deterministic tests generated by a commercial ATPG for the components  

in the data path. The set of instructions is implemented in such a way that it can justify pre-computed 

tests to the inputs of the functional units and make possible the observability of the results.  

The components for macro-generation can be classified into various classes as functional components 

(ALU, shifter, and multiplier) and storage components (registers). 

 The work of Mishra (Mishra 2003), (Mishra 2004) presents a test-generation method and 

 a functional coverage estimation framework for pipelined processors using the so-called Specman 

Elite block presented in functional diagram in Figure 3.2.5 Verisity’s Specman Elite 

 is a comprehensive environment for all aspects of verification: automatic generation of functional 

tests, data and assertion checking, and functional coverage analysis. A random and constrained-random 

test program is generated in this block. The functional coverage estimation technique is developed  

in order to verify the quality of the generated test programs by the authors. 
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Figure 3.2.5: Software-based self-test of embedded processor cores.  Test generation and coverage        

estimation 

 

The solution generates ,,e” models for the pipelined implementation and uses an ,,e” simulator.  

The coverage estimation is used to measure the progress of the verification effort. Authors measured 

the functional coverage of pipelined processors. It evaluates the efficiency of the test programs 

 used for simulation. The measurements cover:  

 register read/write, 

 operation execution,  

 pipeline execution.  

 

A slightly different problem concerning pipelining testing appeared during my research work, 

however  studying  of this paper was instructive. 

The method presented by F. Corno (Corno 2002), (Corno 2003), (Corno 2004) exploits 

evolutionary techniques to automatically generate an effective test program. Some of the work (Corno 

2002) is devoted to simulation-based design verification. For a specific RTL description  

of the microprocessor for a simulation-based verification they need a test program and a tool 

able to simulate its execution. The simplest method to implement a test program may seem to compile  

a high-level routine. Such a method relies on a compiler or a cross-compiler. According to the author 

this easy solution is usually inadequate to uncover any design errors due to the intrinsic nature  

of algorithms or the compiler’s interpretation. A better solution is to implement assembler programs.  
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In the case of an assembler program it is easily to use incorrectly instructions. But an effort  

to implement a syntactically correct assembly source can be profitable. For the same reason my test 

methodology bases upon development of testing programs written on instruction level. In the case  

of the implementation of a random program, the main drawback of this method is that the program 

should be long enough to cover all corner cases. This results in a long simulation time. This method 

uses an evolutionary algorithm to construct a set of instructions. The basis of the method was as 

follows: the assembler program and the instruction set are constructed according to a certain order   

to achieve the best fault coverage. 

Direct acyclic graphs can represent internally assembled programs. The evolutionary technique  

is very effective because it improves the achieved fault coverage. Moreover, the technique adapts 

 the internal parameters to their optimal values. The proposed approach is illustrated in Figure 3.2.6 and 

in Figure 3.2.7. 

 

 

 

 

Figure 3.2.6: Software-based self-test of embedded processor cores:  Directed acyclic graph 

 and instruction library 
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Figure 3.2.7: Software-based self-test of embedded processor cores: A sequential Node 

 

The test program induced by the generator uses an external instruction library that describes  

the syntax of the microprocessor’s assembly language. The generator uses a fault simulator 

 in order to evaluate the generated test programs and in order to gather the necessary information  

for driving the optimization process. 

The test-program generator exploits MicroGP, which utilizes a direct acyclic graph (DAG)  

to describe the syntactical flow of a program and an instruction library for describing the assembly 

characteristics. 

The approach of (Corno 2002) repeatedly evaluates and improves the candidate test programs 

directly running on the microprocessor under test. The candidate programs are executed rather than 

simulated. This automatic methodology makes possible a rapid evaluation of the candidate test 

programs, even for large designs. An automatic program generator is run on the microprocessor under 

test, and then the candidate programs are executed and the feedback is analysed. So, the microprocessor 

under test has two tasks: it runs the test program and it evaluates the candidate tests. 

The benefits of this solution are that the test-program-generation architecture can be implemented 

by a test engineer. As mentioned before, the functional testing of modern microprocessors requires 

knowledge of the architectural features and is a challenging task. Moreover, the test-program-

generation process can be automated. An automatic test-program generator can be configured  

by a program builder, the description of the processor and an appropriate program evaluator.  

The developed verification programs, high-level coverage metrics can be applied as part  
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of a generation loop to ensure the suitability of the program. The solution for an automatic test-program 

generation consists of an automatic trial-and-error approach. The program-generation tools can utilize 

feedback in order to evaluate the candidate tests and improve them. The candidate test programs are 

executed on the tested processor, and the generator is run on a host computer. The main drawback  

of this solution is the limitation imposed by the feedback loop. Some modern microprocessors (e.g. 

Power PC, Intel Pentium, AMD Athlon, Sun UltraSPARC possess hardware-performance counters that 

allow monitoring events like cache misses, pipeline stalls, etc. Additionally, both the program 

generator and the candidate test programs can be executed on a tested microprocessor. The feedback 

information about each candidate program is collected in the microprocessor’s performance counters 

(Lindsay 2004). The benefit of this is that by extracting the performance counters’ information it is 

possible to excite properly the specific units of a processor under test. The next advantage  

of the solution is the removal of the simulation overhead. This means that authors do not simulate  

a model of the tested processor. 

There is a need for utilization an advanced testing environment during the main test  phase.  

I considered the experiences of authors and focused my work towards development methodology, 

which makes possible composition a compact test program according of set rules. These rules  

are defined as a result of research work leading to efficiency evaluation  of the test program in fault 

coverage meaning. My work is dedicated to both industrial and project verification  testing, where such 

a test program can be easy and relatively quickly written by microprocessor designer, application 

engineer, and testing in case of critical missions, where occurrence of SEUs are probable.  

Then opportunities of connection with methods of diagnosing and partial reconfiguration are opening 

up. The PicoBlaze processor plays two roles: it generates reference results both on fault-free and  

with injected faults in its VHDL descriptions.   

Bernardi and Sonza (Bernardi 2014) proposed an original hardware based technique for embedded 

microprocessor functional On-Line Self-Test. This concept is based on a Microprocessor Hardware 

Self-Test unit (MIHST), specially designed to this purpose. Its role is to generate and provide 

 an instruction stream to the processor core. The MIHST also can observe the processor behavior. 

The MIHST unit internally encodes the test program in an original way that exploits the test 

program regularity. This idea  minimizes the hardware required to store test program. 

According to the above ideas, the processor executes the instructions provided by the MIHST unit. 

Whereas the execution flow is not controlled any more by the processor. In the case of normal 

operation, when  the processor executes  the code of a conditional jump instruction, the processor 
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evaluates the condition and depending on the result it generates a different address during the following 

fetch cycle. It is different in the MIHTS mode; the following instruction is decided by the MIHST unit 

independently of the address generated by the processor. 

 

An important advantages of the solution are: 

 The test engineer can manipulate the address range, and improve coverage in this way. 

 MIHST unit makes possible  observation of the result of an instruction execution on the bus     

      without having the rest of the test procedure compromised by any possible fault. 

 

According MIHST functionality, the execution flow of the MIHST driven program is never altered 

by a fault occurrence. In a classical SBST schema some faults can cause an exception occurrence (e.g. 

erroneous access to memory). However, this problem disappears hereby, due to the fact,  

that  the MIHST unit is forcing a predefined instruction stream that does not depend on the processor 

requests. 

 

Hence, characteristic features of MIHST driven test  are as follows: 

 test always finishes,  

 addresses are generated  no longer by the processor, but by the MIHST. Processor receives  

      instructions autonomously provided   by the MIHST, 

 the execution time is significantly shortened by removing the need for control instructions  

      of the test flow, which is directly controlled by the MIHST unit. 

 

Technical realization of the proposed approach is based on adoption of an Infrastructure IP (I-IP), 

called Microprocessor Hardware Self-Test (MIHST) unit, which is connected to the system bus.  

The interconnection of the I-IP within a processor-based SoC is supported by a multiplexer, as shown 

in Figure 3.2.8. 
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Figure 3.2.8: Architecture of system with built in MIHST unit 

 

The connection of the MIHST unit does not require any modification in the processor’s core, 

similarly to BIST, approaches (Stroud 2004), (Stroud 2003), (Gizopoulos 2004), (Gizopoulos 1997). 

This methodology is intended to application on-line testing in an interrupt in order to preserve 

 a processor state. In normal mode, the code is executed in order of the addresses determined  

by the processor and thus the execution flow jumps back or forth according to the existing in code 

jump/branch instructions. 

Riefert and Sonza (Riefert 2016) treat about a Software-based self-test (SBST) techniques.  

They described an automatic test pattern generation (ATPG) framework for the generation  

of functional test sequences, and an extension of this framework with the concept of a validity checker 

module (VCM). This (VCM) allows the specification of constraints with regard to the generated 

sequences. They applied the VCM to express typical constraints that exist when SBST is adopted  

for in-field test. The in-field test is a SBST test methodology, where restrictive constraints are imposed, 

e.g. the memory are available for the test program code and data may be limited (Bernardi 2012), 

some input signals may hardly be controllable (e.g. reset), and only the final content of the memory 

 can be observed. To face of the above, the generation of the applicable in-field test program  

is significantly more complex than for end-of-manufacturing test. Developed hereby solution 

(Wegrzyn 2009), (Wegrzyn 2014) faces similar problems as limited data, especially in case of 32-bit 

microcontrollers, and phenomenon of excessively long time of exhaustive test.  

Their study case (Riefert 2016) is a microprocessor without interlocked pipeline stages (MIPS)-like 

microprocessor. This method is able not only to generate a test program for mid-sized pipelined 

processors with high fault coverage, but this method introduces several optimizations which simplify 

the complexity of calculations and improve the fault coverage. This is an analogy to my solution.  
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I introduced bijective property for improvement of  fault coverage (Wegrzyn 2009) and several 

optimizations at choice of test set in order to reduce memory resources, and shorten time of testing.  

A major advantage of this method (Riefert 2016) lies in the fact that it is also able to identify faults, 

which cannot be tested, when constraints are introduced.  

A slightly different testing methodology, which I developed, identifies and lists faults which  

are untestable due to i.e. a hardware redundancy or detection of them is easy available, but can take 

excessive long time, and the importance for the functional test is insignificant. Other task of my method 

is evaluation of my test program. This program should detect almost all faults. If some test program 

cannot detect some number of detectable faults – this is its imperfection. On the other hand,  

if a fault does not manifest itself during normal processor operation – this is its positive feature.  

Such a list of untestable faults is helpful for analyzing of imperfections of a test program.  

This is dedicated primarily to evaluate developed by me testing program. In this work (Riefert 2016), 

they shortened the runtime of the functional test generation algorithm by extracting and reusing 

knowledge collected during the test generation process and by implementing a heuristic  

for the reduction of aborts between testing. Developed by Riefert (Riefert 2016) methodology consists 

of steps of a fault sensitization: Structural Testability Check, Functional Testability Check, Test 

Sequence Generation, Partitioned Test Sequence Generation. Processing steps for fault sensitization are 

presented in  Figure 3.2.9.  

 

 

Figure 3.2.9: Processing steps for a fault sensitization 

 

Testability of faults is checked and improved before execution of finally refined  test, and two 

formal techniques as BMC (Bounded Model Checking) with Craig interpolation to this target 

 are elaborated in (Riefert 2016). In this paper, the solver Craig Interpolation Prover (CIP) described  

in reference (Kupferschmid 2011) is applied. Craig interpolants make possible exceeding approximate 

the reachable system states within each step.  
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The authors demonstrated, that Interpolation-based approaches can be very effective for targeting 

hard-to-detect faults and identifying untestable faults. Initially the ATPG framework starts with a fault 

list which contains all possible faults. Then all structurally equivalent faults are then removed.  

The removed faults from the fault list are processed one by one. If a Test Sequence (TS) is generated  

for a certain fault, all undetected before faults, which are detected by this TS, are removed  

from the fault list. This approach is analogous to the optimization methods which I developed.  

The generation of a TS for a fault corresponds to elaborating an assembler code sequence, 

which tests this fault.  Here certain similarities to my approach can be found. I looked for some code 

snipped to detect some particular faults, and I utilized outcome results as a new inputs.  

Mentioned before heuristic is aimed at proper selection of flip-flops. The proper selection 

of appropriate flip-flops is very important for the success of these ATPG steps. For this purpose, 

a heuristic is pre-computed for each flip-flop, which estimates the probability of propagation of fault 

effect latched in the flip-flop to a primary output. This heuristic is computed by choosing several 

random functional states.  

 

Evaluation of Proposed Optimizations: 

In order to assess the effectiveness of the cache, Riefert (Riefert 2016) executed an additional 

evaluation run with no constraints applied and without utilizing the propagation sequence cache. 

Thus, the application of the propagation sequence cache  improved the TS generation runtime by 28%. 

This demonstrates that the knowledge gained from already generated TSs can be automatically 

extracted and used beneficially for the further ATPG process.  

Methodology developed by Tai-Hua (Tai-Hua 2011) is dedicated to software-based self-testing 

(SBST) of pipeline processor cores as miniMIPS and ARMv4. Instructions of processor are located 

in the main memory, thus the test process is accelerated and the observation of the execution results 

is available directly through the processor's local bus.    

A fault simulation model is developed by the author to emulate the macro observation method.  

This model extends the mask circuit concept in such a way, that the hardware response signals affect 

correctness of the store operation. The fault coverage is measured on basis the results written  

in memory. 

The developed test program consists of a deterministic test code, composed as a multiple-level 

abstraction-based methodology. Supplementary role plays here a random program based on a basic-

block development method. I applied a supplementary random program in certain phase of my 
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experiments too. The deterministic test program explores the diverse design information of processor 

architecture, RTL, and gate-level for different types of processor components. Hence, the testing 

program applies the most useful information of a certain level to the specified parts of the processor 

core. Multiple-Level Abstraction-based (SBST) methodology is depicted in Figure 3.2.10 (Chen 2007). 

 

 

Figure 3.2.10: Multiple-Level Abstraction-based (SBST) methodology 

 

Unlike to the construction of my blocks, each basic block contains every type of the instructions, 

except interrupt generating and exception instructions. Instructions for results observation are also 

included in every basic block. Processor modes are tested at usage of return block which triggers  

the testing on the access control of the shadow registers in various processor modes, including those  

for status registers. The circuitry for processor mode switching is activated by return block, interrupts 

and exception generating instructions. The switching mode is a critical function in modern operating 

systems. To support interrupt testing, here specific undefined instructions so called illegal instructions 

are applied in the processor ISA to trigger interrupt events through the test shell. The test shell  

is implemented usually as part of a common bus wrapper and thus introduces very small delay 

 for memory access time. 

To test processor interrupt mechanisms, author (Tai-Hua 2011) defined interrupt-request 

instructions through the undefined instructions of the processor (reserved op-codes). In this way,  

the processor ISA isn't changed. Usually when a random program is executed, the instruction fetch 

and data access addresses are unpredictable. This leads to fetch unknown instructions and access 

unknown data. Therefore, a simple hardware device called a test shell was elaborated and placed 

between the processor core and system bus as illustrated in Figure 3.2.11: 
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Figure 3.2.11: Test shell to sequential execution of random program 

 

 

 This device forces sequential execution of random programs. During my researches, an effort  

was focused on detailed analysis of interactions between hardware and test program instead of random 

testing and implementation of additional dedicated to random testing hardware. I achieved similar 

efficiency of fault coverage as Thai Hua. The choice of method may depend on a dedicated platform: 

FPGA, embedded or ASIC INTEL etc. 

Authors (Tai-Hua 2011) used ModelSim as I did for logic simulation, Design Analyzer   

for synthesis, and Turbo Scan  based on the stuck-at fault model for fault simulation in order to achieve 

experimental results.  The model for research was ARMv4 ISA pipelined processor core implemented 

by authors and the miniMIPS processor.  
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4. Fault Injection 

Fault Injection (FI) techniques are applied for effective evaluation and validation of test methods.  

Fault injection techniques are divided into simulation based and experimental. Both of them can be 

hardware-based or software-implemented (Civera 2001), (Sonza 2006).  

Software-implemented techniques consist in fault injection by modifying the code executed  

by an application implemented on FPGA. I acted in this way in case of MicroBlaze. Other techniques 

consist in fault injection by modifying the HDL description of a circuit. I have designed and 

implemented such experiment in case of PicoBlaze. These techniques allow evaluating complex 

systems. Some of the solutions use debugging exception mechanisms to trigger and inject faults, others 

use for example the interrupts of microprocessors or Code Emulated Upset (CEU).  

Hardware-based techniques utilize a VHDL models implemented in FPGA architecture.  

These most often used approaches are based on inserting faults in the high-level VHDL model  

of the circuit and then analysing the results produced by the faulty model. For example work 

(Alderighi 2003 A) presents a fault injection approach for SRAM-based FPGAs. The fault injection is 

performed by modifying the configuration bit stream while this is loaded into the FPGA’s 

configuration memory, without using tools as Jbits. The configuration bit stream is modified while it is 

being loaded into the DUT (Device Under Test). The fault injection relies on flipping the logical value  

of the configuration bit trough a byte wide ,,XOR” logic gate. It is controlled by a Fault Injection 

Register. 

The approach (Alderighi 2003 A) doesn’t use a standard synthesis tools, commercial software etc. 

I am taking a step forward, I inject faults in structural level of  VHDL processor  description (Wegrzyn 

2009). When available is high-level VHDL model, it is easy to translate it into structural level by usage 

of Xilinx tools. Whereas I avoid not recommended by among all M. Sonza Reorda modification  

of the configuration bit stream. 
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The solution (Alderighi 2003 A) is different from my method because the latter utilizes FPGA 

hardware; however experience, which has been gathered in this work, may be helpful for further 

development  for other devices.  

Moreover the solution (Alderighi 2003 A) focuses on the bit-flop fault model what corresponds  

the modification of the content of a memory element during the execution. The faults are located  

in the programmable logic and embedded microprocessor.  

Other solutions (Alderighi 2003 B) of Fault Injection applied to Xilinx SRAM-based FPGAs, 

doesn’t utilize commercial tools as Jbit too. The faults can be inserted directly into the configuration bit 

stream downloaded into the device. Precisely, faults are injected only into configuration of memory 

cells and user registers. These solutions allow a more realistic study of device behaviors and take less 

time. That’s the advantage of them. Usage of Jbits is limited because not every FPGA resource can be 

directly altered in this way for example Programmable Interconnection Points. Moreover if we haven’t 

the Jbit tool, we should not try to modify a bit stream without knowledge about which slice of bits is 

responsible for. Otherwise we can damage an FPGA chip.  

Hardware based techniques speed up significantly the fault injection process and they may exploit 

modern FPGA architecture to emulate system composed of thousand gates for example in the case  

of embedded processor cores.  The drawbacks of the technique are: very long time of simulation in case 

of complex architectures and the hardware overhead in order to reach the targets of fault injection.  

Simulation-based techniques consist in simulating the Device Under Test (DUT) and injecting 

faults in a simulated model. The faults are injected by modifying the logical values during  

the simulation. A specific simulators to inject faults are known from bibliography. Many others 

methods consist in simulating a model described in a HDL language by using  commercial simulators 

too. A possible solution for my study case is PicoBlaze (Wegrzyn 2009), (Wegrzyn 2014 A). 

Simulation-based techniques allow early and detailed analysis of designed system and can be applied 

when a prototype is not available. Often instead prototype, merely IP core with functionality  

of the prototype is available. These techniques make possible early and detailed analysis of practically 

any possible fault in a designed system.  

Experimental techniques are useful, when a prototype of the system is available. In situation, when 

a prototype is not available i.e. when Intellectual Property (IP) is protected, simulation based 

techniques are utilized. Intermediate solutions are often used in practice, because they collect benefits  

of experimental and simulation based solution. The FPGA technology can be exploited to perform 

Fault Injection experiments. The Fault Injection process is performed during reprogramming  
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of FPGA.FPGA-based Fault Injection techniques are often more convenient than until now known 

classical hardware-based, because they may allow the injection of a wider set of faults. The technique 

opens up possibility of injection before specification of faults inside the circuit. There exist solutions, 

which do not require FPGA reconfiguration for each fault experiment, so they are significantly time-

efficient (Civera 2001), (Hayes 2007). Such solutions perform additionally good observability. 

Practical FI solutions (Leveugle 2004) are based on the injection of faults in behavioral 

descriptions of blocks. This high level description is usually done in VHDL or Verilog languages.  

The fault injection can be executed by means of simulation or emulation and the resulting traces are 

used for classification of the faults with to pay respect to their impact on the behavior.  

All information required for the fault injection is provided during the campaign of definition  

by delivery. Two different approaches to a problem of modification the initial description of the circuit 

are known from bibliography. The first way consists in insertion between the existing blocks,  

an additional block which can corrupt signals in order to emulate some kinds of faults. These signal 

corruption blocks are called saboteurs in bibliography. This method is easy to implement and requires 

only modifications of some interconnections in the initial description. Unfortunately, saboteurs can 

inject faults exclusively on these interconnections and it is almost impossible to inject higher-level 

(behavioral) errors or to modify signals within the initial blocks that is drawback of this method. 

Second way consists in direct modification of a signal inside the block and block function. It is more 

approximate to and more powerful, but it is much more difficult to implement. Its modified description 

is called mutant (Leveugle 2004).   

According to similar principles as above, circuit is transformed usually to easily modify the value  

in elements of the circuit memory. The method presented in (Civera 2001) is convenient to trigger  

the occurrence of faults at the time of injection and to observe  the faulty behaviour of the circuit.  

The circuit of more developed architecture is equipped with a Mask Chain register, added  

to the original circuit (see Figure 4.3.1). It stores the binary information about, which flip-flops should 

be affected by the fault, and which additional logic should be used to  perform the Fault Injection.  

The signal, inject controls the Fault Injection. The value of this signal is set by the Fault Injection 

Master to force the selected bit-flops. 

 



57 
 

              
 

Figure 4.3.1:   Instrumented circuit          Figure 4.3.2:  Instrumented flip flop 

 
 
There are following additional modules added to the circuit:  

 
 Mask Chain: the value of each bit in FFs is determined by a Mask Chain, which is a parallel - 

and serial-load register. The signals load and mode control its operations. 

 
 M is the combinational logical part utilized to complement the output of the Combinational 

Circuitry that is loaded into the FFs module. The contents of the Mask  

            Chain module and the inject signal determines the behavior of M.  

 

Detailed description of this in what manner each flip flop in the original circuit is modified, is 

presented in Figure 4.3.2.      

 

There are implemented two systems with and without faults on a FPGA board. The FPGA 

board is driven by a host computer. The proposed in (Civera 2001) approach utilizes a FPGA board 

that emulates the gate-level system with and without faults. The FPGA board is driven by a host 

computer. Other modules composing the Fault Injection system are also commanded by the host 

computer. The Fault Injection environment is located on the host computer. Fault Injection 

environment consists usually of such modules as:  

 

 Fault List Manager which analyses the system and generates  the list of faults to be injected. 

 Fault Injection Manager which manages the selection of a new fault, its injection in the system  

and results observation.  
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 Result Analyzer, which analyses the data obtained from the experiment, defines categories  

        of faults according to their effect and produces statistical information.  

 

In order to determine the behaviour of the circuit when a fault appears, the FPGA board emulates 

an instrumented version of the circuit, which allows both the injection of each fault and the observation 

of the corresponding faulty behaviour. The fault injection environment is described more in details  

in  Figure 4.3.3. 

 
 

Figure 4.3.3:  Fault Injection environment architecture 

 

The fault injection manager consists of the following parts: 

 Circuit instrumenter; generates certain version of the circuit description, which is downloaded  

      on the FPGA board for performing Fault Injection. The circut instrumenter is realized  

      by the author (Wegrzyn 2009), a little different as in (Civera 2001), by preparation  

      of   PicoBlazeVHDL code by the perl script for simulator. 

 

Fault Injection Master has more tasks:  

 Downloading to the FPGA board the instrumented description of circuit (Civera 2001).  

This is realized in (Wegrzyn 2009) by loading the fault free version of PicoBlaze VHDL code 

by  the perl script to simulator.  
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 setting up the environment for the Fault Injection process (Civera 2001). At (Wegrzyn 2009)  

a CADENCE NC VHDL tool commanded by a perl script is setup.  

 repeated access to the fault list, selecting a fault list, selecting a fault and sending  

to the FPGA  board of the information for its injection in (Civera 2001). At (Wegrzyn 2009) 

Perl script injects faults by changing a parameter in VHDL description. Faults are selected one 

by one. 

 launching of circuit emulation, by providing the input stimuli and the triggering signal  

for the  injection of a fault, retrieving from the board the information about the behaviour  

of the faulty system in (Civera 2001).  

 

At (Wegrzyn 2009) this is controlled by the pearl script. The input stimuli are provided together 

with test program, and placed in dedicated PicoBlaze ROM memory. Simulator generates output result 

file. Methodology developed by the author (Wegrzyn 2009) can be partitioned into the same three 

steps as is proposed by (Civera 2001). However the main difference is that my method is exclusively 

simulation based in case of PicoBlaze. The simulation based method was faster than the solution where 

PicoBlaze was implemented in FPGA board and Fault Injection Manager placed on host PC. 

Research equipment, I had in Jozef Stefan Research Institute at this time, limited significantly speed  

of communication between FPGA board and PC. Initially I led such  experiment with a processor 

implemented in FPGA, but it was very time-consuming due to reprogramming FPGA board, every time 

with different, modified by a fault configuration, and communication speed. My intention was 

to develop exhaustive test, where complete set of test vectors was transferred to PC. Then all outcomes 

were transferred back to the PC and elaborated there. Time of sending data through serial port, and 

receiving results through parallel port was significant too. I have written a C program for Windows  

to handle the parallel PC port for this purpose. Then for another experiment, I prepared a file with list  

of faults. My Fault Injected Manager is implemented as a pearl script and Result Analyser consist  

of script programs written in C according to principles described in chapter 7. 

The System on Programmable Chip (SoPCs) include processors, memories and programmable logic 

that allow catching multiple application requirements such as high performance and reconfigurability. 

The approach described in the paper (Alderighi 2003 B) exploits the programmable logic in the SoPCs 

to implement a fault-injection module, so called Fault Injection Hardware Unit (FIHU). The unit makes 

possible fault injection in the different components of a SoPC and the observation of their effects. 

Whereas in case of my solution, HDL description of  microcontroller core is placed inside only one 



60 
 

file, and every its block is described in the same way. Thus, to provide fault injection to any component 

of microcontroller core doesn't constitute a problem. The pearl script does not need to distinguish 

between block of the core. 

Authors (Alderighi 2003 B) chose the Select Map configuration mode of Virtex FPGA because  

the Select MAP interface can be easily driven by a processor or another FPGA that manages  

the configuration and read back dedicated pins. 

 There is a built-in finite state machine which handles device configuration. The cyclic redundancy 

code (CRC) value is checked against an internally calculated CRC value. When the CRC error has 

occurred the FPGA becomes inactive. In the opposite case the FPGA becomes active and operates 

with the loaded design. A functional diagram of the FPGA control mechanism is depictured in Figure 

4.3.4. 

The internal configuration memory is divided into a number of frames. So, the portion of the bit 

stream which is loaded into configuration memory consists of data frames. The remaining part  

of the bit stream contains information that drives the correct operation of the built-in finite state 

machine (FSM). The number and size of frames depends on device size. After that, when internal 

configuration registers were accessed and loaded by the common configuration bus, each phase  

in this flow is accomplished. Writing a register occurs in general in two steps: 

 

 first is a 32 bit command header that constitutes a sort of instruction to be interpreted  

         by the  built-in FSM,  

 second is the actual datum to be loaded into the addressed register. 
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Figure 4.3.4:  Configuration control mechanism 
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The Fault Injection System overview is depictured in Figure 4.3.5. And the realization of the Fault 

Injection Tool is presented on Figure 4.3.6.  

 

 
 

Figure 4.3.5:  System overview 

 
The operation of the whole fault injection system is controlled by the configuration control logic 

(CONF CL). At first the non-faulty bit stream is loaded into the Configuration Memory. The bit-stream 

is modified when loading into the DUT. For modification of the bit-stream one byte wide XOR is 

utilized. It is realized by simple flipping of the logical value. The operation is controlled by a Fault 

Injection Register (FIREG). The CONF CL increments the ADD GENERATOR counter, which 

addresses both configuration memory and mask memory. I had lack of knowledge about configuration 

bit-stream structure. However I utilize similar technique in case of MicroBlaze assembler program, 

instead of modification of the configuration bit-stream. I use XOR mask between assembler 

instructions. The technique proposed by myself is safe, because cannot damage FPGA in any way, and 

can be applied alternatively instead of the modification of bit-stream. This technique is described  

in chapters 5.2 and 6.3.1. 
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Figure 4.3.6:  Fault Injection tool 
 

 In order to make it possible the faulty bit stream to be loaded and to prevent FPGA from signalling 

a CRC error, the actual value of the CRC is recalculate. The new value CRC is computed by the CRC 

logic block (CRC CL) and actual data for CRC generator are arranged. 

The approach focus on SEU-like faults affecting the configuration control mechanism of FPGA and 

permanent stuck-at faults. 
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5. Proposed Solution: Sensitive-Path Approach 

5.1. Basic principle 

The developed experiments are targeted at maximal fault coverage, achieved by the developed test 

program at its as compact as possible architecture. The idea (Wegrzyn 2014 A) is to use appropriate 

microprocessor simulator which accepts its specification in HDL language, correlates it with  

the targeted FPGA, performs simulations with provided programs (in assembler) and allows analyzing 

the behavior of the tested application (e.g. program results) in this environment. These assumptions 

were performed by two simulators: Cadence NC VHDL and Mentor Graphics ModelSim. Fault 

injection is performed at microprocessor HDL structural description level, which reflects FPGA 

implementation. 

In the proposed approach, the goal is to generate a compact test sequence that detects permanent 

SEU-induced faults of embedded processor cores in SRAM-based FPGAs (Wegrzyn 2009).  

As described in (Safi 2003), the functional model of such faults differs considerably 

from the conventional stuck-at fault model due to the fact that SEU-induced faults affect logic elements 

implemented by the look-up tables, in this way that the logic function is arbitrarily changed. While  

the existing fault simulators do not cover such a functional fault model, I follow the implicit strategy  

of test adequacy and statistical testing (Zhou 2006), (Sosnowski 2005). I generate a test sequence that 

allows arbitrary situations that might occur in practice and consequently detects faults that only appear 

in a particular sequence of events. This is accomplished by using a test sequence that explores  

the functionality of each individual instruction and is composed in such a way that it forms  

a sensitive path. This path can be executed more than once, each time with a different input pattern 

(Wegrzyn 2007), (Wegrzyn 2009). 

Although I have borrow the notion of a sensitive path from the automatic test-pattern-generation 

(ATPG) techniques (Doumar 1999), (Renovell 2001) in my case it has a slightly different meaning 
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(Wegrzyn 2009). The path sensitization in conventional ATPG techniques for automatic test 

generation involves the generation of the path that is sensitive to the presence of a stuck-at fault and  

the justification of the values along the path by propagating signals back to the primary inputs. The key 

achievement of this work is proposed bijective testing procedure (further described in chapter 5.3) 

for which the fault detection is performed at the instruction level by a compact test program in which 

individual processor instructions are organized in a such sequence that the destination register operand  

of i-th instruction  represents the source register operand of (i+1)-th instruction. In the test sequence, 

each processor instruction participates at least once (in order e.g. to test the instruction decoder  

of the processor core). The principle of instruction sequencing is presented in Figure 5.1. Intuitively  

I assume that the test sequence represents a sensitive path if the data flow through it is sensitive  

to changes of the input pattern. I pursue the following two goals: 

 

 The faults occurring during the execution of individual instructions in the test sequence  

             should manifest themselves in the final result, 

 In order to increase fault coverage, the data-sensitive path should provide a way of randomizing 

the instruction operands of the test sequence, resulting in increased  processor activity and 

consequently in increased fault coverage. 

 

 

 
 

Figure 5.1: The principle of instruction sequencing (Wegrzyn 2007) 

 

A data-sensitive path can be achieved by the following two basic principles of design-for 

testability: controllability and observability. Controllability is the ability to set the values of the inputs 

of any system component from the primary inputs of the system. Observability is the ability to observe 
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the values of the outputs of any system component at the primary outputs of the system. An instruction 

of a test sequence can be regarded as a system component. The test sequence is composed of individual 

instructions (i.e. system components), which act upon the data stored in registers and memory cells.  

An instruction processes the input data (i.e. the argument) and generates a result that represents 

the input data for the next instruction in the test sequence. The input data of the first instruction  

of the test sequence represents the system’s primary inputs, while the results of the test sequence 

system are the primary outputs. The test sequence is composed in an incremental way: each time a new 

instruction is added to the test sequence and the resulting test block is checked for controllability and 

observability (Wegrzyn 2009). 

The requirement that the test sequence preserves a sensitive data path between the input data and 

the result is a prerequisite for achieving high fault coverage. On the other hand, some faults may still 

escape if the input data does not lead to the occurrence of an event that would manifest itself in a result 

that is different from the expected reference obtained on a fault-free system. 

In order to detect these faults I can re-run the test sequence with different primary input data, 

(Wegrzyn 2007).  

5.2.  Initial approaches 

Initially for my case study, the MicroBlaze microprocessor was chosen, and the approach was 

implemented for a functional test of this popular soft-processor core supported in the Xilinx  series  

of FPGAs. First experiments were led using a Xilinx FPGA board with downloaded MicroBlaze 

bit-stream. The assembler test program and a loop to input patterns generation were implemented on 

the host computer as described detailed in chapter 7.1. The initial idea was to create of a data sensitive 

path by invention of such an assembler program, which preserves all data. In other words, neither input 

data on any bit nor status flags are lost. It was realized by bonding all sub-blocks and program 

instructions by ,,XOR” instruction. As an important measure of the test program quality,  

I proposed the principle according to which the program should generate an unique result for each input 

test vector. In such a case, I assume that all sensitivity paths should be activated and any faults should 

not be masked. However, both the designing and evaluation of a test program meeting the above 

principle proved to be difficult in practice. Generation, transmitting to FPGA, and receiving all 232 

of  32-bit vectors turned out to be extremely time consuming due to communication between FPGA 
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board and the host computer. Physical induction of errors resulting from exposure of the FPGA system 

to radiation turned out to be impossible due to the lack of appropriate equipment at the department  

of the research institute Jozef Stefan in Ljubljana, Slovenia. Simulation based fault injection turned out 

hard to be realized too, because the MicroBlaze is available as IP core, and HDL description is not 

available. These problems are described with details in chapter 7.5 a describing MicroBlaze. 

Difficulties described here disappeared when I took PicoBlaze microcontroller instead MicroBlaze. 

That’s the reason I developed end evaluated the  test program for PicoBlaze first. The test program  

for MicroBlaze can be easily implemented according to the proven rules, which worked well  

in the case of PicoBlaze. Some MicroBlaze test program examples are presented in chapter 7.2, 7.5 and 

7.6, (about MicroBlaze). Development of PicoBlaze test program is detailed described in chapters 5.3, 

5.4, 6.3. 

 

5.3. Design, researches and evolutions of PicoBlaze test program 

The first program for testing PicoBlaze was developed applying rules described in chapter 5.2. 

Hence, all program instructions and  sub-blocks  were bonded by ,,XOR” instruction. The bijective 

property should be ensured. Assurance of bijective property of the whole program composed  

in this  way turned out to be a difficult task. There were too many overlapping sub-problems, related  

to all the status flags, results with fixed values reminded still on the some bits, branch instructions 

execution etc. Thus, such the solution relying on application merely ,,XOR” instructions as data 

connectors turned out not very effective, and gave a reason to further investigations. Results of detect-

ability of this program were compared to bibliography (Corno 2002), (Bernardi 2004). Moreover  

a few additional experiments were led in order to compare the number of detected faults  

with a specific applications programs, i.e. with my programs which generate Fibonacci sequence 

(Wegrzyn 2009), matrix multiplication applications (Wegrzyn 2014 A), etc. 

The Fibonacci sequence is the series of numbers:  0, 1, 1, 2, 3, 5, 8, 13, 21, 34,…, where the next 

number is calculated by adding up the two preceding numbers. I wrote two different programs  

to calculate Fibonacci sequence in PicoBlaze assembler. The first one using an iterative method, and 

the second  one using recursion.  



68 
 

These matrix multiplication applications check FPGA fault susceptibility in practical case, when  

the processor resources can be used partially or in a limited way. Thanks to these applications I can 

encounter natural fault masking capability of the application as well as I introduce some additional 

fault tolerance mechanisms at the software level. For this purpose I have developed three matrix 

multiplication programs (MM1-MM3). The basic program MM1 comprises 133 instructions, only 16 

different instructions from the PicoBlaze instruction set are used. Program MM2 is an enhanced 

version of MM1 by adding control sums mechanism. MM2 program comprises 226 assembler 

instructions, using 17 different assembler instructions from the processor list. Program MM3 is 

a version of MM2 supplemented by exception handling. It comprises 386 instructions, using 21 

different assembler instructions  from the processor list. 

 

5.3.1. The idea of facilitating: the compact test program composed of bijective blocks 

The controllability and observability principle, proposed in earlier publications utilized  

in industrial testing, is only a vague concept that leads to different implementations of the test sequence 

with a relatively diverse fault coverage. Instead of introducing some kind of metrics as a guideline  

to efficient solutions, I impose a stricter rule on the test-sequence generation by requiring that  

there is a one-to-one, i.e. bijective, correspondence between the input test pattern and the result.  

 

5.3.2. Bijective function 

Definition: In mathematics (Wikipedia 2020 A), a bijection, bijective function, or one-to-one 

correspondence is a function between the elements of two sets: X, Y, where each element of  set X is 

paired with exactly one element of set Y, and each element of set Y is paired with exactly one element 

of set X. There are no unpaired elements. In mathematical terms, a bijective function f: X → Y is a one-

to-one and onto (surjective) mapping of a set X to a set Y. Figure 5.3.2 presents bijective function. 
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Figure 5.3.2: Bijection 

 

If I apply this rule at the level of sub-sequences of the instruction sequence I can ensure high 

controllability and observability within the whole instruction sequence, which is a prerequisite  

for achieving high fault coverage. 

 

5.3.3.  Refinements to achieve  full bijectivity 

For some instructions the output data may not be completely sensitive to every change of input data 

and hence the property of a sensitive data path is not preserved. For example, some part of the register 

holding the result of the instruction operation may be cleared or set to all 1's. In such a case additional 

data manipulations need to be performed (i.e. the input data is stored at another location and logically 

combined with the result of the executed instruction). Summarizing, bijectivity is closely related  

to the full flow of  information through the test program. 

 

The flow of information can be disturbed by: 

 incompetent composition of a test program, which does not provide full flow of information, 

 masking the flow of information related to problems that are not completely solved 

due to the overlapping of flags generated by different instructions, operation of different 

instructions on the same registers and data – to be solved by a programmer, 

 nature of SHIFT instructions, (by execution merely ,,SHIFTs” instructions, not full range  

of numbers is generated. Unless we use special solutions as LFSR), 
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 masking the flow of information related to processor implemented in FPGA hardware  

      construction as delays (Abramovici 2002), hardware redundancies (Renovell 2000 B),  

      simplifying the construction of individual sub-blocks of the processor. 

 

For illustration, a part of the test sequence organized in a data-sensitive path is shown  

in Figure 5.3.3. The destination register operand of the instruction represents the source register 

operand of the next instruction in the test sequence.  

 

 

Figure 5.3.3: My Solution-Sensitive-Path Approach.  A part of the test sequence 

 

The execution of some instructions affects the status flags (like, for example, the ZERO flag, 

CARRY, etc.). In order to detect possible faults in the status information, the contents of the status 

register are included in the result of the currently executed instruction. This is usually achieved 
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by ,,XOR-ing” the contents of the status register and the resulting output data. However, more complex  

operations in assembler are applied as described further in this chapter, in the case when alone ,,XOR-

ing” does not work. With such refinements the instruction and additional data manipulation code 

represent a bijective block within the test sequence. The basic architecture of a bijective block 

 is presented in Figure 5.3.4. Bijective property opens up possibilities of further optimizations such as 

cyclic usage of output results as indicated by the dashed line in Figure 5.3.4. 

 

 

 

Figure 5.3.4: Architecture of bijective block 

 

Test sequence is composed of bijective blocks. By definition any program composed from 

bijective blocks is bijective. A bijective block can be a single instruction if it exhibits bijective 

property. If not, some additional data manipulation is required to obtain a bijective block. I have found 

several ways to achieve bijective property of  the PicoBlaze assembler instructions. These ways are:  

 

1. IDENTITY,  

2. Continuous ADDITION or SUBTRACTION of constant value e.g. ,,1'', 

3. Flag register (e.g. carry flags) generation or recovery (on basis of actual data), 

4. Negation (e.g. by ,,XOR-ing” data), 

5. Bits permuting (e.g. ROTATE  data), 

6. Look Up Table (LUT) method (not used hereby), 

7. LFSR.   
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An identity function in mathematics is also called an identity relation, identity map or identity 

transformation. This is a function that always returns the same value that was used as its argument. 

That is, for f  being identity the equality f(x) = x holds for all x. 

Several instruction as INPUT, OUTPUT, STORE, FETCH , TEST, COMPARE, satisfy the identity 

function by themselves without interference from the programmer. Additionally, it is possible 

to transform such an instructions as: AND, OR to satisfy identity  relation. 

Differently, in case of such instructions as ADD, SUB, I can apply such a simply method  

by adding / subtracting ,,1’’ (or in general case a constant value)  to register (ADD / SUB). 

Additionally for instructions as ADDCY (ADD with CARRY), SUBCY (SUB with CARRY), I need to 

generate input CARRY by preceding instruction. Such SHIFT instructions as SLA, SRA (shift 

left/right arithmetic) capture input CARRY too, hence its previous generation is necessary.   

ARITHMETICAL instructions as: ADD, ADDCY, SUB, SUBCY and all the SHIFT instructions 

set CARRY flag, and the need to recover of information contained in it appears. The XOR logic 

instruction constitutes mutually unambiguous transformation according to mathematical classification. 

This means multi-valued from its definition (bijective). In informatics XOR is often used for bitwise 

operation.  

The ROTATE instruction constitutes mutually unambiguous transformation. For every different 

input data, I have obtain different unique outcome. Operation of rotation does not lose data.  

All the details, how PicoBlaze RR (Rotation Right) and RL (Rotation Left) operate, are described  

in chapter 5.4 and PicoBlaze User Manual (attached CD).  

Permutation method is applied to testing some of ,,SHIFT” instructions. The method consist  

in rotations all bits, rotations of ,,CARRY” flags, I do not change the functionality of any instructions 

at the hardware level in reality. Such instructions as SHIFTs with ,,0” or ,,1” fill constantly on MSB or 

LSB position cannot be bijective alone. This problem can be solved by using additional instructions, 

which ensure continuous data flow through all bits of a given register. In this way an individual SHIFT 

together with these auxiliary instructions create a bijective block of instructions. The permutation 

method is applied in testing SR1, SR0, SL1, SL0, SRX, SLX (Shift register right/left, one fill, zero fill 

or sign extended) instructions, and detailed implementation of every block is described in chapter 5.4. 

The Look Up Table method is not used in case of PicoBlaze for reason of this processor resources. 

The LUT method makes possible the implementation of any logical function, in special case bijective.  

The LFSR (Linear Feedback Shift Register) method is an alternative solution that provides 

assurance of bijectivity for such instructions as all the SHIFTs, if the characteristic polynomial 
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of LFSR is irreducible (Hlawiczka 1997). In addition to bijectivity assurance, the LSFR method 

prevents  faults masking, and allows cyclic usage of test vectors (irreducible polynomial). The LFSR 

method brings significant improvement in test results (Wegrzyn 2014 B). Therefore, it is described  

in detail in chapter 6.3.  

Choice of method of bijectivity assurance and detailed description of each bijective block 

construction is presented in chapter 5.4.  

5.4. Composition of the bijective PicoBlaze test program 

The PicoBlaze instructions which preserve bijective property by themselves every time or it is easy 

to realize bijective function of input arguments (test vectors) using  them are: XOR, AND, OR, RR, 

RL, LOAD, STORE, COMPARE, TEST, FETCH, INPUT, OUTPUT, (JUMP, CALL)*.  

The PicoBlaze instructions which do not preserve bijective property by themselves are: ADD, 

ADDCY, SL0, SL1, SLA, SLX, SR0, SR1, SRA, SRX, SUB, SUBCY. 

This part of the dissertation classifies methods of bijectivity assurance, and describes in details how 

the bijective property is assured for every individual instruction. The operation of every instruction 

described in PicoBlaze user manual is available on attached  CD.  

 

The ,,XOR” instruction preserves bijective property every time by itself. To check correctness  

of XOR operation, it is enough to execute XOR once with all bits equal ,,0” and then ,,1’’, and do  

the same on two registers instead of the immediate values 0x00 and 0xFF. The test of this instruction 

can be implemented in the following way (see listing 5.4.1):  

 

XOR s7, FF; result of ,,XORing” s7 with 0xFF is placed in s7 
XOR s7, 00; 
LOAD s8, FF; 
XOR s7,  s8; result of ,,XORing” s7 with s8 is placed in s7 
LOAD s6, 00; 
XOR s7, s6; result of ,,XORing” s7 with s6 is placed in s7 
 

Listing 5.4.1: ,,XOR” instruction testing 

 Moreover the ,,XOR” instruction is tested more times indirectly, as auxiliary instruction inside 

blocks to other instruction testing or as mentioned before bonding instruction. 
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The ,,AND” instruction may be bijective if I multiply any register by other filled in only ,,1” or 

when I multiply any registers by immediate value 0xFF. Thus, I have transformed AND instruction  

to satisfy identity data relation (see Listing 5.4.2). In every other case I observe loss of information so 

non-bijective behaviour. Of course I test this instruction in this  way that it clears bits inside blocks  

to testing of other instructions too. So the instruction is fully tested both in direct and  indirect way.  

The test of the ,,AND” instruction may be as follows:  

 
LOAD   s6,  FF;  
AND     sD,  s6;  
AND     sD,  FF; 
 

Listing 5.4.2: ,,AND” instruction testing 

 

The ,,OR” instruction inversely, can be bijective if it is executed  upon register with value 0x00 or 

with the some register or a register which contains value 0x00. Thus, I have achieved here identity data 

relation in slightly different way. In other way, I could disturb bijectivity of them. OR instruction  

is tested indirectly in blocks to test other instruction. There it combines for instance information 

recovered from CARRY flag with content of given register. The OR test is realized as in Listing 5.4.3 

and in Figure 5.4.3.  

 

OR   sD, 00;     bitwise OR contents of SD register with literal 00  
OR   sD, sD;     bitwise OR contents of SD register with itself  
LOAD  s3, 00;     load literal 00 into S3 register   
OR   s3, sD;     bitwise OR contents of SD register with SD register 

 

Listing 5.4.3: ,,OR” instruction testing 
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Figure 5.4.3: ,,OR” instruction testing 

 

Such instructions as LOAD, STORE, FETCH, INPUT, OUTPUT are bijective (identity) 

by nature. If they work correctly, they cannot disturb bijective flow of data.  

 

The ,,LOAD” instruction preserves alone the bijective transformation on the basis of identity. 

First the content of initial register sD is saved in sA register and then the content of sA register is 

negated (complemented) by execution of ,,XOR” instruction. Finally I reload saved initial content from 

register sA to sD (see Listing 5.4.4). 

 
LOAD sA, sD; loading contents of sD register into sA register  
XOR sD, FF; obtaining opposite contents of sD register by XOR instruction                 
LOAD sD, sA; reload contents of  initial sD register.  
 

Listing 5.4.4: ,,LOAD” instruction testing 
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The ,,STORE” and ,,FETCH” instructions, alone preserve the bijective transformation on  

the basis of identity too. They can be tested together in one block. Firstly I had saved content  

of initial register sD to scratchpad RAM and then I complemented the content by execution of ,,XOR” 

instruction. Finally I have reload saved initial content from the scratchpad to sD (see Listing 5.4.5). 

 
STORE sD, 05;   store register SD to scratchpad RAM location  
XOR  sD, FF;   obtaining opposite contents of SD register by XOR instr.                                  
FETCH sD, 05;   read scratchpad RAM location 05 into register SD (restore  SD reg). 

 

Listing 5.4.5: ,,STORE, FETCH” instruction testing 

 

The above block is written merely for testing ,,STORE” and ,,FETCH” instructions. Testing entire 

memories (write/read from different addresses) is out of my scope. For memory testing, i.e. ,,march” 

algorithms are intended (Bushnell 2000).   

There is a different situation when we take into consideration instructions as ,,COMPARE” and 

,,TEST”. These instructions do not even have possibility of interference of bijective data flow, because 

they are designed exclusively to set flags, but not to modify data upon they work. It works obviously if 

these instructions  operate correctly, and the data remain identical.  

 

The ,,COMPARE” instruction performs an 8-bit subtraction of two operands but only affects  

the ZERO and CARRY flags. For instance the ,,JUMP” instruction  is sensitive to the flags, so I can 

check correctness of  ,,COMPARE” instruction behaviour by checking the flags (as in Listing 5.4.6). 

When zero flag is set, content of register is erased. It should be noticed, that the zero flag is set 

exclusively for one test vector equal 0x80. Faulty behaviour of the ,,COMPARE” instruction would 

manifest in wrong  results from output of processor.    

 
 COMPARE sD, 80; set ZERO flag to MSB of sD register 
JUMP   nz, lx;     jump if the ZERO flag is not set  

    AND   sD, 00; AND with ,,0” is executed when the ZERO flag is set  
Lx:   ADDCY   sD, 00; if  ZERO flag is set ,,1” and  CARRY flag is set ,,0” , trial    

                                          ;     combining probable carry with initial register     
 

Listing 5.4.6: ,,COMPARE” instruction testing 
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The ,,TEST” instruction performs bit testing via a bitwise logical ,,AND” operation between two 

operands. Unlike the ,,AND” instruction, only the ,,ZERO” and ,,CARRY” are affected; no registers 

are modified. Thus behaviour of the instruction may be checked by checking ZERO and CARRY flags. 

In the following example the ZERO flag can be set only for one test vector 0x80. In the case when 

TEST set the ZERO flag incorrectly, additional ADD instruction would be executed. It would manifest 

in wrong execution results. If the carry flag is set incorrectly, it would detect by ADDCY instruction 

and results of the program execution would be different as default (see Listing 5.4.7).     

 
     JUMP  tst;   test sX, kk 

zer:    ADD  sD, 01; 
     JUMP  8z; 

tst:    TEST  sD, 80; set ZERO flag to MSB of  SD register  
    JUMP  z,  zer; if  ZERO flag is set JUMP to zer label  
   ADDCY  sD, 00; combining probable carry with initial register 
 …………………………….. 

8z: (next block of program) 
 

Listing 5.4.7: ,,TEST” instruction testing 

 

Another situation is in the case of ,,JUMP” instructions. These are sensitive to flags or  

are unconditional.  These do not work upon data and cannot modify it directly. So I can’t even consider  

if they preserve bijective property or not. However if ,,JUMP” instructions work incorrectly, they can 

change data flow and one or more blocks of program could operate completely different as it was 

intended, and of course cause loss of bijectivity. So only faulty ,,JUMP” instruction operation can 

disturb bijective flow of determined test program.  

 

At the ,,ADD” instruction it is easy to ensure bijective property by continuous addition of ,,1s” 

 to a register (see Listing 5.4.8). When the addition is correct and the results less or equal to 255, 

bijectivity is preserved automatically. When CARRY occurs I handle this situation programmatically 

and combine the CARRY bit into the outcome. In order to test ,,ADD” instruction both general-

purpose register Sx result, and ZERO and CARRY flags should be tested. For this purpose, I propose  

the following code:  
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15z:    JUMP  addins;   jump to beginning add test 
lbc:   ADD  s7, 01;  s7->s7 

   JUMP 16z;    jump to the label 16z (Next instruction test) 
addins:  ADD  s7,  ff ;  adding number 0xff to the content of register s7 

           JUMP z,  adcy; checking if ZERO is set correctly 
           JUMP nc, lbc;  jump to the label lbc, and checking if CARRY is set correctly 

adcy:      ADDCY   s7, 00;  adding number 0x00 and carry bit to content of register s7 
16z:         Next_instruction_test: …. 

 

Listing 5.4.8: ,,ADD” instruction testing 

 

I resigned from application with two registers arguments. This could lead to 216 (65 536) input 

vectors instead of 256 and obviously to excessively long time of simulation. Any way, if the previous 

block is bijective, all possible numbers generated before appear. This allows me to get all possible 

results.  

Similar situation is regarding ,,ADDCY” (ADD with CARRY) instruction. The only difference 

 is that the CARRY flag should be set occasionally by the preceding instruction in order to check  

if ,,ADDCY” adds correctly the flag to its result of execution. In another case ,,ADDCY” – cannot be 

bijective by itself. To sum up, I have achieved bijectivity of ,,ADDCY” instruction by continuous 

addition of ,,1s” and by generating of input CARRY. 

 

Taking into consideration ,,SUB” instruction, I followed analogical as in case of ,,ADD”. 

I achieved the bijective property applying continuous subtraction of ,,1”. ,,SUB” can be bijective 

until I do not exceed the subtraction range. Then I have to handle such a situation by the dedicated 

subroutine in which I have to check if the CARRY flag was set correctly this time. I used  

the instruction ,,SUBCY” for this purpose which capture CARRY bit set by SUB. I proposed following 

code to SUB instruction testing (see Listing 5.4.9): 

 

           JUMP  subins;  SUB test 
bsc:          SUB  s7, 01; result of subtraction of s7 – 0x01 placed in register s7 

          JUMP  15z;   label at block to another instruction testing 
subins:   SUB  s7, F7; result of subtraction of s7 – 0xF7 placed in register s7 

          JUMP  nc, bsc; jump to the label bsc if no CARRY 
         SUBCY  s7, 00; capturing of CARRY flag at subtraction 

15z:        Next_instruction_test: …. 
 

Listing 5.4.9: ,,SUB” instruction testing 
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In the case of ,,SUBCY” (Subtract with CARRY) instruction there is an additional need to check 

 if a CARRY flag set by the preceding instruction was included in the calculation of the difference  

from subtraction. To generate the CARRY I utilized ,,COMPARE” instruction between a register  

with input data to the program block and constant value. The main principle is the same as for ,,SUB”; 

continuous subtraction of ,,1s”.  

 

Instructions ,,SRA” (Shift Right through All bits, including CARRY), ,,SLA” (Shift Left trough 

All bits, including CARRY) are not bijective by themselves. In order to assure bijectivity I need 

to generate the CARRY flag using for instance ,,TEST” instruction. Admittedly ,,SLA” generates 

CARRY flag at its execution, but then only later at next execution can  capture back the same CARRY  

generated by itself. But such a cycle is too long to assure bijectivity. There appears lack of information 

on MSB or LSB respectively if CARRY is not generated before. Thus I had to prepare CARRY flag 

before the first execution of ,,SRA” or ,,SLA”. In this way concurrently LSB, (MSB) is copied  

to CARRY and MSB, (LSB) is filled with earlier value from CARRY. Obviously I may check 

additionally if ,,SLA” instruction sets CARRY flag properly executing example code after dashed line 

(in Listing 5.4.10):  

 

LOAD sC, s0;                                       
TEST sC, 80; set carry flag to 7th bit of SC register (enough to assure bijectivity) 
SLA  sC;            shift left arithmetic sC register  
------------------------------------------------------------------------------- 
ADDCY sF, 00; restore MSB bit of  initial register  
OR   sC, sF; combining restored MSB bit with shifted 
AND  sF,  sC; value without loss of  information  
AND  sC,  FE; the information about MSB is preserved in SC register 
                                ; ( initial value can be restored ) 
 

Listing 5.4.10: ,,SLA” instruction testing 

 

,,RR” (Rotate Right), ,,RL” (Rotate Left) can be bijective themselves. These do not lose  

the information. Here appears only the need to check if they set CARRY flag correctly. So the flag  

is captured in the CARRY after execution of this instruction, and is combined with a value of shifted 

register. The flag has influence on final result too. I have examined ,,RR” instruction as follows (see 

Listings 5.4.11, 5.4.12):  
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LOAD  s9, 00; 
RR   sC;   set carry flag of SC register to LSB bit  
ADDCY s9, 00; store LSB of sC  register in s9 register  
XOR  sC, s9; combine restored LSB bit with shifted value without loss  
                                ; of information into sC register  
 

Listing 5.4.11: ,,RR” instruction testing 

 

and respectively RL:  
 
LOAD  s0, 00; 
RL   sF;   set carry flag of sF register to MSB bit  
ADDCY s0, 00;   store MSB of sF  register in s0 register 
RR   s0;   rotate bit 0 with information about CARRY to MSB position 
XOR  sF, s0; combine restored MSB bit with shifted value without loss  
              ;   of information into sF register  

 

Listing 5.4.12: ,,RL” instruction testing 

 

The next instructions ,,SR0” (Shift Right with ,,0” fill), ,,SR1” (Shift Right with ,,1” fill) which do 

not preserve themselves the bijective transformation due to the fact that MSB is affected by ,,0’’ or ,,1’’ 

respectively, regardless of input data. The instructions Shift  Right with ,,0” (SR0) or ,,1” fill (SR1) 

stores the LSB in CARRY, ,,0” or ,,1’’ is filled on the position of MSB and others bits are shifted  

by one position to the right. The CARRY is captured in sE register and then it is rotated as in earlier 

examples. I need erase ,,1” from MSB position after ,,SR1” is executed. It is realized by execution  

of AND instruction between sA register and immediately value 7F. Finally by replacing it with bit 0th 

full flow of information is guaranteed. Thus full  bijectivity is assured (see listing 5.4.13 and Figure 

5.4.13).  

 

LOAD  sE, 00;  
LOAD  sA, sF; 
SR1   sA;   shift register SA right, ,,1” fill on bit 7th (MSB)  position  
ADDCY sE, 00; restore LSB of initial register in SE register 
RR   sE;   rotate captured value  in SE  
AND  sA, 7F; mask of sA register   
OR   sA, sE; combining restored LSB bit with initial register 
 

Listing 5.4.13: ,,SR1” instruction testing 



81 
 

 

 

Figure 5.4.13: ,,SR1” instruction testing 

 

,,SL0” (Shift Left with ,,0” fill), ,,SL1” (Shift Left with ,,1” fill) instructions are not bijective 

for the similar reason as ,,SR0” and ,,SR1”, because LSB is affected by ,,0”, ,,1” respectively, 

independently of input data. I applied the LUT method to solve this problem too. ,,SL0”, ,,SL1” sends 

MSB to CARRY. After execution of ,,SL0” it is enough to capture CARRY by execution ADDCY 

upon the same register. In case of ,,SL1” I need catch CARRY to different register, erase ,,1” from  

the position of LSB (AND FE). Then to replace value on LSB by ,,OR”.  

 

Instruction ,,SLX” (Shift Left eXtend bit ,,0”) does not preserve alone bijective property, because  

on positions of bit 1th and bit 0th are constantly the same values (from bit 0th), and in this way 

information is lost. The method of XORing data proved to be sufficient in this case. MSB is sent out  

to CARRY flag. The carry flag is captured to s3 register. In order to implement a bijective 

transformation the value of carry flag captured to register s3 is combined with content of register sE 

by ,,XOR” instruction (see Listing 5.4.14):   
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SLX   sE;   shift register sE left. Bit 0th (LSB) is unaffected. MSB is sent to carry  
ADDCY s3, 00; restore MSB of initial register in S3 register 
XOR  sE, s3; combining restored MSB with initial register  
 

Listing 5.4.14: ,,SLX” instruction testing 

 

Following example presents testing of ,,SRX” (Shift Right, sign eXtend, Bit 7 is unaffected) 

instruction. Method based on XORing data to implement a bijective transformation is almost the same 

as this applied to ,,SLX”. The only difference is that the same values are constantly on the position  

of 7th and 6th. LSB is sent to CARRY. The CARRY is captured by executing next instruction 

,,ADDCY” and is located on LSB in s2 register. In order to move it to MSB location RR (Rotate Right) 

instruction is executed upon s2 register. Then CARRY is combined into data vector by executing XOR 

instruction (as in Listing 5.4.15):   

SRX         s0;  shift register S0 right. MSB is unaffected and extended on 6th bit    
                     ;   position. LSB is sent to carry 
ADDCY   s2,  00; restore LSB of initial register in s2 register  
RR           s2;   rotate right captured value in order to obtain LSB on MSB position 
XOR        s0,  s2; combining restored MSB with initial register 

Listing 5.4.15: ,,SRX” instruction testing 

 

5.4.1. Experimental results of bijective merely program 

Some comparisons of the fault coverage achieved by deterministic test programs with the fault 

coverage achieved by well-known programming algorithms were made in the bibliography (Corno 

2003). I have implemented some other programs that exploit the functionality of the processor core as: 

data sensitive path initial approach (Wegrzyn 2007 B), conventional implementation of Fibonacci 

series or its recursive version, the application specific programs (Wegrzyn 2009), three matrix 

multiplication applications (Wegrzyn 2014 A). Composition of the program written according  

to principle of data sensitive path (Wegrzyn 2007 B) in form of one big block of instructions turned 

out to be difficult. This program is not completely bijective. A large number of data sensitive paths 

could not be activated in this way, thus it achieved medium FC 70,2%. The Fibonacci recursion 

exploits additionally such resources of the processor as i.e. stack. The matrix multiplication 

applications employ significantly fewer assembler instructions, and achieved by them FC is clearly 

smaller. The researches results have proved, that the data-sensitive path and bijective property provide 
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a way of randomizing the instruction operands of the test sequence, resulting in increased processor 

activity and consequently in increased fault coverage. 

The results are given in Table 5.4.1. The achieved fault coverage is presented in two column pairs 

(Wegrzyn 2009). The first column pair refers to the fault coverage (FC) where only stuck-at faults 

were injected (see the chapter 8.3). The second column pair presents the complete fault coverage  

with both stuck-at faults and functional faults in the LUTs. For each pair, the left-hand column refers  

to all the simulated faults (i.e. 934 in the case of the stuck-at faults and 1804 in the case of the stuck-at 

faults and the SEU faults in the LUTs). The test sequence does not test some specific types  

of faults related to input/output operations (e.g. interrupt driven routines). If I neglect these faults,  

the fault coverage of the remaining faults (i.e. 883 in the case of the stuck-at faults and 1603  

in the case of the stuck-at faults and the functional faults in the LUTs) is given in the right-hand 

column. 

 

Table 5.4.1: My Solution-Sensitive-Path Approach:  Obtained Initial Fault Coverage 

test program FC (%) - Stuck- 

at  faults 

FC (%) - complete  

list 

934  

faults 

883 

faults 

1804 

faults 

1603 

faults 

Fibonacci 49.9 52.8 33.8  37.7 

Fibonacci (recursion) 56.0 59.2 43.3  48.4 

MM1 63.6 67.3 49.9 56.1 

MM2 64.4 68.1 51.2 57.6 

MM3 66.4 70.2 53.1 59.7 

random instruction order 62.7 66.4 46.8  52.3 

data sensitive path (not completely  
bijective) 

72.6 76.8 62.9  70.2 

data sensitive path + bijective sub- 
sequences 

88.1 93.2 76.6  85.6 

 

The fault coverage for the stuck-at faults is given only for a comparison with other reported 

solutions. The main interest is focused on the fault coverage of the complete list of the injected faults. 

The initially achieved fault coverage for the proposed approach was 76.6%. If I neglect the faults 

related to the input/output operations I get an 85.6% fault coverage. 
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6. Optimal reduction of number of test vectors 

One of the most important criterion of  every test program evaluation are Fault Coverage (FC) and 

time required to complete. The test time  has influence on costs of production. This time depends on  

both number of program instructions to be executed and number of applied test vectors. This chapter 

focuses on optimization of the number of test vectors with as low as possible influence on FC. Such 

approaches may be especially profitable in the case of testing 32 or 64-bit microprocessors as there is 

a huge number of input test vectors required for exhaustive testing of these microprocessors.  

For instance there is 232 possible input test vectors for a 32-bit microprocessor.  

Two goals are taken under consideration in this chapter. The superior objective is to find a minimal 

set of test vectors, which can achieve the maximal Fault Coverage (FCmax). This means, that 

developed optimization method should give the same FC as an exhaustive test. The second purpose is  

to obtain very high FC for a limited number of test vectors by optimization of test vectors set or 

determination of every next vector using several proposed algorithms. This method can be particularly 

useful in a case of non-exhaustive test, when for instance achievement of the 97% FCmax  is 

satisfactory.  

6.1.  BIST implementation 

After I have developed a test program, which achieved a good FC, the next step is optimization  

of a set of test vectors at BIST implementation. A common test strategy aims at minimizing test time 

(the number of test vectors) and maximize FC. These two goals are contradictory, as will be shown  

in the followings. Therefore the first attempt is to minimize the number of test vectors without 

decreasing the FC.  
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A general test situation can be described by: 

 the  set  of faults  F = {f1, f2, …, fm}; 

 the  set of available tests  vectors V= {v0, v1, …,vn-1} where vi  corresponds to the execution  

      of the  test sequence (program) with a binary input value i (0 ≤ i ≤ n-1); in my case of 8-bit  

      microprocessor there are 256 binary input values 

 the test matrix D describes test capabilities of tests T (detect-ability of faults fj by test vector vi).  

      Each test vector vi, 0 ≤  i ≤ n - 1 , is related to a binary test vector dji = [d0i, d1i, …, dmi].  

      The value dji = 1 denotes that test vector vi detects fault fj. Conversely, dji = 0 indicates that vi 

      does not detect fj. Binary test matrix D consists of test vectors D = [d0, d2,…, dn-1].   

      Its dimension is m×n. In my particular case, m = 1603, n = 256. 

 

In order to better understand optimization of the number of test vectors, I proposed the following 

definitions:  

 

Definition 6.1: The  fault of i-th order is called a fault detected exclusively by i test vectors. 

Definition 6.2: The vector of i-th order is called a vector, which detects at least one fault of i-th order    

                         and does not detect any fault of lower order than i.  

 

Consequently, the most difficult to detect faults, called further the hardest faults are the first-order 

faults, which are detected only by one test vector. In my practical case I have found 41 faults detected 

only by one vector. Table 6.1 presents statistics on faults order. Faults of these orders are present  

in outcome file from the fault simulation experiment. 

 

 

 

 

 

 

 

 

 

 



86 
 

 

 

Table 6.1: Statistic of faults orders 

Order 1 15 67 71 72 78 80 87 92 99 125 127 128 

# faults 41 1 1 1 1 1 1 1 1 1 1 2 110 

             Order 135 144 160 161 168 175 176 184 190 191 192 193 194 

# faults 1 1 2 1 2 1 3 6 1 4 32 2 3 

             Order 195 196 199 200 204 206 208 209 215 216 217 219 222 

# faults 2 1 1 4 1 1 4 1 1 4 1 1 1 

             Order 223 224 225 226 227 230 231 232 234 235 236 239 240 

# faults 1 34 4 8 3 2 1 2 4 2 1 2 103 
             Order 241 242 243 248 249 250 251 252 253 254 255 256 

# faults 19 2 2 31 2 3 2 6 3 10 146 731 

 

There are 41 faults of first order, one fault of 15-th order, one fault of 67-th order, and so on.  

There is the highest number of 256-th order faults (731). It is worth of notice, that faults of higher-

orders are usually covered by first order vectors. By definition, it holds for 256-th order faults. 

Experiments proved that this holds also for the 15-th order faults. The 15-th order fault is covered  

by at least one first-order vector. In case of the 67-th order faults, 4 from 67 vectors are first order, and 

so on.  For example fault (217), 15-order, is detected by the vectors: 7D, 6D, 5D, 4D, BE, AE, 9E, 8E, 

EE, DE, CE, 3D, 2D, 1D, 0D. It turned out, that all these vectors are 1-st order.  

Fault (1030), 67-th order, is detected by vectors: 7E, 3E, 3D, B7, 39, BB, 35, AF, 31, 2D, 0D, ...,03. 

Four these vectors are first order. Above statistics gives us information how efficient is bijective test 

program. Hence, if the number of low orders faults was high, and high number of the lowest-order 

vectors was required to detect them, it would mean that small number of sensitivity paths were 

activated. Then it seems a good idea to improve the test program (written in PicoBlaze assembler, see 

chapter 5). In another case, one can expect good results by optimizing the set of test vectors applying 

the algorithms proposed bellow.  
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6.1.1. Algorithm 1 – greedy algorithm 

An algorithm have been taken up in order to minimize the set of test vectors required to obtain 

maximal fault coverage (FCmax). This greedy algorithm selects first the best vector, i.e. a vector which 

covers the largest number of faults.  

 

 

Algorithm  1: Greedy algorithm: the vectors that detect the largest number of faults first 

 

       Determine set F of all  faults fi 

       While F is not empty 

              { Determine test  vector vi which covers maximum number of faults in set F; 

                Test the microprocessor with test vector vi;   

               Remove all faults fj that are covered by test vector vi from set F; 

              } 

 

In case of Algorithm 1 and penultimate version of my bijective program, the set of 33 such vectors 

appears enough to reach FCmax of 85.6% (see Table 6.2). This experiment showed that application  

of all 256 tests vectors (exhaustive test) for the PicoBlaze processor is redundant. Moreover, it turns 

out, that I can shorten about eight times the exhaustive testing time. It has crucial meaning in case  

of 32-bit or 64-bit microcontrollers, where application of all possible  232 or 264 test vectors becomes 

impossible for reason of testing time.  
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Table 6.2: Aggregation of FC for Algorithm1 

# Vector Aggregated  FC % FCmax Number  newly 
detected faults 
by the vector 

1 B1 1255 91,47 1255 
2 4E 1322 96,36 67 
3 7D 1338 97,52 16 
4 8E 1342 97,81 4 
5 7F 1344 97,96 2 
6 F7 1345 98,03 1 
7 EF 1346 98,10 1 
8 F3 1347 98,18 1 
9 5D 1348 98,25 1 
10 4D 1349 98,32 1 
11 AE 1350 98,40 1 
12 9E 1351 98,47 1 
13 F6 1352 98,54 1 
14 EE 1353 98,62 1 
15 DE 1354 98,69 1 
16 CE 1355 98,76 1 
17 3D 1356 98,83 1 
18 2D 1357 98,91 1 
19 1D 1358 98,98 1 
20 0D 1359 99,05 1 
21 77 1360 99,13 1 
22 F5 1361 99,20 1 
23 F1 1362 99,27 1 
24 F8 1363 99,34 1 
25 FC 1364 99,42 1 
26 F0 1365 99,49 1 
27 F4 1366 99,56 1 
28 FB 1367 99,64 1 
29 6D 1368 99,71 1 
30 FA 1369 99,78 1 
31 F2 1370 99,85 1 
32 F9 1371 99,93 1 
33 BE 1372 100,00 1 

 

From Table 6.2, the most important observation is, that the speed of achieving FCmax decreases 

rapidly, and from iteration 6 and above only a single fault is covered by an iteration. The next 

algorithm is derived from this phenomenon.  

 

 



89 
 

6.1.2. Algorithm 2 – the lowest-order vector first 

In order to minimize the number of test vectors without decreasing the FC, I developed  

Algorithm 2 according to which the test program selects the lowest-order test vectors first. 

 

 

Algorithm 2: the lowest-order vector first 

 

Determine set F of all  faults fi; 

      While F is not empty 

              { Select the  lowest order  fault fi of set F;  

                Select a test vector vi that detects fault fi; 

               Test the microprocessor with  test vector vi; 

               Remove all faults fj covered by test vector vi  from set F; 

      } 

 

In the implementation of the above algorithm, 28 vectors are enough to obtain maximal fault 

coverage FCmax. One of the vectors (7D), has detected 12 first-order faults. Vector 7E has detected  3 

of first-order faults. The other 26 vectors have detected only one first-order faults each (see Table 6.3).  

 

Table 6.3: List of the first-order vectors 

# iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Test vector 7D 7E FB FA F9 F8 F7 F6 F5 F4 F3 F2 F1 F0 
# detected 1-st 
order faults 

12 3 1 1 1 1 1 1 1 1 1 1 1 1 

               # iteration 15 16 17 18 19 20 21 22 23 24 25 26 27 28 
Test vector EE DE CE BE AE 9E FC 6D 5D 4D 3D 2D 1D 77 
#detected 1-st 
order faults 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

 

Initially it might seem that greedy algorithm (Algorithm 1) should give a better result (lower 

number of test vectors) than Algorithm 2. However, it is not the case, Algorithm 2 results in 28 test 

vectors, in comparison to 33 test vectors for Algorithm 1. After thorough consideration, it is obvious 
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that starting with first-order test vectors gives the optimal solution as in order to obtain FCmax all first-

order vectors must be tested. This can be easily derived from Definition 6.1 and 6.2.  

Nevertheless it is not obvious, how the Algorithm 2 should be constructed after all first-order 

vectors have been tested. Fortunately in my case, testing all first-order vectors is enough to cover all 

higher order faults. Based on statistics of fault orders and further experiments, I can conclude, that most 

of higher order faults are covered by many vectors from the set of the first order. Hence, I may propose 

the method of testing the processor consequently with increased order vectors, until all faults are 

covered. Nevertheless in general case, Algorithm 2 should be improved. When there are two or more 

faults of the same lowest order greater than first order, several different vectors can be taken.  

In this case, the vector which covers the largest number of faults is selected. Consequently, improved 

algorithm, Algorithm 3 - Hybrid, is a mixture of Algorithm 2 and 1, however Algorithm 2 is higher 

priority algorithm. Algorithm 3 is especially useful in the case when the lowest-order vector is  

a second or larger order one, as in this case there are two or more vectors that cover the same fault.  

A proposition of the improvement is given below. It should be noted that performance of Algorithm 3 

was not tested in practice as in this experiment testing only first-order vectors result in FCmax. 

 

Algorithm  3:  Hybrid (improved the lowest-order vector first) 

Determine set F of all faults fi;  

While F is not empty 

        { Determine subset Fi of F with the same, lowest-order faults  fi 

          Select a vector vi that detects the largest number of faults from set Fi 

         test the microprocessor with  test vector  vi; 

         from set F, remove all faults fj that are covered by test vector vi; 

}   

 

The best results has achieved ,,Hybrid” algorithm. Its simplified version Algorithm 2 – ,,The lowest 

order vector first” is characterized by uneven increments of FC, but it is simpler and requires slightly 

less calculation time. Algorithm 1 - ,,Greedy” requires higher number of iterations to achieve FCmax. 

Algorithm 3 ,,Hybrid” turned out to be the best in my practical case. 
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6.2. Number of iteration required to achieve 97% FCmax 

As mentioned at the beginning of chapter 6 a Fault Coverage at the level of 95 or 97% of FCmax 

may be satisfactory at practice. For this reasons I have checked, how quickly the FC tends to its 

maximum value, applying presented before algorithms.  

 
 

6.2.1. Number of iteration for Algorithm 1 

The initial goal was to reach FCmax with the lowest number of vectors (the result was 33 vectors), 

which is larger than for Algorithm 2 (28 vectors). However, the greedy algorithm (Algorithm 1) results 

in faster increase of FC for initial iterations. On the other hand, this algorithm generates five redundant 

vectors to obtain FCmax. This phenomenon was discovered at trial of generation of all permutations  

of 32 remained vectors except  the best one (32!). The aggregation of the FC is presented in  Table 6.2, 

and repeated in Table 6.4. Only 3 iterations are required to obtain 97% FCmax.  

 

Table 6.4: Aggregation of fault coverage to FCmax 

# Vector Aggregated   FC % FCmax Number of newly 
detected faults  
by the vector 

1 B1 1255 91,47 1255 
2 4E 1322 96,36 67 
3 7D 1338 97,52 16 
4 8E 1342 97,81 4 

 

6.2.2. Number of iteration for Algorithm 2 

Algorithm 2 has used 26 -test vectors which detect only a single first-order faults each, one vector 

which detects 3 faults of first order, and one vector which detects 12 faults of first order. Additionally, 

the FC achieved when every of  these vector was applied alone was calculated. Based on these results it 

is possible to determine the order of applied test vectors. This order had been  determined once, before 
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Algorithm 2 started. However this approach allows to achieve FCmax, but the number of iterations 

required to achieve 97% of FCmax is optimized further in chapter 6.2.3.     

Table 6.5 presents the Fault Coverage achieved by an individual vector of first order alone. The result 

file from fault simulation is the same as for data presented in Tables 6.2 and 6.3.  

 

Table 6.5: Fault Coverage achieved by individual vector of first order 

Vector F2 F0 F4 F6 F1 FA F8 EE CE 2D 
Detected 
faults 

1249 1240 1240 1236 1231 1229 1227 1226 1221 1220 

%FC max 91,03 90,38 90,38 90,09 89,72 89,58 89,43 89,36 88,99 88,92 
           
Vector FC F5 F3 77 1D DE F9 F7 AE 3D 
Detected 
faults 

1220 1218 1217 1214 1209 1205 1203 1202 1198 1193 

%FCmax 88,92 88,78 88,70 88,48 88,12 87,83 87,68 87,61 87,32 86,95 
           
Vector 9E FB 4D BE 5D 6D 7E 7D   
Detected 
faults 

1187 1185 1184 1175 1164 1157 1149 1099   

%FCmax 86,52 86,37 86,30 85,64 84,84 84,33 83,75 80,10   
 
 

The aggregation of detected faults was carried out. The results are presented in Table 6.6. It is 

visible, that it is enough to apply 11 vectors of first order for achieving 97% of FCmax. These vectors 

are ordered by its fault coverage presented in Table 6.5.  
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Table 6.6: Aggregation of FC for Algorithm 2 

# Vector of 
1-st order 

AggregatedFC % FCmax Number of newly 
detected faults  
by the vector 

1 F2 1249 91,03 1249 
2 F0 1270 92,57 21 
3 F4 1277 93,08 7 
4 F6 1278 93,15 1 
5 F1 1286 93,73 8 
6 FA 1295 94,39 9 
7 F8 1296 94,46 1 
8 EE 1310 95,48 4 
9 CE 1320 96,21 10 
10 2D 1321 96,28 1 
11 FC 1337 97,45 16 
12 F5 1338 97,52 1 
13 F3 1339 97,59 1 
14 77 1340 97,67 1 
15 1D 1342 97,81 2 
16 DE 1343 97,89 1 
17 F9 1344 97,96 1 
18 F7 1345 98,03 1 
19 AE 1346 98,10 1 
20 3D 1347 98,18 1 
21 9E 1348 98,25 1 
22 FB 1349 98,32 1 
23 4D 1350 98,40 1 
24 BE 1354 98,69 4 
25 5D 1355 98,76 1 
26 6D 1356 98,83 1 
27 7E 1359 99,05 3 
28 7D 1372 100,00 13 
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6.2.3. Number of iteration for Algorithm 3 - Hybrid 

In Table 6.6 only first-order vectors are used. In the case when all 28 first-order vectors are tested 

(FCmax is obtained), the order of vectors is not important so Algorithm 2 is simpler one. However  

for reduced number of test vectors, the speed of FC is very important, so the vectors order should be 

improved. In this case Algorithm 3 – Hybrid should be employed, this algorithm is an improved 

version of Algorithm 2. Algorithm 3  obtains 97% FCmax in 4 iterations. The results of this experiment 

are presented in Table 6.7. 

Table 6.7: Aggregation of FC for Algorithm 3 

# Vector of 
1-st order 

Aggregation of 
detected faults 

% FCmax Number of newly 
detected faults  
by the vector 

1 F2 1249 91,03 1249 
2 1D 1316 95,92 67 
3 7D 1330 96,94 14 
4 F7 1343 97,89 13 
5 7E 1347 98,18 4 
6 FB 1350 98,40 3 
7 F3 1351 98,47 1 
8 6D 1352 98,54 1 
9 5D 1353 98,62 1 
10 4D 1354 98,69 1 
11 BE 1355 98,76 1 
12 AE 1356 98,83 1 
13 9E 1357 98,91 1 
14 FA 1358 98,98 1 
15 F6 1359 99,05 1 
16 F0 1360 99,13 1 
17 DE 1361 99,20 1 
18 CE 1362 99,27 1 
19 EE 1363 99,34 1 
20 3D 1364 99,42 1 
21 2D 1365 99,49 1 
22 77 1366 99,56 1 
23 F9 1367 99,64 1 
24 F5 1368 99,71 1 
25 F1 1369 99,78 1 
26 F8 1370 99,85 1 
27 FC 1371 99,93 1 
28 F4 1372 100,00 1 
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The comparison of the aggregated FC for all three Algorithms is shown in Table 6.8 and  

in Figure 6.1. It can be seen that  Algorithm 1 results in the highest FC only for three initial iterations. 

Higher FC achieves Algorithm 3 since 4th iteration. Using Algorithm 2 FC increased irregularly.  

This algorithm is not optimal, because decision about choice of a vector for the next iteration was made 

on base of the highest number of covered faults by individual vector at the very beginning  

of the algorithm. 

 

Table 6.8:  The comparison of the FC aggregation for three proposed algorithms 

# Algorithm 1 
   %FCmax 

Algorithm 2 
    %FCmax 

Algorithm 3 
   %FCmax 

1 91,47 91,03 91,03 
2 96,36 92,57 95,92 
3 97,52 93,08 96,94 
4 97,81 93,15 97,89 
5 97,96 93,73 98,18 
6 98,03 94,39 98,40 
7 98,10 94,46 98,47 
8 98,18 95,48 98,54 
9 98,25 96,21 98,62 
10 98,32 96,28 98,69 
11 98,40 97,45 98,76 
12 98,47 97,52 98,83 
13 98,54 97,59 98,91 
14 98,62 97,67 98,98 
15 98,69 97,81 99,05 
16 98,76 97,89 99,13 
17 98,83 97,96 99,20 
18 98,91 98,03 99,27 
19 98,98 98,10 99,34 
20 99,05 98,18 99,42 
21 99,13 98,25 99,49 
22 99,20 98,32 99,56 
23 99,27 98,40 99,64 
24 99,34 98,69 99,71 
25 99,42 98,76 99,78 
26 99,49 98,83 99,85 
27 99,56 99,05 99,93 
28 99,64 100,00 100,00 
29 99,71   
30 99,78   
31 99,85   
32 99,93   
33 100,00   
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However this algorithm is easier to implementation and quicker to execution than Algorithm 3.  

For Hybrid Algorithm, the number of covered faults are calculated at every iteration of the algorithm. 

Algorithm 1 ,,Greedy” can be used when  the rapid increase of FC in the first few iterations is required. 

On the other hand, this algorithm requires the highest number of iterations (33) to complete (obtain 

FCmax). It is predictable, that for other sets of input data, the difference in the number of iterations 

may be even greater in favor of  Algorithm 3 ,,Hybrid’’. One of  the most important observations is, 

that for Algorithm 1 the number of iterations to achieve FCmax depends more on correlation between 

vectors which detect faults of first order (determined in chapter 6.1) and vectors which detects  

the highest number of faults. Taking into consideration both number of iteration required to achieve 

FCmax and FC increase rate, it is possible to conclude that Algorithm 3 is the best. However more 

sophisticated algorithms i.e. genetic algorithm, simulated annealing might give better solutions.  

But such algorithms should be applied both for all test program generation together with optimization 

of test vector set. It was necessary to use all vectors of first-order to achieve FCmax, and I have 

reduced 9 times (256/28) numbers of test vectors required to achieve FCmax.  

 

 

Figure 6.1: The comparison of the FC aggregation for all three Algorithms 
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6.2.4. Optimal reduction of number of  individual blocks test vectors 

After developing of optimization strategies for the complete test program, especially  determination 

of optimal set of test vectors which achieves FCmax, so called further  global test vectors, it seems 

interesting and beneficial  to look deeper into processor blocks, individual functions of test program 

dedicated to individual processor block testing. The next intention is to determine optimal set of local 

vectors i.e. vectors for testing individual processor blocks and comparison how these vectors 

corresponds to the optimal set of global vectors.  

PicoBlaze VHDL description is divided into 13 blocks by its author (Ken Chapman). I have 

determined  optimal sets of test vectors separately for every hardware block of the processor, if it was 

possible. I utilized primarily the Algorithm 3 – Hybrid, and Algorithm 1 to this task. Algorithm 1  - 

Greedy I have applied usually in cases of blocks, where the lowest order of test vector was relatively 

high i.e. 67 or higher. Determined set of vectors achieves FCmax for every individual PicoBlaze block 

FCmax(block).  Accordance to Chapman the PicoBlaze blocks together with proper sets of test vectors 

determined by myself are  presented in Table 6.9. There exist a few such  PicoBlaze HW blocks, where 

I cannot distinguish special function dedicated to test them. Such block are i.e. ZERO and CARRY 

Flags, Program Counter, etc. Every kind of  instructions such as Logical, Arithmetical and Shifts have 

capability to generate flags. Every instruction of my bijective program tests PC, so for such a blocks 

determined before in this chapter global test vectors are applied.  

As a result of these researches, a few new vectors appeared required to optimal test of individual 

blocks. These test vectors are determined on the basis of detailed analysis of software functions 

dedicated to testing every individual processor block, software functions which test individual 

processor blocks in indirect way, and first of all interaction between processor HW and specific 

assembler instructions which operate on its specific arguments. Examples of such analyses are 

presented in chapters 8 and 9. Short description of research results for individual processor blocks is 

following:  

1. Fundamental Control 

Almost every vector is capable of achieving FCmax of this block. For instance I can  apply global    

1-st order one: F7. 

2. Interrupt input logic. Interrupt enable and shadow Flags 

FCmax is obtained by e.g. global 1-st order vector F7 too. 
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3. Decodes for the control of the program counter and CALL/RETURN stack 

There are not direct access to the Program Counter from assembler instructions level. 

CALL/RETURN stack is tested by dedicated assembler function based on CALL assembler instruction. 

This function consists of 31 assembler instructions. It is possible to determine vectors which test this 

block in indirect way by the used assembler function. Two from set of global 1-st order vectors: 7E 

(detects 1-st order fault in this block), F7 are enough to achieve FCmax of this block. 

 
4. The ZERO and CARRY Flags 

There are 29 faults of first order covered by 28 vectors. One from these vectors tests 2 faults of first 

order. So, FCmax of this block is covered by 28 vectors contained in Table 6.9. Only Hybrid Algorithm 

was applied for reason of high number of 1-st order vectors. This block is tested by all the bijective 

program (about 370 assembler instructions). 

 
5. The Program Counter. Definition of a 10-bit counter which can be loaded from two sources 

There are four faults of 1-st order tested by the same vector 7D.  All faults in this block are covered 

by two global vectors of 1-st order  7D and F7. This block is tested by all the bijective program (about 

370 assembler instructions).  

 
6. Register Bank and second operand selection 

There isn’t any fault of first order in this block.  By applying Algorithm-1 Greedy, only two vectors 

are required to achieve FCmax for this block. Whereas Algorithm-3 Hybrid requires 3 test vectors.  

This block is tested by all the bijective program (about 370 assembler instructions) too. 

 
7. Memory Storing Function Block requires only one test vectors: F7 according to both algorithms.   

 
8. Logical Operations Block 

There is lack of 1-st order faults in this block. Applying Algorithm-3 – Hybrid, there are required 4 

vectors for achievement FCmax(Logical) as presented in Table 6.9. When I have applied the same 

Hybrid Algorithm, but with limited set of global test vectors to these optimal (1-st order) 4 test vectors 

are required for achievement of FCmax(Logical) too (see Table 6.9). According to Algorithm 1 – 

Greedy, only 3 vectors are required. The dedicated function to test this block consist of 27 assembler 

instructions. It should be noticed that logical instructions are used in other functions too, as 

supplementary.  
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9. Shifts  operations Block 

There isn’t any 1-st order fault in this block. Testing this block both according to Greedy Algorithm 

or to Hybrid Algorithm, only 2 test vectors are required for achievement of FCmax(Shift).  

The dedicated function to test this block consist of 55 assembler instructions. It should be noticed that 

logical and arithmetic instructions are used in function to SHIFTs testing too, as supplementary.  

 

10. Arithmetical Operations Block. 

One 1-st order fault is found in this block. So I applied the Hybrid Algorithm first, and  

this results in 4 test vectors required to FCmax(Arithmetical). Whereas Algorithm 1- Greedy requires 

only 3 test vectors (see Table 6.9). The dedicated function to test this block consist of 29 assembler 

instructions. It should be noticed that arithmetical instructions are used in other functions too, as 

supplementary. 

 

11. ALU Multiplexer. 

There is not direct access to the ALU Multiplexer block from instructions level. So the ALU 

Multiplexer is tested indirectly by execution of functions  for LOGICAL, ARITHMETIC and SHIFT 

instructions testing and a special function for solving problems related to HW redundancies  

in this block has been written. Together about 300 instruction test the ALU Multiplexer in indirect way.  

Greedy Algorithm requires  only 2 vectors for achievement of FCmax(ALUMux). Algorithm Hybrid  

requires  3 vectors. Results are shown in Table 6.9.  

To conclude this part of considerations only 9  test vectors are required for achieving total FCmax 

for Logical, Arithmetic, Shift and ALU Mux blocks together. Another conclusion is that maybe  

a good optimization idea is to find a block which requires the higher number of 1-st order vectors. 

These vectors should be determined with Algorithm Hybrid. Then I can try to cover remained blocks  

with these vectors. When it appeared impossible or the number of test vectors was similar as  

for this one block which required the highest number of test vectors, then better solution would be 

to apply Greedy Algorithm.  Notations in Table 6.9 are following:  

Optimal set of test vectors is determined according to:  
g)  Algorithm 1 – Greedy 
h)  Algorithm 3 – Hybrid  

      V[y][1H] – means that first order vector [1] detects higher order faults [H] in given number  
                           of blocks  y  

V[H][H] – higher order vector, which detects some number of higher order faults.  
                            The same –  if  global vectors are the same as local vectors for given blocks.     
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Table 6.9: PicoBlaze blocks with optimal sets of test vectors 

# PicoBlaze block Vectors required  
 to FCmax (Block) 

#local 
vect-s 

Global 
vectors 

# Inj./Det. 
faults [%] 

1-st o. 
faults 

1 Fundamental Control h) F7[1H][1H] 1 F7[1][1] 2/2[100%] 0 
2  Interrupt input logic, 

Interrupt enable and 
shadow Flags 

h)F7[1H][1H], (detects 
higher order faults) 

1 F7[1][1] 4/47      
[8.5%] 

0 

3 Decodes for the 
control of the 

program counter and 
CALL/RET stack 

h, g) F7[1H][1H], 7E[2][3] 2 F7[1][1] 
7E[2][3] 

67/104 
[64.4%]  

1 

4 

The ZERO and 
CARRY Flags 

h) (FC, FB, FA, F9, F8, 
F6, F7, F5, F4, F3, F2, 

F1,F0, EE, DE, CE, BE, 
AE, 9E, 8E, 6D, 5D, 4D, 

3D, 2D, 1D)[1][1], 
7E[2][3], 7D[3][11] 

28 All 28 140/179 
[78.2%] 

29 

5 Program Counter. 
Definition of a 10-bit 
counter can be loaded 

from two sources 

h,g)7D[3][11], F7[1H][1H] 2 7D[3][11] 
F7[1H][1H] 

243/320 
[75.9%] 

4 

6 
Register Bank and 

second operand 
selection 

g) 04[H][H],  7E[2H][3H] g) 2 
h) 3 

04[H][H, 
7E[2H][3H] 

155/157 
[98.7%] 

0 

h) 2D[1H][1H], 
EE[1H][1H], 5D[1H][1H] 

2D[1][1], 
EE[1][1], 
5D[1][1] 

7 Memory Storing 
Function 

h) F7[1H][1H] 1 F7[1][1] 30/35  
[85.7%] 

0 

8  
Logical 

g) 54[H][H], 0A[H][H], 
3E[H][H] 

g) 3    
h) 4 

D4, 8A, 3E 225/233 
[96.6%] 

0 

h) 0x72[H][H], 0E[H][H], 
FE[H][H], 0x78[H][H] 

F2, 8E, 7E, 
F8 

9 Shifts g) B3[H][H],4[H][H] g) 2 
h) 2 

CB, 79 148/176 
[84.1%] 

0 
h) 8C[H][H], 87[H][H] F2, F7 

10  
Arithmetical 

g) 0x16[H][H], 
0x69[H][H], 0x77[1][1] 

g) 3  
h) 4 

The same 
150/156 
[96.2%] 

1 

h) 77[1][1], 2D[1H][1H], 
FB[H][H], BE[1H][1H] 

The same 

11  
ALU multiplexer 

g)8E[1H][1H], 71[H][H] g) 2    
h) 3 The same 

133/217 
[61.3%] 

0 
h)2D[1H][1H], F2[1H] 

[1H], 5D[1H][1H] 
12 

R/W Strobes 
------ 2  9/52    

[17.3%]  
0 

13 Prog.CALL/RET 
stack 

g,h) 7D[3][11], 
F7[1H][1H] 

2 
The same 

66/126 
[52.4%]  

6 

 

The conclusion can be driven from the above table that for most hardware blocks two local vectors 

are enough  to obtain FCmax. The exception is arithmetical block (3 local vectors) and flags module 
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which requires 28 vectors. All these vectors for flags module testing are first order. Consequently,  

in the case when the test run time is crucial, local rather than global vectors should be used.  

The drawback of local vector usage is that more input and output vectors should be transferred  

to / from the   microprocessor, and in some cases these vectors transfer may be more problematic than 

increased test run time in the case of global vectors. Further optimization may be achieved  

by employing a hybrid method: global and local vectors usage, i.e. employing two global vectors and 

26 local vectors to test only specific blocks of the microprocessor. This, however, requires further 

researches.  

Percentage distribution of detected faults in every individual PicoBlaze block is presented  

in Figure 6.2. We can observe that the best results are achieved for blocks which operate directly  

on data (Blocks 6-10 in Table 6.9). ALU Multiplexer is tested indirectly by assembler functions and  

in this block exists hardware redundancies. Moreover a lot of undetected faults have its place in HW 

which realizes I/O operations (about 39% injected in this block). For this reasons FC is here relatively 

low. The most difficult one to test is the ZERO and CARRY flags generation block. Hence, there is  

the higher number of first order faults and vectors to detect them. Hardware architecture of this block is 

most complex. Many one-bit details on both operand (256×256) are required to detect all possible 

situations related to faults in this block. Moreover a few instructions can generate the same flags  

in situation when all 8 bits are taken under calculations and range of register is limited to 7, 6, 5, etc. 

bits. FC for PicoBlaze blocks dedicated to Program Counter is low too, because testing of these 

processor resources is not main task of this bijective program, as mentioned above. 

 

 

 

Figure 6.2: Percentage of FC of individual PicoBlaze block 
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6.2.5. Fault coverage in cyclic usage of results vectors 

In this thesis a bijective testing is proposed. There are different types of bijective functions 

proposed in Section 5, e.g. identity, bit inversion or permutation, addition / subtraction a constant 

value, LFSR. Construction of feedback loop which covers full input vector space for some bijective 

function is relatively simple.  For example addition by 1 may covers full input space.  

Combining (serializing in the test program) bijective functions also forms a bijective function, 

which is used in the test program. Nevertheless construction of feedback loop which covers full input 

space for a combination of bijective functions is not an obvious task. Therefore I took an attempt  

of solving  the problem of lack of the full cycle as it is further described. 

The research work, presented in this subsection, has shown that one of the fastest method to achieve  

the FCmax is determining the optimal start vector and then cyclic generate test vectors in the loop 

instead of loading test vectors from external memory I took up as well, an attempt of testing  

of the microprocessor in cyclic way. This time principle was as following: 

 

Algorithm 4: Cyclic usage of result vectors 

 

       Determine set F of all  faults fi 

       Determine the first test vector vi  which detects the highest number of faults / or 

       which detects the higher number of faults of first order (see definition 6.1);  

       Remove all faults fj that are covered by test vector vi from set F; 

       While F is not empty 

                { Take the output  vector and reuse it as a new input vi; 

                  Test the microprocessor with input vector vi; 

                  Remove all faults fj that are covered by test vector vi from set F; 

              } 

 

My practical experiments showed, that decisively better FC was achieved when the testing program 

is not only bijective, but it is able to generate all the possible test vectors in a cyclic way. 

One of goals of this method is to spare resources. Repeated executions of the test sequence require 

minimal additional memory resources since only the initial test vector, the final test result, and number 
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of iteration are stored.  If a minimum test time is required, a minimum numbers of iterations achieving 

FCmax should be selected and stored in the memory together with the results (or signature). 

Initially the target of my observation was to learn, how many iterations were required  

to obtain the FCmax. It turned out that  results of the bijective program which does not generate a full 

data cycle often are not able to achieve FCmax. There are a few vectors, which do not generate full 

cycle, when are used as initial vectors (0x00, 0x01, 0x0B, 0x3E, 0x77, 7F). Other initial vectors 

generates full cycle, and achieves FCmax. I have come to the conclusion, that good idea was  

to start from vector 03 or FB. For these vectors the number of iterations, which are required to obtain 

the FCmax equals 235. On  average I need 245, iterations to obtain the FCmax. 

To conclude, Algorithm 2 and Algorithm 3 – (improved lowest-order first) bring usually better 

results than Algorithm 1. The experiment 6.1.2 showed, that if all vectors of first order were executed 

(28), 100% of FCmax was achieve We can observe in Table 6.2, that all the vectors of first-order must 

be applied  in order to achieve the FCmax. And it may happened that vectors of higher order will 

needed too. Algorithm 4 gives the worst results, while it is the simplest and can be easily used  

in industrial production testing. 

6.2.6. Number of iteration at Algorithm 4 

As described in chapters 6.2.5, the test sequence  can be executed with input test vectors used  

in a cyclic way. The result of the previous execution of the test sequence can serve as the new input test 

vector of the next iteration of the test sequence. The results of such methods are shown in Figure 6.3. 

After the first vector has been tested different FC are obtained: the initial input test vector 7D (first-

order vector which covers the highest number of first-order faults)  gives 78.33% FCmax. Vector F7 

increases the fault coverage to 90.63% FCmax. In the next step, with the resulting vector 83, the fault 

coverage increases to 95.1% FCmax, etc. In this particular case 8 runs of the test sequence were 

required to reach the 97% FCmax. Another example is which the starting vector is the first order vector 

(F2) which detects the highest sum of faults too (in total 90,23%). In this case 33 iterations are required 

to obtain 97% FCmax. Whereas when I started with the best vector B1 (the highest total FC equal 

90.7% FCmax), resulting test vector 98 gives aggregated FC 93.33%, in the third iteration resulting test 

vector CD increases FC to 95.15% and so on. To achieve 97% of FCmax, 21 iterations are required  

in this case. Result of the experiment are presented in Figure 6.3 and Table 6.10. 
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Figure 6.3: Achieved fault coverage during cyclic usage of test vectors 
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Table 6.10: FC aggregation in cyclic usage of vectors 

Iteration Starting vector 1-st order F2 Starting vector 1-st order 7D Starting vector the best B1 

-------- vector  %  FCmax vector  %  FCmax vector %  FCmax 
1 F2 90,23 7D 78,32 B1 90,63 
2 99 94,20 7F 90,63 98 93,33 
3 47 96,35 83 95,1 CD 95,15 
4 72 96,43 7B 96,27 E0 95,23 
5 19 96,43 8B 96,34 BD 95,23 
6 C7 96,43 6B 96,98 80 95,23 
7 F4 96,51 AB 96,98 FD 95,47 
8 95 96,51 AC 97,38 FF 96,03 
9 4F 96,51 24 97,38 03 96,35 
10 62 96,51   FB 96,43 
11 39 96,51   0B 96,43 
12 06 96,51   EB 96,43 
13 71 96,51   2B 96,43 
14 97 96,51   2A 96,43 
15 53 96,51   AA 96,43 
16 5A 96,51   28 96,43 
17 CA 96,51   AE 96,58 
18 68 96,51   20 96,58 
19 2D 96,66   BE 96,66 
20 1E 96,66   0 96,66 
21 41 96,66   7D 97,67 
22 76 96,66     
23 11 96,66     
24 D7 96,66     
25 D4 96,66     
26 54 96,66     
27 D6 96,66     
28 50 96,66     
29 DE 96,74     
30 40 96,74     
31 7E 96,98     
32 01 96,98     
33 F7 97,06     
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6.3.  Problem of  non-full cycle of  results 

Often at industrial testing or testing of dedicated FPGA processor core it may turn out,  

that an approach consisting in test pattern generation in the loop executed on the tested core may be 

inadvisable and ineffective. Such a loop is built on the basis of assembler instructions  as add, jump, 

load etc. Worth of notice is that instruction needed to construct such a loop are different sorts 

(arithmetical, jump, logical). So it is obvious, that it may generate wrong unwitting input vectors  

as a result of injected faults or SEU induced faults too. Moreover a lack of generation of input test 

vector may occur. This can narrow the scope of testing vectors. Here a situation of not detected fault 

may appear at lack of test vector, which detects the fault. In such a case it would be hard to say, that  

a processor was tested in exhaustive way. Thus probability that a fault can affect this loop is relatively 

high. The same problem exist in case of test pattern generation with LFSR composed from a processor 

assembler instructions. For these reasons one of the most important industrial tests before production 

consists in direct introduction of test vectors into tested circuit from reference memory, and storing 

back results to the memory. Significant companies on the marked such as STMicroelectronics  

in Agrate (MB, Lombardy, Italy) and Catania (CT, Sicily, Italy)  apply this test.        

The method from chapter 6.2.5 leads to obtaining the FCmax exclusively, if I have such set  

of reference results (i.e. obtained after execution of the program without fault injection) that  each 

result after execution program denotes different unique, next input vector. So, input vectors do not 

repeat.   

 

                                                           
 
 

Figure 6.4.a: One full cycle                                      Figure 6.4.b: Two cycles 
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For example let us consider the number of only 6 test vectors values: 0, 1, 2, 3, 4, 5. In the first case 

I have cyclic group of inputs vectors determined by all output results. This means every input vector 

from among the whole the set is unique. In the second case I have not one cyclic group of input vectors 

because the result vector determines again vector ,,0” as input. The example of the full cycle is 

presented in Figure 6.4.a, and the example of the two cycles is presented in Figure 6.4.b.  

According algebraic theory of group (Wikipedia 2020 B), a cyclic group is a group that can be 

generated by a single element, in the sense that the group has an element g called a ,,generator”  

of the group such that, an element gj composed with itself generates all other elements of cyclic group 

gi= gj ○ gj. The composition in my case is the test program executed by the microprocessor.  

The problem of non-full cycle was observed during writing my test program. For example  

in the previous version of the program the trial of obtainment fault coverage in cyclic usage of results 

was failed. There are available 256 generators of cyclic group, which are complete set of possible test 

vectors for the PicoBlaze microprocessor. Generation of the cyclic group with each of these generators 

led to obtain a subgroup in case of the every vector.  

When bijective blocks of the program were analyzed by a script-program in order to check  

if generated by them outcomes form cyclic groups, it turned out that for lack of full cycle responsible 

were bijective blocks to testing shift instructions. The operation of shifts alone makes impossible 

generation of all possible numbers from the range of 0 to 255. 

Moreover construction of bijective blocks, were carry from LSB or MSB after ,,SHIFTS” is 

captured, rotated and combined into data flow turned out as not enough too. Such a solution narrows 

the scope of data and cause that the data for testing next blocks is not exhaustive, what considerably 

worsens fault coverage. Experiments with changes of order of bijective blocks did not bring  

the expected results. The number (8) of such a block to test shifts is quite high. So event in case  

of program composed exclusively from block to testing shift instructions, results from one block are 

not enough to exhaustive test the next block (Lack of data). Similar situation appears when 

I composed more than one block to testing shifts together with others block to testing remaining 

instructions. It is known, that composition of some block of program from two bijective instructions  

in feedback does not necessarily generate a fully cyclic results. It works in case of more than two 

bijective instructions or block too.  
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6.3.1. LFSR – as a solution of the non-full cycle problem 

My investigation of non-full cycle problem is application of Linear Feedback Shift Register (LFSR) 

to generation exhaustive seed of test vectors for all shift and rotate instructions of PicoBlaze processor. 

I led trials of cyclic testing of all among the shift instruction in their penultimate version of bijective 

blocks. For reminder, every of such block tested separately generates non full cycle of new input test 

vectors. The bijective block to testing of cyclic property of individual shift instruction is presented  

in Figure 6.5. 

 

 
 

Figure 6.5: Bijective block for testing of cyclic property of individual shift instruction 

 

Testing cycle of such a block is on average 64 vectors long, and how fast a cycle is completed 

depends on starting test vector and architecture of a bijective block. Each among these blocks consists 

of additional instructions to input carry generation, to combining of the bit shifted to carry by the tested 

shift instruction, etc. So constructed according to the above principles bijective blocks, every  

for individual shift instruction testing, have limited performances of generation of exhaustive set of test 

vectors 255 (seed). It leads to serious difficulties in constructing of fully cyclic bijective testing 

program composed of such bijective sub-blocks with lack of full cycle property.   

This inconvenience can be overcome by construction of bijective and able to full cycle generation 

blocks to target shift instructions testing, built on base of Linear Feedback Shift Register (LFSR). Such 

a LFSR possess its characteristic polynomial (Hlawiczka 1997). In these new blocks key role plays  
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a target shift instruction with additional XOR and TEST instructions which are utilized to test bits 

pointed by the characteristic polynomial of the LFSR (Wegrzyn 2014 B). 

Such the polynomial determines unique configuration which performs generation of exactly 

determined number of resulting test vectors. Here are known architectures of Fibonacci and Galois.    

In my case study, it  can be easily applicable Fibonacci architecture of LFSR depicted in Figure 6.6. 

Characteristic polynomial to generation of 255 different test vectors (for 8-bit shifted register)  

by cyclic usage of results of execution of every shift instruction has form:  

 

                                         X8 + X6 + X5 + X4 +1 

 

 

 

Figure 6.6: Circuit representation of 8-bit Fibonacci LFSR  

 

My program is constructed in this way, that for every shift instruction a block consisting  

of  additional ,,TEST” instructions and ,,XOR” instructions is developed. In some cases, when need 

occurs, additional ,,AND”, ,,RR”, ,,RL”, ,,OR” instructions are utilized to clear or set, for instance, 

certain bits, which are set to the same values  default at execution of certain shift instructions.   

Moreover all the ,,right” SHIFT instructions are tested in one common cyclic block consisting  

of cyclic sub-blocks. Every such sub-block is developed to testing of individual shift instruction. 

Analogically all the ,,left”  shifts or ,,ROTATE left”, ,,ROTATE right” instructions are tested in other  

adequate common cyclic blocks consisted of cyclic sub-blocks. The main program architecture  

is presented in Figure 6.7, and the example of the assembler program  block to the Shift Left ,,1” fill  

(SL1) test is presented in the Listing 6.1.  

Every such common block is tested by cyclic generation of 254 unique output results. Every time 

the previous output result serves as the next input vector.  
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In this way after the  block of program is executed 254 times, one unique (255-th) test vector is 

generated. This test vector is different for every unique input test vector. Then the 255-th result vector 

from the cyclic ,,right shifts” block serves as input test vector for ,,rotate” cyclic block of instructions. 

Next cyclic block is again tested by cyclic generation of 255 unique output results, and so on.   

Of course the starting test vector can be whichever from the range 1-255. And according to the main 

principle of seed generation with LFSR with full cycle polynomial after 254 cycles every result 

corresponds one to one with its input argument vector.  This test vector serves as input vector for a next 

block of program.  

 

 

 

 

Figure 6.7: The program architecture 
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next1:   
    LOAD sC, s0;         
iterac1:                                 ;  by these two instructions  I 

     TEST   sC, 80; can access intended bit in         
             ADDC  s9,  00; the register. In this way inputs    
             LOAD  s8,  s9; are prepared for ,,XOR” LOAD s8, s9 
             LOAD  s9,  00; All these code is adequate to circuit in                                  
             TEST  sC, 20; 
             ADDC s6,   00; 
             XOR   s8,   s6; 
             LOAD  s6,   00; 
            TEST    sC,   10; 
            ADDC  s5,   00; 
            XOR     s8,   s5; 
            LOAD s5,   00; 
            TEST    sC,  08; 
            ADDC  s4,   00; generating a bit 
            XOR     s8,   s4; to substitute instead  
            LOAD   s4,   00; bit ,,0” of shift 
            TEST     s8,   01; bit ,,0” of shift SL1 
            SL1  sC;              
           AND   sC,  FE; 
           OR  sC,  s8; 
 

Listing 6.1: Example of  a bijective cyclic block of test program to the Shift Left ,,1” fill  (SL1) test 
 
Corresponding circuit:  
 

 

 

Figure 6.8: Bijective cyclic block to the SL1 testing 
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This solution has brought effect especially for the SHIFT blocks testing. Almost all the faults have 

been detected here. Application of the solution of LFSR caused rise of detect-ability in such a block  

as for arithmetical and logical instruction testing. Here is possible to observe two roles of LFSR based 

block to shifts testing:  

 self-test to shift instruction testing, 

 exhaustive seed generator for other blocks of test program.  

 

 

6.3.2. Results of refinement of the PicoBlaze test program using LFSR 

The final version of the test program with built-in LFSR to testing each of the eight PicoBlaze 

SHIFT instructions, and two rotate instruction achieved fault coverage of 94,76%. This program 

generates all input carry bits, which are captured by these SHIFTs too. In first stage of the experiment, 

I had applied 255 vectors as the algorithm assumes, and then I have discovered, that this had been 

redundant because here individual vectors exist, which can detect alone about 94,76% of injected faults 

(1519/1603) using exclusively one test vector. This is the main advantage of this refinement. 

This 94,76% is called FCmax gained by my test program. Furthermore there exist 106/255 of such 

vectors. This is 41% of total number of 255 vectors. Every among next 61 vectors can detect almost all 

faults without 1 fault (1518), 24 vectors can detect less by 2 faults (1517), 15vectors detect 1516 faults, 

6 vectors detect 1515 faults, 9 vectors detect 1514, and so on (see table 6.3.11). The weakest  vector 

detected 1102 faults. Described here selected cases of testing vectors with their Fault Coverage  

in number of detected faults are collected in Table 6.3.12.  

 

Table 6.3.11: Number of faults detected by percentage of test vectors 

Detected faults  1519 1518 1517 1516 1515 1514 1513 1512 1509 1508 1507 
% total vectors 41,4 23,8 9,4 5,9 2,3 3,5 1,2 0,8 0,8 2 1,2 
            
Detected faults 1504 1503 1501 1500 1499 1498 1495 1491 1497 1465 1102 
% total vectors 0,8 0,4 0,4 1,6 1,2 1,2 1,2 0,4 0,4 0,4 0,4 
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Table 6.3.12: Selected cases of the Fault Coverage for testing vector 

Vectors achieve full  FC 1519 f. detected  Vectors  1518 f. detected     
Nr Vector  Nr Vector  Nr Vector  Nr Vector  Nr Vector  Nr Vector  
1 82  42 28  83 AE  1 2B  43 62  21 6F  
2 83  43 29  84 B1  2 AC  44 E8  22 DC  
3 84  44 AB  85 B6  3 AF  45 05  23 9B  
4 85  45 AD  86 38  4 B0  46 8E  24 66  
5 86  46 2E  87 BC  5 B2  47 91     
6 06  47 B3  88 C2  6 B4  48 17     
7 87  48 34  89 44  7 3B  49 A5     
8 88  49 B5  90 49  8 BF  50 31     
9 08  50 B7  91 4A  10 41  51 42     
10 89  51 B8  92 D1  11 45  52 D3     
11 8A  52 B9  93 D5  12 C7  53 5C     
12 0A  53 BA  94 E9  13 4C  54 64     
13 8B  54 BB  95 EE  14 4F  55 0F     
14 8C  55 BD  96 1C  15 50  56 2C     
15 0C  56 3E  97 22  16 51  57 4B     
16 8D  57 3F  98 A9  17 53  58 ED     
17 0E  58 C1  99 37  18 57  59 36  The weakest vec. 
18 90  59 C3  100 BE  19 58  60 A2  Nr vector FC 
19 11  60 43  101 C8  20 5B  61 D8  1 FB 1507 
20 92  61 C4  102 52  21 DD  1517 f. det.  2 F8 1507 
21 12  62 C5  103 33  22 5E  Nr vector  3 7B 1507 
22 94  63 46  104 3A  23 E4  1 DA  1 7E 1504 
23 14  64 47  105 4E  24 E5  2 DE  2 FA 1504 
24 95  65 C9  106 56  25 EA  3 E0  1 78 1503 
25 96  66 CA     26 EF  4 E3  1 7C 1501 
26 16  67 CB     27 07  5 E6  1 F4 1500 
27 97  68 CC     28 8F  6 E7  2 FF 1500 
28 98  69 CE     29 10  7 EC  3 F6 1500 
29 18  70 CF     30 93  8 09  4 F3 1500 
30 99  71 D2     31 1E  9 13  1 72 1499 
31 9A  72 D4     32 A1  10 19  2 F2 1499 
32 1B  73 54     33 23  11 21  3 F7 1499 
33 9C  74 D6     34 A8  12 30  1 75 1498 
34 9D  75 68     35 2F  13 D9  2 73 1498 
35 9E  76 EB     36 32  14 DF  3 76 1498 
36 1F  77 6C     37 C0  15 63  1 71 1495 
37 A0  78 F1     38 C6  16 67  2 F5 1495 
38 A3  79 9F     39 CD  17 15  1 F1 1491 
39 A4  80 24     40 D0  18 AA  1 70 1479 
40 A6  81 27     41 D7  19 39  1 00 1465 
41 26  82 2A     42 5A  20 E2  1 77 1102 
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The finally achieved fault coverage for the proposed approach LFSR supported has been 84.2%.  

If I neglect the faults related to the input / output operations I have got 94.76% of fault coverage. 

Investigation of fault coverage concerning input/output buffers is unprofitable due to simulation 

time. There is 256 simple I/O buffers. Hence I should emulate 256 x 256 input vectors to test them. 

There are no peculiarities nor redundancies in the construction of these buffers, thus I can expect high 

fault coverage for these blocks. So testing of I/O buffers wasn’t object of my work. Usually testing  

of I/O buffers is matter of separate experiments (Chen 2001), which are not BIST based. Exist 

advanced solutions of  test intended to I/O blocks in the bibliography of  the subject (Stroud 2009), 

(Haar 2007), (Pereira 2005). Final results are presented in Table 6.3.13 below:  

 
 

Table 6.3.13:  Fault coverage. Final results 

Test program FC (%)  
 Stuck-at faults 

 

FC (%)  
 Complete list 

934 faults 883 faults 1804 faults 1603 faults 
fibonacci 49.9 52.8 33.8  37.7 
fibonacci 
(recursion) 

56.0 59.2 43.3  48.4 

random instruction order 62.7 66.4 46.8  52.3 
MM1 63.6 67.3 49.9 56.1 
MM2 64.4 68.1 51.2 57.6 
MM3 66.4 70.2 53.1 59.7 

data sensitive path      
(not completely bijective) 

72.6 76.8 62.9  70.2 

data sensitive path + 
bijective sub-sequences 

88.1 93.2 76.6  85.6 

data sensitive path + bijective  
sub-sequences + LFSR + 
additional  manipulations 

90.3 95.4 84.2 94.76 

 

An analysis of the remaining 5,24% of the faults that were not detected showed that 1.2% 

corresponded to specific fault situations – their detection requires specific values loaded in given 

registers plus specific values of status flags (i.e. zero result, carry) as a result of the execution  

of previous instructions. Such faults are difficult to detect with the automatic generation of functional 

tests. In this case simply interchanging the order of the sub-sequences turned out usually to be 

insufficient. Here slight improvement of fault coverage was achieved by a manual modification  

of the test sequence. And also these faults are not detectable regardless of the any test program, due  
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to a few kinds of logical or hardware redundancies as I have analyzed in chapter 9 about fault masking. 

A total of 4% of the faults proved to be due to the Program Counter locations, Decoder  

for control PC, CALL/RETURN stack, and CALL/RETURN stack. My testing program occupies only 

about 370 from 1024 available PC locations. Experiments with the copying of the program to other 

locations yielded results. However, it is not profitable to perform a fault simulation investigations,  

with a test program copied three times to all remaining free PC locations, because the time of such 

researches increases proportionally. In the bibliography of subject exist many exhaustive solutions  

of tests dedicated to testing PC and stack. Such solutions often are hardware based, or utilizes both 

hardware and software designed for test (Campbell 2014), (Sanchez 2011). There still remain 14 

undetected faults inside ,,SHIFTs” block, 4 in the arithmetical instructions block, and one fault  

in the logical instructions block. Further, in chapter 9 detailed analysis of these faults are carried out. 

Regarding neglected faults, 84 undetected faults are related to the Input Port connected to ,,ALU” 

multiplexer, 43 to Read/Write Strobe, and 38 to Interrupt inputs and Interrupt logic.  

The next important issue is time of the complete test sequence execution. Initially  

the maximal fault coverage had achieved by usage only 28 test vectors for earlier version  

of bijective, but not fully cyclic program without LFSR support. In this case time of execution  

of these 370 instructions 28 times is estimated at 400µs. Time of  one execution of 370 PicoBlaze 

assembler instructions can be estimated at several dozen of microseconds. For comparison, testing  

of  the PicoBlaze with a method of read back of its configuration could take about 3,5 s at the same 

equipment. My latest newest researches have revealed,  it is enough to apply exclusively one test vector 

to achieve the full fault coverage, if large percent of the sensitivity paths is activated. This has been 

assured by the last version of fully bijective test program supported by LFSR solutions. Moreover  

I have found more such test vectors which achieved 100% of achieved before fault coverage at usage  

of exclusively one vector. 
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6.3.3. Comparison of  results 

Table 6.3.14 presents a summary of the researches results from bibliography of the subject 

(Psarakis). These research results on the processors whose functionality, construction complexity or 

performance can be compared with the PicroBlaze were selected and collected in Table 6.3.14 

to compare with the results achieved by my  program intended to PicoBlaze testing. Results of these 

researches are expressed usually as coverage of injected faults into hardware of the given 

microprocessor / microcontroller.  

The most important novelty introduced hereby is a different model of injected faults. This model 

differs significantly from the conventional stack-at models widely used for testing processors  

/ microcontrollers implemented on ASIC / embedded platforms because a SEU-induced fault affects  

the logic elements implemented by the look-up tables (LUTs) in this manner, that the logic function  

is arbitrarily changed as described in details in the chapter 8.3 about fault injections. 

 

Table 6.3.14: Summary of results of researches from bibliography in comparison with PicoBlaze 

Nr Author  Tested Processor Year Fault coverage [%] 

1 Lingappan and Jha Parwan 2007 96 

2 Wegrzyn PicoBlaze 2014 95,4 stuck-at 

3 Bernardi, Sonza Intel 8051 2004 95 (stuck at 0,1) 

4 Zhang  Parwan 2013 94,8 

5 Wegrzyn PicoBlaze 2014 94,76 

6 Krstic et al. Parwan 8-bit 2002 92 

7 Shen and Abraham GL85 (8085) 1998 90 

8 Corno, Sonza Intel 8051 2002 89 RTL description 

9 Corno, Sonza Intel 8051 2002 85 gate level 

 
It is worth to notice that authors of publications compared in Table 6.3.14 mainly apply stuck-at 

fault models, while I have injected both stuck-at, and ,,SEUs in LUTs” modelling faults. Despite 

the fact that faults induced by SEU in LUTs are harder to detect, I have obtained results comparable 

to other authors of publications, which utilized only stuck – at fault model.  
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7. MicroBlaze case study 

As initial case study for my experiments MicroBlaze processor core was chosen. The first idea was 

implementation of bijective test program composed from all assembler instructions of this processor. 

The most important principle was, that all the data should be preserved, and all sensitive paths should 

be activated, similarly as in case of  the PicoBlaze test program described in chapter 5. I had written 

initial version of the MicroBlaze test program, and then I interrupted further development  

of this program because problems with evaluation of its efficiency appeared. I have described these 

problems in the next chapter. As a new case study I have chosen PicoBlaze. Then, because both these 

processor cores were dedicated those days for the same FPGA families, I decided utilize experience 

gathered at PicoBlaze researches  and to study possibilities of implementation of the MicroBlaze 

bijective program accordance to principles developed for PicoBlaze. Results of my investigations are 

presented in chapters 7.5 and 7.6. 

The MicroBlaze embedded soft-core is a pipelined reduced instruction set computer (RISC).  

The register set consists of  thirty-two 32-bit general-purpose registers, a 32-bit address bus, a Program 

Counter (PC), a Machine Status Register (MSR), an Exception Address Register (EAR), and  

an Exception Status Register (ESR). The core includes a single-issue pipeline, a data and instruction 

cache, and it supports Fast Simplex Link (FSL) or in latest version AXI Stream for 

coprocessor/peripheral interface. The hardware multiplier is (optionally) implemented in Virtex-II and 

subsequent devices. All the MicroBlaze instructions are 32 bits or 64-bit for 32-bit immediate 

arguments. The instructions can be categorised as follows: arithmetic, logical, shifts, branch, load/store 

and special. MicroBlaze uses a pipelined instruction execution. The pipeline was divided into three 

stages: fetch, decode and execute, in the case of earlier versions. Currently number of the pipeline 

stages are configurable (8 stages max). For most instructions, each stage takes one clock cycle  

to complete. Consequently, it takes at least three clock cycles latency for a specific instruction  

to complete in case of three-stage pipeline. The instruction set consists of  roughly 110 instructions.  

In the instruction test they are combined into an information-sensitive path in such a way that the result 

reflects the composite contributions of the outputs of the individual instructions executed along the data 

corruption (fault injection) path. In the other words, the test program should be arranged in such a way 

that the information written in individual bits does not disappear, but affects the final results. 
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7.1. Description of selected instructions 

According  the MicroBlaze user guide this processor uses two instruction formats: Type A and type 

B. Type A instructions have up to two source register operands and one destination register operand. 

Type B instructions have one source register and a 16-bit (or 32 bit) immediate operand. These 

instructions have a single destination register operand. Type A is used for register-register instructions. 

It contains the opcode, one destination, and two source registers. The bit map of the type A instruction 

is presented in Figure 7.1. Type B is used for register-immediate instructions. It contains the opcode, 

one destination,  one source register, and one source 16-bit immediate value. Type B instruction is  

respectively in Figure 7.2.  

 

 

Figure 7.1: The Bit map of the type A MicroBlaze instruction 

 

 

Figure 7.2: The Bit map of the type B MicroBlaze instruction 

 

In the test program MSR (Machine Status Register) is used. This register content keeps control and 

status flags, e.g. the carry flag MSR[29]. Shortened description of some instructions used in the test 

program (MicroBlaze reference guide)  is as following (see also  attached CD):  

 

Arithmetic ADD:  

    There exists four functional varieties of the instruction:  

Add      rD,  rA,  rB;   ADD 
Addc    rD,  rA,  rB;   Add with Carry 
Addk    rD,  rA,  rB;   Add and Keep Carry 
Addkc  rD,  rA,  rB;   Add with Carry and Keep Carry 
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The sum of the contents of registers rA and rB, is placed into register rD. Bit 4th of the instruction 

labeled as C (CARRY) in the Machine Status Register (MSR) is set to one for the mnemonic addc. 

Both bits are set to one for the mnemonic addkc. When bit 4 of the instruction is set to one (addc, 

addkc), the content of the carry flag (MSR[C]) affects the execution of the instruction. When bit 4 is 

cleared (add, addk), the content of the carry flag does not affect the execution of the instruction 

(providing a normal addition). 

 

Logical AND : 

And  rD, rA, rB; 

The content of register rA is ANDed with the content of register rB. The result is placed 

      into register rD. 

 

Barrel Shift Right Logical Immediate BSRLI: 

Bsrli  rD,  rA,  IMM; 

Shift the contents of register rA by IMM bits and puts the result in register rD. 

 

Move From Special Purpose Register: 

Mfs   rD,  rS; 

Copies the contents of the special purpose register rS into register rD. 

 

Store word: 

Sw  rD,  rA,  rB; 

 Stores the contents of register rD, into the word aligned memory location that results from       

 adding   the contents of registers rA and rB.  

 

Load Word: 

Lw  rD,  rA,  rB; 

Loads a word (32 bits) from the word aligned memory location that results from adding  

      the contents of registers rA and rB. The data is placed in register rD. 
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7.2. Initial MicroBlaze test program 

The first example (Wegrzyn 2007) shows how the result of an arithmetic instruction (i.e. the sum 

of the contents of two registers) and the status flags are combined. The execution of some instructions 

affects the status flags (the zero flag, carry, etc). In order to detect possible faults in the status 

information, the contents of the status register are included in the result of the currently executed 

instruction. This is normally achieved by ,,XOR-ing” the contents of the status register and  

the resulting output data or captured by other instructions, which functionality performs it. In the case 

of ,,ADD” instruction usually carry flag is combined with the result. The resulting output serves as  

the input argument for the next instruction, etc. similarly like it is for the PicoBlaze. A few instructions 

require multiple clock cycles to complete. Listing 7.1 of the test program (Wegrzyn 2007 B) checks 

the correct operation of instructions ,,ADD”, ,,ADDC”, ,,MFS” on registers R2, R3, R4.  

 
 
add  R2, R3, R4;     // R2 = R3 + R4 
mfs  R3, Rmsr;        // copy status register Rmsr to R3                                                
addc  R2, R2, R3;    //R2= R2 +R3  + carry  
 

Listing 7.1: ADD and MFS instructions testing 
 

In the Listing 7.2, block of code bellow BSRLI (Barrel Shift Right Instruction by immediate value 

(2)) is primarily tested. Shift instructions can lose information about n-LSB or n-MSB, for n-bit right or 

left shits, respectively. In order to prevent this loss the XOR operation with the original contents 

(before the shifting) is performed  to regenerate the information. 

 
and  R5, R3, R4;   //the outcome of the previous instruction is stored in R3, R4 
bsrli  R3, R5, 2; //shift logically right by the amount specified by the immediate value (2) 
xor  R2, R3, R5;  //combine the outcome before shifts and after shifts by XOR 
 

Listing 7.2: BSRLI instruction testing 
 

In some cases, current register contents are stored into a memory in order to prevent information 

loss which can occurs when the next instruction is executed on the same register. For example  

in the Listing 7.3 Store Word (sw) and Load Word (lw) instructions are tested. Contents of register R2 

is stored into memory location which results from adding the contents of registers R6 and R7, and then 

loaded back, but to the register R3 from the same address.  
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sw  R2,  R6,  R7;  // load the result (stored in R2) into memory. Address = R6 +R7 
and  R2,  R2,  R8;  // R2 = R2 and R8                              
lw   R3,  R6,  R7;      // load the previous result to R3 from address = R6 +R7 
add  R2,  R2, R3;    // combine the outcome of ,,AND” operation with the previous   
                                   // result and store into R2 
 

Listing 7.3: SW and LW instructions testing 
 

In the above program individual assembler instructions and blocks of instructions are bonded  

by ,,XOR” instruction. The attempt of composition of the whole bijective program with architecture  

of one code block has been taken up in this way. Assurance bijective property of this program 

by ,,XORing” data and status flags turned out to be a difficult task. There were too many overlapping 

sub-problems, related to all the status flags, results with fixed values reminded still on the same bits, 

branch instruction execution etc. 

7.3. Evaluation of the MicroBlaze fault coverage 

In order to evaluate the fault coverage of the processor-core test some means of faults injecting  

needs to be made available (Wegrzyn 2007). Since the HDL source code of the MicroBlaze embedded 

soft core is not available to ordinary users, software fault-injection into the processor core in similar 

way as for PicoBlaze is not feasible. Speculations about breaking the CRC protection  

of the configuration file and changing the values of individual bits could lead to serious damage  

of the FPGA circuit, and they are  therefore not  recommended. 

These experiments were carried out using the Spartan3E board with the MicroBlaze implemented 

on this board. MicroBlaze test program was executed on the Spartan 3E board operating at main clock 

speed of 50 MHz. Input test vectors were generated on PC and sent to Spartan 3E GPIO A  from PC 

serial port to ensure controllability. Output results were transmitted back from Spartan 3E GPIO B  

to PC via parallel PC port. Table 7.1 presents number of generated test vectors and percent coverage  

of full vector range. 
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Table 7.1: Time of experiments vs percentage coverage of the test 
 

Number 

of applied test 

vectors 

 

Simulation time 

[h] 

 

Coverage of full vector range 

[%] 

 

Starting vector 

55287360 64,8 1,29 0x00000000 

58129920 68,1 1,35 0x000FFFFF 

70139520 82,2 1,633 0x7FFFFFFF 

 
 

 Fault injection was realized by additional ,,XOR” instructions inserted experimentally in a few 

different positions in the test program. This ,,XOR” alters the intermittent result according  

to the principle as stated in Figure 7.3. Registers R3 and R4 before execution of Instruction one are 

,,XORed” with mask registers RXor and RXor1 respectively. Before execution of Instruction 2, register 

R2 is ,,XORed” with the mask register RXor 2. The correct logical values can be disturbed at least once  

in each bit of the intermittent results in this way. The maximum reasonable number of ,,XOR” 

instructions inserted is 39. The entire test program consists of approximately 110 instructions. It should 

be noted that only about 70% of these instructions directly concerns the data. The remaining 30%  

are instructions such as ,,Branches”, instructions for reading state registers, etc. 

According to this methodology, I provided the possibility of injecting 39 faults simultaneously or 

every fault one by one. When I injected all the possible 39 faults simultaneously, achieved fault 

coverage was 100% as expected. In the first experiment I proceed in such a way, that faults  

are injected into places where I expect appearance of data, in accordance with the selected start vector. 

I inserted 39 ,,XOR mask” after / before instructions which perform operations on data. First, mask  

is selected in order of bit corruption  and a chosen bit position from the range from 0 to 31 is  affected.  

Next testing vectors are generated in loop: current_vector + 1. Obviously, it is not  effective method  

of generation input patterns for 32-bit processor. Generation of a test pattern with LFSR and 

then signature analyzes should be applied instead. However due to impossibility of evaluation  

of the test program by hardware fault injection, signature analyzes were not implemented.  

This experiment has shown how long time is required to obtain on average about 1,5% of results, 

where the complete set of results is 232 output vectors. Finally I observe if this fault was detected using 

C script. While faults were injected one by one, detect-ability depended strongly from position  

of injected faults and chosen input data. The results are presented in Table 7.2.  
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For comparison an another experiment was carried out, where the fault positions of injected faults 

were drown randomly using C functions rand(). As before, in the first random experiment I inserted 39 

,,XOR mask” after / before instructions which perform operations on data. First  mask in order  

of inserting is selected an a bit position from the range from 0 to 31 is drawn randomly. Exclusively  

on this bit position a fault was injected by the ,,XOR mask”. Then the first, second and third series  

of test vectors were executed, and finally I observed using C script if this fault was detected.  

Next the procedure of randomly fault injection  is repeated for all reminded ,,XOR masks” one by one, 

once for the first argument register (in summary 39 faults), then for the second argument register (39 

faults), and eventually for both these registers (in summary 2 x 39 faults). In this case two faults were 

injected concurrently in the test program. The results are presented in Table 7.3 below. 

In the second random experiment I inserted 39 ,,XOR mask” identically as in the first experiment. 

This experiment differs from the first one in a number of injected faults. Faults were drawn randomly 

without repetitions five times. So complete number of faults were 195 for every register, and 390  

in the next experiment were faults were injected in both argument register one fault. This gives two 

faults concurrently. The results of second random experiment are presented in  Table 7.4. 

These experiments should be treated only as an overview or illustrative, due to the relatively very 

small number of test vectors used and the extremely long experiment time. Here were applied only 

three series of  testing vectors for reason of above limitation. Tables 7.2, 7.3, 7.4 present the fault 

coverage  for each of these series achieved at different starting test vectors. If a fault is not detected by 

any series of vectors, this fault is obviously treated as not detected. For instance, in the best case, there 

were 4 such a single faults on ,,XOR mask” positions 17, 26, 30, 37. It gives 89,7% of fault coverage. 

Otherwise a fault is detected if it is detected by any of test vector from any of test series.  

Testing time of MicroBlaze with the bijective test program is estimated at 8 µs for one test vector. 

MicroBlaze can be clocked from 100 MHz to 700 MHz in a typical case. Execution of one instruction 

may require one clock cycle. Only a few instructions require multiple clock cycles. Exhaustive  

testing accordance to bijective methodology of  this processor requires composition of the program  

with approximately 800 assembler instructions. 
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Figure 7.3: The fault injection methodology 

 
Starting vectors for mentioned above testing series are following:  

 

Series I: 55287360  testing vectors, Starting vector: 0x00000000 

Series II:  58129920 testing vectors Starting vector:0x000FFFFF 

Series III:  70139520 testing vectors Starting vector: 0x7FFFFFFF 
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Table 7.2: The fault coverage for injected faults in selected bit-locations 

Affected 
registers 

Number of injected faults at 
drown of bits to affect 

Fault coverage for  
Series I of tests 

Fault coverage for  
Series II of tests 

Fault coverage for  
Series III of tests 

1 (first) 39 32/39  (82%) 33/39 (84,6%) 28/39 (71,8%) 
2 (both) 78 71/78  (91%) 64/78 (82%) 66/78 (84,6%) 
1 (send) 39 35/39  (89,7%) 29/39 (74%) 34/39 (87%) 
 

 

Table 7.3: The results of first random experiment 

Affected 
registers 

Number of injected faults at 
drown of bits to affect 

Fault coverage for  
Series I of tests 

Fault coverage for  
Series II of tests 

Fault coverage for  
Series III of tests 

1 (first) 39 21/39 (53,8%) 24/39 (61,5%) 18/39 (46%) 
2 (both) 78 52/78 (66,7%) 47/78 (60%) 48/78 (61,5%) 
1 
(second) 

39 25/39 (64%) 17/39 (43,6%) 29/39 (74%) 

 
 
 

Table 7.4: The results of second random experiment 
 

Affected 
registers 

Number of injected faults in 
all possible bit locations 

Fault coverage for  
Series I of tests 

Fault coverage for  
Series II of tests 

Fault coverage for  
Series III of tests 

1 195   (5 x 39) 109/195 (55,9%) 122/195 (62,6%) 99/195 (50,7%) 
2 390   (10 x 78) 269/390 (69%) 249/390 (64%) 245/390 (62,8%) 
1 195   (5 x 39) 141/195 (72,3%) 91/195 (47%) 148/195 (75,9%) 
 
 

It is obvious, that exhaustive processor testing or evaluation of the test program according  

to the above methodology is hardly feasible (for 32-bit processor there is a huge number  

of 232   = 4’294’967’296  test vectors). It should be noted, that these fault injected by ,,XORing”  do not 

reflect suitable the essence SEU phenomena. All my experiments and discussions about MicroBlaze 

testing can be treated as merely initial trials. That times, an open question remained: how well  

the injected faults correspond to the actual SEU -induced faults? In order to resolve this dilemma,  

I implemented a processor test for the Xilinx PicoBlaze processor core for which the VHDL 

description of the core is available. Since the PicoBlaze processor core is targeted for FPGA 

implementation, its VHDL description consists of low-level FPGA functional blocks, LUTs, 

multiplexers, flip-flops and RAM. These functional blocks are directly mapped to the FPGA resources. 
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7.4. Summary of the results of researches from bibliography 

Table 7.5 presents a summary of the results from bibliography on the subject of microprocessor 

testing (Psarakis 2010). The researches on the processors whose functionality, construction complexity 

or performance can be compared with the MicroBlaze were selected. Results of these researches are 

expressed usually as coverage of injected faults into hardware of given microprocessor / micro-

controller in order to compare with achievements of my method. Fault coverage levels can be 

compared, however, authors usually apply stuck-at fault model, which also does not correspond 

suitable to SEU phenomena. 

 

Table 7.5: Summary of the results of researches from bibliography in comparison with MicroBlaze 

Nr Author  Tested Processor Year Fault 
coverage [%] 

 
Wegrzyn MicroBlaze 2007 

91 XOR 
injected faults 

1 Gurumurthy, Vasudevan, and    
Abraham  

OpenRISC 1200 2006 82 

2 Psarakis, Gizopolous OpenRiSC 2010 90 

3 

Prabhat Mishra  DLX 2004 

100, 
insignificant 
number of faults 
91fun, 177pipelin 

4 Wegrzyn MicroBlaze 2007 91,1 

5 Bernardi, Sonza MiniMips 32bit 5pipe 2014 92.67 

6 Bernardi, Sonza OpenRISC 2014 92,7 

7 
Wen, Wang, and Cheng 

OpenRISC1200  
(controller and ALU only) 

2006 93 

8 
Gizopoulos et al. 

MiniMIPS,   
OpenRISC 

2008 93 

9 Chen et al ARM4 core 2007 94 

10 Chen, Dey The picoJava-II 32bit 2001  95 

11 
Batcher Papachristou 

Different CPUs,  
DLX (deluxe RISC),  
 

1999 95 
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Nr Author  Tested Processor Year Fault 
coverage [%] 

12 
Chen et al. 

Xtensa (ALU only) 
32-bit RISC conf./synthes 

2003 95 

13 
Bernardi, Sonza SPARC Leon I 2004 

95  
(stack at 0,1) 

14 Kranitis et al Plasma, MIPS R3000 2005 95  

15 Psarakis, Gizopolous MiniMips 2010 95 

16 
Riefert, Sonza 

MIPS-like 5pipelin  
stg. 

2016 95 

18 Zhang 2013 OpenRISC 2013 95,5 

19 Zhou, Wunderlich 32bit RISC 2006 96 

20 Tai-Hua Lu, Chung-Ho Chen ARMv4 2011 97 

 

7.5. Construction of bijective blocks for MicroBlaze testing 

Utilizing gathered knowledge during PicoBlaze testing, it is easy to design bijective program blocks 

to arithmetic, logic and other instruction testing. Despite the fact that the evaluation of the MicroBlaze 

test program proved not to be feasible, one can expect similar results as in case of the PicoBlaze 

constructing its test program accordance to principles developed for PicoBlaze testing. Examples 

bellow present bijective program blocks to ADDCY, and SUBCY instruction testing (See Listings 

7.5.1, 7.5.2, 7.5.3, 7.5.4):    

 

16z:  JUMP   comp;   subcy test  
ds:   SUBCY  s7,  01;  s7->s7  
             JUMP   su;  
comp:  COMPARE s7,  80;  subcy sX, sY test  
             JUMP   nc,  ds; 
su:        SUBCY  s7,  87;  
 
Listing 7.5.1: Bijective block to Subtraction with carry testing written in PicoBlaze assembler 
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  Lwi r8,   r8,  4; load 4 into r8 register (r8+4) 
  Lwi r9,  r9,   1; load 1 into r9 register (r9+1) 
  Lwi ra,  ra,   0x70000001;  load  0x70000001 into ra register 
  Rsubi r6,  r8,   0; generation of signed -4 in r6 register 
  Mfs r4,  0;   copy pc in r4 
  nop; 
16z:   brlid r4,   4;  pc = pc+4 ; jump to cp compare 
 ds:    subc r7,   r9,  r7 
          mfs r4,   0;  pc in r4 
          brlid r4,   3;  pc = pc+3 
cp:     andi r5,  r7,  0x00000001; 
  bne r5,  s6;  
su:  subic r7,  ra,  r7; 

Listing 7.5.2: Adequate code written in MicroBlaze assembler 

 

  LOAD            sD,  s7; register change  
17z: JUMP            cp;  addcy test  
bcy: ADDCY         sd,  88;  sD → sD  
  JUMP            18z;  
cp: COMPARE sd,  80;  
  JUMP            nc,  bcy;  
adcy: ADDCY         sd,  87; 
18z: ----next block 
 
Listing 7.5.3: Bijective block to ADD with carry testing written in PicoBlaze assembler  

 
  Lwi, r7,  r7,  5; load 5 into r7 register 
          Rsubi r6,  r7,  0; generation of signed -5 in r6 register 
          Lwi rd,  r7,  0; change of register s7 into D 
          Mfs r4,  0;   pc in r4 
        nop; 
17z:   brlid r4,  4;   pc = pc+4, (17z) to cp compare 
bcy:   addic rd,  rd,  0x80000008;   add witth carry immediate value  
          mfs r3,  rmsr; contains of register msr with carry bit is placed into r3 register  
          nop;      for reason of pipeline stall behavior   
          brlid r3,  4;   jump to pc =pc + 4 to 18z 
cp:     andi r5,  rd,  0x00000001; 
          bne r5,  s6;  branch if r5 !=0 to pc -5 (r6)    
          addic sd,  sd,  0x80000007;  add with carry immediate value     
18z:----next block 
 
Listing 7.5.4: Adequate code written in MicroBlaze assembler 
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7.6. Application of LFSR to construction of the MicroBlaze bijective blocks 

In case of MicroBlaze SHIFT instructions testing, the same problem; lack of a full cycle appeared, 

as in case of testing PicoBlaze’s SHIFTs. For this reason I have redesigned bijective blocks  

for MicroBlaze ,,SHIFTs” testing utilizing the idea of Linear Feedback Shift Register (LFSR), applied 

before to solve the problem at PicoBlaze ,,SHIFTs” testing. Architecture and principles of operation  

of the MicroBlaze ,,SHIFTs” are similar to PicoBlaze with slight differences as follows. There are nine 

SHIFT instructions. Six of them have defined number of bits it shifts trough, determined by second 

input operand register. Remained three SHIFT instructions can shift trough only one bit at one 

execution. Functionality of few examples of SHIFTs and other instructions utilized in block of program 

are described as in the User Guide of MicroBlaze. There isn't such instruction as PicoBlaze ,,TEST”. 

Instead fcomp.eq is applied to detect occurrence of logical ,,1” on the place determined by  

the characteristic polynomial of LFSR, which guarantees that a testing vectors generated by the LFSR 

will form a full cycle. This characteristic polynomial which forms full cycle for  232 of test vectors is 

given by the formula:  

X32 + X22 + X2 + X1 + 1 

 

Lwi r8,  r8,  0x1;  load 0x1 into r8 register (r8+1) 
Lwi r9,  r9,   0x100; 
Lwi rA,  rA,  0x200000; 
Lwi rB,  rB,  0x80000000; 
Andi r1F,  rD,    0x80000000; 
Andi r1E,  rD,   0x200000; 
Andi r1D,  rD,   0x100; 
Andi r1C,  0x1;  
fcmp.eq   r7,  r1F,   rB; Floating point comparison. If content of r1F and rA equal r7 = 1, otherwise r7 = 0  
fcmp.eq   r6, r1E,  rA; 
fcmp.eq   r5, r1D, r9; 
fcmp.eq   r4, r1C, r8; 
xor    r6, r6,  r7;  
xor    r5, r5,  r6; 
xor    r4, r4,  r5; 
bsrl1    r4, r4,  0x1F; 
SRL    rD,  rD; 
Or       rD,  r3,   r4; 
-------Next program block------------ 

 

Listing 7.6.1:  Example of program block LFSR based to Shift Right Logical test 
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Lwi rB,    rB, 0x5; load 0x5 into rB register (rB+1) 
bsll   rD,  rA, rB;   Barrel Shift Left Logical. Content of  rA is shifted by number specified in rB  
Lwi    r8,    r8, 0x1; 
Lwi    r9,    r9, 0x100; 
Lwi    rA,   rA, 0x200000; 
Lwi    rB,   rB, 0x80000000; 
fcmp.eq r7, rD,  rB; Floating point comparison. If content of rD and rB equal r7 = 1 otherwise r7 = 0 
fcmp.eq  r6, rD,  rA; 
fcmp.eq  r5, rD,  r9; 
fcmp.eq  r4, rD,  r8; 
xor r6, r6, r7;  
xor   r5, r5, r6; 
xor    r4, r4, r5; 
BSLLI rD, rD, 0x1; Barrel shift logical left by immediate value 0x1 
Or   rD, rD, r4; 
--------Next program block-------- 

 

Listing 7.6.2: Example of program block LFSR based to Barrel Shift Left Logical test 

 

Description of the instructions used in above examples is as follows:  

Fcmp.eq Floating-Point Comparison Equal:  

 

Fcmp.eq  rD,  rA,  rB Equal floating-point comparison 

 

 

 

 

LWI (Load Word Immediate):  

 

Lwi  rD,  rA, IMM 

Loads a word (32 bits) from the word aligned memory location that results from adding the 

contents of register rA and the value IMM, sign-extended to 32 bits. The data is placed in register rD. 
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SRL (Shift Right Logical) : 

Srl   rD, rA 

Shifts logically the contents of register rA, one bit to the right, and places the result in rD. A zero is 

shifted in the shift chain and placed in the most significant bit of rD. The least significant bit coming 

out of the shift chain is placed in the Carry flag.  

 

rD[0]      ← 0  

rD[1:31] ← rA[0:30] 

Listing 7.6.3: SRL pseudocode 

 

BSLL (Barrel Shift Left Logical): 

 

Bsll   rD, rA,  rB 

Shifts the contents of register rA by the amount specified in register rB and puts the result  

in register rD. The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done 

to the left. The mnemonics bsrl and bsra clear the S bit and the shift is done to the right.  

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed  

is Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is Logical. 

 

 

Listing 7.6.4: BSLL pseudocode 
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      BSLLI (Barrel Shift Left Logical Immediate): 

 

Bslli   rD,  rA,  IMM 

The first three instructions shift the contents of register rA by the amount specified by IMM and put 

the result in register rD. The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is 

done to the left. The mnemonics bsrl and bsra clear the S bit and the shift is done to the right. 

The mnemonics bsrl and bsll clear the T bit and the shift performed is Logical. 

 

Listing 7.6.5: BSLLI Pseudocode 

 

In conclusion, the proposed by me fault injection method  by ,,XORing” do not reflect suitable  

the essence of SEU phenomena. Other authors usually apply stuck-at fault model too, which also is 

completely inadequate to SEU phenomena. I was performing such experiments rather in order  

to estimate their time and to consider experimental set of equipment. There exist possibility  

of evaluation MicroBlaze test program using SecretBlaze processor core, because SecretBlaze 

functionality is almost the same as MicroBlaze. But it would take much more time as in case  

of PicoBlaze. Thus, all my experiments and discussions about MicroBlaze test program evaluation can 

be treated as merely initial trials. 

Basic principles of my solution can be utilized for testing other microprocessors. It is one  

of the main benefits of my method. There is no reason to expect significantly different test results  

for other processor cores dedicated for FPGA. When any processor is implemented in the same FPGA 

family, its structural level VHDL description looks very similar for any model of such processor, 

independently from its high level architecture. Every processor core will be decomposed to the same 

basic low level primitives, and in every case logical functions implemented by the same LUTs will 

looks similar and will meet the same logical redundancies described in Table 9.2. 
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8.  Evaluation of the test program 

8.1. Evaluation scheme 

When selecting the processor core for the case study, an important question is how the developed 

solution actually will be evaluated? In order to determine the fault coverage of SEU-induced faults 

some means of fault injection must be provided. As an alternative to the statistics-based radiation tests  

(Lesea 2005) I am looking for a simulation-based solution. Simulation-based fault injection is made 

difficult by the lack of commercial tools that would allow the user to alter the FPGA configuration 

once it is translated from the HDL source into the target FPGA platform. However, one possible 

solution is to insert faults prior to the test program’s execution. This approach is general (i.e. it can be 

applied for different processor cores), but it also has some limitations and requires rather a lot  

of manual interference. Alternatively, the HDL description can be used to model the system and 

simulate its performance as well as the faults within the system. 

The same system can be described in HDL in a number of different ways. Three extreme cases are: 

1) high-level algorithmic descriptions (irrespective of the target system’s structure), 2) RTL (register 

transfer logic) a level description in which functionality is described at the level of operations among 

the actual system components (i.e. registers), 3) structural VHDL – where gate level description  

of the module is given. A high-level description of a core does not provide enough details for realistic 

HDL modeling of the SEU-induced faults. On the other hand, soft-processors like the Xilinx PicoBlaze 

are developed for FPGA implementation and their structural description is given. 

The basic HDL entities in a description of the Xilinx PicoBlaze processor core are RAMs, LUTs, 

multiplexers and flip-flops. SEU-induced faults can alter the contents of RAMs, LUTs or flip-flops or 

they can modify the connections between these functional blocks. RAM and flip-flop content changes 

are of a transient nature and can be modified (i.e. restored to a fault-free value) during normal system 

operation. These faults may only be detected with an online functional test, specific to the target 
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application and hence are not the subject of this investigation. My goal is to detect permanent faults  

in the configuration of the processor core.  

According to (Wegrzyn 2014 A) PicoBlaze HDL descriptions reflect the FPGA structure in order  

to efficiently use the FPGA resources. This allows precise modeling of the faults and their automated 

fault injection. For each simulated fault, an appropriate HDL file is generated. All the fault injection 

campaign and analyze of their effects is perform by a Perl script in an automatic way. The faults  

in an HDL description of the processor are simulated by modifying the individual functional blocks. 

For each functional block a HDL models represent behavior of SEU. The HDL model should actually 

reflect the change of configuration as a consequence of the SEU effect. All the details regarding  

functionality modification  of individual blocks  by SEUs are described in further chapters. 

 

I modeled the faults as described in (Dutton 2009) and injected them into the VHDL description  

of the processor core. The following types of LUT faults were modeled: 

 
 faults in the configuration memory holding the values of the LUT, 
 faults affecting the input signals (i.e.  address decode of the LUT), 
 faults affecting the LUT outputs. 

 
 

8.2.  Environment composition for experiments 

The developed experiments are targeted at testing fault susceptibility of application programs 

running on a micro-processor implemented within FPGA. The general idea is to use appropriate 

microprocessor simulator which accepts its specification in HDL language, correlates it with  

the targeted FPGA, performs simulations of executing provided programs (in assembler) and allows 

analyzing the behavior of the tested application (e.g. program results) in this environment. These 

assumptions are performed by two simulators: Cadence NC VHDL and Mentor Graphics ModelSim.  
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8.3. Proposed technique for dedicated FPGAs fault injection 

The generation of the fault descriptions was implemented as a Perl script (Wegrzyn 2014 A), 

(Wegrzyn 2009). All the instances of LUTs contained in functional blocks of the processor are 

described in the VHDL code. For each LUT instance its initialization parameter is investigated and  

the list of the initialization parameters describing all the SEU-induced faults as well as all the stuck-at 

faults at the LUT inputs and outputs are generated. For some LUT instances it is possible that a single 

bit change of a LUT content manifests itself as a stuck-at fault. In such a case a duplicated stuck-at 

fault description is excluded. In  a similar way the stuck-at faults at the LUT inputs as well as the stuck-

at faults at the LUT output can also be modelled by modifying the contents of the LUT configuration. 

In such a case a duplicated stuck-at fault description is omitted. 

An example (Wegrzyn 2014 A) of a modelled fault is shown in Figure 8.1. The VHDL description 

of a LUT implementing a circuit generating an internal processor signal move-group is shown in Figure 

8.1a. and the corresponding truth table in Figure 8.1c. The LUT input signals I0-I3 relate  

to the specified bits (in brackets) of the instruction code (in the instruction register). The implemented 

logic function is defined by the initialization parameter (INIT) assumed as X"7400", i.e. hexadecimal 

code related to a vector comprising bits of concatenated columns O(I3 = 1) and O(I3 = 0). The most 

significant bits of O(I3 = 1) and O(I3 = 0) bytes relate to the last row of the table. The SEU-induced 

fault of a LUT typically manifests itself as a change of one bit of the LUT, thus modifying the Boolean 

function it implements. For further explanation, to a LUT inputs (denoted from I0 to I3) may be 

applied: an bit of the instruction op-code, value of any bit from register, a bit of immediate data value, 

any intermediate  signal of processor, constant value, etc.    
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c) 

Figure 8.1: Fault effect related to the change of one bit (X”7400”) → X”7480”) in LUT4 

                    a)VHDL description of fault-free four-input circuit. b) VHDL description  

                          of four-input circuit with a fault. c) truth tables for fault free and faulty LUT 

 

 Let us assume that the 8th bit of the LUT column O(I3 = 0) has been changed (truth table in Figure 

8.1c with marked false value as bold underlined 1). This fault can be modelled in VHDL description 

changing the initialization parameter (INIT) from X"7400" to X"7480". Similarly, I can model stuck-at 

faults on inputs or outputs. For example a stuck-at-1 fault at input I3 in the considered LUT is modelled 

by INIT = X"7474", i.e. column O(I3 = 0) assumes the value of column O(I3 = 1). Stuck-at-1 fault  

at output O is modelled by INIT = X"FFFF" (all LUT memory entries equal to 1). The considered LUT 
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(LUT4 in VHDL description) in Figure 8.1a. relates to the decoder for the control of the program 

counter and CALL/RETURN stack. Having analysed the effect of the simulated fault  

(INIT = X"7480") I have found that it resulted in erroneous decoding of SUB or SUBCY instructions  

as RETURN or JUMP with unknown address locations, so the program did not terminate correctly. 

Other example of a modeled fault is shown in Figure 8.2. The HDL description of a LUT 

implementing a three-input OR gate is shown in Figure 8.2a. and the corresponding truth table,  

in Figure 8.2c. The SEU-induced fault of a LUT typically manifests itself as a change of one bit  

of the LUT, thus modifying the Boolean function it implements. Let us assume that the most significant 

bit of the LUT has been changed, as shown in Figure 8.2d. The fault can be modeled by changing  

the initialization parameter (INIT), as shown in Figure 8.2b. 

 

 

            (a) HDL description of fault-free three-input OR gate, (b) most significant bit  
                   of  the LUT is changed (X"FE" → X"7E") 

Figure 8.2: Fault effect related to the change of one bit (X”FE”) → X”7E”) in LUT3 
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 In a similar way the stuck-at faults at the LUT inputs as well as the stuck-at faults at the LUT 

output can also be modeled by modifying the contents of the LUT configuration. An example  

of a stuck-at-0 fault of input I2 is depicted in Figure 8.3. The contents of the LUT in Figure 8.3a. are 

changed by initializing the parameter (INIT), as shown in Figure 8.3b. The truth tables corresponding 

to the fault-free LUT and  the stuck-at-0 fault of input I2 are shown in Figure 8.3c. and d. 

 

 

Figure 8.3: Fault effect related to the change of one bit (X”FE”) → X”EE”) in LUT3 

                          a) HDL description of fault-free three-input OR gate, (b) most significant      

                          bit of the LUT ischanged (X"FE" → X"EE"). c) truth table for fault free  

                          d) truth table for faulty LUT 
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8.4. Fault injection implementation 

At the time when I started my experiments, no tool for fault injection, integrated with ISE or 

ModelSim existed. Hence, I took up the challenge of development a novel environment  

for injecting faults on the basis of CADENCE software tools. The fault injection was implemented 

in two steps: 

 

 a description of the faults, 

 an HDL simulation of the system with generated faults. 

 

All fault descriptions had been placed in a file of faults, and then read by the Perl script. The set  

of faults is developed in this way, that content of LUT is altered only on one bit or on many bits 

when stuck at fault is injected. This lead to slight modification of a logical function realized by 

LUT. Such faults are more difficult to test. During fault simulation the generated ,,faulty” 

initialization parameters were applied one by one to the HDL description of the Xilinx PicoBlaze 

processor core (Wegrzyn 2009), (Wegrzyn 2014 A). A modified HDL description was used, 

running the test sequence with different input vectors and the results were recorded for a later 

offline evaluation. A Cadence NC VHDL simulator running on a Sun Fire V240 server and then i7 

core Intel was used for the HDL.  An example of  Cadence tool window is presented in Figure 8.4.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4: NC Launch Cadence tool 
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Taking into account a large number of considered faults I used special script which automates 

the processes of loading new configuration, running the application and storing results. Having injected 

the specified number of fault, I compared the results with a benchmark patterns using an additional 

script which qualified fault effects and generated summarized statistics. 

I needed to modify the original VHDL description to enable the Perl script fault injection.  

The PicoBlaze hardware is generated using VHDL loops ,,for” which create more instances of the same 

sub-circuits (most loops replicate 8 times bit slices of some logical blocks). To make accessible  

all these instances to the fault injector, I have ,,unrolled” all ,,for” loops (explicit code blocks 

embedded in VHDL description). The unrolled VHDL description results in about 3000 lines of code. 

In this way the Perl script has direct access to every line of the hardware description. The fault injection  

is implemented by reading line by line of this unrolled VHDL description by the Perl script. The script 

was  looking for proper strings (description of INIT parameters) in the code and then changes values  

of these parameters. After every change was completed, simulation is started by the same script.  

Figure 8.5 presents execution of the Perl script to fault injection in a linux terminal.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5: Execution of the Perl script in a linux terminal 
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8.4.1. Description of the PicoBlaze structural VHDL and scripts programs 

 

It is also possible to trace effects of individual fault injection even on the signal levels inside 

selected internal logic circuits, e.g. an output of some flip-flop. For the PicoBlaze processor instance 

I have identified 1804 single bit faults related to used LUTs. The Xilinx PicoBlaze processor is a small 

8-bit microprocessor, it has 1K of program instructions, sixteen 8-bit registers, 256 input and 256 

output ports, a 64-byte internal scratchpad RAM and a 31-location stack. The original VHDL 

description of the processor core consists of about 1500 lines of code. 

 In the VHDL description I can distinguish 14 modules, I have placed functions of these modules  

in Table 8.1, related VHDL description lines (beyond these lines there are some initialization, 

comments and control lines) and the number of functional FPGA elements used in these modules (CLB 

– logical blocks, LUT– configuration tables, FF – flip-flops, MUX – multiplexers and XOR circuits). 

The presented parameters give some view on the PicoBlaze microprocessor complexity. Detect-ability 

of faults inside of particular blocks for the bijective program with LFSR solution is presented in Table 

8.2. Result of merely  84 undetected faults has been achieved in the case when I had neglected all  

the faults related to I/O ports. So only 1603 among injected faults were taken into consideration.  
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Table 8.1:  Detect-ability of faults inside of particular blocks of PicoBlaze. Bijective merely program 

PicoBlaze block 
name 

# lines # CLB # LUTs # Injected 
faults 

# Detected 
faults 

# Undetected 
faults 

Basic control 305 - 326 1 1 2 2 0 

Interrupt logic 343- 397 2 3 47 4 43 

Dec. control PC 

CALL/RETURN 

stack 

419 - 468 3 6 104 67 37 

ZERO/CARRY 

flags 
484 - 630 6 11 179 140 39 

Program 

Counter 
698 - 948 10 20 320 243 77 

Register bank 

and second 

operand select. 

1208 - 1467 5 10 157 155 2 

Memory storing 

function 
1493 – 1508 5 2 35 30 5 

Logical op. 1718 - 1861 5 9 233 225 8 

Shift/ Rotate op. 1888 - 2079 6 11 176 148 28 

Arithmetical op. 2017 - 2396 6 11 156 150 6 

ALU MUX 2418 - 2641 9 17 217 133 84 in/out 

R/W strobes 2674 - 2691 2 3 52 9 43 

CALL/RETURN 

stack control 
2964 - 3075 6 5 126 66 60 

SUM  73 115 1804 1372 432 
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Table 8.2:  Detect-ability of faults inside of particular blocks of PicoBlaze. 

Bijective program + LFSR solution 

PicoBlaze 
 Block name 

      # lines # CLB 
# 
LUTs 

# Injected 
faults 

# Detected 
faults 

# Undetected 
faults 

Basic control 305 - 326 1 1 2 2 0 

Interrupt logic 343 - 392 2 3 47 9 38 

Dec.control  PC  
CALL/RETURN   
stack 

414 - 463 3 6 104 67 37 

ZERO/CARRY  
flags 

479 - 625 6 11 179 147 32 

PC 693 - 944 10 20 320 259/309 
61(for LFSR) 

or 11( PC 
extended) 

Register bank/ 
second and operand 

selection 
1208 - 1467 5 10 157 157 0 

Memory storing 
function 

1493 - 1508 5 2 35 35 0 

Logical op. 1713 - 1856 5 9 233 232 1 

Shif /Rotate op. 1888 - 2079 6 11 176 162 14 

Arithmetical op. 2107 - 2396 6 11 156 152 4 

ALU MUX 2418 - 2641 9 17 217 133 84 (in/out) 

R/W strobes 2674 - 2691 2 3 52 9 43 

CALL/RETURN 
stack control 2964 - 3075 6 5 126 66/104 

60 (for LFSR) 
or  22 (stack 

extended) 

SUM 
 73 115 1804 

1427/ 
1518 

286/84 
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8.4.2.  Description of auxiliary scripts 

 

After simulation on CADENCE NC VHDL tool I have obtained, the output file of 1804 x 256 

results for every 256 input test vectors for every consecutive of 1804 injected faults. The file looks  

as in example in Figure below. It can be noticed, that columns of order and results numbers are 

separated by the line of description of every injected fault. At beginning the name of a LUT Xilinx 

primitive is placed, then a line number where a fault is injected in the PicoBlaze VHDL description, 

and finally an example EAAA => EEAA   gives us information, that INIT parameter, which determines 

logical function of LUT4 Look-up table is changed on one bit position A = 1010 into E = 1110.  

 

LUT4:382:EAAA => EEAA 

00   05 

01   06 

02   07 

03   08 

…… 

…… 

FF   04 

LUT4:382:EAAA => E2AA 

00   05 

01   06 

02   07 

…… 

…… 

FE   03 

FF   04 

 

The reference file of 256 results for 256 input test vectors has been generated by execution the test 

program on the correctly operating PicoBlaze. The test program is written in PicoBlaze assembler, and 

then placed together with starting input vector in a ROM memory dedicated for the PicoBlaze 

processor. Next input vectors are generated in a loop and the test program is executed  256 times, every 

time with a different test vector. The program is executed on ModelSim simulation tool. Such  
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the VHDL description in dedicated to Xilinx FPGAs. The text file of output results is generated  

by proper functions of VHDL.  

A need to check the bijective property of these results appears, and next to calculate  

detect-ability of test program. For this purpose several script-programs were developed. The first  

of them checks exclusively if any of results is not repeated in the result vector column. It is lead  

on fault-free output result file obtained from simulations of test program with the ModelSim simulator. 

This is the file of exclusively 256 reference results. Figure 8.6 presents the interface of the ModelSim.  

 

 

 

Figure 8.6: The ModelSim interface 

 

The second script program is written for calculation of the result fault coverage of the test 

program. It works in the following way; compare 1804 times the reference fault-free result file with 

the output  file of 1804 x 256 results (lines as in example above) obtained from the CADENCE 

simulator. If there is one or more differences on any resultant number, a fault is detected and a fault 

counter is increased by 1. The script cuts the  headers lines of fault description among every next 

comparison  as in example  (LUT4 : 382 : EAAA => EEAA)  -line of the fault description.  
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Other script programs have been written in order to investigate different optimization strategies 

(see Section 6). This program is composed of three blocks. The first one reads a reference file  and  

the file after VHDL simulation on CADENCE with injected consecutively faults, and  fills a two 

dimensional array of detected and undetected faults and test vectors which detected a specified fault 

(vtab[f][i], where f is a fault number from the range from 0 to 1803 and ,,i” is a number of test vector 

from range 0 to 255). A sum of vectors, which detected every fault is calculated in a next loop for every 

individual fault. Finally faults are sorted and printed to resultant file with the lowest-order faults first. 

The program prints out on file headers describing these the hardest to detect faults according  

to the following example:  

 

,,Nr of fault”     f. description: LUT4:382:EAAA => EEAA,   ,, vector which detected the fault” 

,,Nr of fault”     f. description: LUT4:382:EAAA => FAAA,  ,, vector which detected the fault” 

… 

,,Nr of fault”     f. description: LUT4:382:EAAA => CAAA,   ,, vector which detected the fault” 

 

As a conclusion to the chapter, I would like to emphasize that one of  the most important novelty 

introduced hereby is a different model of injected faults. This functional model of such faults differs 

considerably from the conventional stuck-at fault model due to the fact that SEU-induced faults affect 

FPGA configuration SRAM especially logic implemented by the look-up tables (LUT) in this manner 

that the logic function is arbitrarily changed. No one before, had introduced such a fault model based 

on principles implemented by me. I have reflected SEUs induced faults in LUTs accordance to nature  

of these physical phenomena in semiconductors and range of their appearance as described  

in bibliography of subject (Gaspard 2017), (Rebaudengo 2002 A), (Rebaudengo 2002 B). Benefit  

of my novelty is double, because in this way it is possible to model natural SEU faults in LUTs, which 

lead to different implementations of logical functions as these intended. Second benefit is, that these 

faults can be interpreted in particular cases as a stuck-at ,,0” or  stuck-at ,,1” faults at inputs or output  

of LUTs, so the FPGA routing resources are also tested. Stuck-at fault interpretation is needed here also 

for purposes of FC comparison with other solution, where authors use merely the stuck-at fault model. 

The proposed model is very closed to real model, thus when combined with optimization heuristics, 

it significantly reduces the number of test vectors required to achieve FCmax. Other resources as i.e. 

switches, programmable interconnections are not available from Xilinx programming tools level or 

even access is protected against people outside the corporation. 
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An evaluation case study of a functional test for the PicoBlaze processor core was performed  

on a generalised fault model, including both stuck-at faults and functional faults in LUTs,  

which are more difficult to detect. The achieved fault coverage confirms the efficiency of the proposed 

bijective approach. Despite the fact that faults induced by SEU in LUTs are harder to detect, I have 

obtained results comparable to other authors of publications, which utilized only stuck-at fault model. 
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9. Problem of faults masking 

9.1 Analysis of detected faults 

After experiments of  the PicoBlaze test programs evaluation have been finished, it is still visible  

in Tables 5.4.1, 6.3.13, 8.1, 8.2 that achieved FC is less than 100%. Hence, a question appears what  

the reason is?  The answer can be obtained on the basis on detailed analysis of interaction between test 

program written in assembler together with suitable data and PicoBlaze hardware. Structural VHDL 

description and effects of injected faults are described in chapter 8. In this chapter my investigations 

focus on demonstration how it happens, that a fault can be detected or not. Particularly which 

assembler instructions with deterministic data must be executed to detect given fault or group of faults.  

 

LOGIC  INSTRUCTIONS  

 

The logic group of instructions provide bit-wise logic operations on two operands. These  

operations can be selected by a multiplexer. An important observation is, that value “6E8A” of INIT 

parameter represents four input function which  fits for a Look-up table, and digits 6, E, 8, A determine 

adequately XOR, OR, (AND, TEST) and LOAD operations. Accurate bit representation is shown  

in Table D-1 ,,PicoBlaze Instruction Codes” (see attachment PicoBlaze User Guide on CD). 

Architecture of  PicoBlaze logical instructions is organized as presented in Figure 9.1 bellow:  
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Figure 9.1: Architecture of  PicoBlaze logical instructions 

 

Correct logical function implemented by LUT, related to value of INIT = 6E8A is as present:  

O  = ((I0 I1 (!I3)) + (!I0 I1 I3) + (I0 (!I1) I3) + (I0 (!I2))),  where I0…I3 are LUT’s inputs. 

 

First example shows what happens after modification of the INIT parameter in an instance  

LUT4 : 6E8A => 6E82. It is visible, that operation of LOAD instruction was changed to a different 

unintentional logical function on 5th bit :  

F(LUT4) = ((I0 I1 I2 (!I3)) + (I1 (!I2) I3) + (I0 (!I1) I3) + ((!I0) I1 I3) + ( I0 (!I1) (!I2))).  

 

This fault results in additional logical sum component and additional variables I2, (!I1) which 

constitute sum components (marked in red). Original VHDL description of this sub-block is presented 

in  Figure 9.2a.  Its description after change of the ,,INIT” parameter is shown in Figure 9.2b. 

 Additionally, based on  information about which signals are assigned to LUT inputs (see PicoBlaze 

vhdl on CD), I have investigated, that in order to detect this fault it is necessarily to put into second 

operand number 0x20 (5th  bit = 1). In this case when we have ,,1” in first operand register on 5th bit 

and when we load ,,1” from second operand we will obtain unexpected result ,,0” of LOAD operation 

on this bit. (LOAD operation has I3 = 0, I2 = 0, see ,,PicoBlaze Instruction Codes”). It is caused 

by additional I2 ingredient in the first sum. Similarly in case of additional variable (!I1) of logic sum; 

when we execute LOAD sX, 0x20  with register sX = 0x20, we will obtain unexpected result 0 on 5th 

bit. In this way this error is detected.  Additional sum component (I1 (!I2) I3) forms redundant one 

argument ,,OR” function, and it has no effect.  
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Figure 9.2: Examples of correct LUT output function and modified one 

 

The next example describes an error in LUT related to AND instruction. When the INIT parameter  

is changed into  ,,6ECA”, the LUT function takes form:  

O = ((I1 I2 (!I3)) + ((!I0) I1 I3) + (I0 (!I1) I3) + (I0 (!I2)) ) 

One sum component is modified and constitutes faulty operating ,,AND” function. In order  

to detect this fault it is enough to execute  AND sX, 0 instruction, with value of register sX = 0x20.  

The faulty result will 0x20, instead 0 ( incorrect 1 on 5th bit).  

Other examples, where INIT parameter is modified into ,,EE8A” and the LUT function is changed 

into:  F(LUT4) = ((I0 I1) + (I1 I3) + (I0 I3) + (I0 (!I2)) is placed in section of LUT generating ,,XOR” 

operations. Such function can easily generates wrong results independently from executed assembler 

instruction. To detect this fault enough is to execute i.e XOR sX, 0x20, where sX = 0x20. Faulty result 

will 0x20 instead 0.  

 

The last fault affects ,,OR” instruction section. The LUT function after modification INIT 

parameter into ,,668A’’ is as present:  

O = ((I0 I1 (!I3)) + (I0 (!I1) I3) + (!I0 I1 I3) + (I0 (!I2) (!I3)))  

Will generate wrong result ,,0“ in case when we execute e.g. OR sX, 0x20, where sX = 0x20.   

Due to the lack of coverage of all situations, when ,,OR” function takes logical ,,1”.  

 

There are undetectable faults due to some kind of logical and hardware redundancies as described 

in chapter 9.2. 

logical_LUT5: LUT4 

    generic map (INIT => X"6E8A") 

 port map(  I0 => second_operand(5), 
      I1 => sx(5), 
      I2 => instruction(13), 
      I3 => instruction(14), 

            O => logical_value(5)); 
 

(a) 

logical_LUT5: LUT4 

    generic map (INIT => X"6E82")      

port map(  I0 => second_operand(5), 
     I1 => sx(5), 
     I2 => instruction(13), 
     I3 => instruction(14), 

           O => logical_value(5)); 
 

(b) 
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9.2 Analysis of masked faults 

After test program execution, there remained 286 undetected faults of all simulated 1804 SEU or 

stuck-at faults. In this chapter the problem of faults masking is considered for every  microprocessor 

block. Effects of fault injection are presented and classified into five categories. The HDL description 

of the PicoBlaze is divided into such blocks as:  

 

1. Fundamental Control unit which defines T-state and internal reset. (Lines of VHDL 
description 304-327)  Faults 0 up to 1,  

 
2. Interrupt logic (Lines 340 to 409) Faults 2 up to 48, 

 
3. Decoder for the control of the program counter and  CALL/RETURN stack (Lines 417  

to 472) Faults 49 up to153, 
 

4. The ZERO and CARRY Flags (Lines 479 to 670) Faults 154 up to 332, 
 
5. The Program Counter (Lines 681 to 1196) Faults 333 up to 652, 

 
6. Register Bank and second operand selection (Lines 1211 to 1476) Faults 653 up to 809, 

 
7. Store Memory (Lines 1489 to 1512) Faults  810 up to 845, 

 
8. Logical operations (Lines 1704 to 1861, AND, OR, XOR, LOAD, TEST, Includes pipeline 

stage to form ALU multiplexer including decode) Faults 846 up to 1079, 
 

9. Shift and Rotate operations (Lines 1873 to 2085, Includes pipeline stage used to form ALU 
multiplexer including decode) Faults 1080 up to 1255, 
 

10. Arithmetic operations (Lines 2098 to 2400, ADD, ADDCY, SUB, SUBCY, COMPARE. 
Includes pipeline stage used to form ALU multiplexer including decode)  Faults 1256 up  
to 1393,  Faults 1394 up to 1411, 
 

11. ALU multiplexer (Lines 2409 to 2646) Faults 1412 up to 1628, 
 

12. Read and Write Strobes (Lines 2656 to 2696) Faults 1629 up to 1680, 
 

13. CALL/RETURN stack (Lines 2709 to 3075) Faults 1681 up to 1804. 
 

Statistics of undetected faults in above defined functional  blocks is presented in  Table 9.1. 
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Table 9.1: Statistics of undetected faults in individual blocks of PicoBlaze 

Number of processor 

block 

Number of 

injected faults 

Number of 

undetected faults 

Undetected 

faults [%] 

1. Fundamental Control Unit  2 0 0 
2. Interrupt logic 47 38 80,86 
3. Decoder for control PC, 
CALL/RETURN stack 

104 37  35,6 

4. ZERO, CARRY Flags 179 32 17,9 
5. Program Counter 

320 
61 (for LFSR) or  
11 ( PC extended) 

19,1/3,4 

6. Register Bank and second 
operand selection 

157 0 0 

7. Store Memory 35 0 0 
8. Logical operations 233 1  0 
9. Shift and Rotate operations 176 14      8 
10. Arithmetic operations 156 4 2,6 
11. ALU multiplexer 217 84 (inputs) 38,7 
12. Read and Write Strobes 52 43 (in/out) 82,7 
13. CALL/RETURN stack 

123 
60 (for LFSR) or  
22 (stack extended) 

48,8 /17,9 

SUM 1804 
286 (with in/out)  or 
84 without (in/out) 

15,8 / 5,24 

 

These experiments targeted to evaluate Fault Coverage (FC) separately for program counter (PC), 

call return stuck or data flow through bijective blocks. In the case of the PC all the program was 

duplicated three times. This results in about 1000 instructions in total, and total FC increased by 11%, 

but of course three times longer simulation time. In case of shifts it was easier to work upon 

improvements with shorter program composed merely with : ,,LFSR shifts”  bijective blocks or ,,LSFR 

shifts” and possibly bijective blocks to arithmetic and logic instruction testing. In such a case remains 

61 % undetected faults in the PC block. 

 

As mentioned in Section 5.4.2, a testing engineer encounters problem related to masking  

of faults (Bolchini 2007). These problems have their source among others in: 

 

 overlapping of flags generated by different instructions, operation of different instructions  

on the same registers and data. In this way flow of information can be disturbed. 
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 nature of SHIFT instruction operating, (non-exhaustive set of numbers can be  generated using  

            exclusively a shift instructions without any special solutions as  LFSR.) 

 masking the flow of information related to processor hardware construction as pipeline   

            delays, hardware redundancies, simplifying the construction of individual sub-blocks  

            of processor, etc.  

 

Since the Xilinx PicoBlaze processor core is designed for FPGA implementation and its HDL 

description consists of low-level FPGA functional blocks that are directly mapped to the FPGA 

resources. Carrying out detailed analytical proves of detectability is very time consuming, but 

concurrently very interesting. That’s why I carried out analysis of certain quantity of faults which are 

detected by testing programs. These researches revealed several reasons why certain number  

of faults still remains undetected. These are both other than intended logical functions, some sorts  

of logical and hardware redundancies (Renovell 2000 B), (Renovell 2001), (Renovell 2000 C) and 

vice versa reductions, described in details bellow. In order to approximate the importance of such 

undetected errors for the development of the test method, a statistics have been created. After fault is 

injected, logical function implemented by a LUT is modified in few ways as it is further described. 

Additional  component (redundant) of logic sum is often created, its logical value is every time equal 

,,0” or this additional component is unable to disturb correct execution of instructions. Additional 

variables of logic product constituting the logic sum are created, some components of logic sum are 

reduced, some variables of logic product constituting the logic sum are reduced too, and eventually  

one or more variables constituting components of logic sum are changed. Often such a problem 

appears, that combined logical value of several LUT functions  remains the same after change  

of a single LUT INIT parameter, despite the fact that local equation (logic function) is different. Such  

a problem is described upon example of LOAD, and  select parity function at TEST instruction. Other 

analyzed problems are such that, created additional component of  logic sums or additional variables  

of logic product take every time value ,,0” for reasons of other variables inside a block as  

in an example of arithmetical operations described below or by themselves. Sometimes additional 

components or function variables are unable to disturb correct instruction execution. Vice versa 

reduced components and variables in logic sums are sometimes unable to disturb correct program 

execution. As mentioned above, this case is described based on example of LOAD instruction, where 

propagation of set flag by this instruction as result of fault is impossible for reason of construction  

of other hardware.  
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Additional component of logic sum or additional variables of logic product constituting the logic 

sum, required usage of specified instruction with determined arguments in order to detect them.  

This instruction should be used extra outside the main algorithm. This depends on specific situation.  

Additional components can be  logically redundant or not. 

The number of undetected faults of all the categories are collated in Table 9.2, respectively  

for every functional block of the microprocessor. A few most interesting cases of undetected faults is 

described in details  further in this chapter with explanation of fault masking mechanisms.  

 

Table 9.2: Sorts of undetected faults due to the PicoBlaze blocks 

              Sort of        
              undetected 
                     fault 
Processor 
block 

Additional 
component 

of logic 
sum 

Additional 
variables  
of sum 

components 

Reduced 
logic sum 

component 

Reduced 
variable 
of  one 
of logic 
product 

Changed 
Variables of 
components 

of logic 
sums 

Hardware  
redundancy 

2.Interrupts logic 20 /38 8/38 2/38 8/38 0/38 0/38 
3. Decoder for 
control PC, CALL 
/RETURN STACK 

14/37 9/37 2/37 6/37 6/37 0/37 

4. ZERO and 
CARRY flags 

7/32 4/32 6/32 6/32 9/32 0/32 

5. Program Counter 1/11 3/11 1/11 4/11 2/11 0/11 
8.Logical 
operations 

1/1 0/1 0/1 0/1 0/1 0/1 

9. Shift and Rotate 
operations 

3/14 1/14 3/14 4/14 3/14 0/14 

10.Arithmetical 
operations 

1/4 1/4 1/4 1/4 0/4 0/4 

11.ALU 
multiplexer 

16/84 29/84 5/84 13/84 21/84 27/84 

12. Read and Write 
Strobes 

29/43 0/43 0/43 13/43 1/43 0/43 

13.CALL/RETURN 

stack 
4/22 2/22 7/22 7/22 2/22 0/22 

SUM 96/286 57/286 27/286 62/286 44/286 27/286 
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Example for processor block: 8 Logical operations. Type of fault 1. Additional component  

of logic sum. Fault no. 1054:  X"6E8A" => X"6E8B" remains undetected. This signal is utilized  

to form logical_result signal. Original VHDL description of this sub-block is presented in  Figure 9.3a. 

Its description after change of the ,,INIT” parameter is shown in Figure 9.3b.  

 

 

 

 

 

 

 

 

 

 

Figure 9.3: VHDL implementation of logical LUT a) correct parameter b) modified parameter 

 

Above logical functions for original and changed ,,INIT’’ parameters were derived using methods 

of Karnaugh maps, Thus implementation on the base of correct VHDL description is following:  

      O = (I0 I1 (!I3)) + ((!I0) I1 I3) + (I0 (!I1) I3) + (I0 (!I2)).     

                                

After  above change of parameter: 

O = (I0 I1 (!I3)) + ((!I0) I1 I3) + (I0 (!I1) I3) + (I0 (!I2)) + ((!I1) (!I2) (!I3)).  

Such a parameter modification brought ,,additional component of logic sum”: ((!I1) (!I2) (!I3)).  

In order to discover it, bit 7th of register sx has to have value ,,0’’. Moreover bits 13th and 14th 

of a logical instruction has to have value ,,0”. This is satisfied exclusively by ,,LOAD” logical 

instruction. Discovery of this fault is possible, but requires additional manipulation. However  such  

an operation as  zeroing of every register to ensure the correctness of initial value is executed for every 

register, and often more times upon any registers, but then every register is filled many times with 

different data. In this way this fault is masked. In order to detect this fault. I would have  

to execute LOAD sx, 00, and then for instance XORing result of execution LOAD with register 

containing final data. In this way one can observe if after execution LOAD sx, 00, there appears 0x10 

logical_LUT3: LUT4 

    generic map (INIT => X"6E8A") 

 port map(  I0 => second_operand(7), 
                  I1 => sx(7), 
                  I2 => instruction(13), 
                  I3 => instruction(14), 

            O => logical_value(7)); 
 

(a) 

logical_LUT3: LUT4 

    generic map (INIT => X"6E8B")      

 port map(  I0 => second_operand(7), 
                  I1 => sx(7), 
                  I2 => instruction(13), 
                  I3 => instruction(14), 

            O => logical_value(7)); 
 

 (b) 



156 
 

in the sx register. There is only one undetected fault of this sort, and its detection mechanism was not 

implemented next to the bijective program supported by LFSR solutions.      

Example for processor block: 10. Arithmetical operations. Type of fault:  2. Additional 

variables of sum components. Fault no.1257:  X"1F" => X"1D" remain sum detected. This function 

detects arithmetical operations and passes theirs result, when logical value of the function is equal ,,0’’. 

Original and modified VHDL description of this sub-block is presented in Figures 9.4a and 9.4b 

respectively.  

 

 

 

 

 

 

 

 

Figure 9.4: VHDL implementation of arithmetical operation detection LUT 

a) correct parameter b) modified parameter 

 

 Logical equation of the correct LUT function  obtained in the same way as in previous example is 

as present:  

O = ((!I0) (!I1)) + (!I2).  

 

While modified of LUT parameter  generates logic function as follows:  

O = ((!I0) (!I1)) + (!I2) I1. It can be seen, that the second component of the logic sum depends 

additionally from I1. To the LUT input I1 is applied bit 15th of  the assembler instruction. Looking  

to the table ,,PicoBlaze instructions codes’’ (PicoBlaze User Guide attached on CD), it can be 

deducted, that this fault cannot block flow of results generated by arithmetic instructions. Arithmetic 

instructions as ADD, ADDCY, SUB, SUBCY, which generates outcomes has 16th bit of theirs 

assembler instruction equal ,,1’’. Thus  component of the LUT logical equation: (!I2) I1, resulting  

from changing of parameter ,,INIT’’, takes every time logical value ,,0’’ independently from  I1 – 15th 

bit of assembler instruction.  Results from other instructions are not passed by this part of hardware  

(XILINX FDR flip flop). Thus this error cannot disturb theirs data flow too. So this fault is 

sel_arith_LUT: LUT3 

generic map (INIT => X"1F") 

port map( I0 => instruction(14), 
        I1 => instruction(15), 
        I2 => instruction(16),  
        O => sel_arith ); 

a) 

 

sel_arith_LUT: LUT3 

generic map (INIT => X"1D") 

port map( I0 => instruction(14), 
        I1 => instruction(15), 
        I2 => instruction(16),  
        O => sel_arith ); 
 
                       b) 
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undetectable by any assembler code, but harmless too, in terms of applications executed on this 

processor core. This is an instance of fault categorized as ,,Additional variables of sum components” 

(logic redundancy).                                                                                                                                                        

Example for processor block: 4. ZERO and CARRY flags. Type of fault: 4. Reduced variable 

of one of logic product. Other undetected fault number 154 X"41FC" =>X"41FD" concerns forming 

of flag_enable signal. This signal drives Clock Enable (CE) input of the Xilinx FDRE flip-flop, and  

in order to enable of propagation of proper CARRY_FLAG this signal should take value ,,1’’. Original 

and modified VHDL description of this sub-block is presented in Figures 9.5a and 9.5b respectively.  

 

 

 

 

  

 

 

 

 

 

Figure 9.5: VHDL implementation of flag enable LUT 

a) correct parameter b) modified parameter 

  

Equation derived from original LUT function is as follows:  

O = (I2 (!I3)) + ((!I0) (!I1) (!I2) I3) + ((!I0) I1 I2) + (I1 (!I3)) 

 

After modification of INIT parameter, LUT generates following function: 

O =  (I2 (!I3)) + ((!I0) (!I1) (!I2)) + ((!I0) I1 I2) + (I1 (!I3)).                                           

Here visible is lack of I3 in second component of this logic sum (,,Reduced variable of one  

of logic product”). If we look at the PicoBlaze  user manual, we can notice, that at lack of I3  

(bit 17th) of  PicoBlaze instruction, ,,LOAD’’ instruction can set to ,,1’’ the signal flag_type and 

consequently can set the signal flag_enable. However the LOAD instruction does not generate  

any flag, thus generation of flag_type signal by this instruction has no effect. Thus result of setting  

flag_type_LUT: LUT4 

    generic map (INIT => X"41FC") 

 port map(  I0 => instruction(14), 
      I1 => instruction(15), 
      I2 => instruction(16), 
      I3 => instruction(17), 
      O => flag_type); 

 
(a) 

flag_type_LUT: LUT4 

    generic map (INIT => X"41FD") 

 port map(  I0 => instruction(14), 
        I1 => instruction(15), 
        I2 => instruction(16), 
        I3 => instruction(17), 

              O => flag_type); 
 

(b) 
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the flag_type signal by LOAD cannot disturb data flow. This fault is harmless and undetectable  

by any assembler code.  

However lack of I3 has influence on operation of other instructions, we can notice on base  

of PicoBlaze User Guide, that component ((!I0) (!I1) (!I2) I3)) responses for setting flag_type signal  

of ,,SHIFT’’ and ,,ROTATE” instructions. However all these instructions will set flag_type signal 

correctly despite lack of I3 (17th bit of assembler instruction). 

Example for processor block: 4. ZERO and CARRY flags. Type of fault: 5. Changed 

variables of components of logic sums. Integral part of the odd parity generation block at TEST 

instruction is a LUT which realizes select parity function. This function drives Xilinx multiplexer 

MUXCY which selects ,,Parity” bit or Select CARRY bit. There are 14 undetected faults concerning 

this LUT. All these faults are undetected due to the fact, that logical value after change of INIT 

parameter remains the same despite the fact derived equation is different. In Figure 9.6 original and 

modified LUT functions are presented.   

 

 

 

 

 

 

 

 

Figure 9.6: VHDL implementation of select parity LUT 

                  a) correct parameter b) modified parameter 

 

Correct LUT function is  INIT => X"F3FF":  

O = !I1 + I2 + !I3              

After INIT parameter change, logical function implemented by LUT is as follows: 

 O = (!I0 !I3) + I2 + (!I1 + I3) + (I0 !I3). ,,Changed variables of components of logic sums” When 

we substitute proper bits of assembly instruction as I1, I2, I3 for ,,TEST” instruction,  

it results that logical value of this modified function is 0, as an original one. Values of I1 = 13th bit  

of the ,,TEST” instruction every time is equal ,,1”, I2 = 15th bit of instruction is equal ,,0”, I3 = 16th bit 

of instruction is equal ,,1”. Exactly the same situation is after parameter INIT changes:    

sel_parity_LUT: LUT4 

    generic map (INIT => X"F3FF") 

 port map(  I0 => parity, 
         I1 => instruction(13), 
         I2 => instruction(15), 
         I3 => instruction(16), 

                O => flag_type); 
 

(a) 

sel_parity_LUT: LUT4 

generic map (INIT => X"F3FE") 

 port map(  I0 => parity, 
         I1 => instruction(13), 
         I2 => instruction(15), 
         I3 => instruction(16), 

                O => flag_type); 
 

(b) 
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INIT => X"F3FD":  Modified LUT function has the following form:  

O = (I1 !I3) + I2 + (!I1 I3) + (!I0 !I3).  

Other examples:   

INIT => X"F3FB":   O = (I0 !I3) + I2 + !I1, 

INIT => X"F3FB":   O = (I0 !I3) + I2 + !I1 

INIT => X"EF":   O = (I0 !I3) + (I1 + !I3) + (!I1 I3) + (I2 I3) + (!I2 !I3).  

Situation is the same for others 9 parameter changes.                                                                                              

 

Example for processor block: 9. SHIFT and ROTATE operations. Type of fault: 3. Reduced 

logic sum component. A few problems with fault  detectability appear inside shift block. For instance  

Look Up Tables of function realizing multiplexer for shifts: shift_mux_LUT0 is presented in Figure 

9.7:  

 

 

 

 

 

 

 

 

 

Figure 9.7: VHDL implementation of shift multiplexer LUT 

           a) correct parameter b) modified parameter 

 

Equation derived from original LUT function is as present:  

O = (I0 I2) + (!I0 I1) 

After modification of INIT parameter, LUT generates following function: 

O = I0 I2, where component (!I0 I1) disappeared.   

It is possible to investigate on the basis of PicoBlaze user manual, that right shifts, which have bit 

3rd of instruction equal ,,0” will generate correct results. This fault will be masked if we execute right 

shift_mux_LUT0: LUT3 

generic map (INIT => X"E4") 

port map( I0 => instruction(3), 
        I1 => shift_in, 
        I2 => sx(1),  
        O => shift_value(0)); 

(a) 

shift_mux_LUT0: LUT3 

generic map (INIT => X"A0") 

port map( I0 => instruction(3), 
           I1 => shift_in, 
           I2 => sx(1),  
           O => shift_value(0)); 

 (b) 
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shifts. Whereas left shifts, which have bit 3rd of instruction equal ,,0”, with proper shift_in value equal 

,,0” can discover the error. The shift_in value is calculated by other logical function LUT-implemented.  

Thus, on the basis of above arguments, it is visible, that mechanism of detection of fault 

injected inside ,,SHIFT” block is multi-steps. This means, that data is passed through more 

circuits. These circuits are generated by more logical functions. In turns, operation of logical 

functions may depend on both from choice of an assembler instruction and  often quite complex  

data composition. 

Example for processor block: 11. ALU multiplexer. Type of fault: 6. Hardware redundancy. 

Other sort of possible problems related to fault detectability are caused by hardware redundancy and 

,,Pipelining”. Before ALU multiplexer is built in ,,OR” functor, which collects information incoming 

from blocks implementing shifts, logical and arithmetical operations. This is a simplified solution 

which works in this way,  that  only one input of the OR gate can be driven  by ,,1” in given period  

of time, whereas other  inputs, with results from other blocks should be driven by ,,0”. The  problem  

of data conflict may occur for pipeline architecture of this simplified ALU. This problem consist in 

generation of faulty ,,1” instead ,,0” by one of the two other faulty functions. This error is hard  

to detected because of  simplified ALU (OR gate for  3 types of operations arithmetic, logical and 

shifts). There exist some instructions which can open concurrently Xilinx FDR flips flops  

by instruction detection mechanism. In this way faulty result ,,1” from shift instructions can be masked 

by results of execution such arithmetical instructions as ADD, ADDCY… The input from individual 

blocks is realized by the following function presented in Figure 9.8:   

 

 

 

 

 

 

 

 

 

Figure 9.8: VHDL implementation of ,,OR” LUT 

 

 

or_LUT0: LUT3 

generic map (INIT => X"FE") 

port map( I0 =>logical_result(0), 
          I1 => arith_result(0), 
          I2 => shift_result(0),  
          O => alu_group(0) ); 
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The described above data conflict can mask not only wrong results from arithmetical, logical and 

shift instructions, but detection of faults injected in the look-up table realized function of ,,OR” LUT 

may be harder. There remained 27 undetected faults by the bijective program without LFSR solution.  

These faults consist in change of the INIT parameter of exactly this function presented in Figure 9.9.   

Function of Or_LUT is described by Karnaugh map in Figure 9.9: 

 

 

 

 

 

 

Figure 9.9: Karnaugh map for implementation of ,,OR” LUT function 

 

I0 = logical result , I1 = arithmetical result, I2 = shift_result 

 

O = I1 + I2 + I0  

 

The hardware realizing the described above block is presented in Figure 9.10:  

 

I1/I2

I0 
00 01 11 10 

0 0 1 1 1 

1 1 1 1 1 



162 
 

 

Figure 9.10: The OR functor – the hardware before ALU multiplexer 

 

Presented circuit is responsible exclusively for generation of one bit of vector. Then the same 

hardware is generated more times by ,,for” loop in vhdl. 

Bijective program to testing ,,SHIFTS”, particularly SRA instruction is executed inside the block  

of instructions which can fulfill bijective property. SRA instruction is executed once inside this block. 

Next is executed ADDCY (ADD with carry instruction). So faulty result of execution SRA is present  

by too short period to could be detected. Detector of instructions with its state machine masks  

this wrong ,,1”.  

 For instance, simulations of the bijective block with SRA instruction showed that results were  

the same for fault free processor and processor with injected faults ,,E5” and ,,F5”. 

However an experiment where ,,SHIFT” instructions were executed more times one by one 

discovered, that faults ,,E5” and ,,F5” have been detected. The situations are visible on the attached 

simulation waives  to this chapter on CD. Slide E5E4F5_bij.jpg shows that there is no difference  

on the out_port in proper time, when ,,SHIFT” instruction was executed only once. Here value  

of parameter  INIT was changed first to ,,E5” and then to ,,F5”. 
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Slide E5E4F5_3SRA.jpg shows the difference on the out_port in case, where ,,SHIFT” instructions 

were executed more than once. Here value of parameter  INIT was changed first to ,,E5” and then  

to ,,F5” as before.  Previous block to SRA testing looks as in Listing 9.1 below:  

 
 LOAD  s0, 00; 
 LOAD  sC,    00; 
   LOAD       sF,    00; 
 JUMP       ld; 

dod: ADD         s0,    01; 
   ld: LOAD       sC,    s0; 
  TEST         sC ,  01; 

   SRA           sC 
   ADDCY     sF,   00; 
   RR              sF 
   OR              sC,   sF; 
 AND      sF,   sC; 
 AND       sC,   7F; 
 OR           sC,   sF; 
 LOAD     sF,   00; 
 OUTPUT sC,    ff; 
 JUMP     dod; 
 

Listing 9.1: Previous block to SRA testing 

 
 LOAD  s0, 00; 
 LOAD  sC, 00; 
 LOAD  sF, 00; 
 JUMP  ld; 

dod: ADD   s0, 01; 
ld: LOAD  sC, s0; 

 TEST  sC , 01; 
 SRA   sC; 
 RR   sC;           signal from Shifts is present by more clocks.  
 ADDCY  sF, 00; 
 RR   sF; 
 OR   sC, SF; 
 AND   sF, sC; 
 AND   sC, 7F; 
 OR   sC, sF; 
 LOAD  sF, 00; 
 OUTPUT sC, FF; 
 JUMP  dod; 

 
Listing 9.2:  Modified block which detected ,,E5” and ,,F5” faults 
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There is no SRA instruction preceding ADD or ADDCY instruction. So, faults ,,E5” and ,,F5” have 

been detected. And here a problem appears; how to implement bijective block to SRA testing  

which does not obscure results.  

The bijective block based on LFSR solution to ,,SHIFTS” testing detected all faults injected 

into hardware realizing or_LUT0 up to or_LUT7. Construction of LFSR blocks is such, that do not 

occur arithmetical or logical instruction, which can change data in the direct neighbourhood of any shift 

instruction. Examples of code snippets are presented and described below. First one example 

in Listing 9.3 concerns LSFR block to ,,Shift Right Arithmetical” (SRA) test. 

…….. 
TEST      s8,  01;  
LOAD     s7,  00; 
SRA        sD; 
TEST      sD,  01; 
ADDCY  s9,  00; 
……………….. 

 
Listing 9.3: Code snippet of program  LFSR based  to ,,Shift Right Arithmetical (SRA) test 

 
In this example before and after ,,SRA” are executed  instructions which cannot generate  any ,,1” 

as ,,ALU result”. ,,TEST” doesn’t change content of any register. ,,LOAD”  into s7 ,,0” cannot generate 

any ,,1” result. ,,ADDCY” is not executed in immediate vicinity of the ,,SRA” instruction. Next 

example in the Listing 9.4 is intended to SR0 test:  

……………. 
TEST       s8,  01; 
ADDCY  s7,   00; 
SR0        sD; 
RR          s7; 
OR          sD,  s7; 
…………… 
 

Listing 9.4: Code snippet of program  LFSR based  to ,,Shift Right ,,0” fill” (SR0) test 
 

Here the situation is similar; ,,ADDCY” cannot generate as result any ,,1”. ,,RR” (Rotate Right) 

belongs to the same block of instruction as SR0 (Shift right ,,0” fill). 

Example to ,,SR1” testing (bellow) is slightly different (see Listing 9.5). Only visible difference is, 

that directly after ,,SR1” (Shift Right ,,1” fill) executed is logical instruction ,,AND”. This ,,AND” is 

able to modify exclusively one bit (erase bit 7th). There is no way to get a wrong result as ,,1” on active 

bits with data since 6th down to 0.   
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TEST        s8,  01; 
ADDCY,  s7,   00; 
SR1          sD;  
AND        sD,  7F; 
RR           s7;  
 

Listing 9.5: Code snippet of program  LFSR based  to ,,Shift Right ,,1” fill” (SR1) test 
 

There were at least about 27 undetected faults related to ,,Or_LUT” functions at previous test 

programs.  

I have carried out detailed analysis of about 30% of undetected faults (about 100 faults) of all 

categories collected in Table 9.2. I had opportunity to observe, that every time in case of undetected 

faults, selected randomly, merely a few the same schemes of fault masking as described at beginning  

of this chapter are repeated. Thus conclude, that above mentioned  categories of redundancies make 

impossible detection of  remained faults. On the other hand, it can be considered as a positive feature  

of a processor, that certain SEU induced faults cannot disturb its operation. The effort of working  

on the analyses turned out to be fruitful. These analyses proved, that it is impossible to achieve 100%  

of fault coverage of injected faults for PicoBlaze and similar processor cores implemented in FPGAs, 

where SEU-induced faults are modeled in the same way.  
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10.  Conclusions 

The proposed approach of testing processor cores implemented in FPGAs produces compact test 

sequences, that detects permanent SEU-induced faults of embedded processor cores implemented 

in SRAM-based FPGAs. The notion of the sensitive path from the automatic test-pattern-generation 

(ATPG) techniques proposed in (Doumar 1999) has slightly different meaning. My novel assumption 

is, that the test sequence represents a sensitive path, if the data flow through it is sensitive to changes  

of the input pattern (Wegrzyn 2009).  

On the basis of novel assumption and test methodology two theses were formulated.  

The first thesis is: 

 

Using the sensitive path principle which employs the bijective property of test program may 

considerable simplify testing procedure and improve fault coverage. 

 

One of the most important novel idea of this thesis is the proposed bijective property  

of the test program. Further, I have proposed methods of  assurance of bijectivity on assembler 

instructions level, as described in chapter 5, and next I have proposed assembler test program 

implemented accordance to these principles. Program composed from bijective blocks achieve  

significantly better fault coverage (85,6%) than well-known computing application or test programs 

with simpler architectures achieved. Definitively, the best fault coverage (94,76 %) I have achieved 

creating local bijective test programs, with generating simultaneously complete cycle of local test 

vectors. It should be noticed that SUE-induced faults are more difficult to detect in comparison  

with the stuck-at faults which are mostly referred in literature.  

The cyclic usage of  test vectors  as new input tests can be utilized at industrial testing, where it is 

enough to store only one (start) vector and the number of iterations in reference memory. The cyclic 

usage of test vectors is suitable for BIST, particularly where FPGAs work under difficult conditions i.e. 

are exposed to increased radiation.  
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The second thesis is: 

 

Optimization heuristics combined with the proposed fault injection methodology can 

significantly reduce the number of test vectors required to achieve  maximal fault coverage of soft-

processors implemented  in FPGAs. 

 

One of  the most important novelty introduced hereby is a novel model of injected faults.  

The functional model of faults differs considerably from the conventional stuck-at fault model due  

to the fact that SEU-induced faults affect FPGA configuration SRAM and thus logic implemented   

by look-up tables (LUT). Thus testing and fault model in FPGA differs substantially from well-known 

stuck-at model in ASICs. No one before, had introduced such a fault model based on proposed 

principles (Wegrzyn 2009), (Wegrzyn 2014 A). I have reflected SEUs induced faults in LUTs 

accordance to nature of these physical phenomena in semiconductors and range of their appearance as 

described in bibliography of subject (Gaspard 2017), (Rebaudengo 2002 A), (Rebaudengo 2002 B). 

Benefits of my novelty are double, because in this way it is possible to model  SEU faults in LUTs, 

which lead to different implementations of logical functions as these intended. Second benefit is, that 

these faults can be interpreted in particular cases as a stuck-at ,,0” or  stuck-at ,,1” faults at inputs or 

output of LUTs, so the FPGA routing resources are also simulated. This together with optimization 

heuristics significantly reduces the number of test vectors required to achieve  maximal fault coverage. 

I have developed  my original test environment with Perl script driving CADENCE NC VHDL 

tool. An evaluation case study of the functional test for the PicoBlaze processor core was performed  

on a generalized fault model, including both stuck-at faults and functional faults in LUTs, which are 

more difficult to detect. The achieved fault coverage confirms the efficiency of the proposed approach. 

Despite the fact that SEU induced faults in LUTs are harder to detect, I have obtained results 

comparable to other  publications, which utilized only stuck-at fault model. 

Three strategies to minimize the number of test patterns dedicated for bijective, but not fully cyclic 

program are proposed by the author in this dissertation. First Algorithm 1, so called ,,Greedy”, 

requires 33 vectors to obtain maximal Fault Coverage. Algorithm 2  so called ,,The lowest order 

vectors first”, results in 28 test vectors, instead of all possible 256 vectors in case of PicoBlaze. 

Algorithm 3 - ,,Hybrid” is a mixture of Algorithm 2 and 1. The best results has been achieved by  

the Hybrid Algorithm. Algorithm 3  is especially useful in the case when the number of the lowest-
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order faults is equal or larger than two, as in this case there are two or more vectors that cover the same 

fault.  

I have checked how many vectors are required for testing individual processor blocks too. The most 

difficult to testing block turned out to be the block which generates ZERO and CARRY flags.  

The conclusion can be driven from the experiments described in chapter 6.2.4 that for most hardware 

blocks two local vectors are enough  to obtain FCmax. The exception is arithmetical block (three local 

vectors) and flags module which requires 28 vectors. Consequently, in the case when the test run time 

is crucial, local rather than global vectors should be used. 

The next important issue is execution time of the complete test sequence. Initially the maximal fault 

coverage had achieved by usage only 28 global test vectors for earlier version of bijective program.  

In this case execution time of these 370 instructions 28 times is estimated at 400µs. For comparison, 

testing of  the PicoBlaze with a method of configuration read back could take about 3,5 s at the same 

equipment (however in general case faster read back interfaces are available). My newest  researches 

have revealed, that it is enough to apply exclusively one test vector to achieve the full fault coverage 

for some processor blocks, if large percent of the sensitivity paths is activated. This has been assured 

by the last version of fully bijective test program supported by LFSR solutions with local test vectors. 

The achieved results show, that developed methodology of  fully bijective test program with fully 

active sensitivity paths is suitable for use for testing of the microprocessor blocks executing logical, 

arithmetical and shift operations. Hereby I presented the best achievements. It does not detect only 

1,2% faults in these blocks in total. These faults may not be detectable regardless of the any test 

program, due to a few kinds of logical or hardware redundancies as I have analyzed fault masking  

in chapter 9. While these methodology is not especially dedicated to exhaustive testing such blocks  

of microprocessor as I/O, Interrupt controller, Program Counter. However testing of these block  

with my testing program can bring good fault coverage, but at a relatively large amount of work and 

time. 

All assumptions formulated in  theses were proved, and the assumptions and goals of the work were 

realized. Moreover author’s researches have proved, that achievement of 100% FC is impossible  

by any test program written in assembler for reason of logical and hardware redundancies in case  

of fault injected in logical functions realized by LUTs for more complex systems implemented  

in FPGAs.  
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Benefits of  the novel  model  for fault  injection: 

 

 Reflects SEU induced faults in LUTs accordance to the nature of these physical phenomena  

in semiconductors as described in bibliography. 

 Fault modeling  based on modification of logical functions implemented by LUTs. 

 Fault modeling of stuck-at faults on inputs and outputs of LUTs (as interpretation  of faults   

in LUTs).  

 Faults injected only on one bit position  in LUT memory – this reflects correctly real    

            SEUs and constitutes bigger challenge for test program. 

 Faithful fault model combined with automated simulation of every possible fault allows to limit 

considerably the number of test vectors and test time. 

 This fault model is suitable for SRAM based FPGA families, moreover fault model is  

            different as for ASIC (usually stuck-at faults and stuck between wires). 

 Fault modeling  in LUTs is feasible from FPGA primitives library level. 

 

 

Original achievements of the author: 

 

 Introduction of  the novel SEU-induced fault model dedicated to SRAM-based FPGAs. 

 Elaboration of  complete system for testing of soft processor cores implemented in FPGA. 

 Implemented Pearl script which performs automated fault injection accordance to this novel  

model and controls CADENCE simulator. 

 Introduction of  novel bijective testing methodology based on data sensitive path  principle. 

 Significantly better efficiency achieved by bijective test program than other computing 

applications e.g. matrix multiplication. 

 Development of original bijective methods on assembler instructions  level. 

 Compact size of bijective program about 370 assembler instructions. 

 Detection, investigation and solution of the problem of lack of full cycle. 

 Achieved definitively better fault coverage by program composed from local subprograms, 

which generate completely  cyclic results  than other applications. 
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 Activation of high percent of data sensitive paths by bijective completely cyclic test program. 

 Reduced set of test to only one vector to achieve FCmax for the test program composed  

on  LFSR principle (completely bijective). 

 Development of efficient cyclic methodology for industrial testing (only start test    

      vector and number of iterations stored in reference memory). 

 Cyclic methodology useful for BIST too, when FPGA is explored on radiation. 

 

 

Proposed novel optimization heuristics: 

 Nine times reduced number of required global test vectors, what reduces considerably test time. 

 Execution the test program can be many times faster than read back in some cases. 

 Individual processor block requires on average only 2 local vectors to achieve FCmax. 

 FC over 95% FCmax at first 3-4 global test vectors. 

 

 

Additional conclusions from research works: 

 Bijective property without assurance of full cycle is insufficient to achieve FCmax. 

 Achievement of 100% FC is impossible by any test program written in assembler for reason  

of logical and hardware redundancies. 

 Possible slight improvement of FC by detailed analyses of interactions of input data and 

processor HW. 

 The hardest to test is block which generates ZERO and CARRY flags. 

 

 

Future works:  

 Testing individual blocks of bigger processor cores. 

 Optimization and automation of generation of bijective blocks of test program. 

 Development of fault injection simulators environment based on other commercial tools. 

Not only CADENCE based. 

 Testing of interrupt and Floating Point Unit  blocks. 
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11. Appendix 

11.1. Dissertation - Electronic version of the dissertation 

The dissertation was written using Microsoft Office 365. The dissertation is divided into then 

chapters and appendix. The folder ,,Dissertation” contains PDF version of the work. 

11.2.  PB - PicoBlaze structural VHDL 

The directory ,,PB” contains original and with unrolled ,,for” loops  code of PicoBlaze processor  

core in structural VHDL.  

11.3.  PBUM - PicoBlaze User Manual 

The directory ,,PBUM” contains PicoBlaze User Manual in PDF. 

11.4. MBUM - MicroBlaze User Manual 

The directory ,,MBUM” contains MicroBlaze User Manual in PDF. 

11.5. ModelSim waves for chapter 9 – hardware redundancy.   

The directory ,,WavesCh9” contains ModelSim waves which illustrate the hardware redundancy. 
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