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Abstract

Research aim

The main research aim of this thesis was to propose an algorithmic solution, which would make

use of advanced image processing and machine learning methods, to the problem of determining the

tissue structure of human epidermis in histopathological images of H&E-stained skin specimens, and

to develop a complete system for automated diagnostics of selected skin melanocytic lesions based on

the analysis of lesion’s epidermal morphometry. To the best of Author’s knowledge it is the first attempt

to automatically determine epidermal morphometry of a lesion and to utilize that information for the

diagnostic purpose.

The major and minor theses were formulated as follows:

Main thesis By means of advanced image processing methods and machine learning algorithms it is

possible to analyze the tissue structure of human epidermis in histopathological images.

Thesis I Using the proposed methods for image segmentation and image analysis it is possible to

assess the degree of malignancy of a given skin lesion.

Thesis II By means of machine learning methods it is possible to formulate the basic histopatho-

logical criteria for diagnosing skin lesions.

The proposed solution

The proposed methods and the whole diagnostic system were designed to automatically analyze and

distinguish between the three common types of skin melanocytic lesions: lentigines (benign lesions),

dysplastic junctional nevi (continua between benign and malignant lesions) and melanomas (malignant

lesions).

The need for robust and efficient (automatic) diagnostic tools in dermatopathology is evident due to

a significant and constant increase in the incidence rate of and mortality from cutaneous melanoma, the

most aggressive and dangerous skin cancer, among Caucasian populations worldwide. The traditional,

manual way of diagnosing skin lesions, the histopathological examination, has three main drawbacks:

it is prone to human errors, its results are often non-reproducible, and the analysis of a large volume

of specimen is laborious. By applying the methods of computer vision and machine learning to slides

digitized at high magnification it is possible to address these issues – to improve diagnostic accuracy, to

increase the reproducibility of diagnostic outcomes, as well as to shorten the time needed for making a

diagnosis.



In the thesis the following image analysis algorithms were proposed, implemented and verified:

– A tissue segmentation method which utilizes both global and local information about color distribu-

tion in the CIELAB color space extracted from a 3D histogram of pixel intensities using statistical

and morphological analysis.

– An epidermis segmentation method which utilizes information about shape and distribution of slide

background regions in an image as well as information about distribution and concentration of hema-

toxylin and eosin stains extracted from their joint histogram (using statistical and image processing

methods).

– A retes segmentation algorithm which automatically determines the basic morphometric features of

individual rete ridges (i.e., their location, base width, length, and height) in a segmented epidermis.

It is based mainly on analyzing the curvature of the epidermal boundary to identify endpoints of

projection bases, and on analyzing the skeleton of the epidermal region in the graph representation,

using graph algorithms and morphological operations, to identify rete bases and the location of retes

along the epidermis main axis.

Each of the aforementioned algorithms is fully automated and to a large extent based on domain-specific

knowledge of morphometric and biochemical properties of skin tissue structures.

Next, indexes describing the morphometry of the epidermal component, based on information about

morphometry and location of individual retes, were presented. They were then used as predictors in the

proposed automatic skin lesions classification algorithm – in this thesis four machine learning models

were evaluated out of which the support vector machine (SVM) classifier gave the most accurate results.

Finally, a statistical analysis of various relationships between epidermal morphometry and basic types of

skin melanocytic lesions was carried out by means of a decision tree model in order to propose diagnostic

criteria which could be used during histopathological examination.

The performance of the whole system was verified on a dataset consisting of 75 high-resolution WSI

images of skin melanocytic lesions (25 for each lesion type) diagnosed by an expert dermatopathologist.

It scored the accuracy of 74.7% and 86.7% for the “lentigo vs. junctional dysplastic nevus vs. melanoma”

and “benign vs. malignant” classification tasks, respectively. For the same classification tasks a classi-

fication tree model (constructed based on the proposed morphometric indexes) scored the accuracy of

73.3% and 88.0%, respectively, and thus could be used to help formulate the basic histopathological

criteria related to epidermal morphometry.

In Author’s opinion the obtained results let him pronounce that the main research aim of the proposed

project was reached and that both theses were proven.



Streszczenie pracy

Cel pracy

Głównym celem badawczym niniejszej rozprawy było zaproponowanie algorytmicznego rozwiązania

wykorzystującego zaawansowane metody przetwarzania obrazów i uczenia maszynowego do określe-

nia struktury tkankowej ludzkiego naskórka na zdjęciach histopatologicznych preparatów skóry bar-

wionych hematoksyliną-eozyną oraz do opracowania systemu automatycznej diagnostyki wybranych

typów melanocytowych zmian skórnych na podstawie analizy morfometrii naskórka w danej zmianie.

Według najlepszej wiedzy Autora to pierwsza próba automatycznego wyznaczania parametrów morfom-

etrycznych naskórka i wykorzystania tej wiedzy w celach diagnostycznych.

W rozprawie postawiono następującą tezę główną oraz tezy pomocnicze:

Teza główna Zaawansowane metody przetwarzania obrazów oraz uczenia maszynowego umożliwiają

szczegółową analiza morfometrii naskórka zmiany skórnej na obrazach histopatolog-

icznych.

Teza I Przy wykorzystaniu zaproponowanych metod segmentacji i analizy obrazu możliwa jest

ocena stopnia złośliwości zmiany skórnej.

Teza II Metody uczenia maszynowego pozwalają na sformułowanie podstawowych kryteriów

diagnostycznych, możliwych do zastosowania podczas badań histopatologicznych.

Zaproponowane rozwiązanie

Zaproponowane metody oraz cały system diagnostyczny zostały zaprojektowane w celu automaty-

cznej analizy i rozróżniania trzech podstawowych typów skórnych zmian melanocytowych: plam

soczewicowatych (zmiany łagodne), znamion łączących dysplastycznych (formy pomiędzy zmianami

łagodnymi a złośliwymi) oraz czerniaków (zmiany złośliwe).

Ze względu na znaczący wzrost na całym świecie wskaźników zachorowań na czerniaka skóry, naj-

groźniejszej odmiany raka skóry, i spowodowanych nim zgonów wśród populacji rasy białej ewidentną

staje się potrzeba opracowania skutecznych i wydajnych (automatycznych) narzędzi diagnostycznych

dla dermatopatologii. Tradycyjny, ręczny sposób diagnozowania zmian skórnych – badanie histopato-

logiczne – ma trzy główne wady: jest podatny na tzw. błąd ludzki, jego wyniki często nie są pow-

tarzalne, a analiza dużych partii preparatów to żmudna czynność. Dzięki zastosowaniu metod wizji

komputerowej i uczenia maszynowego do analizy cyfrowych zdjęć preparatów o dużej rozdzielczości

możliwe jest rozwiązanie wszystkich trzech wspomnianych problemów – poprawa skuteczności diag-



nostycznej, zwiększenie powtarzalności uzyskiwanych wyników diagnostycznych, oraz skrócenie czasu

niezbędnego na postawienie diagnozy.

W ramach prowadzonych badań opracowano, zaimplementowano i przetestowano poniższe algorytmy

oparte na metodach przetwarzania obrazów:

– Automatyczna segmentacja obszaru preparatu histopatologicznego (tkanki) oparta o analizę

statystyczną rozkładu koloru w przestrzeni barw CIELAB z wykorzystaniem operacji morfolog-

icznych. Analizowany jest zarówno cały obraz, jak i lokalne otoczenie jego wybranych fragmentów.

– Automatyczna metoda segmentacji warstwy naskórka oparta na analizie rozmieszczenia i kształtów

obszarów tła obrazu w obrębie tkanki oraz histogramu stężeń hematoksyliny i eozyny w preparacie,

wykorzystująca metody statystyczne i przetwarzania obrazów.

– Automatyczna metoda segmentacji sopli naskórkowych w warstwie naskórka oparta przede wszys-

tkim na analizie krzywizny konturu obszaru celem wykrycia potencjalnych krańców podstaw wy-

pustek oraz na analizie szkieletu obszaru w reprezentacji grafowej (z wykorzystaniem algorytmów

grafowych i operacji morfologicznych) celem ostatecznego wyznaczenia podstaw i ich położenia

względem osi głównej obiektu.

Każdy z powyższych algorytmów jest w pełni zautomatyzowany i w dużym stopniu oparty na wiedzy

dziedzinowej z zakresu morfometrii i właściwości biochemicznych skórnych struktur tkankowych.

Następnie opracowano parametry opisujące morfometrię całej warstwy naskórka w oparciu o umiejs-

cowienie wzdłuż osi głównej warstwy i wartości podstawowych parametrów morfometrycznych sopli

naskórkowych. Pozwoliło to na zaproponowanie algorytmu automatycznej klasyfikacji zmian skórnych

na podstawie morfometrii ich regionu naskórka, z wykorzystaniem metod uczenia maszynowego – w

pracy porównano skuteczność czterech wybranych klasyfikatorów, przy czym najskuteczniejszym okazał

się model maszyny wektorów wspierających (SVM). Dokonano również analizy statystycznej zależności

między morfometrią naskórka a podstawowymi klasami melanocytowych zmian skórnych z użyciem

modelu drzewa decyzyjnego, w celu określenia kryteriów diagnostycznych pod kątem badania histopa-

tologicznego.

Skuteczność systemu została zweryfikowana z użyciem bazy składającej się z 75 zdjęć całych

preparatów skórnych zmian melanocytowych o wysokiej rozdzielczości (po 25 dla każdego typu zmi-

any), opisanych przez doświadczonego dermatopatologa. System uzyskał dokładność 74.7% i 86.7%

odpowiednio dla zadań klasyfikacji „plama soczewicowata, znamię łączące dysplastyczne, czy czerniak”

i „zmiana łagodna czy złośliwa”. Dla tych samych zadań klasyfikacji model drzewa decyzyjnego (wyuc-

zony z użyciem wartości zaproponowanych wskaźników morfometrycznych) uzyskał dokładność 73.3%

i 88.0%, i tym samym może został użyty do sformułowania kryteriów diagnostycznych związanych z

morfometrią naskórka.

Zdaniem Autora uzyskane wyniki uprawniają go do uznania, że tezy postawione w rozprawie zostały

dowiedzione.
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List of Symbols

Image

I – 2D color image

RI – image resolution

P – pixel (a point in an image)

c – color (represented as a vector of color components)

I1 · I2 – (element-wise) multiplication of the image I1 with the image I2

I1/I2 – (element-wise) division of the image I1 by the image I2

I1 ∗ I2 – convolution of images I1 and I2

Morphometry

r – radius

L – length (e.g., of a path)

d – thickness, distance

A – area

A(O) – area of the object O

Binary morphology

M – binary mask

Mx – negation of the mask Mx

|Mx| – number of 1s in the Mx mask

SE – structuring element (of any shape)

SED (r) – disk-shaped structuring element of radius r

SESq (a) – square-shaped structuring element of size a×a

Mx⊕SE – dilation of the mask Mx using a structuring element SE

Mx ◦SE – opening of the mask Mx using a structuring element SE

Mx •SE – closing of the mask Mx using a structuring element SE

Mmarker
n−→Mmask – reconstruction of the mask Mmarker under the Mmask mask

(with n-connected neighborhood)
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1. Introduction

Methods of computer vision and machine learning allow not only for automation of different tasks

in various fields, but also for obtaining unbiased and reproducible results. One of such areas of appli-

cation for advanced methods of computer vision and machine learning is a rapidly growing field of

pathology called “digital pathology”. Pathology is the science of the causes and effects of diseases or in-

juries. When used in the context of modern medical treatment, the term typically refers to processes and

tests addressing four components of disease: cause, mechanisms of development, structural alterations

of cells, and the consequences of changes (its clinical manifestations) [1]. Traditionally, pathologists ex-

amined histopathological slides personally (and, typically, individually), under a light microscope. Such

an approach has three main drawbacks: the quality of the diagnosis depends on the knowledge and skills

of a particular pathologist, the results of a histopathological examination are often non-reproducible

(especially when it comes to such tasks, as counting individual cells in a large tissue specimen), and

quantitative analysis of a large volume of specimen is laborious [2, 3]. Digital pathology is mainly about

capturing and analyzing whole slide images, i.e., glass slides of tissue specimens digitized at high magni-

fication, and is driven primarily by developments in technologies. By applying the methods of computer

vision and machine learning to digitized slides it is possible to address these issues – to improve diagnos-

tic accuracy, to increase the reproducibility of diagnostic outcomes, as well as to shorten the time needed

for making a diagnosis [4].

The need for more robust and more efficient (automatic) diagnostic tools is evident particularly in

dermatopathology, where they could be used to diagnose skin cancers. Over the past several decades,

there has been a significant and constant increase in the incidence rate of and mortality from cutaneous

melanoma, the most aggressive and dangerous skin cancer, among Caucasian populations worldwide

(Fig. 1.1) [5]. Despite that only roughly 4% of all diagnosed skin cancers are melanomas, melanoma

is responsible for up to 70–75% of skin cancer-related deaths in the United States and Australia [6, 7].

Also in Poland, within the last two decades (1999–2016), this trend has been particularly alarming among

the part of population in the economically productive age: melanoma incidence rate both among young

people (20–44 y.o.) and among middle-aged people (45–64 y.o.) doubled [8]. In 2016, the melanoma

death rate in Poland amounted to 1270, constituting about 1.3% of all cancer deaths [8]. Most of the

increase in melanoma incidence rate in recent years is related to cases of thin superficial spreading

melanoma (i.e., early melanomas), which constitute up to 70% of all diagnosed skin melanoma cases [9].
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Figure 1.1. The increase in incidence rate of skin melanoma observed in UK, Poland and USA between

1999 and 2013 [8, 10, 11]. The incidence rate reported in 1999 has been set as a point of reference.

Two of the most important factors considered to result in melanoma are the brief but intense sun

exposure pattern and unhealthy living habits. Due to a constant depletion of ozone layer in stratosphere

resulting in higher exposure to UV radiation and due to unhealthy nutrition habits, in the future skin

melanoma is likely to become one of the most common malignant neoplasms, with incidence rate even

2–10 times higher than nowadays [5, 12]. As no effective treatment of melanoma in an advanced stage has

been developed so far, the early diagnosis of melanoma is of uttermost importance. When detected early,

melanoma is treatable in nearly all cases with a simple surgical excision [12]. The progress in melanoma

treatment is visible not only in the primary research but also in the development of sophisticated, more

accurate methods of image processing, classification, and computer-aided diagnosis [13].

Nowadays, the histopathological examination constitutes the gold standard in skin melanoma diag-

nosis. Other forms of examination, such as dermatoscopy, are useful for screening, but their diagnostic

confidence is inferior to the histopathological examination. Nevertheless, studies have shown that even

this gold standard method has its serious drawbacks resulting in up to 25% of skin melanoma cases be-

ing misdiagnosed as benign lesions [2, 3, 14, 15]. The costs of such a misdiagnosis are significant, as

melanoma tends to spread quickly beyond the local area into other parts of the body, including internal

organs. A false-negative melanoma diagnosis also delays the beginning of treatment; when a subsequent

examination is carried out the condition is often terminal. One of the reasons for such a high misdiagnosis

rate is a vague definition of many routinely used histopathological criteria.

Pathologists, based on their personal clinical experience, proposed diagnostic criteria related to cellu-

lar atypia and morphology of lesions. In particular, they conjectured that there exist relationships between

certain types of epidermal distortions and specific skin conditions (for instance, atrophy of basal epider-

mal unit is often sighted in melanomas, whereas uniform elongation of rete ridges tend to indicate a

benign lesion) [16, 17]. In recent years numerous works in the field of medical image processing regard-

ing automatic diagnosis of melanocytic nevi using clinical and dermoscopic images have been published

[18, 19, 20] and the application of the deep learning approach significantly increased the accuracy of

methods for automatic classification of skin melanocytic lesions [21, 22, 23]. However, so far no thor-
ough studies have been conducted neither on the actual level of connection between those symptoms
and disease entities nor on the relation between the degree of distortion and the likelihood of given
conditions [17].

P. Kłeczek Computer vision and machine learning algorithms for dermatopathological image analysis



1.1. Research objectives 19

In the light of above data, both prevention and early diagnosis of melanoma became an extremely

important issue. There is a high demand to develop computer-aided diagnostic systems facilitating the

early detection of melanoma, which would lower its misdiagnosis rate.

1.1. Research objectives

The main aim of the proposed research project is to prove the major thesis:

By means of advanced image processing methods and machine learning algorithms it is possible to
analyze the tissue structure of human epidermis in histopathological images.

To give proof of the major thesis the following minor theses have been proposed:

Thesis 1. Using the proposed methods for image segmentation and image analysis it is possible to

assess the degree of malignancy of a given skin lesion.

Thesis 2. By means of machine learning methods it is possible to formulate the basic histopatho-

logical criteria for diagnosing skin lesions.

In order to prove it the following research steps have been carried out:

– I have performed the state-of-the-art review in order to provide a critical survey of the literature

published in the past decade in the field of digital dermatopathology (in particular about epidermis

segmentation), imaging equipment used in pathology, computer vision, image analysis and segmen-

tation methods, as well as graphs.

– I have created a dataset consisting of 75 high-resolution whole slide images of skin melanocytic

lesions together with the respective ground truth data relevant to the study (e.g., manually segmented

slide background, epidermal regions, and rete bases).

– I have developed an automated method for tissue segmentation in high-resolution whole slide im-

ages of H&E-stained skin specimens.

The accurate tissue segmentation is usually an obligatory first step in computerized analysis of such

images, e.g., to improve the accuracy of stain deconvolution methods or to perform morphological

analysis of the tissue structure.

– I have developed an accurate automated method for segmentation of the epidermis in whole slide

images of H&E-stained skin specimens.

The method permits to increase effectiveness of other diagnostics algorithms (e.g., those detecting

and analyzing distribution of melanocytes in the epidermis).

– I have developed an automated method for measuring epidermal morphometry (its hypoplasia,

hiperplasia, asymmetry; elongation and deformation of rete ridges), which helps to investigate geo-

metric properties of epidermis in various skin conditions. In particular, the results of such a method

help to organize information and knowledge on differentiating malignant from benign lesions.

P. Kłeczek Computer vision and machine learning algorithms for dermatopathological image analysis
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– I have proposed a classifier which, based on morphometric parameters of the epidermis, could dis-

tinguish between three most common classes of melanocytic neoplasms (according to their

metastatic potential): benign, dysplastic, and malignant.

In this dissertation the proposed and presented methods have been described, and furthermore
their effectiveness has been evaluated and verified in experimental studies. Based on the obtained
results the Author states that all the proposed theses have been proven.

To conclude, the results of this research could help to curb the influence of two main factors behind the

high melanoma misdiagnosis rate: the histopathological similarity of less common melanoma subtypes to

some benign nevi (leading to difficulties in diagnosis), and the fact that lesions are often evaluated not by

dermatopathologist or surgical pathologist but by general histopathologists (who lack an in-depth knowl-

edge of nuances between less common types of melanoma). The outcomes of the proposed project would

form a basis for development of a system to diagnose specific types of skin conditions (e.g., specific types

of melanoma), providing a solid ground for a treatment adjusted the exact condition. Moreover, the pro-

posed solutions (e.g., for measuring epidermis morphometry) could be refined and used in different fields

of computer vision, such as general object analysis and recognition.

1.2. Pioneering nature of the study

To the best of my knowledge, the conducted researches are pioneering ones regarding the following

issues:

– The proposed method for tissue segmentation is the first one addressing this issue for high-resolution

images. Unlike similar solutions for low-resolution images, the initial segmentation in the proposed

approach is performed based not only local, but also global statistical information about color distri-

bution in the image extracted from a 3D histogram of pixel intensities in the CIELAB color space.

Consequently, the proposed method is more robust to variations in slide illumination.

– The proposed method for epidermis segmentation is the first approach directly addressing such is-

sues as variations in slide illumination and staining. Unlike other methods described in the literature,

which either analyze a single color channel or perform a fusion of information from several channels

on a local (typically: per-pixel) basis, my method directly uses the whole available color informa-

tion by the thorough analysis of the joint histogram of stain distributions (both hematoxylin and

eosin). The proposed algorithm utilizes domain-specific knowledge of morphometric and biochem-

ical properties of skin tissue elements to segment the relevant histopathological structures in human

skin, what increases its robustness [24].

– The proposed method for automated measuring of epidermal morphometry is the first method ad-

dressing this issue. It makes an extensive use of graph algorithms applied on object’s skeleton in

order to analyze object’s structure. Most of the proposed methodology is a general-purpose solution

which can be applied to a wide range of problems in computer vision related to shape analysis.
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– The study takes into account not only common benign and malignant neoplasms, but also the so-

called “dysplastic” nevi which exhibit increased risk of turning into a malignant tumor than “nor-

mal” nevi. The existing studies are focused only on the dichotomic classification of a lesion as either

benign or malignant.

1.3. The general workflow of the proposed diagnostic algorithm

The proposed automatic diagnostic algorithm consists of the following image processing and analysis

stages (Fig. 1.2):

– (Input). The input to the algorithm is a high-resolution RGB whole slide image of a H&E-stained

skin specimen.

– Color thresholding and reconstruction in CIELAB color space for tissue segmentation. The

tissue regions are indirectly segmented by detecting the slide background regions using mainly

color thresholding and reconstruction in CIELAB color space.

This stage uses a refined version of the technique I described in [25]: P. Kleczek, J. Jaworek-

Korjakowska, M. Gorgon. A novel method for tissue segmentation in high-resolution H&E-stained

histopathological whole-slide images. Computerized Medical Imaging and Graphics, 2020, vol. 79,

2022, Art. ID 101686, doi: 10.1016/j.compmedimag.2019.101686 [IF (2018) = 3.298]

– Shape, distribution and color analysis for epidermis segmentation. Epidermis is segmented

based on information about shape and arrangement of slide background regions in an image and

information about distribution and concentration of hematoxylin and eosin stains. Domain-specific

knowledge of morphometric and biochemical properties of skin tissue elements is utilized to seg-

ment the relevant histopathological structures in human skin.

This stage uses a refined version of the technique I described in [26]: P. Kłeczek, G. Dyduch,

J. Jaworek-Korjakowska, R. Tadeusiewicz. Automated epidermis segmentation in histopathological

images of human skin stained with hematoxylin and eosin. Proc. SPIE 10140, Medical Imaging

2017: Digital Pathology, 101400M (2017), doi:10.1117/12.2249018 [WoS]

and my ink segmentation method described in [27]: P. Kłeczek, M. Lech, G. Dyduch, J. Jaworek-

Korjakowska, R. Tadeusiewicz. Segmentation of black ink and melanin in skin histopathologi-

cal images. Proc. SPIE 10581, Medical Imaging 2018: Digital Pathology, 105811A (2018), doi:

10.1117/12.2292859 [WoS]

– Skeleton analysis for retes segmentation. The basic morphometric features of rete ridges in a seg-

mented epidermis (i.e., their location, base width, length, and height) are automatically determined

based mainly on analyzing the curvature of the epidermal boundary to identify endpoints of pro-

jection bases, and on analyzing the skeleton of the epidermal region in the graph representation to

identify rete bases and the location of retes along the epidermis main axis.
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This stage uses a refined version of the technique I described in [24]: P. Kleczek, G. Dy-

duch, A. Graczyk-Jarzynka, J. Jaworek-Korjakowska. A New Approach to Border Irregularity

Assessment with Application in Skin Pathology. Applied Sciences (Basel), 2019, 9(10), 2022,

doi:10.3390/app9102022 [IF (2018) = 2.217]

– Feature extraction and classification. Based on the morphometry of individual retes and their

location along the lesion features describing the overall epidermal morphometry are proposed and

computed. A machine learning classification algorithm uses the aforementioned features to make a

diagnosis.

– (Output). The implemented computer-aided diagnostic system for the analysis of skin WSIs yields

one of the following diagnoses: lentigo, dysplastic nevus, or melanoma.

Figure 1.2. The general workflow of the proposed automatic diagnostic algorithm
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1.4. Structure of the dissertation

The subsequent part of this dissertation is organized in six chapters as follows. Chapter 2 covers the

basics of skin histology and dermatopathology, the preparation of histological slides and their digiti-

zation, the key histopathological diagnostic features of the selected skin melanocytic lesions, and the

most important issues in diagnosing neoplasms. Starting from Chapter 3 the original algorithms have

been described. Chapter 3 summarizes the state-of-the-art literature and challenges related to each stage

of the proposed computer-aided diagnostic system, briefly outlines methods proposed by the Author

for each stage, and characterizes datasets used in the study. Chapter 4 specifies tissue segmentation al-

gorithm based on color statistical analysis, CIELAB color thresholding, and binary morphology. The

results are then used to segment both epidermis and individual retes. In Chapter 5 an epidermis segmen-

tation algorithm is presented, which is based on analyzing the information about shape and distribution

of transparent regions in a slide image and information about distribution and concentration of hema-

toxylin and eosin stains. Chapter 6 covers the issue of segmenting individual retes and measuring their

basic morphometry. In Chapter 7 the features describing the morphometry of the whole epidermal com-

ponent have been proposed and performance of four machine learning classification algorithms used for

lesion diagnostics have been compared. In particular, specific diagnostic guidelines for clinicians based

on the output of the classification tree model have been presented. Chapter 8 closes the dissertation and

highlights future research directions.

1.5. Research projects related to the study

The research tasks of the study were accomplished within the following research grants:

– Preludium 12, awarded by the National Science Centre (Poland)

– Project title: “The analysis of morphometry of human epidermis in histopathological images”

– Implementation period: 2017-10-05 – (now)

– Implementing entity: AGH UST Faculty of Electrical Engineering, Automatics, Computer Sci-

ence and Biomedical Engineering

– Project no.: 2016/23/N/ST7/01361

– AGH University of Science and Technology research grant (2016)

– Project title: “Working out an algorithm for segmenting epidermis in histopathological images

of skin melanocytic lesions”

– Implementation period: 2016

– Implementing entity: AGH UST Faculty of Electrical Engineering, Automatics, Computer Sci-

ence and Biomedical Engineering

– Project no.: 15.11.120.813
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1.6. Language used in the dissertation

Throughout this dissertation, when describing the proposed algorithms, I used the first-person plural

form (i.e., “we”) instead of the first-person singular form (i.e., “I”) – this decision was dictated by the

custom present in the Anglo-American scientific writing. However, I would like to emphasize it, that I

am the lead author of all algorithms proposed in this dissertation.
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2. Medical background

In this chapter we presented the basics of skin histology and dermatopathology, the process of prepar-

ing the histological slides (and its impact on tissues) and their digitization, as well as the key histopatho-

logical diagnostic features of the selected skin melanocytic lesions and the most important issues when

classifying a neoplasm as either benign or malignant. All the presented information are relevant to the

proposed automatic segmentation and classification methods, which heavily depend on the domain-

specific knowledge.

2.1. Histology and histopathology

Histology, also called microscopic anatomy, is the scientific study of microscopic structures of tis-

sues and organs of the body [28]. In order to distinguish different biological structures more easily and

accurately, tissues are prepared using special processes called “histological techniques”; in particular,

histological stains are often applied to add colors to or enhance the colors of certain types of biological

structures (Fig. 2.1).

Clinical view Histopathological image

Figure 2.1. Clinical view vs. histopathological image of a skin lesion

Pathology is the study of structural and functional abnormalities that are expressed as diseases of

organs and systems [29]. Histopathology is the microscopic examination and study of diseased biological

cells and tissues using the same set of techniques as in histology. Histopathology is used mainly in

clinical medicine and it typically involves the examination of a biopsy (i.e., a surgically removed sample

or specimen taken from a patient for the purposes of detailed study) by a specialist physician called a

pathologist.

The histopathological examination is the gold standard for the diagnosis of skin diseases, especially

for almost all types of cancer [30]. Other forms of examination, such as dermatoscopy and confocal
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microscopy, are useful for screening, but their diagnostic confidence is inferior to a careful analysis of a

histology slide. The histopathological examination of a skin lesion is carried out in particular always then

when the result of a dermatoscopic examination suggest that the lesion might be a skin neoplasm [31].

2.2. Preparation of slides

This section discusses the key stages in preparing histology slides, the basics of hematoxylin and eosin

(H&E) staining, the challenges in maintaining consistency of H&E staining, and the most common slide

artifacts. All the presented information are related to the routine histopathological examination of skin

specimens.

2.2.1. Key stages in preparing histology slides

The five main stages in the preparation of histology slides are fixing, processing, embedding, section-

ing, and staining.

Fixing. Samples of biological tissue (Fig. 2.2a) are “fixed” to preserve tissue in a state as close to

that of the living tissue as possible and to prevent postmortem decay (autolysis and putrefaction). This

requires a chemical fixative that can stabilize proteins and nucleic acids of the tissue by making them

insoluble. The fixation step for light microscopy is usually done by immersing the tissue in formalin for

several hours to several days (Fig. 2.2b). Even when performed carefully, the fixation procedure always

alters the sample to a certain extent potentially introducing artifacts that can hinder interpretation of

images of fine cellular details.

Processing. Tissue processing is done to remove water from the tissues and replace it with a medium

that solidifies, allowing extremely thin sections to be sliced. The medium of choice is wax. Firstly, the

tissue is dehydrated with successively stronger concentrations of ethyl alcohol. Since alcohol does not

mix with wax, in a subsequent clearing step alcohol in the tissue is replaced with a clearing agent (typ-

ically xylene), which will mix with wax. Finally, specimens are put into a warm paraffin wax bath for

several hours, during which the paraffin enters each individual cell in the tissue.

Embedding. Before the tissues can be sliced they must be secured in a very hard solid block of wax

(Fig. 2.2c).

Sectioning. To be able to clearly observe the detailed microstructure of the tissue using microscopy

techniques, embedded tissue samples need to be sectioned into sufficiently thin slices. In case of samples

to be studied using light microscopy, slices are typically 4–5 µm thick and are cut using a steel knife

mounted in a microtome (Fig. 2.2d).

Staining. Finally, slices are treated with an appropriate histology stain, as all of the fixed materials

have a similar refractive index and a similar, nearly transparent color when viewed using an ordinary

optical microscope. Staining biological tissues is done to both increase the contrast of the tissue and also

highlight some specific features of interest, depending on the type of tissue and the stain used.

P. Kłeczek Computer vision and machine learning algorithms for dermatopathological image analysis



2.2. Preparation of slides 27

(a) A biopsy specimen (b) Fixing (c) Embedding (d) Sectioning

Figure 2.2. Selected stages of the slide preparation workflow [32]

2.2.2. Hematoxylin and eosin (H&E) staining

Hematoxylin and eosin stain (H&E stain) is the most commonly used stain for light microscopy in

histopathology laboratories due to its comparative simplicity and ability to demonstrate a wide range of

both normal and abnormal cell and tissue components [33].

The staining method involves application of hemalum, a complex formed from aluminium ions and

hematein (oxidized hematoxylin), followed with a solution of eosin Y. The hematoxylin component binds

to basophilic structures, such as DNA and RNA, and colors them blue (in skin it stains nuclei of cells,

rough endoplasmic reticulum, ribosomes, keratohyalin granules, and elastic fibers) [34]. The eosin colors

cell acidophilic structures, generally composed of intracellular or extracellular protein (e.g., cytoplasm

and most connective tissue fibers, like collagen), in varying shades and intensities of pink, orange, and

red [33]. Consequently, all relevant tissue structures in skin specimen are stained and effectively the

whole area of the specimen appears in color, as shown in Figure 2.3 (some intrinsic pigments such as

melanin absorbs neither hematoxylin nor eosin, yet they appear e.g., yellow and brown).

Figure 2.3. A skin section stained with hematoxylin (H) and eosin (E). In some tissue regions we observe

the interaction between the two stains (H+E).

2.2.3. Quality control in routine H&E staining

In order to avoid difficult pathological interpretation and to be able to develop effective methods for

automatic analysis of images of stained microscope slides, it is vital to maintain consistency of stain-

ing. Some of the most typical sources of variations in staining quality are discussed in the following

paragraphs.

Times of staining procedures. The times for hematoxylin staining and for satisfactory differentiation

will vary according to the type and age of alum hematoxylin used, the type of tissue, and the personal

preference of the pathologist [33].
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Type of hematoxylin. Hematoxylin can be prepared in numerous ways. For routine H&E staining

of tissues, the most commonly used hematoxylins are Ehrlich’s, Mayer’s, Harris’s, Gill’s, Cole’s, and

Delafield’s [33]. Figure 2.4 shows examples of staining with various hematoxylins.

Age of the stain. As with most of the chemically ripened alum hematoxylins, the quality of the nuclear

staining begins to deteriorate after a few months [33].

Mode of hematoxylin staining. The alum hematoxylins can be used in one of two ways [33]:

– progressively, meaning that the section is stained with hematoxylin for a predetermined time to stain

the nuclei adequately but leave the background tissue relatively unstained (e.g., Mayer’s, Gill’s I &

II hematoxylin)

– regressively, meaning that the section is over-stained and then differentiated in acid alcohol, fol-

lowed by ‘blueing’ (e.g., Harris hematoxylin)

Other factors. Other common factors introducing the variability in the staining quality include: a

change of hematoxylin supplier, pH differences, fixation, variations in processing schedules, section

thickness, and excessive hot-plate temperatures [33].

Some of the above-mentioned sources of variations may be eradicated or their influence minimized

by using commercially prepared hematoxylin and eosin solutions as well as automated staining ma-

chines [33]. Automated staining machines allow accurate and consistent staining, differentiation, and

dehydration by adjusting the times of each step.

(a) Verhöff (b) Gill I (c) Gill II

(d) Gill III (e) Harris (f) Mayer

Figure 2.4. Staining with H&E using various hematoxylins.

2.2.4. Slide artifacts

The accurate diagnosis of lesions by microscopy requires such preparation of tissue sections, usually

stained, that they represent their structures in life as closely as possible. However, usually pathologists

encounter slides either improperly fixed or mishandled during tissue processing, resulting in alterations

in tissue details. Such changes, referred to as “artifacts”, are the major source of diagnostic problems.
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An artifact is an artificial structure or tissue alteration on a prepared microscopic slide caused by an

extraneous factor, such as clinical application of chemicals, surgical mishandling of specimen, inadequate

microtomy, inadequate tissue fixation or improper fixation medium, faulty tissue processing, or improper

staining [35, 36]. Some of the most common artifacts are listed below.

Prefixation artifacts. Squeeze artifact is the form of tissue distortion resulting from the compression

of tissue by forceps or other surgical instrument, and includes crush, hemorrhage, splits, fragmenta-

tion, and pseudo-cysts (Figures 2.5a and 2.5b) [36]. Autolysis artifact results from the delay in fixation

or inadequate fixation, which leads to decay of tissue structures and produces changes like increased

eosinophilia, shrunken appearance of cells (with cytoplasmic clumping), and impression of scar forma-

tion (Fig. 2.5c) [37].

(a) Tissue tears (b) Tissue folds (c) Autolysis

Figure 2.5. Prefixation artifacts: (a) tissue tear due to rough handling by forcep, (b) folds due to rough

handling by forcep, and (c) tissue autolysis due to delayed fixation.

Tissue-processing artifacts. Improper dehydration can cause artifacts for one of the following rea-

sons: too long treatment in higher concentration of alcohol results in high degree of shrinkage of the

tissue due to overdehydration, whereas too long treatment in lower concentration of alcohol macerates

the tissue ans is seen as vacuolization [38]. These two procedures will also interfere with staining prop-

erties [39]. Improper embedding may give rise to cracks during sectioning for instance when the speci-

men is exposed for too long during embedding procedure, which causes excessive hardening so that the

specimen becomes brittle [39]. Tissue-processing artifacts may occur even when slides are prepared by

experienced technicians.

Artifacts related to microtomy. Scores and tearing in sections are caused either by a damaged knife

edge or when sectioning hard particles (e.g., foci of calcification); in the former case the tear usually

extends across the whole section (Fig. 2.6a). Compression artifacts are usually caused by one of the

following: a blunt knife, bevel of the knife too wide, or wax too soft (Fig. 2.6b). Alternate thick and

thin sections are produced when the wax is too soft, a block or knife is loose, the knife clearance angle

is too fine, the mechanism of a microtome is faulty, or when the rhythm of cutting is not steady and

smooth (Fig. 2.6c). Poor sectioning is practically unavoidable, as since tissue may be sliced at any point,

not all tissue structures are sliced exactly at their midpoint (e.g., the sliced nuclei rarely consist of two

hemispheres, but rather of two spherical caps). Tangential cut is a related problem; in tangentially cut

tissue the connective tissue cores may become entrapped within the epithelium, giving a false impression

of invasive squamous cell carcinoma (Fig. 2.6d). This sort of problems is typically unavoidable due to

the structural nature of the skin.
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(a) Scoring and tearing (b) Compression artifacts

(c) Poor sectioning (d) Tangential cut

Figure 2.6. Artifacts related to microtomy: (a) scoring and tearing of section due to a nick in knife edge,

(b) curling artifact due to folding of tissue due to blunt microtome knife, (c) a section showing thick and

thin areas (thick areas stains more darkly than thin areas), (d) tangential cut artifacts.

Artifacts related to floatation and mounting. Folds and wrinkles in section occur when very thin

paraffin sections are forced to stretch unevenly around other structures which have different consisten-

cies; they appear as darker-stained strands (Fig. 2.7a). Air bubbles are formed under the cover-slip when

the mounting medium is too thin (and, as it dries, air is pulled in under the coverslip) or when either

clearing agents or coverslipping media are contaminated; areas where the cover-slip fails to adhere to the

glass slide properly show slightly altered staining (Fig. 2.7b) [40].

(a) Folds and wrinkles (b) Air bubbles

Figure 2.7. Artifacts related to floatation and mounting: (a) wrinkles and folds due to uneven stretching of

tissue sections, (b) air bubbles formed during mounting procedure,

Staining artifacts. When the tissue has been fixed for a long time in a formalin fixative that has

gradually become more acid or when excess amount of acetic acid is added (the effect of acetic acid is

to increase ionization of tissue amino groups which results in more eosin attaching, which sometimes

can improve the depth of coloration), it is problematic to get adequate nuclear staining with hematoxylin

without also staining the cytoplasm; this phenomenon gives a uniformly muddy purple to the finished

section after eosin has been applied [33].
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2.3. Digital pathology

Although traditionally pathologists examined histopathological slides under a light microscope, quan-

titative analysis of a large volume of specimen is a laborious and difficult task. Moreover, since pathol-

ogists make the diagnosis based on their personal clinical experience, it is often subjective and leads to

intra- and inter-observer variability [2, 3]. These issues may be addressed by digital pathology, a rapidly

growing field primarily driven by developments in technology, offering such advantages as remote diag-

nostics and application of image analysis to improve efficiency and accuracy of the decision process [4].

Digital pathology is mainly about analyzing whole slide images (WSIs), i.e., glass slides of tissue spec-

imens digitized at high magnification and thus able to provide global information for quantitative and

qualitative image analysis.

The following sections discuss the idea of whole slide imaging, the devices needed to produce a whole

slide image, the reliability of WSI systems (in comparison to “traditional” light microscopy), and the way

to ensure consistent stain appearance among digital images of slides from different batches.

2.3.1. Whole slide imaging (WSI)

Whole slide imaging is the process in which entire histologic or cytologic slides are digitized at high

resolution, typically using dedicated hardware (slide scanner). Such high-resolution whole slide images

(WSIs) are able to provide global information for quantitative and qualitative image analysis [41]. In

relation to WSI, virtual microscopy enables review of all regions of interest within the digitized slide at

different magnifications using a personal computer with relevant software [42]. The whole process aims

to emulate conventional light microscopy in a computer-generated manner. Figure 2.8 shows an example

of a contemporary WSI scanner and virtual slide viewer, as well as an example of a WSI image.

(a) Hardware (left) and software (right) [43] (b) A whole slide image (WSI)

Figure 2.8. Whole slide imaging: (a) a WSI scanning system consists of a dedicated hardware and software;

(b) an example of a WSI produced by a scanning system.

There are numerous advantages of making use of whole slide imaging, both in routine settings and

in research image-related applications, for instance: WSI platforms have the potential to increase work-

flow efficiency and balance workloads [44], it is possible to integrate stored digital slides into patient’s

electronic journal and to access them remotely [45], and digital slides can be analyzed using computer-

aided diagnostic tools which can automate or quantify with greater consistency and accuracy than light

microscopy [46]. Despite these benefits, the adoption of whole slide imaging by pathologists worldwide
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has been slow mainly for such reasons as: the high cost of these systems and digital slide storage, their in-

ability to handle high-throughput routine work, regulatory barriers in certain countries, and pathologists’

reluctance to such systems [47].

Whole slide imaging is a relatively new technique, as the first automated, high-resolution whole-slide

imaging system was developed only in 1999 by Wetzel and Gilbertson. However, during the last decade,

a wide range of commercially available WSI instruments have been developed. A list of common WSI

systems and their respective vendors as well as a list of differences between selected WSI systems can

be found in [48].

For most diagnostic work the digital slides are routinely scanned at ×20 magnification (at resolution

approximately 0.25–0.5 µm/px), with sporadic use of ×40 magnification for research purposes or for

certain types of cases (e.g., for mitosis count in breast cancer), although×40 magnification is expected to

soon become the standard [49, 50]. To enable optimized real-time viewing across various magnification

(i.e., ×4, ×20, etc.) instantaneously, files are typically constructed into a multilayered “pyramid”, which

generates enormous image files [48].

Storing such high-resolution digital slides in an uncompressed format or using lossless compression

can result in very large files (in the order of several GB), which impacts storage costs and work through-

put, therefore for routine examination by pathologists a lossy compression technique is usually applied.

For this, either the JPEG or JPEG 2000 image standards are most commonly used. Using JPEG compres-

sion with compression quality factor 70 results in images with acceptable file size compression artifacts

unnoticeable for diagnostic purposes [50]. However, compressing images in a lossy way renders them

practically useless for various methods of automatic digital image processing and analysis [51], therefore

for this sort of research TIFF format is employed to archive virtual slides.

2.3.2. Imaging devices

In recent years rapid developments at all levels of microscopy (i.e., contrast, illumination, resolution,

signal detection and data processing) have occurred and microscopes evolved into so-called imaging sys-

tems. Such systems are characterized mainly by a switch from analogue to digital cameras, by motoriza-

tion of components, and advances in software-control of components and detectors/cameras. However,

for almost all of today’s imaging systems one aspect remained unchanged, the human factor. Limited

human resources and human error pose problems not only in clinical and diagnostic workflows, but also

in research environments, where reproducibility is critical. Automation for microscopic imaging helps to

resolve these issues: it saves the researcher labor and time; it improves accuracy, quality and precision of

imaging experiments; and last but not least it increases reproducibility.

The desirable automation features for advanced microscope systems, related to setup and acquisition

steps, include: identification and calibration of the sample carrier; configuring channels/tracks according

to dyes, fluorescent stainings or contrasts used; adjustment of additional imaging parameters (e.g., z-

stack, laser-power, time intervals); spotting and marking the location(s)/object(s)/area(s) of interest in
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the sample; finding and keeping the focus automatically; and stopping acquisition when imaging does

not yield predefined quality criteria.

Modern microscopes have a wide variety of components that can be automated by means of electronic

control: shutters, filter wheels, stages, light sources, and focus control. Moreover, it is essential that all

these motorized components, sensors and input devices are properly integrated into a software environ-

ment. Finally, typical imaging systems provide means for advanced data processing and storage to further

boost throughput and efficiency of such systems. Although it is possible to assemble an imaging system

from scratch or to retrofit an existing microscope setup with these components, it is then problematic to

ensure proper integration of hardware and software components purchased from different sources into a

well-coordinated, efficient system. A more robust solution purchase a whole system from one of the ma-

jor microscope manufacturers to secure the full integration of components which will perform superbly

with proprietary software (Fig. 2.9a).

The “traditional” microscope systems has at least two serious limitations in the context of digital

pathology: they allow to scan only individual slides (to scan another slide a manual change is required,

which hinders work throughput), but more importantly, due to the open construction they do not provide

a consistent imaging conditions (as ambient light in a laboratory room interferes with the light source of

a microscope). These shortcomings were eliminated with the introduction of whole slide scanners.

A whole slide scanner is a specially designed microscope under robotic and computer control, with

a highly specialized camera(s) containing advanced optical sensors and allowing for batch scanning of

slides, which has all components assembled in a special casing (Fig. 2.9b). Therefore it can be con-

sidered an upgraded version of a microscope imaging system. All current WSI scanners consist of the

following essential components: (1) a microscope with lens objectives, (2) illumination systems (light

source), (3) robotics to load and move glass slides around, (4) digital camera(s) for image acquisition,

(5) a focusing system that precisely places an image on a camera, (6) a computer, and (7) software to

manipulate, manage, and view digital slides [42, 48].

(a) A motorized microscope [52] (b) A whole slide scanner [43]

Figure 2.9. WSI imaging devices

After digital data are captured via the camera’s charge-coupled device (CCD), the virtual slide is as-

sembled together from large numbers of image frames in one of the following ways, depending on the

particular scanner being used: tiling, line scanning, dual sensor scanning, dynamic focusing, or array

scanning (the process is performed automatically by a specialized imaging software). The most com-
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monly used methods for accomplishing this operation are tile-based and line-based scanning (Fig. 2.10),

whereas in “traditional” microscope systems only tile-based scanning is available.

(a) (b) (c)

Figure 2.10. Scanning methods: (a) tile-based and (b) line-based; (c) line-based scanning of an actual glass

slide shown while in progress.

Tile-based scanning relies on a robotics-controlled motorized slide stage to obtain square image frames

in a checker pattern, with a slight overlap in each tile. Then, after the CCD-captured frames are “auto-

correlated” with each other to ensure proper alignment, they are “stitched” together in a single, massive

seamless image [48]. Line-based scanning utilizes a servomotor-based slide stage which moves sequen-

tially in a linear fashion along a single axis of acquisition, producing a group of images in the form of

long, uninterrupted strips. These strips are then aligned and “stitched” together into a single massive im-

age. This method of slide acquisition greatly simplifies the image alignment process, since the number

of image chunks and degrees of freedom associated with each is significantly reduced [48].

The output image resolution is determined by the magnitude of the microscope objective used for

scanning (e.g., ×20, ×40), the numerical aperture of the objective, and the quality of the camera’s pho-

tosensors.

The scanning speed varies from 1–3 min per slide, depending on the objective magnification, and the

number of z-stacks (plane of focus) acquired [48]. To speed up the scanning process, some devices allow

for dynamic pre-focusing, which utilizes one camera to focus and another for scanning. Usually scanners

offers a possibility to scan either an entire glass slide or, if desired, only a pre-selected region of interest

on the slide.

Despite the evident advantages of whole slide scanners over “traditional” microscope systems, due

to high costs of the former ones “traditional” microscope systems are still used in many laboratories,

especially for research purposes.

2.3.3. Reliability of WSI systems (in comparison to light microscopy)

Many pathologists believe that the performance of digital pathology systems is inferior to that of light

microscopy. However, numerous validation studies assessing intra- and inter-pathologist diagnostic dis-

crepancy rates and diagnostic certainty between glass and digital slides (summarized in Table 2.1) con-

cluded that there are no significant differences (with clinical or prognostic implications) in the diagnostic

ability of the participants between the two modalities, and thus suggest that virtual slides are equivalent

to conventional slides when making diagnoses in pathology. When discrepancies between WSI and light-

microscopy diagnoses arise, they typically involve entities that are known to be subject of inter-observer
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Table 2.1. The validation studies assessing intra- and inter-pathologist diagnostic discrepancy rates

and diagnostic certainty between glass and digital slides by having a group pathologists review sets

of cases by both light microscopy and digital pathology systems (digital slides were scanned at ×20

magnification). The concordance rate include cases with full concordance, minor discordance, and

discordance with no clinical significance.

Study # of cases # pathologists Concordance [%]

Jukic et al. [54] 101 3 95.6

Gilbertson et al. [55] 25 3 100.0

Al-Janabi et al. [56] 100 6a 94.0

Nielsen et al. [42] 96 4 96.4

Thorstenson et al. [49] 606 4 99.6

a Every pathologist assessed his own cases.

variability [53]. Some mismatched diagnoses could be explained by the lack of the possibility to review

the digital slides in a higher magnification than ×20. A detailed review of the above-mentioned studies

can be found in [53].

2.3.4. Stain color deconvolution and normalization

Variations in slide color are caused by a mosaic of section fixation procedures and staining protocols,

diversity of types of registration equipment and their configuration, and more (as mentioned in Sec-

tion 2.2). In particular, the H&E stain, the principal stain for examination in pathology (and particularly

in dermatopathology), is hard to standardize and slides often contains preparation artifacts. Figure 2.11

shows examples of WSIs of H&E-stained skin specimens exhibiting huge differences in staining quality

and background color (due to discrepancies in parameters of the light source in each of imaging devices).

Therefore, stain color normalization is an important preprocessing step when developing methods for au-

tomatic analysis of histopathological images.

Stain deconvolution is the process of transforming a stained tissue section image from the normal RGB

colour space into a series of stain channels, where each stain channel is a grayscale image representing

the intensity of a particular stain expression across the original image, as shown in Figure 2.12 [57].

Standard histological stains absorb light and the amount of light absorbed in each spectrum is non-

uniform, being a characteristic feature of a particular stain. Therefore, local stain concentrations and stain

colors determine the appearance of an illuminated slide sample under the microscope. Areas where both

no stain is present and the underlying tissue does not absorb a significant amount of light appear bright

white, as all of the light will pass through. The proportions of each wavelength absorbed (i.e., absorption

coefficients) form the stain vector of dimension equal to the number of wavelengths in the sensor used

for imaging (three for a standard 24-bit RGB color camera). The stain vector varies significantly not
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(a) CMUJ-SS (b) CMUJ-AM (c) UBC (d) UMch

Figure 2.11. Examples of WSIs of H&E-stained skin specimens used in this study. Images (a), (c) and

(d) were captured using different slide scanners, whereas image (b) was captured using an automatic mi-

croscope. Specimens origin from three different histopathology laboratories. Notice a huge difference in

staining quality and background color (due to discrepancies in parameters of the light source in each of

imaging devices) between those four sample images.

Original image (H&E) H channel (RGB) E channel (RGB)

Figure 2.12. Stain deconvolution using the method proposed by Macenko et al. [58]. Grayscale stain chan-

nels were convolved with the respective stain vectors for readability.

only among different stains, but also for the same stain depending on numerous factors (as discussed in

Section 2.2.3). A typical stain deconvolution method attempts to determine such an ideal stain matrix

that its multiplication to the RGB color channels produces the desired stain channels. A stain matrix

is composed of stain vectors, each vector representing the model color of a particular stain from the

original image. In some applications, stain deconvolution is followed by a normalization step which aim

is to standardize the stain color appearance across all the processed images before processing each stain

color [59, 60].

The first stain deconvolution algorithm was proposed by Ruifrok and Johnston [61]. Their method

outlined some key principles which are used even in more recent methods, like the use of stain matrices

and the conversion of RGB color channels into optical density space. The authors also provided sample

stain matrices for H&E and H&DAB, but these matrices were optimized for a particular set of images,

whereas in general stain matrices need to be fine-tuned to the exact stain colors present in histopatholog-

ical images (otherwise we may not achieve adequate deconvolution) [58].

Initial approaches to estimate image-specific stain matrices typically applied some statistical analysis

to the color channels of an image and then reduced it into a series of stain vectors. Macenko et al. [58]

proposed to estimate stain vectors by performing plane fitting in the optical density domain by means
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of singular value decomposition (SVD) of the image data. Gavrilovic et al. [62] considered the problem

on the Maxwellian chromaticity plane and assumed that projecting pixels onto this plane will result

in perceptually similar colors appear close to each other (ideally, pixels corresponding to each stain are

expected to appear in separable groups which could be modeled as a Gaussian mixture whose parameters

are determined using an Expectation-Maximisation approach). Each stain vector is then estimated as the

mean of its corresponding Gaussian distribution.

Some of more recent proposals take a supervised approach to stain deconvolution such as Khan et

al. [63] and Alsubaie et al. [64]. These methods firstly use a pre-trained stain classifier to identify the

locations where each stain is present, and then estimate stain vectors from these sets of classified pixels.

The major drawback of supervised approaches is that to obtain satisfactory results a large set of annotated

training data must be provided for a variety of stain types, which is often challenging to obtain.

Kather et al. [65] proposed to use principal component analysis (PCA) to get the optimal representation

of stain colors by projecting the first two PCA components on the plane created by the stain vectors

estimated using the pre-estimated stain matrix (provided by Ruifrok and Johnston [61]). However, PCA’s

assumption about the orthogonality between the main components may not be satisfied, especially in

correlated stains such as hematoxylin and eosin, and using pre-estimated stain matrix usually results in

suboptimal performance of stain deconvolution.

Recently, stain deconvolution algorithms based on independent component analysis (ICA) were also

proposed, such as Trahearn et al. [66] and Alsubaie et al. [57]. These methods are based on the assump-

tion that stain vectors can roughly be modeled as independent components according to the ICA model

(the initial estimate is then corrected). Since ICA assumes that source signals are independent, which in

case of histopathological images might not always be satisfied, Alsubaie et al. [57] relax this assumption

by using ICA in the wavelet domain only on least Gaussian sub-bands.

Despite its deficiencies, the method proposed by by Macenko et al. [58] remains one of the most

commonly used approach to stain deconvolution, mainly due to its simplicity and an unsupervised ap-

proach [67]. Surveys on stain color deconvolution and normalization can be found in [57, 68, 69].

2.4. Skin histology

Skin is part of the integumentary system and is considered to be the largest organ of the human body.

The three main layers of skin are: the epidermis, the dermis, and the hypodermis (Fig. 2.13a). The

epidermis, a stratified squamous epithelium, is the outermost layer of skin. Deep to the epidermis lies the

dermis, a thick layer of connective tissue consisting mainly of collagen and elastin, but also containing

nerve endings, blood vessels, and appendages (such as hair shafts and glands). The deepest layer is

hypodermis, consisting mainly of adipose tissue.

Each of the above-mentioned skin layers was characterized in the following sections based on infor-

mation from [70, 71, 72, 73]. However, only details relevant to the topic of epidermis segmentation and
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measuring epidermal morphometry were provided. In particular, components found only in glabrous skin

(e.g., on palms, soles, and lips) were passed over.

(a) Schematic (b) H&E

Figure 2.13. A skin cross-section. A whole slide image (WSI) of a typical skin preparation contains three

main tissue layers: epidermis (marked blue), dermis and adipose tissue.

2.4.1. Epidermis

The epidermis is a stratified squamous epithelium, on average about 0.2 mm thick, composed of a

variety of cell types – primarily of keratinocytes (90–95%), with minority populations of Langerhans

cells, melanocytes, Merkel cells, and adendritic cells. It contains four to five layers, depending on its

location (Fig. 2.14):

– Stratum basalis (basal cell layer): This layer is deepest and closest to the dermis. It contains

melanocytes, a single row of keratinocytes (varying in shape from cubic to columnar), and stem

cells, all resting on a basement membrane. The basement membrane serves as the point of demarca-

tion between the epidermis and the dermis (i.e., the dermo-epidermal junction). Basal cells contain

basophilic (or darkly staining) cytoplasm and an elliptical nucleus that is rich in chromatin.

– Stratum spinosum (prickle/suprabasal cell layer): This layer compromises most of the epider-

mis and contains approximately 4–10 layers of cells connected by desmosomes. Prickle cells are

cuboidal in the lower layer and slightly flattened in the upper layers.

– Stratum granulosum (granular cell layer): This layer contains two or three layers of cells that

contain basophilic lipid-rich granules. In this layer, cells begin to die and lose their nuclei, as they

move away from the nutrients located in the deeper tissue. During the upward migration from the

stratum spinosum, the cells of the stratum granulosum become flattened polygonal (even flatter than

those in the suprabasal layer) and form two to three layers of pyknotic cells (where the nuclear

material condenses).

– Stratum lucidum: This layer only exists in the thick skin of soles and palms and consists of mostly

dead cells.

– Stratum corneum (keratin layer, horny cell layer): It is the most superficial layer of the skin, serving

as a protective overcoat. The cells of this 10–20 layered stratum are dead, enucleated, flat, and filled
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with aggregated keratin filaments. They are continuously lost from the skin surface and replaced

by new cells emerging from the basal layer. Directly above the granular cell layer, the horny cell

structure appears as an eosinophilic layer. The horny cell layer is very thick in the palms and soles.

(a) Schematic (b) H&E (×10)

Figure 2.14. Structure of the epidermis: 0 – basement membrane, 1 – stratum basalis, 2 – stratum spinosum,

3 – stratum granulosum, 4 – stratum lucidum, 5 – stratum corneum.

A summary of microscopic appearance of cells forming the bulk of epidermis:

– Keratinocytes contain melanin granules that have been transferred to them by melanocytes

(Fig. 2.15a).

– Melanocytes appear as clear cells in the basal layer with large, round, euchromatic nuclei. It is pos-

sible for a single melanocyte to provide melanin for approximately 30 keratinocytes via its dendritic

arborisation (Fig. 2.15b).

– Langerhans cells are distributed throughout the strata spinosum and basale and can be readily

identified by a hallmark tennis racket-like discoid Birbeck granule, in addition to its euchromatic

cytoplasm (Fig. 2.15c).

– Merkel cells are clear, ovoid, and may occur singly or in clusters in the stratum basale of thick skin,

on the palms of hands and soles of feet. They are difficult to tell apart from melanocytes.

A clear cell is any cell containing abundant glycogen or other material that is not stained by hematoxylin

or eosin, so that the cell cytoplasm is very pale in routinely stained sections.

(a) Keratinocytes (b) Melanocytes (c) Langerhans cells

Figure 2.15. Selected cellular components
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The downward projections of the epidermis between the underlying connective tissue are called rete

ridges or retes (Fig. 2.16).

Figure 2.16. Rete ridges

2.4.2. Dermis

The dermis is the structure beneath the epidermis, and the two are separated by the basal membrane.

The dermis is approximately 15 to 40 times thicker than the epidermis. This region is irregularly arranged

and filled mostly with connective tissue. It consists of three layers with no clear demarcation between

them (Fig. 2.17a):

– Stratum papillare (papillary layer): The dermal area that projects into the intervals between the

epidermal ridges; those raised irregular projections that interlace with the epidermal ridges of the

epidermis are called dermal papillae. It consists mainly of a finely woven meshwork of collagen

fibers.

– Subpapillary layer: The thin area underlying the epidermis, containing the same components as

the papillary layer.

– Stratum reticulare (reticular layer): Accounts for the largest part of the dermis and has dense

connective tissue comprising fiber components. The lower part comes into contact with the subcuta-

neous fatty tissue. There are blood vessels and nerves in some parts. The components of the dermis

comprise the fibrous tissue and the dermal matrix formed by cells in the interstitial components. The

major components mainly consist of collagen fibers (mainly types I and III), with smaller amounts

of elastic fibers, and matrix. The integrity of the fibrous network varies with age and even within

particular regions of the body. The matrix generally comprises the extra-cellular matrix and ground

substance made up of proteoglycans and gelatin. Fibroblasts, macrophages, mast cells, plasma cells,

vascular channels and nerves are common cellular components. The reticular dermis also contains

other structures, such as appendages: sebaceous glands, sweat glands, and hair follicles.
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(a) Schematic

(b) H&E (×10)

Figure 2.17. Structure of the dermis.

The major components of each dermal layer are collagen fibers, elastic fibers, and matrix:

– Collagen fibers. Collagen fibers, formed from aggregations of thin fibrils, are the primary compo-

nents of dermis, account for roughly 70–75% of the weight of dry dermis. The structure of collagen

in dermis changes from thin and sparsely distributed fibers in the papillary and subpapillary lay-

ers to thick and densely distributed fibers in reticular layer (Fig. 2.17b). In adults, approximately

80–85% of dermal collagen fibers is type I collagen, 15% (mainly reticular fibers, which distribute

in the perivascular regions) is type III collagen, and most of the remainder is thought to be type V

collagen. The type III collagen fibers do not form thick fiber bundles.

– Elastic fibers. These fibres are highly elastic and impart elasticity to the skin. However, they cannot

be differentiated from collagen fibers by H&E staining.

– Ground substance (matrix). Ground substance is an amorphous mixture of sugar and proteins,

observed in between fibers and between cells in the dermis.
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Selected common cellular components found especially in the reticular layer:

– Fibroblasts: Fibroblasts are thin spindle-shaped cells sparse in collagen fibers (Fig. 2.18a).

– Histiocytes: Histiocytes are broadly distributed in the connective tissue and mix together with fi-

broblasts (Fig. 2.18b).

– Plasma cells: Plasma cells are white blood cells that secrete large volumes of antibodies

(Fig. 2.18c).

Apart from permanent cells there are also migratory cells, such as lymphocytes and other leukocytes.

(a) Fibroblasts (b) Histiocytes (c) Plasma cells

Figure 2.18. Selected cellular components

Dermis has a dense network of vascular channels and nerves:

– Blood vessels: Numerous branches of blood vessels distributed in skin are connected with each

other forming two horizontal networks, the subcutaneous plexus and the subpapillary plexus, with

arterioles ascending through the papillary layer forming capillary loops in the dermal papillaries

before moving to venules (Figs. 2.17a and 2.19a). The peripheral regions of the eccrine glands and

hair follicles in the growth stage are particularly richly supplied with vascular networks.

– Lymphatic vessels: Lymph vessels are distributed around the subpapillary layer and extend to the

dermal and subcutaneous lymph vessels. They are partly ruptured, surrounded by loose collagen

fibers and elastic fibers (Fig. 2.19b), and their structure is less regular than that of the blood vessels.

The endothelial cells of lymph capillaries are thin and lack pericytes or lamina densa.

– Nerve fibers: In the dermal lower layers nerve fiber bundles are myelinated, i.e., covered with a

membrane, but as they ascend through superficial dermis and peripheral appendages, they change

to non-myeliated bundles and branch into many fibers (Figs. 2.19c and 2.19d).

2.4.3. Hypodermis

The hypodermis (subcutaneous tissue) is the layer between the dermis and the fascia, largely composed

of fat cells. This region is rich in fiber bundles produced in the dermis and firmly connected with the fascia

and periostea through the subcutaneous tissue. The main component of the fat droplet is triglyceride. On

H&E-stained images it appears transparent, as the content of fat cells is leached out during fixing and

processing stages of the slide preparation process (and thus it absorbs neither hematoxylin nor eosin

stain).
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(a) Blood vessels (b) Lymphatic vessels

(c) Nerve fibers (myelinated) (d) Nerve fibers (non-myelinated)

Figure 2.19. Vascular channels and nerves

2.4.4. Appendages

Skin appendages (or adnexa) are skin-associated structures that serve a particular function including

heat loss, lubrication, and contractility. Types of appendages most important for diagnosis of skin lesions

include hair and glands (Fig. 2.20a).

Hair apparatus. The hair apparatus is distributed throughout the skin except on the lips of the mouth.

It consists of a hair and a hair follicle, the layer of tissue that encloses a hair and opens in a funnel shape.

Hair follicles are aligned obliquely to the skin surface. Part of the hair follicle is slightly enlarged to form

a hair bulge, above which sebaceous glands and apocrine glands are seen (Figs. 2.20c, 2.20b). During

the growth stage the bottom of the hair root bulges out spherically forming a hair bulb.

Sebaceous glands. The sebaceous glands (Fig. 2.20d) are widely distributed throughout the skin,

except in palms and soles and some mucous membranes.

Sweat glands. Human sweat glands are either eccrine, distributed throughout most of the body, or

apocrine, found at specific sites of the body. Both types are hair follicle-associated and consist of a

secretory part and a sweat duct. The secretory parts are coiled and surrounded by fat tissues in the deep

dermal layer and subcutaneous tissue. Eccrine sweat glands has two layers of secretory cells (Fig. 2.20e).

The sweat duct ascends perpendicularly in the dermis (straight duct) through the coiled duct, which

extends from the secretory area.
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(a) Sweat glands, hair follicles and sebaceous glands.

(b) Hair apparatus (longitudinal section) (c) Hair apparatus (cross section)

(d) Sebaceous glands (e) Sweat glands

Figure 2.20. Skin appendages

2.4.5. Morphometry of cells and tissue structures

Our methods rely on the morphometry of cells and tissue structures which can be found in the human

skin. This section discusses and summarizes dimensions of the respective structures used in our study.

Epidermis. The diameter of keratinocytes varies from 8–25 µm whereas the diameter of an average

keratinocyte is 12–16 µm [74]. The diameter of keratinocyte nucleus is 8.6±2.8 µm [75]. The mean

thickness of cellular epidermis depends on the body site. For the typical body locations, the thinnest epi-

dermis can be found in forearm dorsal, with its epidermal plate thickness varying between 45–65 µm [76,

77]. Therefore, we adopted the value of 40 µm as the minimum thickness of cellular epidermis. The mean

epidermis-dermis thickness in typical body sites varies from 1.55 mm for tight to 2.54 mm for supras-

capular area [78], although for thick skin it may reach up to 4 mm. The upper range of the 95% CI interval

for the mean epidermis-dermis thickness in suprascapular area (2.58 mm) was adopted as the maximum
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thickness of epidermis-dermis [78]. The typical thickness of stratum corneum is 10–30 µm, depending

on the body site [79]. However, in pathologically changed epidermis the mean thickness of this layer

may be up to 150 µm [80]. In our study we adopted the value of 100 µm as the maximum thickness of

stratum corneum.

Based on those information, we have defined quantities used in image processing routines, which are

summarized in Table 2.2.

Table 2.2. Values of morphometric parameters of tissue structures

Symbol Description Value

rKerMax maximum radius of a keratinocyte 12 µm

rKerAvg radius of an average keratinocyte 8 µm

rKerNuc radius of a keratinocyte nucleus 4 µm

AKerMax maximum area of a keratinocyte πr2
KerMax

AKerNuc area of a keratinocyte nucleus πr2
KerNuc

dEpMin minimum thickness of cellular epidermis 40 µm

dEpDermMax maximum thickness of epidermis-dermis 2.58 mm

pEpMin ratio of epidermis area to epidermis-dermis area dEpMin/dEpDermMax

dSCAvg typical thickness of stratum corneum 30 µm

dSCMax maximum thickness of stratum corneum 100 µm

Dermis. The diameter of collagen fibers is quite variable, ranging from 2–15 µm [71, 81]. In abdom-

inal skin the spacing between collagen bundles is 2–7 µm, whereas the percent fractional-area occupied

by the collagen is 48–82% [81]. Elastic fibers are 1–3 µm in diameter [70]. Resting lymphocytes mea-

sure on average 8–10 µm in diameter and have a small, round nucleus that appears deeply basophilic

because of the presence of numerous chromatin particles; they have only a narrow rim of cytoplasm

that is difficult to delineate by conventional light microscopy. Since it is typically not possible by light

microscopy to distinguish lymphocytes from monocytes in H&E-stained histologic sections, cells with

a histologic appearance of lymphocytes are usually referred to as lymphoid cells (similarly, infiltrates

likely to contain significant admixtures of both lymphocytes and monocytes are sometimes described as

“lymphohistiocytic infiltrates”) [71].

2.5. Skin pathology

When observing a pathological specimen, it is necessary to identify the abnormality in the specimen

by comparison with normal findings (Fig. 2.21a). Some fundamental terms for skin pathological changes

and diseases are as follows [70]:

– Acanthosis (epidermal hyperplasia) describes thickening of the epidermis (Fig. 2.21b).
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– Epidermal atrophy (epidermal hypoplasia) is caused by reduction of keratinocytes, which leads to

thinning of the epidermis (Fig. 2.21c). Consequently, the papillary processes are diminished or even

completely lost.

– Hyperkeratosis is abnormal thickening of stratum corneum (Fig. 2.21d).

– Hypergranulosis describes abnormal increase in the number of granular cell layers, to four or more

layers (Fig. 2.21e).

– Inflammatory cell infiltration occurs when inflammatory cells infiltrate around the blood vessels

(Fig. 2.21f). The principal infiltrating cells in melanocytic lesions are neutrophils, eosinophils, and

lymphocytes.

(a) Normal skin (for reference) (b) Acanthosis (c) Epidermal atrophy

(d) Hyperkeratosis (e) Hypergranulosis (f) Inflammatory cell infiltration

Figure 2.21. The selected fundamental abnormalities in skin specimens.

2.6. Skin melanocytic lesions

Skin melanocytic lesions are neoplasms derived from epidermal melanocytes. The two principal

classes of skin melanocytic lesions are “benign” nevi (with no metastatic potential) and “malignant”

melanoma (with a metastatic capacity proportional to its thickness).

In the context of melanocytes, the term “nevus” denotes the localized aggregation of nevus cells,

i.e., cells derived from melanocytes, as benign neuroectodermal proliferations and/or neoplasms [82].

Nevus cells, arising as a result of proliferation of melanocytes at the dermal–epidermal junction, are

typically grouped in nests [83]. Although the histogenesis of nevus cells remains the subject of debate,

they are widely accepted as morphological variants of native melanocytes [84, 85, 86]. Nevi may be

congenital or developed during lifetime, with the majority of them appearing during the first two decades

of a person’s life [87]. Acquired melanocytic nevi are extremely common and most of them are benign

with little malignant potential; only a very small proportion progress to melanoma [83]. The possible
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pattern of evolution of pigmented nevi has been deduced by pathological examination of a large number

of lesions removed at different ages [88, 89]. Moreover, it has been observed across many datasets that

total numbers of nevi (especially dysplastic ones) constitute a major, if not the major, phenotypic risk

indicator for all types of melanoma [90, 91].

Melanoma is the generic term for all malignant neoplasms derived from melanocytes, with most

melanomas develop through an out-of-control progressive proliferation of melanocytes within the squa-

mous epithelium [17]. Melanomas are the most aggressive and dangerous neoplasms, they grow fast and

quickly metastasize to nearby lymph nodes and other organs.

In recent years, the sharp dichotomy between “benign” nevi and “malignant” melanoma started to be

considered an oversimplification [16]. Although the great majority of melanocytic lesions can be confi-

dently labeled as either nevi or melanoma, there exists a “gray zone,” which is composed of lesions that

cannot be precisely classified into one of these groups. These distinct clinicopathological entities seem to

correspond to low-grade forms of melanoma, in which distant metastasis is a rare but finite risk [92]. No

histopathological criterion is entirely specific for nevi (all can be occasionally found in a melanoma) and

some criteria are infrequent, or have low specificity, or suffer of high inter-observer variation. Moreover,

some challenging lesions contain conflicting criteria suggesting opposite diagnoses. Therefore, criteria

must be used in clusters: each single criterion must be evaluated and added to the others; the diagnosis

of a nevus should be the outcome of the combination of clues to benignity found in the neoplasm. Apart

from the “positive” criteria, dermatopathologists must also take into consideration the “negative” ones,

i.e., the criteria that would suggest malignancy but are lacking. Additionally, criteria ought to be used

for specific differential diagnosis, i.e., a specific form of nevus should be differentiated from a type of

melanoma morphologically mimicking it: Spitz nevus vs. spitzoid melanoma, desmoplastic nevus vs.

desmoplastic melanoma, etc. [16].

2.6.1. Benign lesions: Lentigo maligna

Lentigo maligna is a precursor to lentigo maligna melanoma, a potentially serious form of skin cancer.

It occurs on the most sun-exposed surfaces, in sun damaged skin, so is generally found on the face

or neck. It typically progresses slowly, over 5 to 20 years or longer, and can remain in a non-invasive

form for years. Lentigo maligna is a proliferation of malignant melanocytes along the basal layer of the

epidermis and within the hair follicle. One of the major histological criteria for the diagnosis of lentigo

maligna, related to epidermal morphometry, is atrophy and effacement of the epidermis [17]. Examples

of the lentigo are shown in Figure 2.22.

2.6.2. Dysplastic lesions: Junctional dysplastic nevus

The term “dysplastic nevus” was coined in 1978 by Wallace Clark and his colleagues [93], who pro-

posed a hypothesis that a set of findings in nevi of members of families with a tendency to develop
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Figure 2.22. Examples of the lentigo

melanoma comprise a clinicopathological entity, representing an intermediate step between the “com-

mon nevus” and melanoma (hence a dysplastic nevus is often called a Clark nevus).

A junctional nevus is an intermediate stage of development between a banal common nevus and a der-

mal nevus. It comes into being when a single abnormal melanocyte begins to proliferate in a lentiginous

pattern (i.e., forming a row) at the dermal epidermal junction (when the melanocytes are found both at

the dermal epidermal junction and within the dermis, such a nevus is called a compound nevus).

In general, a junctional dysplastic nevus (also atypical nevus, nevus with architectural disorder

and melanocytic atypia) consists of a lentiginous proliferation of a variable combination of single

melanocytes and nevus cells in nests along the dermal-epidermal junction, although dysplasia may also

extend into the epidermis above a dermal component. If present, nests are often irregular in size and

shape and may “bridge” or join together (in common nevi the nests are roundish or regularly elongated,

and typically positioned at the tips of rete ridges). The rete ridges in lentiginous areas are elongated, with

bridging between adjacent rete ridges in some areas [92]. Some cells may contain finely granular melanin

pigment. In 1985, on the conference sponsored by the World Health Organization (WHO), the follow-

ing two major histological criteria for the diagnosis of dysplastic nevus were proposed [94]: (1) basilar

proliferation of atypical melanocytes extending at least three rete ridges beyond the dermal nevocellular

nevus; and (2) lentiginous or epithelioid cell pattern of the atypical intraepidermal melanocytic prolif-

eration. Minor criteria include, among others, fusion of rete ridges. Histological dysplasia may be mild,

moderate or severe. Examples of the junctional dysplastic nevus are shown in Figure 2.23.

Figure 2.23. Examples of the junctional dysplastic nevus

There is no gold standard for the diagnosis of a dysplastic nevus [95]: at the “low end” of the spectrum

are common nevi with some of the features seen in prototypical lesions, and at the “high end” are thin

melanomas that histopathologically simulate such nevi. Nonetheless, the notion of dysplastic nevus as an
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intermediate step in the tumor progression (between common nevus and melanoma) seem logical from

the point of view of tumor biology [16].

2.6.3. Malignant lesions: Melanomas

Although the two most commonly diagnosed skin cancers are basal cell carcinoma and squamous cell

carcinoma, which develop from the non-pigmented cells of the skin, the most aggressive and dangerous is

melanoma. Melanoma originates in pigment producing cells called melanocytes and is less common but

far more deadly than cancers mentioned above [96]. Melanomas are fast-growing and highly malignant

tumors often spreading to nearby lymph nodes, lungs and brain (Fig. 2.24). Prognosis depends on the kind

of melanoma, its size, location and depth of invasion. The most important parameter which predicts the

stage of melanoma is the thickness of the examined lesion. Skin moles with the thickness less than 1 mm

are nearly 100% curable [12]. Therefore, the aim of each clinician is to detect malignant melanomas

when they are still small and thin.

Figure 2.24. Presentation of five stages in malignant melanoma evolution process

Melanoma in situ is a form of melanoma entirely restricted to the epidermis, the dermoepidermal junc-

tion, and epithelial appendages. Melanoma in situ shows quite heterogeneous features and the three main

diagnostic details typically observed in such lesions are: areas in which single melanocytes predominate,

irregular distribution of junctional nests, and pagetoid spread of melanocytes (occasionally only one or

two of these details are present in a lesion) [16]. Histopathological diagnosis of melanoma is difficult

due to the lack of a single criterion that is specific for melanoma. The fundamental problem is especially

true for melanoma in situ, as the currently used diagnostic criteria have been formulated based on the

assessment of the intraepidermal component of invasive melanomas that have metastasized and therefore

are not entirely representative (since tumor progression leads to changes in the characteristics of intraep-

ithelial melanoma, these criteria may be different from that of “true” in situ lesions) [97]. Consequently,

in many instances the diagnosis may be subjective because of differences in training and philosophy, and

the experience of the observers: accordingly, the same lesion may be classified as dysplastic nevus with

severe atypia by one pathologist and as melanoma in situ by another.
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Superficial spreading melanoma is a term used to describe melanoma in a superficial, horizontal

growth pattern, either in situ or initially invasive. The superficial spreading pattern of melanoma grows

mostly horizontally in the epidermis, resulting in an asymmetric but vaguely elongated rectangular sil-

houette of SSM. Examples of superficially spreading melanomas are shown in Figure 2.25.

Figure 2.25. Examples of the superficially spreading melanoma (SSM)

Criteria for superficial spreading melanoma (SSM), which is the most common type of melanoma,

and melanoma in the in situ stage include [16, 17]:

– Epidermal plate: The epidermis is irregularly altered, with hyper- and hypoplastic sections dis-

tributed in a disorganized fashion. The uniform atrophy of the epidermis and the presence of an

elongated, dermoepidermal artifactual cleft are both indicators of melanoma.

– Rete ridges: Retes are usually widened or changed in another way. Nonetheless, occasionally, they

may become completely effaced. Only exceptionally retes are thin and evenly elongated as in nevi.

– Nests: Large, irregularly shaped, confluent nests are unevenly distributed along the dermoepidermal

junction, separated one from another by “skip areas” which are either free of melanocytes or with a

lesser number of melanocytes arranged in a lentiginous pattern.

– Infiltration: There are variably dense infiltrates of lymphocytes and melanophages in the papillary

dermis.

A key finding is that these changes are usually distributed unevenly.

Although some of the above-mentioned criteria are not directly related to epidermal morphometry,

they should be considered when designing automatic image processing methods (e.g., the presence of

abundant lymphocytic infiltration in dermis may affect the output of some stain deconvolution methods

described in Section 2.3.4.

2.6.4. Differential diagnosis between benign and malignant lesions

The histological criteria currently used in the diagnosis of melanoma consist of the analysis of numer-

ous features, such as: lesion’s asymmetry, morphometric features of epidermis, proliferation patterns of

single melanocytes, cytological atypia, mitoses, and necrosis [16, 17].

According to [98], cytological atypia and asymmetry showed a high sensitivity (>90%), whereas

suprabasal melanocytes showed a high specificity (>90%). Nonetheless, since many of the architectural

characteristics appear to be more reproducible than assessment of cytological atypia, they take prece-

dence over cytology as histological criteria [17].
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Criteria related to the epidermal component are: uniformity and symmetry of an epidermal hyperplasia

along the lesion, and elongation and thickening of rete ridges (Figs. 2.26 and 2.27). Clinical experience

suggest the following relations between those criteria and selected classes of melanocytic lesions: (1) le-

sion symmetrical with respect to epidermal thickness (i.e., thickness is measured along the main axis of

the epidermal region, on cross-sections orthogonal to that axis) usually indicates a nevus, whereas its

asymmetry is often a sign of malignancy, (2) irregular hyperplasia is sometimes sighted in melanomas,

(3) more uniform rete ridges are characteristic feature of nevi, (4) irregular alteration between elongation

and effacement of rete ridges is often seen in malignant lesions, (5) although rete ridges of dysplastic

nevi are often distorted, high percentage of the ordinary benign melanocytic naevi also showed some

bridging of rete ridges [17]. The above-mentioned relations are considered to be particularly effective in

differentiating between melanoma in situ (which shows quite heterogeneous features) and benign lesions

(especially those resembling melanoma, like junctional nevus or lentigo simplex) [16].

Figure 2.26. A diagram of the structural features of the epidermis: main axis of the epidermal region (large

red dots), boundary of the epidermal “base” (small red dots) used to measure thickness of the epidermis

(red bars, perpendicular to the main axis), main axes of rete ridges (green), bridging of adjacent rete ridges

(blue). This epidermal section is asymmetric – its right half has considerably more elongated rete ridges

than its left half.

(a) Melanoma in situ (malignant) (b) Junctional dysplastic nevus (benign)

Figure 2.27. A comparison of the structure of an epidermal component: (a) melanoma in situ, effacement

of rete ridges; (b) junctional dysplastic nevus, uniformly elongated rete ridges.

The problem is that those criteria are vaguely defined and present low specificity and/or sensitiv-

ity [16]. There are no comprehensive studies on the efficacy of particular criteria [17]; the existing study
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covers only a narrow subset of all routinely used criteria (which does not include morphometric features

of epidermal component) [98].

2.7. Melanoma misdiagnosis problem

The histopathological examination constitutes the gold standard for classifying a melanocytic skin

lesion as malignant. Although there exist other forms of examination (e.g., dermatoscopy), they do not

yield as high diagnostic confidence in contrast to a histopathological examination (e.g., while expert

dermatologists may arrive at 90% sensitivity and 59% specificity in skin lesion diagnosis, for young

inexperienced dermatologists and family physicians these figures drop significantly till around 62–63%

for general practitioners [99, 100]).

However, even in case of the histopathological examination there is often no concordance between

pathologists regarding the diagnosis of a given lesion, and discordance in the diagnosis of melanoma

poses a serious problem as it has important consequences to the patient depending on the nature of the

lesion. Farmer et al. [101] analyzed the performance of a panel of 8 expert dermatopathologists in the

interpretation of 37 cases of cutaneous melanocytic tumors exhibiting “classic features” as benign, ma-

lignant, or indeterminate. They found out that in 38% of cases two or more pathologists has discordant

interpretations. Lodha et al. [2] examined the discordance among senior dermatopathologists in evaluat-

ing 172 cases of difficult melanocytic neoplasms (most cases were reviewed by two dermatopathologists).

In 25.2% of cases the diagnostic discordance was extreme (“definite melanoma vs. definite nevus”) and

in total in 36.4% of all cases the diagnoses were significantly discordant (i.e., one specialist claimed that

a lesion is more likely benign while the other one that is is more likely malignant). Troxel [102] studied

335 pathology malpractice claims and found out that 13% of them were false-negative melanoma claims

(it had highest percentage in the category of systematic errors). Shoo et al. [14] compared the initial diag-

nosis rendered to 392 patients by an outside dermatopathologist or surgical pathologist with a subsequent

diagnosis rendered after re-evaluation by routine histopathologic examination. The discordance rate of

melanomas and nevi between the two was 14.3%.

The above-mentioned studies show that the misdiagnosis rate of melanoma may be as high as 25% and

there are several main reasons behind this problem: (1) less common melanoma subtypes have different

histopathological features than superficial spreading melanoma (the most common type of melanoma

– 40-70% of all diagnosed cases, depending on the region of the world) and thus may be more dif-

ficult to diagnose, (2) lesions are evaluated not by dermatopathologist or surgical pathologist but by

general histopathologists (who lack an in-depth knowledge of nuances between less common types of

melanoma), (3) some uncommon form of melanoma (the so-called nevoid melanoma) resembles a com-

mon benign melanocytic nevus on histological examination, and (4) the diagnosis is mainly based on

experience and intuition of a given pathologist (therefore it is highly subjective) [3, 14, 103, 104].

A false-negative diagnosis of melanoma (i.e., misdiagnosing a malignant lesion as a benign one) is the

most serious issue as it delays the beginning of treatment what leads to complications and even patient’s
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death. Figures show that a false-negative diagnosis of melanoma is a continuing problem for pathologist

– in the United States it has become the single most common reason for filing a malpractice claim against

a pathologist (70–95% of all cases) [102, 105].

These obstacles encourage researchers to try to implement and build computer-aided diagnosis (CAD)

systems for automated diagnosis of melanoma aimed at increasing the specificity and sensitivity of the

assessment of skin melanocytic lesions and at its simplification.
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3. Preface to the proposed algorithms

The proposed automatic diagnostic algorithm consists of the following stages:

(Input) A high-resolution RGB whole slide image of a H&E-

stained skin specimen

⇓
Tissue
segmentation

Segmentation is done indirectly, by detecting the slide

background regions, using statistical analysis of color

distribution, color thresholding and reconstruction in

CIELAB color space (described in Chapter 4).

⇓
Epidermis
segmentation

Segmentation is based on information about shape and dis-

tribution of slide background regions in an image and infor-

mation about distribution and concentration of histological

stains (described in Chapter 5).

⇓
Retes
segmentation

Segmentation of rete ridges in the previously segmented

epidermis and measurement of their basic morphometric

features is done mainly by analyzing the curvature of the

epidermal boundary and the skeleton of the epidermal re-

gion in the graph representation (described in Chapter 6).

⇓
Feature
extraction
& classification

A machine learning classification algorithm makes a diag-

nosis based on features describing the overall epidermal

morphometry, computed from information extracted in the

previous stage (described in Chapter 7).

ROOT

x > y

x < z

A

no

B

yes

no

C

yes

⇓
(Output) diagnosis: lentigo / dysplastic nevus / melanoma
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In the subsequent sections we summarized the state-of-the-art literature and challenges related to each

stage of the proposed diagnostic algorithm, briefly described the outline of methods proposed by the

Author for each stage, and characterized datasets used in our study.

3.1. Related works in the field

This section gives a brief introduction to the subject matter of each of the system’s modules, discusses

key challenges to be considered when designing its algorithms, summarizes the most important state-of-

the-art methods, and provides an outline of the method proposed by the Author.

3.1.1. Tissue segmentation

The accurate tissue segmentation is usually an obligatory first step in computerized analysis of WSIs,

e.g., to improve the accuracy of stain deconvolution methods or to perform morphological analysis of the

tissue structure [24, 58]. It is a challenging task as both inter- and intra-image color variations must be

taken into account when analyzing histopathological images, as mentioned in Section 2.3.4.

In recent years a few general-purpose approaches to tissue segmentation in low-resolution WSIs were

proposed. Bug et al. proposed the FESI method based on global thresholding at the mean value of the

Gaussian blurred Laplacian of the greyscale image, refined by flood filling from identified background

points [106]. Bándi et al. used a deep learning approach (a fully convolutional neural network and a

U-net), which managed to detect large void spaces in the tissue but failed to segment medium- and

small-sized pores (as mentioned by the authors in [107]). Additionally, a general-purpose GrabCut (GC)

method is often used for image regions segmentation [108]. These tissue segmentation methods are in-

tended either to be used in whole-slide scanners, where a coarse foreground estimation (at low resolution

of approximately 4–8 µm/px) is enough to determine regions to be scanned and the proper focus depth

for each of them, or to segment only large void regions within tissue. Nonetheless, those methods fail

when applied to a skin specimen, since it contains numerous little void spaces between bundles of colla-

gen fibers in dermis and frequently a big section of (colorless) adipose tissue as shown in Figure 4.1. The

statistical comparison of the performance of all above-mentioned methods is presented in Section 4.2.3.

The approach proposed by the Author is based on color statistical analysis, CIELAB color thresh-

olding, and binary morphology. As it is dedicated for H&E staining only, domain-specific knowledge

about color properties observed in WSIs could be incorporated into the solution. Therefore it provides

fine-grained, reliable, and easy to implement automatic foreground selection, tolerant to the slide mag-

nification, illumination conditions, artifacts and noise.

3.1.2. Epidermis segmentation

The morphometric and cytologic features of the epidermal area are key factors considered when diag-

nosing skin conditions and during skin tissue grading, especially if the lesion involves inflammation [16,
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109]. For example, symmetry and regularity of epidermal thickness are diagnostic clues useful to dif-

ferentiate between (benign) nevi and (malignant) melanoma. Similarly, cellular atypia of keratinocytes

typically indicates either squamous cell carcinoma or basal cell carcinoma, the two most common types

of skin cancer.

Although the topic of automatic epidermis segmentation is not yet sufficiently explored, a few com-

puterized techniques have already been proposed. Mokhtari et al. [110] suggested a method based on

the contrast limited adaptive histogram equalization (CLAHE). Firstly, the noise in image is removed by

applying morphological closing; then, the CLAHE is performed in order to adjust local contrast of the

image; finally, the epidermis area is obtained using global thresholding. Haggerty et al. [111] proposed a

technique based on both contrast enhancement and thresholding (henceforth referred to as the CET tech-

nique). It applies global thresholding on an image with its contrast enhanced (the enhancement involves

combining a greyscale image and the b∗ channel in CIELAB color space into the resulting image). Lu

et al. [112] presented a technique based on global thresholding and shape analysis (henceforth referred

to as the GTSA technique). Firstly, to obtain a coarse segmentation the global thresholding and shape

analysis is used. Then, a template matching method with adaptive template intensity value is applied.

Lastly, the probability density function of the response value image is used to calculate the threshold.

Xu et al. [113] proposed an algorithm consisting of two steps. In the initial step a coarse epidermis seg-

mentation on the WSI is obtained. Then, the thickness of this roughly delimited epidermis is measured

along the main axis of the lesion region. Region exhibiting excessive thickness are analyzed once again

to perform the segmentation process more precisely. Henceforth, this algorithm is further referred to as

the THM technique. All the above-mentioned epidermis segmentation methods are based primarily on

the combination of the global thresholding technique with area and shape analysis. Each of those meth-

ods makes substantial assumptions about color and contrast of WSI images. However, as mentioned in

Section 2.2.3, inter- and intra-image variations in staining and illumination are quite common. Moreover,

stain distribution will be strongly affected by the presence of certain pathological changes discussed in

Section 2.5. Consequently, these assumptions are often not met when it comes to analyzing data from

different sources and such segmentation methods tend to incorrectly include large false positive dermal

regions in the resulting segmentation mask. The bulk of those false positive regions are dark skin com-

ponents, including appendages, nests of melanocytes, and lymphocytic infiltration. In extreme cases, the

aforementioned variations in image color may lead to a general failure of a given segmentation algorithm.

In the light of the above-mentioned limitations, a novel approach towards epidermis segmentation

has been proposed, based on the method published by the Author in [24]. The initial segmentation is

based on the analysis of shape and distribution of void regions in a tissue. It is then refined by analyzing

the concentrations of hematoxylin and eosin stains in the tissue. In the final step, shape and location

constraints are applied on the segmented region to obtain the actual epidermal region.

The proposed method strongly relies on domain-specific knowledge of cell and tissue morphology

and their biochemical properties. The porosity analysis stage is based exclusively on the analysis of

void spaces; in particular in its morphological operations it utilizes only such well-defined quantities as
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radii of epidermal cells and their nuclei. The stain concentrations analysis stage is based on the analysis

of normalized stain concentrations maps determined automatically for each individual image. It also

utilizes knowledge about the way certain tissue structures absorb both hematoxylin and eosin. Therefore,

this technique is robust to differences in staining protocols, stain absorption within individual images,

and to illumination variability. Moreover, it does not require any parameter selection from its users, as

the relevant values are either computed from the slide image or predefined based on domain-specific

knowledge.

To sum up, the novelty of the proposed method is in its full automation, robustness to color variations

in staining, and its solid basis in skin histology and dermatopathology. The proposed method can be

used, as a preliminary step, by higher-level algorithms used for the analysis on human skin, e.g., for the

detection of epidermal melanocytes or for the measurement of epidermal morphometry. Additionally,

some of the proposed techniques (e.g., for measuring epidermis morphometry) may easily be refined and

used in different fields of computer vision, such as general object analysis and recognition.

3.1.3. Epidermis morphometry

The epidermal area (Fig. 3.1) is an especially important target of examination when diagnosing skin

conditions, especially melanocytic lesions. Its morphometric and cytologic features are crucial factors

considered when grading a skin specimen [16, 109].

Figure 3.1. The epidermis (marked with the solid line) often has a complicated morphometry, with numer-

ous rete ridges (some of them are marked with an arrow).

The main histopathological criteria related to the morphometry of epidermal component, which are

currently used for melanoma diagnosis, include lesion’s general (a)symmetry, uniformity and symme-

try of epidermal hyperplasia along the lesion, and elongation and thickening of rete ridges [16, 17].

The epidermal thickness is measured along the sections of epidermis between bases of adjacent retes,

perpendicularly to the main axis of the epidermal base (the epidermis main axis is the centerline of the

epidermis base, i.e., of the epidermal region with retes passed over). A comparison of a typical epidermal

morphometry in benign and malignant lesions is shown in Figure 3.2.

In this thesis a novel method for automatic determination of the location, base width, length, and

height of retes in a segmented epidermis has been proposed. These information can help develop complex

indexes describing the epidermal morphometry (as described in Chapter 7), which could be used by CAD

systems in digital dermatopathology, or help in the cognitive analysis of lesions [114, 115]. To the best
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(a) Melanoma in situ (malignant) (b) Junctional dysplastic nevus (benign)

Figure 3.2. Comparison of the epidermal component structure: (a) melanoma in situ – effacement of rete

ridges, irregular epidermal thickness; (b) junctional dysplastic nevus – uniformly elongated rete ridges,

regular epidermal thickness.

of Author’s knowledge the proposed method is the first one to detect individual rete ridges and
measure their morphometric parameters.

3.2. Datasets specification

To obtain the WSIs we established scientific cooperation with the University Hospital in Krakow and

with the Chair of Pathomorphology of Jagiellonian University Medical College. Additionally, the Author

was granted permission to use data available in public open image repositories of University of Michigan

and University of British Columbia.

Throughout this study we used whole slide images of skin lesions acquired from three different labo-

ratories and captured using four different devices (overview in Table 3.1):

– The JUMC-SS dataset was obtained from Jagiellonian University Medical College. The original

images were captured under 10× magnification (0.44 µm/px) on Axio Scan.Z1 slide scanner and

saved into uncompressed TIFF files.

– The JUMC-AM dataset was obtained from Jagiellonian University Medical College. The original

images were captured under 20× magnification (0.345 µm/px) using Olympus BX51 light micro-

scope equipped with Pike F505C VC50 digital camera and saved into uncompressed TIFF files.

– The UMch dataset was obtained from the University of Michigan Virtual Slide Box [116]. The

original images were captured under 40× magnification (0.25 µm/px) on Aperio AT2 slide scanner

and saved into JPEG2000 format at a quality level of 70.

– The UBC dataset was obtained from the Virtual Slidebox of University of British Columbia [117].

The original images were captured under 40× magnification (0.25 µm/px) on Aperio ScanScope

CS2 slide scanner and saved into JPEG format at a quality level of 30.

JUMC-SS and JUMC-AM datasets included cases of selected melanocytic lesions: lentigo maligna,

junctional dysplastic nevus, melanoma in situ, and superficial spreading melanoma. UMch and UBC

datasets included cases of chronic and acute conditions characterized by inflammatory skin, in particular:
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Table 3.1. Parameters of WSI datasets used in this study. Origin of slides: JUMC-AM,

JUMC-SS – Jagiellonian University Medical College; UMch – University of Michigan [116];

UBC – University of British Columbia [117].

Set ID Mag. µm/px Image format Device

JUMC-SS 10× 0.44 TIFF Axio Scan.Z1

JUMC-AM 20× 0.345 TIFF Olympus BX51 + Pike F505C VC50

UMch 40× 0.25 JPEG2000 q70 Aperio AT2

UBC 40× 0.25 JPEG q30 Aperio ScanScope CS2

dermatitis, lichen, psoriasis, skin carcinoma, and skin nevus. For malignant lesions, we focused mainly on

superficial spreading melanoma, as it constitutes 67% of all melanoma cases diagnosed nowadays [17].

The images differed in specimens’ staining quality as well as original magnification, and were captured

using either an automatic microscope or a whole-slide scanner, which allowed us to cover most of the

variations which one would encounter in regular clinical practice. All the histological sections used in

the evaluation were prepared from formalin-fixed paraffin-embedded tissue blocks of skin biopsies (each

section was about 4 µm thick) stained with H&E using an automated stainer. The size of original WSIs

varied from 3000× 1000 to 20000× 30000 pixels. Examples of WSI images from each of the datasets

used in this study are shown in Figure 2.11.

To verify each stage of the proposed diagnostic system, WSIs were paired with the following diag-

nostic information (the ground truth) prepared manually by an experienced dermatopathologist: tissue

segmentation (a binary mask), epidermis segmentation (a binary mask), information about each indi-

vidual rete (the approximated location of its base endpoints and its length), and the diagnosis. Binary

masks were prepared using GIMP image processing program and information about retes were provided

using the “ROI Manager” functionality of ImageJ image processing program. The tissue segmentation

stage was tested on 60 images from all four datasets (30 from JUMC-SS, 10 from JUMC-AM, 10 from

UMch, and 10 from UBC dataset). The epidermis segmentation stage was verified using all images from

JUMC-SS dataset. The retes segmentation stage was tested on 25 images from JUMC-SS dataset, which

contained in total nearly 1000 manually segmented retes (manually annotating all 75 images would yield

little advantages compared to the amount of effort needed to prepare the ground truth). The output of the

complete diagnostic system (i.e., the predicted diagnosis for a WSI image) was evaluated on the whole

JUMC-SS dataset.
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The accurate tissue segmentation is usually an obligatory initial step in computerized analysis of WSIs,

e.g., to improve the accuracy of stain deconvolution methods or to perform morphological analysis of the

tissue structure [24, 58]. It is a challenging task as both inter- and intra-image color variations must be

taken into account when analyzing histopathological images, as mentioned in Section 2.3.4.

In recent years a few general-purpose approaches to tissue segmentation in low-resolution WSIs have

been proposed. Bug et al. proposed the FESI method based on global thresholding at the mean value

of the Gaussian blurred Laplacian of the grayscale image, refined by flood filling from identified back-

ground points [106]. Bándi et al. used a deep learning approach (a fully convolutional neural network

and a U-Net), which managed to detect large void spaces in the tissue but failed to segment medium-

and small-sized pores (as mentioned by the authors in [107]). Additionally, a general-purpose GrabCut

(GC) method is often used for image regions segmentation [108]. These tissue segmentation methods are

intended either to be used in whole-slide scanners, where a coarse foreground estimation (at low reso-

lution of approximately 4–8 µm/px) is enough to determine regions to be scanned and the proper focus

depth for each of them, or to segment only large void regions within tissue. Nonetheless, those methods

fail when applied to a skin specimen, since it contains numerous little void spaces between bundles of

collagen fibers in dermis and frequently a big section of (colorless) adipose tissue as shown in Figure 4.1.

A zoomed-in collagen section. GrabCut FESI

Figure 4.1. Performance of two existing tissue segmentation methods, GrabCut and FESI, on a collagen

section in high resolution (0.25 µm/px): neither of these methods is capable of accurately segmenting the

void space within collagen bundles.

The approach we propose is based on color statistical analysis, CIELAB color thresholding, and bi-

nary morphology. As we dedicated it for H&E staining only, we were able to incorporate domain-specific

knowledge about color properties observed in WSIs. Therefore, it provides fine-grained, reliable, and

easy to implement automatic foreground selection, tolerant to the slide magnification, illumination con-

ditions, artifacts and noise.
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4.1. Algorithm for tissue segmentation

Our method is based on the assumption that background pixels are similar to the most frequently

occurring almost-achromatic color: both pixels close to that color as well as having similar chromaticity

and higher intensity are considered slide background. The pipeline of our method is shown in Figure 4.2.

Figure 4.2. The pipeline of the proposed method

4.1.1. Preprocessing

Since the WSIs are taken using a CCD sensor, in the preprocessing step we reduce the effect of CCD

noise by slightly smoothing the input RGB image using a Gaussian filter with σ = 0.5 and kernel size of

3 px (the values have been chosen experimentally).

4.1.2. CIELAB colorspace metrics

Our approach uses color thresholding in the CIELAB color space. In accordance with the design

objective of a uniform color space, the color distance ∆E∗ is intended to be perceptually uniform, i.e., if

CIELAB is ideal, the same amount of numerical change in color component values corresponds to about

the same amount of visually perceived change.

In our method we used the CIEDE2000 color-difference formula published by the International

Commission on Illumination (CIE) in 2001 [118]. Given a pair of color values in CIELAB space

c1 = (L∗1,a
∗
1,b
∗
1) and c2 = (L∗2,a

∗
2,b
∗
2), we denote the CIEDE2000 color difference between them as fol-

lows:

∆E∗00(c1,c2) =

√(
∆L′

kLSL

)2

+

(
∆C′

kCSC

)2

+

(
∆H ′

kHSH

)2

+RT
∆C′

kCSC

∆H ′

kHSH
(4.1)

where ∆L′, ∆C′, and ∆H ′ are the CIELAB metric lightness, chroma, and hue differences, respectively,

calculated between the two color samples, RT is an interaction term between chroma and hue differ-

ences, and SL, SC, and SH are the weighting functions for the lightness, chroma, and hue components,
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respectively. The kL, kC, and kH values are factors to be adjusted according to such parameters as tex-

tures, backgrounds, separations, etc., for the lightness, chroma, and hue components, respectively (in our

method we adopted kL = kC = kH = 1). The exact formulation and implementation of all the aforemen-

tioned parameters can be found in [119].

Additionally, we defined the chroma-difference formula based on (4.1), which quantifies only chroma-

related relationships:

∆E∗00CH(c1,c2) =

√(
∆C′

kCSC

)2

+

(
∆H ′

kHSH

)2

+RT
∆C′

kCSC

∆H ′

kHSH
. (4.2)

Finally, the chroma (relative saturation) C∗ of a color cP = (L∗P,a
∗
P,b
∗
P) in the CIELAB color space is

defined according to [120] as:

C∗P =
√
(a∗P)2 +(b∗P)2. (4.3)

4.1.3. Determining the “mean” background color

To determine the “mean” background color cBg, we firstly construct a 3D histogram of CIELAB val-

ues of nearly achromatic image pixels, i.e., pixels satisfying the condition C∗p < τHist (Fig. 4.3). The

JND≈ 2.3 stands for a “just noticeable difference”, as proposed by Mahy et al. [121]. Then, from all

non-zero bins q% largest bins is selected and the weighted mean of the CIELAB coordinates of their

centers is computed (the share of each selected bin in the sum of sizes of all selected bins is taken

as its weight). The threshold value τHist = 4.075 ≈ 1.77JND and the value q = 0.5% have been de-

termined using the sequential quadratic programming (SQP) approach (see Section 4.2.2 for details).

In order to maintain balance between method’s accuracy and robustness to noise, the histogram con-

tains only pixels from the subspace of CIELAB color space for L∗ ∈ 〈75,100〉, a∗ ∈ 〈−10,10〉 and

b∗ ∈ 〈−10,10〉, whereas the subspace is partitioned into 200×256×256 bins.
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Figure 4.3. A WSI and its histogram of CIELAB values of nearly achromatic image pixels.
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4.1.4. Initial background segmentation

After the “mean” background color is determined, we perform color thresholding in the CIELAB color

space, based on CIEDE2000 color distance. Let us define the following conditions:

Cond1(cP,τ) = (∆E∗00(cP,cBg)< τ)

∨ (∆E∗00CH(cP,cBg)< τ ∧L∗P > L∗Bg)
(4.4)

Cond2(cP) =C∗P < JND (4.5)

where cP is the color of a pixel P and τ is a color distance threshold.

Pixels satisfying the condition Cond1 either have color similar to the “mean” slide background color

cBg or are brighter than cBg but have similar chromaticity. The condition Cond2 segments those pixels

which are nearly achromatic (disregarding their brightness). Such pixels usually appear in slide artifacts,

like folded adhesive film or air bubbles under the coverslip. As H&E stains the whole specimen (i.e.,

all its tissue structures), we can without risk assume that grayish regions form part of the background.

Figure 4.4 shows the CIELAB subspace restricted by conditions Cond1 and Cond2.

b*

a*

L*

Cond2

cBgτ

Cond1

Figure 4.4. The CIELAB subspace restricted by conditions Cond1 and Cond2.

We obtain the initial background mask M0
Bg by performing hysteresis thresholding (conditions are

applied pixel-wise for each pixel P):

MCore = Cond1(cP,1.32JND)∪Cond2(cP) (4.6)

MBase = Cond1(cP,3.06JND)∪Cond2(cP) (4.7)

MConstr =
(
ρneighbors(P,MCore,10)> 2%

)
∪ (MCore⊕SED (1))

(4.8)

M0
Bg =

(
MCore

8−→MCore∪MBase∩MConstr

)
(4.9)

where ρneighbors(P,M,r) is the share of ones in the mask M in P’s neighborhood of radius r pixels.

The threshold values τCore = 3.047 ≈ 1.32JND and τBase = 7.049 ≈ 3.06JND in Cond1 in (4.6)

and (4.7) have been determined using the sequential quadratic programming (SQP) approach (see Sec-

tion 4.2.2 for details). The MBase mask is further restricted with MConstr to both limit the number of

false-positives due to noise and to emphasize the fact that a pixel is more likely to constitute part of the

background if it is neighboring a big “core” background region than if it is neighboring a tiny one. Fig-

ure 4.5 shows the visualization of pixels constituting the MBase mask, whereas the MCore mask overlaid

on M0
Bg mask is shown in Figure 4.6.
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Figure 4.5. The region circumscribed by MBase mask conditions on a∗b∗ and L∗a∗ color planes for L∗ = 90

and b∗ = 0, respectively (for cBg = (88,0,0)).

Figure 4.6. MCore mask (green) overlaid on M0
Bg mask (blue).

To reduce the number of small segmentation artifacts, we subsequently both flood-fill those holes in

M0
Bg mask which are smaller than 5 px and remove those regions which area is smaller than 5 px.

4.1.5. Refinement of region boundaries

During the slide preparation process a tissue specimen is sliced into sections approximately 4 µm

thick. Therefore, in void spaces we may often notice deeper tissue structures showing through the half-

transparent paraffin wax used to fix the specimen (Fig. 4.7). This problem is severe, as usually void spaces

between collagen fiber bundles cover over 30% of dermal area [81], while dermis itself constitutes about

90% of the whole histopathological skin specimen [78].

Figure 4.7. Deeper tissue structures showing through the half-transparent paraffin wax used to fix the spec-

imen.

These problematical regions are dealt with in the background segmentation in the last stage of our

method. To include them, we perform a hysteresis thresholding analogous to the one performed in (4.9).

This time, however, we consider also the fact that due to deeper tissue layers showing through the paraffin

wax, the average lightness of background regions confined within the tissue (i.e., holes) is typically lower

than the average lightness of background regions outside the tissue.
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The average background lightness of a given image pixel is calculated by applying an operation we

called a “selective filtering”. It produces the resulting image using information from only those pixels in

the input image which are included in the ROI mask as ones:

Isf =
(
I ∗K−

(
I ·M

)
∗K
)
/(M ∗K) (4.10)

where I is the input image, K is the filter kernel, and M is the ROI mask (both image multiplication A ·B
and division A/B are performed pixel-wise). We performed a Gaussian filtering with kernel σ = 5.0 (and

kernel size 21 px) to the L∗ channel of the blurred input image (i.e., the result of the preprocessing stage)

using M0
Bg mask as the ROI mask.

Let us define the following condition:

Cond3(cP) =
(
L∗P > LBgAvg(P)−1.32JND

)
∧ (C∗P < 3.06JND) (4.11)

It is satisfied by pixels having both lightness similar to the average local slide background lightness

LBgAvg and low chroma.

We obtain the final tissue segmentation mask MBg by performing the following morphological recon-

struction (the condition Cond3 is applied pixel-wise for each pixel P):

MBg =
(

M0
Bg

8−→M0
Bg∪Cond3(cP)∩

(
M0

Bg⊕SED (r)
))

. (4.12)

The X ∩
(

M0
Bg⊕SED (r)

)
element restricts the reconstruction range to r pixels. We used r = 5 px as it

was the maximum observed width of transition regions, regardless the image resolution.

4.2. Results

The presented method has been evaluated on large extracts from 60 skin WSIs from our four datasets:

10 from CMUJ-AM, 30 from CMUJ-SS, 10 from UMch, and 10 from UBC. To cover most of the

variations which one would encounter in regular clinical practice, we chose images differing in staining

quality, original magnification, and the capturing device (either an automatic microscope or a whole-

slide scanner). The size of WSIs varied from 2000× 1500 to 20000× 30000 pixels. The ground truth

was manually annotated by an expert dermatopathologist. We split the whole dataset into a training set

consisting of 30 images (from each dataset we randomly selected 2 images) and a validation set consisting

of 30 images.

4.2.1. Statistical analysis

We evaluated the performance of our method by measuring the overlap of the segmented tissue mask

S to the manually labeled ground truth mask G using the Jaccard index, defined as:

J(S,G) = |S∩G|/ |S∪G| (4.13)
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where J(S,G) = 1 represents a perfect overlap with the ground truth.

For each image we computed the Jaccard index in three manners: using the whole image region (de-

noted as Jall), with outer background region neglected (denoted as Jin), and when considering only the

outer background regions (denoted as Jout). We consider Jin index more informative than Jall index, since

it is somewhat simple to segment outer background regions, which oftentimes occupy over 50% of the

image area (resulting in bloated values of Jaccard indexes).

We formulated the Jin and Jout indexes as follows:

Jin(S,G,MBg) = J(S∩MBgOut,G∩MBgOut) (4.14)

Jout(S,G,MBg) = J(S∩MBgOut,G∩MBgOut) (4.15)

where MBgOut is the outer background region mask. The MBgOut mask is obtained by performing the

opening of MBg mask using a disk-shaped structuring element of radius 15 px and retaining only those

regions which are adjacent to image edges.

A manual labeling of the whole high-resolution WSI up to single pixels would definitely be an im-

mensely laborious and subjective task, leading to distorted results. Therefore, we discarded regions

smaller than 30 px both in ground truth masks and in segmentation masks.

4.2.2. Parameter selection

To choose the proper values of chroma threshold τHist and the parameter q for histogram construction

(in Section 4.1.3) as well as the values of τCore and τBase thresholds in (4.6) and (4.7), respectively, the

sequential quadratic programming (SQP) approach has been used. The cost function fc has been defined

as

fc(τHist,q,τCore,τBase) =−
1
n

n

∑
i=1

(J̄i
in + J̄i

out)/2 (4.16)

where n is the number of datasets (here: 4), and J̄i
in and J̄i

out are the means of Jin and Jout computed for

all training images from the ith dataset using the provided parameter values. The imposed constraints

included τHist ∈ 〈2.0,8.0〉, q ∈ 〈0%,50%〉, τCore ∈ 〈0.5,5.0〉 and τBase ∈ 〈1.0,12.0〉, whereas the initial

point has been set to (τ0
Hist,q

0,τ0
Core,τ

0
Base) = (3.0,1%,2.5,6.0) and the minimum step size to 0.1. The

training set included randomly selected half of images from each WSI dataset (i.e., 30 images in total).

The optimization algorithm found the best solution at (τ ′Hist,q
′,τ ′Core,τ

′
Base) =

(4.075,0.5%,3.047,7.049), which can be expressed using multiplicities of JND as

(1.77JND,0.5%,1.32JND,3.06JND). Typical histograms of color distance distributions for pix-

els belonging to background and tissue regions, as well as the location of optimal threshold values, are

shown in Figure 4.8.

Since training slides demonstrated substantial variability in both staining and illumination (as shown

in Table 4.1), we expect that the adopted parameter values will allow to obtain satisfactory results also

for most new cases (provided that they lack significant artifacts, like strong vignetting). To verify this

assumption, boxplots of Jall, Jout and Jin indexes computed for training and test sets were compared
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Figure 4.8. Typical histograms of chroma C∗p and the distance to the “mean” background color ∆E∗00(p,cBg)

constructed using data from the same WSI.

(Fig. 4.9): in the testing set there is only one serious outlier (for which Jall = 0.64 and Jin = 0.19), caused

by the above-mentioned strong vignetting, whereas in all cases Jout > 97%.
Table 4.1. The average CIELAB color of the outer slide background for three different slides

Dataset CIELAB color Color sample

CMUJ-AM (87.30,0.38,0.53)

CMUJ-SS (90.85,−0.84,0.49)

UBC (96.01,0.00,0.00)

Train Test
0.5

0.75

1

Jall

Train Test
0.97

0.98

0.99

1

Jout

Train Test

0.25

0.5

0.75

1

Jin

Figure 4.9. Visualization of Jaccard indexes as boxplots for the training and the testing datasets (outliers

are marked with a “+” mark)

4.2.3. Experimental results

For 35 out of 60 images the proposed algorithm matched the actual tissue regions without notable dif-

ferences and scored area overlaps Jall and Jin of more than 90% and 75%, respectively. For the remaining

25 images the problematic issue was the detection of tiny blank spaces (mainly between bundles of colla-

gen fibers) which resulted in slightly oversegmented tissue regions (Fig. 4.11). However, in each investi-

gated case the algorithm included all relevant parts of the tissue and even when slide preparation artifacts
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were present yielded results acceptable for a general-purpose method (i.e., for all cases Jout > 97%). In

worst case the area overlaps Jall and Jin equaled 82% and 52%, respectively. Such unsatisfactory perfor-

mance resulted from significant vignetting artifacts shown in Figure 4.10. With a deviation of 5.3% in the

Jall overlap, the proposed method yields a consistent foreground/background separation. The Jout mean

was 99.91%.

(a) Raw RGB image (b) Adjusted RGB image

Figure 4.10. The vignetting artifacts: (a) the raw RGB image, and (b) the same image with the colormap

adjusted to emphasize artifacts (i.e., for each channel its intensity values from the range 〈200,255〉 were

mapped to the range 〈0,255〉).

correct false positives false negatives

Figure 4.11. Qualitative results yielded by the proposed algorithm. Both cases presents close-ups of the

same collagen section (200×200 px) with detected background marked blue. Large- and medium-sized

void spaces between bundles of collagen fibers are accurately segmented, while some tight spaces are erro-

neously detected as the tissue. The proposed algorithm has a tendency to include very pale tissue structures

(e.g., blood vessels) into the background region.

We compared the segmentation results of our method with the results obtained using the Foreground

Extraction from Structure Information (FESI) and GrabCut (GC) methods [106, 108].
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Results for FESI method were obtained using the Python implementation provided by Bug et

al. [106]. Since the resolution images in our dataset differed from those used by Bug et al. (they an-

alyzed the 5th resolution level of images instead of the 1st level), to find the optimal set of parame-

ters for our dataset a grid-search procedure with the following ranges of parameter values was con-

ducted: kg = 5–15 px (step: 2), σ = 2–4 (step: 1), km = 15–45 px (step: 5), n = 5, r = 3–7 px (step: 2),

and d = 10–100 px (step: 30). For the training dataset best results were obtained using the following

combination of parameter values: kg = 15 px, σ = 4, km = 15 px, n = 5, r = 7 px, and d = 10 px.

Results for GrabCut method were obtained using the implementation provided by OpenCV 3.4 (see

the cv.grabCut() function). To increase their precision, a ROI rectangle 20 px from the edges of the

WSI was defined in order to include some hard-labeled background pixels in the initial estimate and the

algorithm was run for 15 iterations.

In Table 4.2 and Figure 4.12 we presented the summary statistics of the Jaccard index across all 60

images. Some qualitative segmentation results are presented in Figure 4.13.

Table 4.2. Mean and standard deviation of Jaccard indexes Jall and Jin for GC, FESI and the proposed

method. All three methods achieved the mean Jout of 0.999–1.000 with standard deviation of 0.001.

Method
Jall Jin

µJ σJ µJ σJ

GC 0.776 0.112 0.243 0.174

FESI 0.695 0.154 0.243 0.132

proposed 0.929 0.053 0.749 0.140

GC FESI proposed

0.5

0.75

1

Jall

GC FESI proposed
0

0.25

0.5

0.75

1

Jin

Figure 4.12. Visualization of Jaccard indexes as boxplots (outliers are marked with a “+” mark)

On average our approach provides better results than the traditional GC and FESI methods: Jall mean

equaled 0.929 vs. 0.776 and 0.695. The results of our method are also more stable: Jall standard deviation

of 0.053 vs. 0.112 and 0.154. What is more important, our approach detects void spaces within tissue

substantially better than other methods (Jin mean of 0.749 vs. 0.243 and 0.243).
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Figure 4.13. Qualitative results for the GC, FESI, and the proposed algorithm. Column 1: A properly stained

WSI captured using a whole slide scanner. All the methods correctly detected outer tissue boundaries.

Column 2: A close-up on a collagen section. Only the proposed method is able to properly segment the

small-grained void spaces between bundles of collagen fibers. The GC and FESI detects only larger pores.

Column 3: Both FESI and the proposed method can identify some slide artifacts (such as dust and hair under

the cover slip) as background. Column 4: A challenging WSI exhibiting weak staining and captured using

an automatic microscope (resulting in an inferior image quality when compared to the ones taken using

slide scanners). FESI fails to cope with the “tiled” image structure produced by an automatic microscope.

4.3. Conclusions and discussion

The proposed method yielded satisfactory results for skin WSIs from all four datasets, regardless

of staining quality and resolution of images. It segments the tissue (i.e., foreground) accurately and

consistently, with a total area overlap of more than 92.9% and a standard deviation of 5.3% in the overlap.

However, at the same time it has a tendency to undersegment areas on edges of collagen fibers bundles

and the void spaces between tightly packed collagen bundles (Figures 4.11 and 4.13).

Both GC and FESI methods has severe problems to properly detect the tissue “porosity”, i.e., void

spaces within the tissue structure, as they typically detect only large pores and in certain cases even

totally ignore porosity (columns 1 and 2 in Figure 4.13). It was an expected result above all for the

FESI method, as it was designed to segment tissue at the 5th layer of multi-resolution WSIs when the

pixel spacing is approximately 7–8 µm/px. Since the ratio of void spaces within a skin specimen to

the total area of background regions may amount to 30–40% and the spacing between bundles form
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thin “ribbons” with average width of as little as 2–5 µm (i.e., 8–20 px in ×40 images captured using

CCD sensors which resolution is 0.25 µm/px) [81], neglecting the subtle tissue “porosity” renders both

GC and FESI methods unfeasible for practical application in numerous image processing workflows for

digital dermatopathology.

The methods proposed by Bándi et al. [107] were designed specially to segment the 4th layer of WSIs

where the pixel spacing was 3.84 µm/px. However, the spacing between collagen bundles in such low

resolution is only about 1 px wide, thus virtually preventing correct segmentation of the void spaces be-

tween such bundles. That problem was even mentioned and demonstrated in qualitative results published

in [107]. Consequently, we did not compare our method to the methods by Bándi et al.

4.4. Summary

In this chapter we presented an algorithm for tissue segmentation in high-resolution WSIs of H&E-

stained skin specimens, based on color statistical analysis, CIELAB color thresholding, and binary mor-

phology. We provided the segmentation results and compared them quantitatively with other methods.
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5. Epidermis segmentation

The morphometric and cytologic features of the epidermal area are among most important factors

considered when diagnosing skin conditions and during skin tissue grading [16, 109]. Even though a few

computerized epidermis segmentation methods have already been proposed, in our opinion this topic

has not been sufficiently explored yet. The methods already sescribed in the literature are based mainly

on the combination of global thresholding technique with area and shape analysis, making substantial

assumptions about color and contrast of WSI images. However, inter- and intra-image variations in stain-

ing and illumination are quite common and stain distribution will be strongly affected by the presence of

certain pathological changes (as mentioned in sections 2.2.3 and 2.5). Consequently, these assumptions

are often not met when it comes to analyzing data from different sources.

In this chapter we propose a novel approach towards epidermis segmentation, based on our method

published in [24]. In the initial segmentation stage shape and distribution of void regions in the tissue are

analyzed. Then, it is refined by analyzing the concentrations of hematoxylin and eosin stains in the tissue.

In the final stage, shape and location constraints are applied on the segmented region to obtain the ac-

tual epidermal region. Since our method strongly relies on domain-specific knowledge of cell and tissue

morphology and their biochemical properties, it is robust to differences in staining protocols, stain ab-

sorption within individual images, and to illumination variability. We provided the segmentation results,

and compared them both quantitatively and qualitatively with other methods for epidermis segmentation.

5.1. Algorithm for automatic epidermis segmentation

The presented epidermis segmentation algorithm combines the analysis of shape and distribution of

void regions in the tissue specimen and the analysis of H&E stain concentrations across the image.

It heavily utilizes the domain-specific knowledge of both morphometric and biochemical properties of

skin tissue structures (such as their size, frequency of occurrence, color, and way of staining); values

of those parameters and constants used in our method which are based exclusively on measurements of

morphometry of cells and tissue structures found in the human skin are summarized in Section 2.4.5.

Figure 5.1 shows the schema of the proposed segmentation pipeline.
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Figure 5.1. Schema of the proposed

segmentation pipeline.

Figure 5.2. Structures of interest marked on a H&E-

stained skin section.

5.1.1. Specimen segmentation

The preliminary stage of our method is specimen segmentation. To obtain the initial foreground (tis-

sue) mask MFg we utilize the method described in Section 4.1. The background mask MBg is simply the

negation of the foreground mask: MBg = MFg.

Additionally, we compute the MBgOut mask representing the “outer” slide background (i.e., background

regions not confined within tissue) by retaining only the largest region in the MBg⊕SED (8µm/RI) mask

(as typically void spaces between collagen form ribbons which are at most 15 µm wide).

5.1.2. Porosity analysis

Porosity is a measure of the void spaces (pores) in a material, and is a fraction of the volume of

voids over the total volume. In case of histological skin specimens, such spaces are found mostly in

the following four regions: in fat tissue, between bundles of collagen fibers, near cell nuclei, and on

intercellular junctions. Void spaces are the result of tissue processing procedure (shrinkage effects of

formalin fixation, paraffin embedding) and are considered artifacts. The bulk of void spaces is located

in fat tissue layer and between dermal bundles of collagen fibers. They correspond to fat and the ground

matrix, respectively, which are both lost during the tissue processing procedure. On the other hand, void

spaces near cell nuclei are in fact poorly stained cytoplasm and gaps between cells correspond to half-

opaque desmosomes.

In contrary to dermis and adipose tissue, epidermis contains hardly any transparent regions. Most of

them are either clear cells or desmosomes, hence their shape is well-defined and differs from the shape
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of void spaces in dermis and in fat tissue allowing for the coarse segmentation of epidermis by analyzing

the geometry and distribution of pores in the lesion.

In this stage we firstly identify those void spaces which are most likely clear cells or desmosomes and

include them into the MFg mask. The detection of every single transparent region is not the point, the aim

is rather to flood-fill the bulk of large holes and enough smaller ones, so that porosity of epidermis will

differ significantly from porosity of deeper skin layers. Then we exclude image regions with sufficiently

high porosity, as they are most likely part of deeper skin layers (dermis, adipose tissue). Figure 5.3 shows

the schema of this segmentation stage.

Figure 5.3. Schema of the porosity segmentation stage.

The algorithm described in this section uses a procedure we called “computing tissue density”. For

each image pixel this procedure computes the share of ones in this part of pixel’s neighborhood which

belongs to the given mask M (the density of pixels which do not belong to M is set to zero). The tissue

density ρ at pixel P is defined as

ρ(P) =


T (P)
|SE| if P ∈M

0 otherwise
(5.1)

where SE is a binary structuring element defining the neighborhood, and T = M ∗SE is a matrix contain-

ing the number of neighboring pixels belonging to the given mask M for all image pixels in M (obtained

using the convolution).

Filling the clear cells

Clear cells have abundant glycogen causing their cytoplasm to stain poorly in routine H&E stain-

ing (Fig. 5.4). Clear cells found in sections of light skin may be of one of the following types:

melanocytes, Langerhans cells, or Merkel’s cells. All these three types of cells share similar geomet-

ric characteristics and are located in epidermis [28]. We identify clear cells by assessing the shape of

each individual void region (i.e., each 8-connected component) in the MBg, which should be convex and

elliptic.

Figure 5.4. Examples of clear cells found in epidermis.
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The initial algorithm verifying whether a given transparent region CC0,i is a valid clear cell candidate

consists of the follows steps:

(a) Reject the CC0,i if A(CC0,i) > AKerMax (the diameter of a Langerhans cell is comparable to the

diameter of a keratinocyte, melanocytes are smaller than basal keratocytes [122]).
(b) Flood-fill all holes (so that nuclei and pixels not considered transparent due to intense noise or larger

dust particles are also included).
(c) Reject tiny spurs by applying the morphological opening with a disk-shaped structuring element of

radius r = 1.
(d) Apply the morphological thickening by 1 pixel to restore cell’s core pixels lost in step (c).
(e) Apply the bit-wise AND operation on masks obtained in steps (d) and (b) to exclude pixels exceed-

ing outer boundaries of the (initial) CC0,i region.

The change of candidate region CC0,i after each step is shown in Figure 5.5.

(a) (b) (c) (d) (e)

Figure 5.5. Changes to the candidate region after each step of the clear cell candidate verification algorithm,

with respect to the initial region CC0,i (red – pixels removed, green – pixels added).

Let us denote the region obtained as the result of step (e) as CCi. If the area of this region is less than

0.7A(CC0,i) we reject such a region, as components with many spurs are most likely void spaces between

collagen fibers. To evaluate the criterion related to convexity and ellipticity of the candidate region CCi,

we analyze its eccentricity and solidity. The eccentricity is the ratio of the distance between the foci of

the ellipse that has the same second-moments as the region to the length of its major axis. Its values fall

between the range of 0 and 1 (both 0 and 1 are degenerate cases: the first is actually a circle, while the

second is a line segment). The solidity is the ratio of region area to the area of its convex hull (a convex

region has solidity of 1).

To verify whether a clear cell candidate region CCi is a valid candidate or not, we put the following

constraint:

CCi =


valid candidate if 5≤ A(CCi)≤ AKerMax∧Solidity(CCi)> 0.7

∧Eccentricity(CCi)< 0.95

invalid candidate otherwise

. (5.2)

An ideal cell candidate would be a circle (which is a convex shape), thus having Eccentricity(CCi) = 0

and Solidity(CCi) = 1. However, the clear cell nucleus is often pushed towards the cell’s boundary re-

sulting in the transparent region of the clear cytoplasm which resembles a crescent (a slightly concave,

elongated shape). Consequently, we relaxed the criteria for both eccentricity and solidity.

In the last step we classify a given initial (not morphologically processed) transparent region CC0,i as

either a clear cell or a non-clear cell based on its geometry. Valid unprocessed candidates are obtained

by reconstructing a mask containing valid processed candidate regions into the MBg mask. Then the
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classification of each CC0,i region is conducted using the following criterion:

CC0,i =


clear cell if ama j(CC0,i)≤ 2rKerMax +1∧Solidity(CC0,i)> 0.5

∧Eccentricity(CC0,i)< 0.95

non-clear cell otherwise

, (5.3)

where ama j(CC0,i) is the major axis length of the ellipse having the same normalized second central

moments as the CC0,i region (it must not exceed the maximum diameter of a keratinocyte). The solidity

threshold is different than in (5.2), as a raw region CC0,i often contains small spurs. Regions recognized

as clear cells (or rather: their cytoplasm) are included into the MFg mask. Threshold values in both (5.2)

and (5.3) were chosen empirically, based on the procedure described in Section 5.2.1.

Filling the desmosomes

Desmosomes are intercellular junctions of epithelia, particularly abundant in tissues continually as-

sailed by mechanical forces (such as epidermis and myocardium) [123]. They are less than 1 µm in

diameter and normally appear as half-transparent (Fig. 5.6). However, as the result of poor staining parts

of desmosomes are often detected as void spaces.

Figure 5.6. Desmosomes encompass the intercellular space between adjacent keratinocytes.

Candidates for desmosomes are void regions forming lines. Since we analyzed images at about

0.5 µm/px, each such a line would be 1 px thick. We perform the line detection by counting the number

of invalid combination of ones in an object using the hit-or-miss operation (the invalid combinations

are shown in Figure 5.7). An ideal line would contain only valid combinations and no loops. However,

the image registration process is hardly ever perfect (e.g., due to the CCD noise) and artifacts must be

taken into account. To deal with them, we introduce an error tolerance parameter, which describes the

maximum number of invalid combinations in an object when it is still acceptable to consider it a line (we

set the error tolerance to 1).

Figure 5.7. Combinations of ones resulting in the object being marked as an “invalid line” (the central pixel

of the hit-or-miss structuring element is marked with a gray circle). Each of these combinations rotated by

90°, 180°, and 270° is also considered invalid.

Not only (epidermal) desmosomes may appear as a line of transparent pixels, narrow void spaces

between bundles of collagen fibers in dermis often have similar appearance. To distinguish between

them we use the following criteria: (1) Since desmosomes are half-opaque, it is seldom the case that
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they appear as transparent on its whole length. Therefore, even though desmosomes run along the whole

perimeter of every cell, the maximum length of a transparent section of a desmosome is set to half the

perimeter of a largest observed keratinocyte (Lmax = 2πrKerMax). (2) The desmosome candidate region

should at least partially overlap with a region of high tissue density (the density is computed in the

disk-shaped neighborhood of radius rEpidermMin). The threshold value for maximum density is set to

ρDesm = 0.85, as collagen fibers constitute roughly 70% of the weight of dry dermis while void spaces

between bundles of collagen fibers in papillary dermis are smaller than in reticular dermis [70]. Candidate

lines satisfying both the aforementioned criteria are included into the MFg mask.

Detecting epidermis

Now, after filling most tiny and medium-sized pores in epidermal region, the remaining ones are sparse

and located primarily in outermost layers of epidermis. On the contrary, porosity of the dermal region

(particularly of the reticular dermis) remained high, since void spaces between collagen fibers bundles

were left unfilled.

Therefore, we firstly compute the “epidermal core” region by thresholding the tissue density map of

the MFg mask computed for radius rEpidermMin with the value ρEpidermMin. As epidermis is the outermost

skin layer, we retain only those chunks of core regions which lie in the proximity of lesion’s boundary.

The proximity is set to d = dSCAvg + rEpidermMin (the addition of the rEpidermMin factor was introduced

to handle the corner case in which a core chunk is actually an isolated pixel placed in the center of the

otherwise empty neighborhood of radius rEpidermMin). To restore the actual thickness of epidermal region

we dilate the retained core chunks with a disk-shaped structuring element of radius rEpidermMin. Then,

we perform a binary AND operation with the MFg mask to remove excessive pixels. Lastly, we further

reduce the share of false positive pixels by rejecting regions with area smaller then the area of 80 maximal

keratinocytes (80AKerMax ≈ 0.035mm2). The coarse epidermis segmentation mask obtained in this stage

will be further denoted as MSegPor.

5.1.3. Stain concentrations analysis

In the course of the porosity analysis stage large regions of dermal collagen and fat tissue were re-

jected from the epidermis segmentation mask. However, it usually still includes prominent false positive

regions, like chunks of tightly packed collagen fibers in papillary dermis, nests of melanocytes, or thicker

sections of stratum corneum. To address this issue we analyze concentrations of both hematoxylin and

eosin stains in each pixel. Since both collagen and corneocytes (cells forming stratum corneum) are

eosinophilic [124], which means they absorb much eosin and little hematoxylin, these problematic tissue

structures may be filtered out using criteria based on a combination of thresholding of both individual

stain concentration maps and maps of hematoxylin-to-eosin concentrations ratio. As soon as collagen

regions are excluded from the segmentation mask, nevi cell and lymphocytic infiltration may also be

removed by rejecting regions located deep inside the lesion (the procedure is similar to the one described

in Section 5.1.2). Figure 5.8 shows the schema of this segmentation stage.
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As both collagen and corneocytes lack nuclei [125], throughout this section we often formulate criteria

which include the CH
NucMin parameter representing the minimal normalized concentration of hematoxylin

in a region of a typical cell nucleus.

Figure 5.8. Schema of the stain concentrations analysis stage.

Preparing stain concentration maps

The raw stain concentration maps are obtained using the stain unmixing method proposed by Ma-

cenko et al. [58], as implemented by Mitko Veta [126]. This method assumes there exists a specific stain

vector corresponding to each of the two stains (hematoxylin and eosin) present in the image, and that in

optical density space the actual color of every pixel is simply a linear combination of these stain vec-

tors. As the weight of each component must be non-negative, all values must fall between the two stain

vectors. For each individual WSI image the algorithm by Macenko et al. estimates those particular stain

vectors and uses these estimates to compute stain concentration maps.

There are two key parameters of the above-mentioned stain separation algorithm. The first one is α:

α th and (100−α)th percentiles are used to robustly determine minimum and maximum stain concen-

trations in an input image. We set it to the value proposed in the original paper, i.e., α = 1. The second

one is a threshold value β governing the thresholding of optical density map used to determine slide

background region (background regions are excluded from the process of estimating the stain vectors

thus improving method’s stability). Instead of using the β parameter for thresholding in optical density

space, we used the MFg mask computed in Section 5.1.1. We also excluded from analysis those slide

regions where black ink used to mark the surgical margins was present, as it would negatively affect the

stain vector estimation process [27] (ink segmentation has been performed using our method described

in [27]).

To preserve the visual contrast between the hematoxylin and eosin stains in their concentration maps,

both raw maps are normalized to reference maximum stain concentrations, CH
RefMax and CE

RefMax, using

values provided in [126]. Since the stain unmixing algorithm produces noisy results, we smooth nor-

malized maps by applying the selective smoothing procedure, which averages values only over pixels

belonging to the (foreground) mask M thus preventing artifacts on the edge of regions in M. The proce-

dure uses a standard Gaussian filter (the kernel size k is set according to the formula k = 2d2σe+1). The

selective smoothing of image I with a filter kernel h over the foreground mask M requires the calculation

of two auxiliary images: SFg = (I ·M) ∗ h representing the proportion of foreground pixel values in the

smoothed image, and WFg = M ∗ h representing the sum of foreground pixel weights. Pixel P in the
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smoothed image Iσ is then computed according to the formula

Iσ (P) =
SFg(P)
WFg(P)

(5.4)

In our method we set σ = (rKerAvg− rKerNuc)/RI (to “fill” the region of cytoplasm between nuclei of

keratinocytes with hematoxylin, ensuring a sufficiently high average level of hematoxylin across the

whole epidermis) and used the MSegPor mask as the smoothing foreground mask.

Detecting blood and stratum corneum

In this step we reject blood hemorrhage (which does not constitute epidermis) and parts of stratum

corneum (which is not relevant for the diagnosis of most skin diseases). Both of these tissue structures

are strongly eosinophilic and, as they have only a minimal amount of basophilic components, at the same

time they absorb little hematoxylin [124]. Therefore, to classify an image pixel P as either blood or a

part of stratum corneum we use the following criterion based on stain concentrations:

MRed(P) =


1, if CE(P)/CH(P)> 4CE

RefMax/CH
RefMax∧CH(P)<CNucMinH

∧CE(P)> 0.65CE
RefMax

0, otherwise

, (5.5)

where CH(P) and CE(P) are concentration of hematoxylin and eosin, respectively, in pixel P. Threshold

values in (5.5) were chosen empirically, based on the procedure described in Section 5.2.1.

Detecting collagen

At this stage of the segmentation pipeline the current epidermis segmentation mask includes mainly

two elements: epidermis and collagen. Since collagen fibers in papillary layer has a fine structure, the

eosin concentration in its corresponding image regions is much lower then in the regions where thick

collagen fibers bundles are present (e.g., in the reticular layer) [124]. Moreover, there are numerous

basophilic elements interleaved with collagen, such as fibroblasts, limphocytes, and nevi cells. Conse-

quently, the eosin-to-hematoxylin ratio used to segment blood and stratum corneum is an unsatisfactory

criterion basis for papillary collagen rejection.

To identify papillary collagen regions we analyze the two dimensional (2D) histogram of pixel counts

with respect to eosin and hematoxylin concentrations. The histogram is constructed only from tissue

pixels located in the proximity of the outer border of the tissue specimen (i.e., from the MBgOut mask).

Typically, there are two significant peaks on such a histogram: one corresponding to collagen and another

corresponding to basophilic structures (and their neighborhood). We identify these peaks, determine their

“zones of influence” and exclude pixels forming the “collagen zone” from the epidermis segmentation.

The exact procedure for collagen detection is described below. We use the “Col” and “Oth” indexes in

the notation of quantities to denote collagen and other (basophilic) tissue structures (keratinocytes, nevi

cells, lymphocytes etc.), respectively.

Firstly, a normalized 2D histogram of H&E stain concentrations maps is computed for the tissue

outer boundary zone MBnd (it will be later denoted as H0). We set the width of the zone to 250 µm
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to maintain the balance between the amount of epidermis and collagen within that zone (the minimum

thickness of cellular epidermis and stratum corneum is 40 µm and 30 µm, respectively). Each axis of the

histogram is split uniformly into 75 bins, covering the range of [0,CH
RefMax] and [0,CE

RefMax], respectively.

The objective when choosing the number of bins was to minimize the visual difference between image

pixels in adjacent bins, to avoid quantization error (i.e., to obtain a continuous surface of the histogram),

and to minimize the impact of CCD noise and JPEG artifacts on the results.

We identify the significant peaks in the 2D histogram (Fig. 5.9b) using the following procedure: In

the preprocessing step, we create a duplicate of H0 histogram, denoted as H ′. In H ′ histogram bins

for which the (normalized) hematoxylin concentration is over 95% or under 5% as well as those for

which the (normalized) eosin concentration is over 95% or under 10% are suppressed – those bins are

treated as being empty. The lower bound for eosin is greater than for hematoxylin to avoid searching for

local maxima in the histogram region corresponding mainly to nests of nevi cells. Then, we repeat the

following procedure until either enough regional maxima are found or the number of iterations exceeds

the given threshold:

1. Set the initial number of quantization levels n to 5.
2. Quantize H ′ histogram into n levels using the following percentiles of 2D histogram:

100−2n,100−2n+2,100−2n+4, . . . ,98,100.
3. Search for 8-connected regional maxima in the quantized histogram and assess if two of them could

correspond to the collagen and “other” peaks:

(a) Compute the centroid of each regional maximum. Choose the regional maximum with the cen-

troid having the largest hematoxylin coordinate as the one corresponding to basophilic struc-

tures.
(b) From the remaining regional maxima choose the one encompassing the largest number of pixels

and choose as the one corresponding to the collagen.
(c) Compute the weighted centroid for each of the above-mentioned regional maxima using the

number of pixels in each bin as its weight. These centroids will be denoted as c̄Col and c̄Oth.
(d) The centroids c̄Col and c̄Oth must meet the following criteria: ‖c̄Colc̄Oth‖ ≥ 0.1 and the −−−−→c̄Othc̄Col

vector should have the slope of at least 60°. The first criterion helps to identify situations, when

tiny fluctuations in the correctly segmented epidermis lead to the detection of two peaks. The

second one reflects the fact that the basophilic structures forming the “other” peak must contain

sufficiently more hematoxylin than the collagen (the “other” peak may not be located above the

collagen peak).

4. If either insufficient number of regional maxima was found or they do not fulfill the requirements,

increase the number of quantization levels n by 1 and repeat steps 2–4 (providing n≤ 50).

In some (rare) cases, due to the quantization, non-prominent local maxima are flattened. Therefore, if the

procedure described above fails, regional maxima are identified in the H ′ histogram.

After enough regional maxima are identified and their location meets the constraints, we once again

choose the collagen peak and the “other” peak – this time more precisely. The procedure is as follows:
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1. Take two regional maxima encompassing the largest number of pixels and compute their centroids.

Choose the maximum for which its centroid has higher hematoxylin coordinate and denote is as

Max1.
2. If there were only two regional maxima identified (in total), assume the other one is Max2.

Otherwise, from all regional maxima choose those having centroid with both higher hematoxylin

coordinate and at the same time more pixels than Max1. If no such maxima were are, relax the

condition on the hematoxylin coordinate – it is now enough if the difference in this coordinate is at

most 2. If still no such maxima are found, drop the constraint concerning the number of pixels.

From the maximum/maxima actually found choose the one encompassing the largest number of

pixels and denote it as Max2.
3. Choose the regional maximum with the centroid having the largest hematoxylin coordinate as the

one corresponding to basophilic structures. The other one corresponds to the collagen.

(a) (b) (c) (d)

Figure 5.9. The peak detection procedure: (a) the registered RGB image I with MSegPor mask marked black,

(b) a 2D unquantized stain concentrations histogram of I(MSegPor), (c) a 2D quantized stain concentrations

histogram of I(MSegPor) for n = 5, and (d) a region of interest of the unquantized histogram with weighted

centroids marked with “X” marks. .

To delimit “zones of influence” of both peaks in the histogram (corresponding to collagen and to ba-

sophilic structures), we first identify the saddle point between these two peaks. The rationale for this step

is as follows: In histological images concentration of both hematoxylin and eosin stain forms a smooth

gradient, therefore the distribution of stain concentration values on a 2D histogram resembles a Gaussian

mixture model with two significant components (one for basophilic structures and their proximity, and

the other for collagen). The saddle point between peaks of those components is a bin with for which the

likelihood of an event that a pixel belonging to this bin is part of collagen equals the likelihood of an

event that the pixel is part of other basophilic tissue structures. To identify the saddle point, the H ′ his-

togram is represented as an undirected weighted graph G(V,E): its vertexes V correspond to histogram

bins, its edges E connect vertexes corresponding to 4-connected bins, and each weight wi of an edge

ei = (v1,v2) is set to wi = |N(v1)−N(v2)| (where N(v j) is the number of pixels comprised within the

v j bin) (Fig. 5.10b). The saddle point vsp between the collagen peak vCol and the “other” peak vOth is

defined as

vsp = argmin
v∈πMin

N(v), (5.6)

where πMin is the shortest path between vCol and vOth in G. The πMin path is determined using Dijkstra’s

algorithm [127]. Figure 5.10 shows the process of saddle point identification.
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(a) (b) (c)

Figure 5.10. The saddle point identification process: (a) a 2D histogram H, (b) a graph representation

G(V,E) of the histogram H, (c) a ridge in the histogram H connecting two peaks (the red solid line) with

saddle point at its minimum „height”.

The next step is to coarsely delimit “zones of influence” of both peaks in the H ′ histogram using

the watershed transformation. To suppress insignificant local maxima in H ′, we firstly use the following

procedure to find such a lowest value tv > vsp which, after being used as a threshold, fully separates the

two peaks:

1. Set tv = vsp.
2. Update tv = min{H ′(b) : H ′(b)> tv}.
3. Morphologically reconstruct the collagen peak mask (i.e., a mask containing only one “1” pixel at

the location of the collagen peak) into a H ′ > tv mask using the 4-neighborhood. If in the resulting

mask both peaks belong to the same region, repeat steps 2–3.

We than set all bins in H ′ larger than tv to tv and use the inverse of such a histogram as the input for the

watershed transformation; in the transform we fill holes in catchment basins.

Afterwards, we identify the basin encompassing the collagen peak (a binary mask) and one after the

other:

1. Exclude 10% of its bins with lowest number of pixels (in H ′ histogram) located in the disk-shaped

neighborhood of radius equals to the half of distance between the saddle point and the “other” peak,

centered at the saddle point. The reason for this step is that it is the region where distributions

corresponding to collagen and basophilic structures overlap, and thus the basin encompasses too

many bins towards the “other” peak.
2. Close it with a SED (1) structuring element, to fill the gaps between basins belonging to the collagen

group (caused by dams).
3. Include bins to the left from the line (0,0) – (CH

Col,C
E
Col) – (CH

Col,C
E
RefMax).

4. Exclude bins to the right from the diagonal CH(b) =CE(b).
5. Exclude bins for which CH(b)>CH

Oth.
6. Exclude bins to the right of the line having the slope CE

Col/CH
Col and passing through the saddle point

(with a margin one bin wide), assuming the collagen peak will not be excluded.
7. Grow all other basins by 2 bins and exclude those regions from the collagen’s “zone of influence”.
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Pixels belonging to the remaining bins are treated as collagen. The binary mask consisting of pixels

considered collagen will be further denoted as MCol.

Finally, to coarsely reject regions of tissue which are not part of epidermis (unless the specimen was

stained really poorly) in Section 5.1.4, we compute a binary mask MLowCH of pixels with extremely low

hematoxylin concentration by applying the following heuristic to each pixel P of hematoxylin concen-

tration map:

MLowCH =

1, if CH(P)< 1
2 min

(
CH

NucMin,C
H
Col

)
0, otherwise

, (5.7)

where CH
Col is hematoxylin concentration of the collagen peak.

5.1.4. Final refinement

In this stage we obtain the final epidermis segmentation, MEp, by rejecting false positive regions de-

tected in the course of the stage 5.1.3 followed by performing the same set of operations as described in

the step Detecting epidermis of the stage 5.1.2 (to retain only cohesive parts of the segmented epidermal

region) and filling narrow gaps between individual epidermal regions.

The input to the aforementioned set of operations is the mask MSegPor ∩MRed ∩MLowCH ∩MCol. As

much of the stratum corneum layer is removed from the segmentation mask (it is included in the MRed

mask), the proximity region width is adjusted accordingly and set to d = dSCMax + rEpidermMin. If all

regions in the resulting mask make less than pEpMin of total lesion’s area, it suggests that the collagen

detection procedure failed (the MCol mask contains too much false positives). In such case the mask

is re-computed using the same set of operations and parameters as above, but this time for the mask

MSegPor∩MRed∩MLowCH (i.e., regions detected as collagen are not removed). The result of this step will

be denoted as MEp0

Lastly, we fill gaps between adjacent epidermal regions. Such gaps are often caused by slide prepa-

ration artifacts, such as mechanical tearing of the tissue (as discussed in section 2.2.4). This step is

important for measuring epidermal morphometry, as one long section of epidermis is much more infor-

mative than several shorter ones (even if they have similar total length). To identify the gaps, we dilate

each individual epidermal region with a disk-shaped structuring element of radius 2rEpidermMin and mark

overlapping regions in the MGaps mask. We then obtain the final epidermis segmentation, MEp according

to the following formula:

MEp = MEp0∪MGaps∪
(
MEp0⊕SED

(
2rEpidermMin

)
∩MGaps⊕SED

(
2rEpidermMin

))
. (5.8)
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5.2. Results

5.2.1. Parameters selection

Our method has a few important parameters, including the minimal “radius” of the epidermal region,

minimal solidity and maximal eccentricity of a clear cell region, and the minimal hematoxylin concen-

tration in keratinocyte nuclei. To determine their values we selected 8 images of various conditions from

our dataset as training images.

The threshold values in solidity- and eccentricity-based criteria used to identify valid clear cell can-

didate regions and actual clear cell regions (see the step of the Porosity analysis stage) were chosen

based on the analysis of 200 examples of clear cell and non-clear cell void regions using a decision tree

algorithm.

The minimal thickness of the epidermal plate, observed by a pathologist, was 20 µm (the plate was

formed by four layers of flattened keratinocytes in granular layer). Similarly, the thinnest rete ridge was

formed by two layers of average-sized keratinocytes. Therefore, the minimal “radius” of the epidermal

region has been set to rEpidermMin = 10µm.

The minimum tissue density of epidermis after filling clear cells and desmosomes, ρEpidermMin, has

been determined based on the epidermal region manually segmented by a pathologist. The value has

been set to ρEpidermMin = 0.95 (an ideally processed epidermis would typically have a density of ρ = 1).

The minimal hematoxylin concentration observed by a pathologist in a typical keratinocyte nuclei was

CH
NucMin = 0.15CH

RefMax (where CH
RefMax is a reference value of the maximum hematoxylin concentration).

Threshold values for the detection of blood and stratum corneum were determined analogously. As stain

concentrations are both determined automatically for each individual image and normalized, we assume

that the observed values of those parameters will be valid for a wide range of images.

Even though values of the aforementioned parameters were determined by means of the visual exami-

nation of the training set, the range of their acceptable values (for each of those parameters) is narrow and

strictly governed by morphological and biochemical properties of either tissue structures or individual

cells.

5.2.2. Evaluation metrics

We assessed performance of the proposed algorithm using the three area-based performance metrics

– sensitivity (ASEN), specificity (ASPE) and precision (APRE) – defined as follows:

ASEN =
|GT∩SEG|
|GT| , (5.9)

ASPE =
|GT∩SEG|
|GT| , (5.10)

APRE =
|GT∩SEG|
|SEG| , (5.11)
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where |·| is the cardinality operator, and GT and SEG denote the ground truth mask and the segmenta-

tion mask obtained by the automated technique, respectively. The ground truth mask for each WSI was

prepared manually by an experienced pathologist with expertise in skin diseases.

5.2.3. Segmentation performance

We compared performance of the proposed method with the existing epidermis segmentation tech-

niques, including the CET [111], GTSA [112], and THM [113].

The CET technique has several key parameters including low output thresholds for contrast enhance-

ment, sizes of smoothing mean filter and morphological operations, and thresholds to eliminate noisy re-

gions after thresholding. We set them to values proposed in the original paper [111]. The GTSA technique

requires adjusting values of the following parameters: a window size of the template (Twsize), a threshold

for the shape criteria (Tl), a sampling resolution (Tsamres), and a proportion of epidermis in a WSI (Tpea). In

order to determine optimal parameters we evaluated performance of the GTSA technique on 10 images

in the following feature space: Twsize ∈ {3,5, . . . ,9}, Tl ∈ {2,3, . . . ,9}, Tsamres ∈ {0.005,0.01, . . . ,0.1},
Tpea = 0.01 (the epidermis typically occupies at least 1.5% of a lesion, as described in Section 2.4.5,

whereas a lesion typically occupies approximately 2/3 of the WSI crop area). Best results were obtained

using the following values of parameters: Twsize = 3, Tl = 2, Tsamres = 0.005. The key parameters of THM

technique are thresholds for eliminating false positive regions and a threshold to determine the coarse

segmentation quality. We set them according to the original work [113].

The presented method has been evaluated on 75 skin WSIs from the JUMC-SS dataset. The statistical

results of quantitative evaluations using measures defined by equations 5.9–5.11 are shown in Table 5.1.

Additionally, the number of images for which a given method failed (i.e., |SEG|= 0) has been provided.

Note that the Table 5.1 summarizes mean and median values as well as inter-quartile range of the respec-

tive quantities computed only for the subset of images for which a given method did not fail. Figure 5.11

demonstrates intermediate results of the proposed segmentation pipeline.

Table 5.1. Performance evaluation of the epidermis segmentation on 60 images from the UJCM-SS dataset

Technique #Failed
Mean value Median value IQR

ASEN ASPE APRE ASEN ASPE APRE ASEN ASPE APRE

CET [111] 2 0.73 0.81 0.20 1.00 0.83 0.15 0.96 0.26 0.26

GTSA [112] 0 0.99 0.75 0.32 0.99 0.86 0.32 0.02 0.22 0.29

THM [113] 28 0.66 0.99 0.74 0.83 0.99 0.76 0.58 0.01 0.14

the proposed 0 0.97 0.97 0.69 0.98 0.98 0.75 0.04 0.02 0.17
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5.3. Conclusions and discussion

The performance of the proposed technique is superior to the existing ones. Even though its mean sen-

sitivity is comparable to that that of the GTSA technique (0.97 vs. 0.99), it provides superior specificity

and precision (0.97 vs. 0.75 and 0.69 vs. 0.32, respectively). Both CET and GTSA techniques have low

precision, whereas the THM technique has an unacceptably high rate of failures (28 out of 75). On the

other hand, only our method and the GTSA technique successfully yielded meaningful results in all 75

cases.

The poor performance of GTSA and THM techniques (i.e., low specificity and precision of the GTSA

technique and high failure rate of the THM technique) results from the fact, that they are neglecting

differences in staining protocols between laboratories – they are both based on assumptions that epider-

mis is uniformly stained and that in the red channel image there is a significant contrast between (dark)

epidermis and (bright) collagen. However, the bulk of images in our dataset does not meet these assump-

tions: the contrast between epidermis and collagen is much lower, and there are intra-image variations

in staining. As the result, Otsu’s thresholding produced two clusters of pixels (later used in the coarse

segmentation step): the one consisting of darker pixels forming nuclei and stratum corneum, and the

other one consisting of brighter pixels forming cytoplasm and collagen bundles. These darker regions

were sparse and failed to satisfy area and shape criteria used in that segmentation step.

All the compared methods have relatively low precision, as numerous “dermal” pixels are incorrectly

classified as epidermis in specimen with an abundant infiltration of cells (mainly lymphocytes and/or

nevi cells) or with numerous skin appendages in dermis. Since cell nuclei appear dark purple, global

thresholding (used in CET, GTSA and THM) incorrectly recognizes those low-intensity areas as part of

epidermis. Additionally, in CET technique during the morphological processing step small false positive

regions are often merged together into a larger clusters, which are not removed in the subsequent object

classification step. Our technique fails to reject extremely dense connective tissue (like homogenized

collagen) and cellular infiltrations close to lesion boundaries: both these tissue structures have hardly any

pores, have stain concentrations similar to epidermis, and are either adjacent to epidermis or to lesion

borders, therefore they are not rejected during any of the segmentation steps. In the THM algorithm the

false positive area is limited by performing an additional segmentation step if the thickness of a given

epidermal segment is too large, whereas the proposed technique achieves a similar goal by rejecting

regions identified as epidermis, but which are confined within dermis.

Our method strongly relies on domain-specific knowledge of cell and tissue morphology and their

biochemical properties. The porosity analysis stage is based exclusively on the analysis of void spaces;

in particular in its morphological operations it utilizes only such well-defined quantities as radii of epi-

dermal cells and their nuclei. The stain concentrations analysis stage is based on the analysis of normal-

ized stain concentrations maps determined automatically for each individual image as well as it utilizes

knowledge about the way certain tissue structures absorb both hematoxylin and eosin. Therefore, our

technique is robust to differences in staining protocols, stain absorption within individual images, and
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(a) (b) (c)

(d) (e) (f)

Figure 5.11. Intermediate results of the proposed epidermis segmentation pipeline for a skin lesion with

scabies (Case 090, UBC dataset): (a) input image with ground truth marked blue, (b) specimen segmenta-

tion (slide foreground), (c) specimen segmentation after clear cells and desmosomes are filled, (d) coarse

epidermis detection (rejected regions marked black), (e) stain concentrations analysis (red area – stratum

corneum, blood or thick collagen; green area – collagen), (f) the final automatically determined epidermis

segmentation (highlighted).

to illumination variability.Moreover, in the proposed method no assumptions about the shape of epider-

mis are being made – false positive regions are rejected only based on their position relative to lesion’s

boundaries (i.e., if they are confined within dermis) – making it capable of segmenting epidermis in le-

sions with a wide range of inflammatory skin diseases, even when the morphology and structure of such

lesions have broken down.

Although our technique yielded satisfactory segmentation result on 75 WSIs from out dataset, there are

still some issues which need to be considered in order to apply the technique in routine clinical practice.

Firstly, since dermal regions with abundant infiltration of cells with nuclei (in particular lymphocytes and

nevi cell) are characterized by low porosity, and since the distribution and concentrations of hematoxylin

and eosin stains in regions of infiltration are similar to these observed in epidermal region, the infiltrated

regions are not rejected in any of the segmentation stages. Secondly, the presence of skin appendages

in dermis, which is typical in both healthy and pathologically changed sections of skin, decreases preci-

sion rate of epidermis segmentation. The proposed method should also be verified on images of lesions

containing combinations of pathological changes discussed in Section 2.5.

The proposed method for epidermis segmentation has a wide range of application. It could be used for

detection of epidermal melanocytes, for diagnosis of inflammatory skin conditions, and to help find cor-

relation between dermoscopic and histo(patho)logical features of physically damaged skin (for instance

due to injuries [128]). We use it as an initial step in an algorithm measuring epidermal morphometry

(described in Chapter 6).
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5.4. Summary

In this chapter we presented an algorithm for epidermis segmentation in high-resolution WSIs of H&E-

stained skin specimens. It performs an initial segmentation based on the analysis of shape and distribution

of void spaces in a tissue, followed by the analysis of H&E stain concentrations in normalized stain

concentrations maps obtained using color deconvolution. Finally, the segmented regions are verified

against porosity and location constraints put on the epidermal region. We provided the segmentation

results, and compared them both quantitatively and qualitatively with existing methods for epidermis

segmentation.

The novelty of the proposed method is in its full automation, its robustness to color variations in

staining, and its solid basis in skin histology and dermatopathology. Our method does not require any

parameter selection from its users, as the relevant values are either computed from the slide image or

predefined based on domain-specific knowledge. Since the applied approach is based on the analysis of

images with normalized color, it is robust to inter-image and intra-image color variations due to non-

uniform absorption of the stain, different handling procedure, and stains fading. The proposed method

can be used, as a preliminary step, by higher-level algorithms used for the analysis on human skin, e.g.,

for the detection of epidermal melanocytes or for the measurement of epidermal morphometry. Therefore,

it is a useful fundamental module for the development of CAD systems for dermatopathology.
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6. Epidermis morphometry

In this chapter we present a novel method for automatic determination of the basic morphometric

features of rete ridges in a segmented epidermis: their location, base width, length, and height. These

information are then used to develop complex indexes describing the epidermal morphometry which in

turn constitute input to the lesion classification model (as described in Chapter 7). The proposed method

is the enhancement of our method described in [26]: it includes small (yet important) tweaks in all main

steps of the algorithm so that it can be used not only with manually segmented epidermis masks, but also

with the results of automatic epidermis segmentation methods (such as the one described in Chapter 5).

6.1. Algorithm for retes segmentation and for their morphometry mea-
surement

The fundamental task in the presented method is to determine the base of each individual

rete (Fig. 6.1a). The approximated location of retes along the epidermis main axis, henceforth referred

to as “rete roots”, is identified by finding such projections of the skeleton of the epidermal region, which

are branching off towards the underlying skin layers, or equivalently: not towards the epidermis “outer”

edge (Fig. 6.3e, 6.3f). The “outer” edge of the epidermis is identified primarily by analyzing, for each

point of the epidermis boundary, the distance to the slide background along the normal and in the oppo-

site direction. The epidermis main axis is determined by finding such a path between two most distant

endpoints in the epidermis skeleton which runs closest to the epidermis “outer” edge. Endpoints consti-

tuting rete bases are chosen by analyzing the curvature of the epidermis boundary to identify endpoint

candidates, which are then matched with rete roots according to geometric criteria. Since typically a

number of automatically segmented retes contain multiple individual tips whereas others are partially

joined with their neighboring retes, a post-processing is necessary: the segmented retes must be merged

together or split, respectively. After rete bases are identified, to increase the accuracy of locating rete

roots, the epidermis main axis is retouched, so that it runs only through the epidermis base – and not

through upper parts of retes (Fig. 6.3h). Finally, it is possible to measure the morphometry (width, length

and height) of individual retes (Fig. 6.1b). The pipeline of our method is presented in Figure 6.2, whereas

results of each of its steps are shown in Figure 6.3.
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(a) Epidermis morphometry (b) Rete morphometry

Figure 6.1. The morphometric features related to the epidermal region (dark gray): (a) the epidermis main

axis is marked with the thick solid line, the bases of retes are marked with dashed lines, their corresponding

roots as points on the epidermis main axis, and candidates for rete bases as points on the epidermis border;

(b) base width (w), length (l), and height (h) of individual retes.

The foreground (tissue) mask MFg is obtained using the method described in Section 4.1. We also

compute the MBgOut mask representing the “outer” slide background by performing the morphological

opening of the MFg mask with a disk-shaped structuring element of radius 8 µm and rejecting all regions

except the largest one. The epidermis mask MEp is obtained using the method described in Section 5.1,

followed by filling holes smaller than 1000 µm2 (which are most often pores in the stratum corneum).

6.1.1. Determining the epidermis “outer” edge

By the “outer” edge of the epidermis we denote the section of the epidermis boundary adjacent to

stratum corneum. In order to identify the epidermis “outer” edge one needs to be able to distinguish

between the “outer” direction (the same as the normal direction) and the “inner” one. Therefore, the

initial step is to determine normals to the epidermis boundary.

To compute normals to the epidermis boundary we firstly get a sequence of border points P1, . . . ,Pn by

tracing the border Lb in the clock-wise direction using Moore-Neighbor tracing algorithm modified by

Jacob’s stopping criteria [129]. Next, to approximate the normal~ni at the ith border point Pi we find the

slope of the vector
−−−−−→
Pi−dPi+d using the four-quadrant inverse tangent, and add π/2 to obtain a vector both

orthogonal to
−−−−−→
Pi−dPi+d and pointing “outside” the epidermis (Fig. 6.4). As the border is a closed shape,

if i− d < 0 we take the point Pn+i−d and if i+ d > n we take the point Pi+d−n. Results are made more

robust to minor local fluctuations in border’s curvature by setting the point distance to d = d2µm/RIe.
We identify the “outer” edge by casting two rays for each boundary point Pi: one in the same direction

as its normal (~rn) and another in the opposite direction (~ro). For each ray we determine the distance along

the ray to its first intersection with the slide background, dBgN and dBgO, respectively (Fig. 6.5a). If the

WSI is cropped in such way that the tissue is not fully encompassed with the slide background, a ray will

not cross the background – in such case we set the distance to be infinitely large. Due to the presence of

numerous void spaces in dermis (between bundles of collagen fibers), the distance to the background is

determined not using the “raw” mask, MBg = MFg, but MBgOut.

The point Pi ∈ Lb is initially treated as part of the “outer” edge providing the following constraints

are satisfied: (1) dBgN < dBgO, and (2)~rn does not cross epidermis (Fig. 6.5a). We perform the above-

P. Kłeczek Computer vision and machine learning algorithms for dermatopathological image analysis



6.1. Algorithm for retes segmentation and for their morphometry measurement 93

Figure 6.2. The proposed method pipeline

mentioned test for all boundary points and obtain a vector of logical values, MOut0, which might be

interpreted as a 1D binary mask.

As the initial constraints fail to correctly identify “pockets” in epidermis (Fig. 6.5b), we refine the

MOut0 mask by performing the following three steps (we will denote the results of the test “the~rn vector

crosses epidermis” as MEpX). Firstly, we identify all sequences of zeros in the MEpX mask. For each

such a sequence (spanning from the ith to the jth element), if both (i− 1)th and ( j + 1)th element in

the MOut0 mask are ones, such a sequence is treated as a “pocket” constituting part of the valid “outer”

edge (Fig. 6.5c). Then, we perform the following sequence of morphological closings and openings in

order to both fill tiny gaps between parts of the valid “outer” edge and to get rid of artifacts:

MOut =
(((

M′Out0 •SED (25µm/RI)
)
◦SED (250µm/RI)

)
•SED (650µm/RI)

)
◦SED (900µm/RI)

, (6.1)

where SED (n) is a disk-shaped structuring element of radius n (the sizes of structuring elements were

selected based on the observation of typical width of “pockets” between rete tips and between whole

retes). Finally, we reject all but the largest segment (Fig. 6.5d).
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H&E image segmented epidermis segmented slide background

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 6.3. The steps of the proposed algorithm: (a) identify the “outer” edge of the epidermis, (b) compute

the skeleton of the epidermal region, (c) identify the (initial) epidermis main axis (marked red), (d) find

out the position and orientation of projections (“left side” and “right side” projections are marked cyan and

magenta, respectively), (e) identify boundary nodes, (f) match boundary nodes with rete roots (rete bases

and their roots are marked green and magenta, respectively), (g) merge adjacent rete roots, (h) recompute

the epidermis main axis (the outline of the epidermis base is marked blue, the initial main and retouched

main axis are marked black and red, respectively), (i) split partially merged retes (the split is marked ma-

genta), and (j) compute the morphometry of each individual rete ridge (here marked with different colors

for readability).

Figure 6.4. Approximating a normal to the epidermis boundary at the point Pi: the normal~ni is orthogonal

to the vector
−−−−−→
Pi−dPi+d .

6.1.2. Computing the epidermis skeleton

The skeleton of the epidermal region MSkel is obtained in the following two steps. Firstly, we skele-

tonize the epidermal region (opened using a disk-shaped structuring element of radius dEpMin/2 using an
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(a) (b)

(c) (d)

Figure 6.5. Determining the epidermis “outer” edge: (a) casting rays~rn and~ro for each point Pi and com-

puting the distance to the background for each of those rays, (b) the initially identified “outer” edge mask

MOut0 (thick solid line) may contain false positives, whereas some sections of the actual “outer” edge (e.g.,

“pockets”) may not be correctly identified, (c) considering all such sequences of 0s in the MOut0 mask that

both for all their elements the~rn vector crosses the epidermis and which are flanked with 1s in the MOut0

mask as parts of the valid “outer” edge yields the M′Out0 in which most issues with “pockets” are fixed, and

(d) performing the sequence of morphological closings and openings on the M′Out0 mask fixes the remaining

issues with “pockets” and false positives – the final version of the epidermis “outer” edge, the MOut mask,

is marked with a thick solid line.

augmented fast marching method proposed by Telea and van Wijk [130] with pruning threshold t. The

opening operation is performed to limit the influence of boundary artifacts related to imperfect segmen-

tation of the stratum corneum). Then, we additionally apply the medial axis transform to the resulting

mask in order to remove excessive pixels near junctions.

The pruning threshold t has a precise geometrical meaning: all skeleton branches caused by boundary

details shorter than t pixels are pruned [130]. In practice, even an expert pathologist is able to reasonably

conclude whether a given boundary detail could be a rete only if that detail has the length of at least

two average-sized keratinocytes. As the minimum thickness of the epidermal plate found in human body

varies between 45–65 µm [76, 77] and as the diameter of an average keratinocyte is 12–16 µm [74], the

distance from the epidermis main axis to the tip of a boundary detail should be at least about 50 µm.

Nevertheless, to avoid missing potential retes located at abnormally thin epidermal sections (e.g., in

melanoma) we adopted the pruning threshold value t = 45µm/RI (Fig. 6.6).

6.1.3. Determining the epidermis main axis

The epidermis main axis πm is a centerline of the epidermis base, whereas the epidermis base is

the epidermal region with retes cut off (Fig. 6.1a). The determination of the main axis allows for the
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(a)

0

50

100

(b)
(c)

Figure 6.6. A section of epidermis: (a) two boundary details are definitely retes (“+”), one could be a rete

(“?”), and one is surely not a rete (“–”); (b) the U difference field for the two central boundary details

(see [130] for details); (c) the skeleton obtained by thresholding the U difference field with t = 100.

identification of pixels being candidates for rete roots (since all roots of retes are located on that axis)

and for distinguishing between epidermal projections branching off towards the deeper skin layers and

towards the stratum corneum.

The procedure for determining the epidermis main axis is as follows:

1. We construct graphs G and G f spanned on the skeleton of the “raw” epidermal region and the skele-

ton of the epidermal region with void spaces filled, respectively (skeletonization is performed using

the procedure described in Section 6.1.2). The leaves of these graphs represent skeleton endpoints.

The location (in the image coordinate system) of leaves in G corresponds to the location of leaves

in G f , as the filling operation only removes skeleton branch points.
2. The naive approach to the problem of determining the epidermis main axis – finding the longest

path in G – has two problems: (1) if epidermis contains holes (e.g., between partially merged retes)

the longest path in G may not necessarily run along the epidermis “outer” edge (Fig. 6.7a), and (2)

simply selecting the longest path in G yields incorrect results for cases where there is a long rete

near any end of the epidermis base (Fig. 6.7b). Therefore, we identify the two endpoints of the main

axis by selecting the best path in the graph G f . We rank paths in G f according to the score which

prefers longer paths but at the same time penalizes paths with endpoints located deep inside the

epidermis (i.e., close to the dermis):

Score(π) = ∑
ei∈π

w(ei)− (DOut (v0)+DOut (vn)) (6.2)

where π = (e1, . . . ,ep) is a path in the graph G f , w(e) is the weight of the edge e (i.e., the number

of pixels forming this edge), DOut (v) is the geodesic distance of v from the epidermis “outer” edge,

and v0 and vn are endpoints of π . We compute Score(π) for all such paths in G f that v0 and vn are

the leaves of G f , and choose endpoints of the path with the highest score as the main axis endpoints

ve
1 and ve

2 (Fig. 6.7c).
3. We construct a weighted graph Gw, which has the same nodes and edges as G, but every edge e in

Gw is weighted according to both the mean depth of pixels Pi forming this edge (to prefer graph

edges closer to the epidermis “outer” edge) and the presence of narrow passages on the edge (such
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passages are typically artifacts due to improperly segmented stratum corneum):

wd(e) = ∑
Pi∈e

DOut (Pi)

wl(e) =

max(wd( f ) : f ∈ E(G)) if ∃Pi ∈ e : DBg (Pi)< dEpMin/RI

0 otherwise

w(e) = wd(e)+wl(e)

(6.3)

where DBg (Pi) is an Euclidean distance transform of the MBg mask at the Pi pixel (i.e., the dis-

tance from the Pi pixel to the nearest background pixel). To ensure that the chosen route is running

through the epidermis base, we determine the route of the main axis by searching for the longest

path between ve
1 and ve

2 in Gw using Dijkstra’s algorithm [127].

(a) (b) (c)

(d) (e) (f)

Figure 6.7. Determining the epidermis main axis – issues and their solutions (in each diagram the computed

main axis and its endpoints are marked with a thick solid line and large dots, respectively): (a) due to holes

in epidermis the longest path in G does not run along the epidermis outer edge, (b) although the problem

with holes can be solved by identifying main axis endpoints based on the analysis of the skeleton of the

filled epidermal region, this tweak does not solve the problem of long retes near ends of the epidermis base

causing the longest path in G to omit the last segment of the true main axis, (c) the problem with long retes

near ends of the epidermis base can be solved by ranking endpoints based on their depth (i.e., by preferring

endpoints located closer to the epidermis “outer” edge), (d) endpoints determined using G f are also valid

for G, (e) simply taking the longest path in G between endpoints is not enough to obtain the correct main

axis route, (f) finding the shortest path in Gw between endpoints yields the desired result.

6.1.4. Retes segmentation

The aim of this step is to determine position on the main axis and orientation of retes, as well as to

identify endpoints of each rete base.

Determining the position and orientation of retes

The process of determining the location and the orientation of retes can be summarized in the following

three steps, performed for each projection branching off from the epidermis main axis: (1) compute its
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location and orientation, then (2) determine the side of the main axis it branches off from (either “left”

or “right”), and finally (3) treat it as a rete only if it branches off from that side of the main axis which is

closer to the epidermis “outer” edge. The detailed procedure is described below.

Firstly, to determine the location and the orientation of projections, for each such edge ei = (vq,vr) that

vq ∈ πm we choose vq as the projection root. Then, to approximate the orientation ϕp of that projection,

we use the following heuristic: we choose the pixel vp ∈ ei located Lp = min(|ei|, lmax) pixels away

from vq as the end of the projection “stump” and compute the four-quadrant inverse tangent of the −−→vqvp

vector (Fig. 6.8). We set a small value of lmax = d5µm/RIe to be able to reasonably approximate the rete

orientation even if the rete is significantly twisted closer to its tip. To get the “stumps”, we use a helper

MStumps mask computed as follows:

MStumps = MAxis
8−→ (MAxis⊕SED (()lmax)∩MSkel)

where MAxis is the mask of the epidermis main axis.

Figure 6.8. Determining the orientation ϕp of a rete based on the location of its root vq and its corresponding

end of a rete “stump” vp.

Then, to determine the side of the main axis a given projection branches off from (either “left” or

“right” – this labeling is arbitrary), we dilate the main axis using a disk-shaped structuring element of

radius lmax, split the resulting region in half using the main axis and two rays (the one cast from the first

pixel of the axis in the direction opposite to the direction of the first axis segment, and the other cast from

the last pixel in the same direction as the last segment), and check with which half the end of this rete

“stumps” overlaps (Fig. 6.9).

Figure 6.9. Determining side of the main axis (either “left” or “right”) a given projection branches off from.

The dilated main axis region is split in halves by the main axis πm combined with two rays: −~s1 (cast from

v1) and~sn−1 (cast from vn). If the projection “stump” is located in the striped half, it is considered a “right”

projection, otherwise it is considered a “left” projections.

Finally, we treat as retes only those projections which branch off from the “outer” side of the main axis.

In order to find out which side of the main axis (“left” or “right”) is the “outer” one, for each projection

on each side we cast a ray in the same direction as the orientation of that projection and determine the

P. Kłeczek Computer vision and machine learning algorithms for dermatopathological image analysis



6.1. Algorithm for retes segmentation and for their morphometry measurement 99

distance along that ray to its first intersection with the slide background. The side for which its projections

has larger mean distance to the slide background is considered the “outer” one (and, consequently, these

projections are considered retes).

Determining boundary nodes

The preliminary step towards the identification of endpoints of rete bases is the determination of

candidate points on the epidermis boundary (a boundary point is labeled as a candidate if it is located

in the center of a boundary protrusion). It is not enough to simply choose two points on the boundary

closest to a given rete root as for wide, long retes the main axis traced using the skeleton is considerably

deformed – its root is located in the center of the rete – and therefore we would choose points in the

middle of rete’s length instead of points close to its base (Fig. 6.10).

Figure 6.10. To identify endpoints of rete bases we firstly determine candidate points, located in the middle

of boundary protrusions (black dots). Simply selecting two points (white dots) on the boundary closest to

the rete root R gives wrong results for wide and long retes as in such case the main axis πm traced using the

skeleton is considerably deformed (the junction point R is shifted towards the center of a rete).

Firstly, for each boundary (both external and internal), we compute relative changes in the approx-

imated boundary slope between consecutive boundary points (using the procedure described in Sec-

tion 6.1.1) and represent it as a function of boundary run length (Fig. 6.11a). We assume that all bound-

aries are traced in the clock-wise direction and that boundaries consisting of less than 5 px are actually

artifacts. The relative orientation of the vector v1 with respect to the vector v2 is given by:

[−π,π] 3 ∆ϕ(v1,v2) =


ϕ1−ϕ2 if ϕ1−ϕ2 ∈ [−π,π]

ϕ1−ϕ2 +2π if ϕ1−ϕ2 <−π

ϕ1−ϕ2−2π if ϕ1−ϕ2 > π

(6.4)

where ϕ1 and ϕ2 are the absolute orientations of vectors v1 and v2, respectively.

Then, tiny fluctuations in the function graph are suppressed by applying the simple moving average

filter with window size ws = 15 and the general trend is obtained by performing low-pass filtering using

a minimum-order low-pass finite impulse response (FIR) filter with normalized passband frequency of

0.1 rad/px, stopband frequency of 0.15 rad/px, passband ripple of 0.01 dB, and stopband attenuation of

65 dB, designed using a Kaiser window method (for boundaries consisting of less then 100 pixels we

use stopband attenuation of 50 dB). Since in both cases of filtering the signal corresponds to a value

measured along the boundary (which is a closed curve), we wrap the signal to avoid filtering artifacts on

its ends. The results of the compound filtering are shown in Figure 6.11b.

P. Kłeczek Computer vision and machine learning algorithms for dermatopathological image analysis



100 6.1. Algorithm for retes segmentation and for their morphometry measurement

Finally, we identify the location of such local maxima (peaks) in the filtered (and wrapped) signal that

their height h and prominence p are large enough, as higher peaks correspond to sharper turns of the

boundary and more prominent peaks indicate a more constant trend (Fig. 6.11c). We chose h > 0.025

and p > 0.0015, respectively.

Since no “golden standard” for determining the precise location boundary nodes exists (it is an ex-

tremely subjective task), we selected the values of filter parameters and peak thresholds empirically.

(a)

(b) (c)

Figure 6.11. Identifying boundary nodes: (a) relative changes in the approximated boundary slope between

consecutive boundary points are represented as a function of boundary run length ∆ϕ(Lb), (b) the ∆ϕ(Lb)

function (thin solid line) is firstly averaged using the simple moving average filtering (thick solid line) and

then a low-pass filter is applied (dashed line), (c) the identified node is located in the center of a boundary

protrusion.

Matching boundary nodes with retes

For each rete root R we need to determine the two endpoints of its base. A candidate for each of

such endpoints, Ni, must be located near the rete root (we set ‖RNi‖< 130µm/RI as a reasonable limit)

and must be located on the epidermis “inner” edge. Next, candidate nodes are labeled as either “left” or

“right” based on to the following criterion: if ∆ϕ(~ni,~p)> 0 then the node is labeled as “left” candidate,

otherwise it is treated as a “right” candidate (~p is a rete vector and ~ni =
−→
RNi). Within each category of

candidates we firstly try to choose the node closest to R for which |∆ϕ(~ni,~p)| ∈ (5°,150°). If there are no

candidates satisfying this criterion, we relax it and choose from all the nodes in the group (disregarding

their |∆ϕ(~ni,~p)| value).

Sporadically, the lack of concavities in epidermis boundary near a rete root may result in one of the

following scenarios happening for one side of a rete: (1) a node too distant from the rete root is selected,
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(2) a node on the wrong side of the main axis is selected, or (3) no node is selected. Figure 6.12 presents

each of these scenarios.

(a) (b) (c)

Figure 6.12. Problematic scenarios when identifying endpoints of a rete base: (a) a node too distant from

the rete root is chosen, (b) a node on the wrong side of the main axis is chosen, and (c) no node is chosen.

Should any of the above-mentioned cases occur, we select the boundary point located on the ray cast

from the rete root in the direction obtained by mirroring the direction from rete root to the “proper” node

(i.e., the one located closer to the rete root if two nodes were initially found, otherwise the one found)

with respect to the rete vector (Fig. 6.13).

Figure 6.13. The “proper” node N is mirrored with respect to the rete vector to obtain a new node N′.

Merging adjacent retes

If at least one of the following conditions is met:

– the distance between the roots of two retes is less than 20 µm,

– two retes have exactly the same base endpoints, or

– one rete is fully enclosed by another rete

we treat them as a group and merge into a single, “joint” rete (a group may consist of more than two

retes).

To determine the location and the orientation of such a joint rete, we take the average of the orientations

of all retes in the group and the point R′ on the main axis closest to the center of mass of roots Ravg of

all retes in the group, respectively. To select base endpoints of the joint rete, within each group we firstly

identify two most distant roots Ra and Rb. Then, for each node Ni constituting an endpoint of the base

of a rete belonging to the group we calculate the relative orientation of the vector ~ni =
−−→
ONi (we choose

the point O in such a way that ‖ORa‖= ‖ORb‖) with respect to the mean vector of rete orientations ~pavg

according to (6.4), and finally we select one node with the largest and one node with the smallest relative

orientation α = ∆ϕ(~ni,~pavg). Figure 6.14 shows the procedure of merging adjacent retes.

We repeat the above-mentioned merging steps until there are no more groups left.
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(a) (b)

Figure 6.14. Merging the adjacent retes: (a) the root of the new (joint) rete R′ is the point on the main axis

located closest to the center of mass of joint roots Ravg, (b) the two most distant retes roots are R1 and Rn

and the base nodes of the new (joint) rete are N1 and Nk.

Splitting partially merged retes

In case of lesions such as junctional nevus or melanoma adjacent retes are frequently partly joined

together and thus must be (at least roughly) delimited in order to measure the height of each individual

rete (Fig. 6.15).

Figure 6.15. Joined retes must be split (the dotted line) before measuring their morphometry, otherwise

they both would have the same length (in this case equals to l2).

The process of delimiting retes begins with tracing boundaries of each hole in epidermis (i.e., a hole

which is fully enclosed within the epidermis in an 8-connected neighborhood) and then repeating the

procedure described below row by row (i.e., in the ith pass we consider only holes forming the ith row)

until all boundaries are processed (Fig. 6.16).

Figure 6.16. Rows of holes: the 1st row is formed by such cycles around holes that at least one edge in

each cycle belongs to the main axis (a dashed line); the 2nd row is formed by cycles adjacent to the first

row; the nth row is formed by those cycles adjacent to the (n− 1)th row which are not part of any of

1st,2nd, . . . ,(n−1)th row.

When processing a row, holes are analyzed one by one – in the jth iteration we begin with the identifi-

cation of nodes in the MSkel) mask forming the cycle around the jth hole (we will denote these nodes as

Vj): we reconstruct a mask containing the hole border into the (MEp \MSkel) mask, dilate the result with
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a square-shaped structuring element of size 3× 3 (so that it includes skeleton nodes), and perform the

logical AND operation with skeleton nodes.

The splitting algorithm is as follows:

– In the first pass (i.e., i = 1) all holes for which their boundaries do not overlap with the main axis

are skipped. For each of the rest of holes the split is performed in the following steps (Fig. 6.17):

1. Compute the “hole proximity” mask of a hole:

MHoleProx =
(
MHole⊕SESq (3)

) 4−→
(
MEp∩MSkel

)
⊕SESq (3),

where MHole is the mask of a hole, and SESq (n) is a square-shaped structuring element of edge

length n. The holes in MHoleProx are filled afterwards.
2. Identify the two edges flanking a given hole (constituting “trunks” of two retes) by finding

the outermost edges in the longest path in a graph spanned on the skeleton given by the

MStumps∩MHoleProx mask. Take the mean of their orientations as the orientation of the split-

ting ray.
3. Cast the splitting ray from this point on the hole boundary which is most distant (in Euclidean

metric) from the epidermis “outer” edge – the ray splits the epidermis until it reaches the

background region.

(a) (b)

(c)

Figure 6.17. The splitting procedure for holes in the 1st row: (a) compute the “hole proximity” mask of

a hole (it includes the adjacent sections of the epidermis skeleton), (b) identify the longest path (marked

red) in a graph spanned on the skeleton given by the MStumps∩MHoleProx mask (it will then allow for the

determination of the two retes flanking a given hole), and (c) cast the splitting ray from this point on the

hole boundary which is most distant (in Euclidean metric) from the epidermis “outer” edge (the orientation

of the splitting ray equals the mean of orientations of retes “flanking” the hole).

– In each of the subsequent passes (i.e., i > 1), for each hole in a row:

1. Compute the “hole proximity” mask MHoleProx as in the 1st pass.
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2. Compute a helper mask MG = MHoleProx ∩ (N > 0)∩MSkel. If |MG| = 0, the hole will not be

split at all; if the MG mask contains more than two connected components, it means that another

hole should be processed before the current one.
3. Find the longest path πL in a graph G spanned on the MG mask.
4. If the πL path contains a cycle, treat it as a loop (Fig. 6.18):

(a) Compute the geodesic distance transform of the MEp mask with seeds located at the MAxis

mask, it will be denoted as DistAxis.
(b) Choose the “deepest” point in the hole PDeep:

PDeep = argmax{DistAxis(P) : P ∈MHole}.

(c) Choose the point PFar according to the following criterion:

X = {P ∈ I : PDeepP∩MHole = /0}
PFar = argmax{DistAxis(P) : P ∈ X ∧‖PDeepP‖ ≤ 10px}

That is, choose such a point that the line PDeepPFar does not cross the hole region.
(d) Cast the splitting ray from the PDeep point in the direction of the PFar point – the ray splits

the epidermis until it reaches the background region.
(e) Continue with processing the next hole.

(a) (b)

Figure 6.18. The splitting procedure for “looped” holes: (a) the πL path contains a cycle, thus the hole is

treated as “looped”, and (b) cast the splitting ray from the PDeep point in the direction of the PFar point (the

dotted lines from the PDeep point mark the “upper” boundary of the X pixel set).

Otherwise (if the πL path was not treated as a loop):

(a) Identify endpoint candidates – vertices in the graph G lying on these edges of G which do

not constitute boundaries of the already-processed regions (i.e., candidates must belong to

the MHoleProx∩ (N = 0) mask), excluding endpoints of edges consisting only of two pixels

(i.e., spurs).
(b) If no valid endpoint candidates were found, treat the hole similarly to a loop (Fig. 6.19):

i. Choose the hole point PDeep most distant from the hole base, MHoleProx∩ (N > 0) (in

the Euclidean distance).
ii. Take the orientation of the vector from the centroid of the MHole region to the PDeep

point as the orientation of the splitting ray and cast it from the PDeep point.
iii. Continue with processing the next hole.
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Figure 6.19. The “quasi-looped” holes in further rows: the only possible edge (marked with solid black

lines) contains both endpoints of the πL path (marked red), there are no endpoint candidates; the already-

processed regions (N > 0) are marked with a checker pattern.

Otherwise (Fig. 6.20):

i. Finds (two) edges containing both the one endpoint of the πL path and an endpoint

candidate.
ii. If no such edges were found, treat the hole as if no valid endpoint candidates were

found (i.e., follow substeps described in step 4b); otherwise take the mean orientation

of edges as the orientation of the splitting ray.
iii. Cast the splitting ray from the point most distant from the epidermis “outer” edge (in

the Euclidean metric).

(a) (b)

Figure 6.20. The splitting procedure for “regular” holes in further rows: (a) identify the two edges (marked

with solid black lines) containing both the one endpoint of the πL path (marked red) and an endpoint

candidate (here there are two endpoint candidates, c1 and c2); the already-processed regions (N > 0) are

marked with a checker pattern, and (b) cast the splitting ray from this point on the hole boundary which

is most distant (in Euclidean metric) from the epidermis “outer” edge (the orientation of the splitting ray

equals the mean of orientations of edges “flanking” the hole).

– If there was not a single change in the given step (i.e., not a single hole was actually processed), fa-

cilitate processing of potential H-sections of the skeleton by marking the node closest to regions

in the MAxis mask of the “deeper” hole, denoted as vShallow, as processed once, i.e., by setting

N(vShallow) = 1 (the geodesic distance transform of the MSkel mask with seeds located at the MAxis

mask is used to determine the vShallow point). A sketch of a H-section is shown in Figure 6.21.

– Regardless the current step number, after processing each hole the number of times a given image

region has been processed is updated: N(MHoleProx⊕SESq (3)) = N(MHoleProx⊕SESq (3))+1.

– The remaining (unprocessed) holes are treated as loops (i.e., as described in step 4).
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Figure 6.21. An example of a a H-section of the skeleton. The vShallow node should be marked as processed

once (by setting N(vShallow) = 1) in order to ba able to process the hole at the tip of a rete.

The splitting procedure performed on holes from the 1st and the 2nd row is shown in Figure 6.22. The

result of this procedure (performed on all rows) is a binary mask MSplit representing a superposition of

rasterized images of all splitting rays (it is later used when computing base width and height of individual

retes).

(a) (b)

Figure 6.22. Delimiting partially merged retes: (a) a hole in the 1st row, (b) a hole in the 2nd row. Nodes Vj

are marked with circles, the orientation of edges flanking the hole is marked with an arrow, and the splitting

ray is marked with a solid line.

6.1.5. Retouching the main axis

As mentioned in Section 6.1.3, the initially determined route of the epidermis main axis may run

through upper parts of broad retes, which negatively affects the algorithms for finding rete roots and rete

bases. Therefore, after rete bases are determined, we recompute the main axis so that it runs only through

the epidermis base.

To determine the epidermis base mask MEpBase, we render the rete bases using Bresenham’s line algo-

rithm [131] into an (initially empty) mask MBases and then reconstruct the original main axis mask into

the MEp \MBases mask (i.e., into the epidermis mask with rete bases removed). The obtain the retouched

routing of the main axis, we repeat the procedure of identifying the “shallowest” path described in Sec-

tion 6.1.3, this time on the skeleton of MEpBase and with the same endpoints as in the original main axis.

The skeleton is computed using the procedure described in Section 6.1.2, this time with the threshold t

twice as large.

When re-computing the main axis the choice of the pruning threshold value t is more arbitrary, since

in terms of the skeleton structure it only affects the length of sections of the main axis cut off from each
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end of the axis – a larger value of t results in longer section to be cut off. However, it significantly affects

the computational complexity of the main axis routing algorithm, as a larger value of t results in a graph

with less nodes and edges to process.

6.1.6. Computing the morphometry of retes

In this step we measure the following morphometric parameters of each individual rete: base width,

length and height.

To extract a mask of an individual rete, we firstly compute a mask MProj = MEp \ (MBase ∪MSplit)

containing all rete regions, and then reconstructing the edge of that rete into MProj. The base width

of a rete is simply the length of its base (i.e., the Euclidean distance between base endpoints). The

length of a rete is determined by computing the geodesic distance transform of the projection’s region

with seeds located at the projection’s base and taking the maximum value found in the transformed

image (Fig. 6.23a). To determine the height of a rete, for each boundary pixel P we measure its Euclidean

distance from the line k : Ax+By+C = 0 containing the rete base and take the maximum value across

all boundary points (Fig. 6.23b). Assuming N1 = (x1,y1) and N2 = (x2,y2) are endpoints of the rete base,

the coefficients of the line k are given by the following equations:

A =

1 if x1 = x2

y1−x2
x1−x2

otherwise
B =

 0 if x1 = x2

−1 otherwise
C =

−x if x1 = x2

y1− y1−x2
x1−x2

x1 otherwise
(6.5)

and the distance from the point P = (xP,yP) to the line k equals to:

d(P,k) =
|AxP +ByP +C|√

A2 +B2
. (6.6)

(a) length (b) height

Figure 6.23. Measuring morphometry of a rete: (a) the rete length corresponds roughly to the maximum

value of the geodesic distance transform of the rete region with seeds located at its base, (b) the rete height

is the maximum distance of a rete boundary point P from the straight line k : Ax+By+C = 0 containing

the rete base (the distance is computed for all points on the rete boundary).

P. Kłeczek Computer vision and machine learning algorithms for dermatopathological image analysis



108 6.2. Results

6.2. Results

6.2.1. Evaluation metrics

We were interested mainly in answering the following three questions regarding performance of our

algorithm: (1) how many retes are detected in the correct location (compared to the total number of retes),

(2) how extreme is the over-detection problem, and (3) how closely the morphometry of automatically

segmented retes matches the morphometry of manually segmented ones. The nature of our research

problem required some fine-tuning of the popular evaluation metrics.

The fundamental issue is that retes bases, both manually and automatically segmented, are actually

segments in the same 2D (high resolution) image space and thus it is virtually impossible that any pair of

a manually and an automatically segmented rete bases will perfectly overlap – in most cases the matching

endpoints of these bases will be located at least a few pixels apart. Therefore, we formulated the relaxed

rete matching criterion as follows: in order to treat a rete R1 as matching a rete R2 the distance between

the centers of their bases must be at most l2/2, where l2 is the length of R2’s base.

Let us define the set of automatically segmented retes as RA and the set of manually segmented retes

as RM. If either: (1) Ri
A ∈ RA is matched by exactly one R j

M ∈ RM and R j
M is matched only by Ri

A, or

(2) Ri
A ∈ RA is matched by exactly one R j

M ∈ RM and R j
M is not matched by any rete from RA, or (3)

R j
M ∈ RM is matched by exactly one Ri

A ∈ RA and Ri
A is not matched by any rete from RM, then we

will describe such two retes as “matched exclusively”. If a given manually segmented rete is matched by

multiple automatically segmented retes, it implies that those automatically segmented retes should have

been merged. Analogously, if a given automatically segmented rete is matched by multiple manually

segmented retes, it implies that the automatically segmented rete should have be split.

The performance of our method was measured using two variations on the Jaccard index, a statistic

used for comparing the similarity and diversity of finite sample sets. The Jaccard index is defined as the

size of the intersection divided by the size of the union of the sample sets A and B:

J(A,B) =


|A∩B|
|A∪B| =

|A∩B|
|A|+|B|−|A∩B| if A∪B 6= /0

1 otherwise
(6.7)

and in our case the two sets are: (1) a set of manually segmented retes – the ground truth (denoted as

MAN), and (2) a set of automatically segmented retes (AUT). In a perfect case, when all ground truth

retes are matched and there are no automatically segmented retes without a match, the Jaccard index

equals 1; otherwise its value is in the range [0,1). In the first variation of the Jaccard index, the restrictive

one, the intersection set consists only of retes matching exclusively:

Jstrict =
# true positive MANs

# MANs+# false positive AUTs
(6.8)

In the relaxed one, automatically segmented retes matching non-exclusively (i.e., both groups of retes to

be merged and retes to be split) also belong to the intersection set:

Jrelaxed =
# MANs−# false negative MANs
# MANs+# false positive AUTs

(6.9)
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The relaxed variant is intended to reflect the fact that in many cases a pathologist arbitrary decides

whether to treat a given epidermal projection as two individual retes (although partially joint) or as one

rete with two tips – whereas both options are admissible (Fig. 6.24).

(a) (b) (c)

Figure 6.24. The rete splitting dilemma: the central region in (a) can be considered as either two joint retes

as in (b) or as a single rete with two tips as in (c).

In order to increase the robustness of the above-mentioned metrics, prior to their computation we

fine-tune the MAN and AUT sets in the following ways:

– Since edges of a skin specimen are often deformed due to mechanical slicing (as described in Sec-

tion 2.2.4), all retes having roots located at most 130 µm from main axis endpoints are excluded

from both sets.

– All retes for which either their width w is too small (w < wmin) or their length l is too small (l < lmin)

are excluded from both sets (we set wmin = 12µm and lmin = 25µm, as for smaller projections even

experienced pathologists decide whether to treat it as a rete or just as a slicing artifact in an arbitrary

way).

– In case of the AUT set, all retes for which their length-to-width ratio is less then 0.5 are excluded.

However, that automatically segmented retes adjacent to holes in epidermis base are exempt from all

those three rules (as each such a hole is always a sign of bridging between retes).

For retes matching exclusively we computed standard statistical measures describing the distribution

of relative errors for both lengths of rete bases and lengths of retes themselves. For the true value of a

quantity, x, and the inferred value, x̂, the relative error is defined by

δx =
x̂− x

x
. (6.10)

6.2.2. Performance

The presented method has been evaluated on 25 skin whole slide images (WSIs) from UJCM-SS

dataset, which included cases of lentigo (9), dysplastic nevus (11), and melanoma (5). The input to the

algorithm consisted of manually segmented epidermis masks. There were 992 manually segmented retes

in the whole dataset, whereas our method detected 894 retes: 825 were detected correctly (83%), 147

manually segmented retes were not detected (false negatives), in 20 cases either one manually segmented

rete was assigned multiple automatically segmented retes or an automatically segmented retes should be

split/merged, and 42 detected retes were actually false positives.
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The distribution of retes as well as individual error types with respect to rete’s length and width is

shown in Figure 6.25. The bulk of “should split/merge” errors are related to micro-retes: 62% of all such

cases were related to retes both narrower than 60 µm and shorter than 40 µm whereas such tiny retes

constitutes only 15% of all retes.
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Figure 6.25. The distribution of retes with respect to their length and width (the marker scale for all error

plots is the same, yet for the sake of clarity it is larger than the scale for the “all retes” plot)

The histogram of the proportion of incorrectly detected retes with respect to the rete length is shown

in Figure 6.26. This proportion decreases rapidly as the length of a rete increases and the trend stabilize

at 10–17% for retes longer than 40 µm (which constituted roughly 80% of all retes). The highest pro-

portion of misdetections was observed among retes shorter than 35 µm, where nearly 65% of retes were

missed (false negatives). The high proportion of false positives among retes longer than 90 µm (15 cases)

may be explained by the misclassification of skin appendages (particularly: hair follicles) as retes. Even

though the tissue structure of hairs and retes differ, from the morphometric point of view they are similar

(Fig. 6.27). To the best of our knowledge no automatic method for the segmentation of skin appendages

in histopathological images has been proposed so far.
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Figure 6.26. A histogram of the proportion of misdetected retes with respect to the rete length (the first bin

also includes retes shorter than 25 µm and the last bin also includes all retes longer than 175 µm)

Figure 6.28 presents boxplots of Jstrict and Jrelaxed indexes computed on the set of 25 images. The

median and interquartile range (IQR) for Jstrict were 0.80 and 0.10, whereas for Jrelaxed they equaled
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hair follicle (superficial portion) fused retes

Figure 6.27. Morphometric similarity between skin appendages (e.g., hair follicles) and fused rete ridges

0.81 and 0.11, respectively. Both the strict and the relaxed version had the lower adjacent value (LAV)

of nearly 0.70. The indexes computed for the aggregated data (i.e., from all slides altogether) were

Jstrict = 0.798 and Jrelaxed = 0.817, respectively.
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1

Figure 6.28. Boxplots of Jstrict and Jrelaxed indexes computed on the set of 25 images

The histograms of relative errors for estimating rete width and length are shown in Figure 6.29. The

mean absolute value of relative errors (|δx|) was 20% for the width and 16% for the length. Both distribu-

tions of relative errors were right-skewed – for width errors skewness was moderate (0.79), whereas for

length errors it was high (3.42) – suggesting that our method rather overestimates than underestimates

both width and length of retes. Making a similar analysis for rete height is pointless, since even a tiny

change in the orientation of a rete base has a considerable impact on the height estimate.
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Figure 6.29. Histograms of relative errors for: (a) the rete width, and (b) the rete length. In each histogram

the first bin also includes errors smaller than −0.50 and the last bin also includes errors larger than 0.50.

Additionally, we evaluated the performance of the rete segmentation method on a set of 75 images of

automatically segmented epidermis regions (obtained using the method described in Chapter 5).

There were 3709 manually segmented retes in the whole image set, whereas our method detected 2613

retes: 1571 were detected correctly (42%), 1932 manually segmented retes were not detected (false neg-

atives), in 206 cases either one manually segmented rete was assigned multiple automatically segmented
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retes or an automatically segmented retes should be split/merged, and 874 detected retes were actually

false positives.

Figure 6.30 presents boxplots of Jstrict and Jrelaxed indexes computed on this image set. The median and

interquartile range (IQR) for Jstrict were 0.38 and 0.18, whereas for Jrelaxed they equaled 0.40 and 0.19,

respectively. Both the strict and the relaxed version had the lower adjacent value (LAV) of nearly 0.03.

The indexes computed for the aggregated data (i.e., from all slides altogether) were Jstrict = 0.354 and

Jrelaxed = 0.368, respectively.
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Figure 6.30. Boxplots of Jstrict and Jrelaxed indexes computed on the set of 75 images of automatically

segmented epidermis

Even though this time the results might appear unsatisfactory, in Chapter 7 we will prove that they

still constitute meaningful input to train a well-performing lesion classifier model. Such low values of

the true positive rate, and Jaccard indexes are a consequence of the nature of our epidermis segmentation

method: it produces a more jagged boundary of the epidermal region (i.e., with more micro-protrusions),

which causes the boundary nodes to be located in slightly different places. In case of narrow retes those

tiny discrepancies often have serious consequences: even though a given automatically segmented rete

(base) may be located “more or less” close to a manually segmented rete (base), so that a human observer

would definitely treat them as matching retes, in fact the distance between their centers would be too large

for the automatic rete matching criterion. However, most of the features described in Section 7.1 utilize

either only the information about the sole fact of rete’s existence (e.g., the density of all retes) or are

based on the analysis of a long section of epidermis (e.g., the median thickness of epidermal base) and

thus are robust to the aforementioned slight discrepancies in the location and/or morphometry of some

retes.

6.3. Conclusions and discussion

We proposed a method which automatically measures the morphometry of a segmented epidermis – it

determines the location, width, length, and height of individual rete ridges – and tested it on two datasets

consisting of segmented epidermis masks prepared from skin WSIs of common melanocytic lesions:

the first included 25 images of manually segmented epidermal regions, whereas the second included 75

images of automatically segmented epidermal regions (using the algorithm described in Chapter 5).
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Experimental results are promising: for the first dataset, in total 825 out of 992 (83%) manually seg-

mented retes were detected correctly and the “strict” Jaccard similarity coefficient for the task of detect-

ing rete ridges was 0.798. The main sources of errors were misdetection of micro-retes and treating skin

appendages as retes. The relative error of width and height estimates is on average ±20% and ±16%,

respectively. Our method tends to overestimate rather than underestimate values of these morphometric

features. Even though statistical results obtained for the second dataset (including automatically seg-

mented epidermal regions) were much worse, the actual measurements of rete morphometry were good

enough to obtain high classification performance, as described in Chapter 7. There are three main known

limitations of our method (shown in Figure 6.31):

1. If a group of retes fused near the epidermal plate is too wide, the method fails to determine the rete

base of such a group.
2. Long retes at the end of the lesion are erroneously treated as part of the main axis (actually, it is

problematic to distinguish a short “tip” of the epidermal plate from a rete, as typically such a rete is

close to the lesion boundary).
3. Long retes not growing nearly perpendicularly into dermis (but rather joined with the epidermal

plate at multiple places along their boundary) will often be split by the algorithm as if they were

series of short retes fused together.

(a) (b) (c)

Figure 6.31. The three main shortcomings of our method: (a) long retes at the end of the lesion are er-

roneously treated as part of the main axis (the actual main axis and its proper ending is marked blue and

green, respectively); (b) long retes not growing nearly perpendicularly into dermis, but rather joined with

the epidermal plate at multiple places along their boundary (such as the rete #3), will often be split by the

algorithm as if they were series of short retes fused together (the actual and the proper split is marked red

and green, respectively); (c) if a group of retes fused near the epidermal plate is too wide, the method fails

to determine the rete base of such a group (as it is the case for the group #2).

To the best of our knowledge it is the first method to measure morphometric features of individual

boundary projections as well as the first one to show its application to analyze the epidermal morphom-

etry in skin histopathological images. However, the application of our method is not limited to the field

of dermatopathology – after minor adjustments it can be used for pathological diagnostics of organs

covered with the mucous membrane or in dermatoscopy (to assess border irregularity of melanocytic

lesions [132], as a jagged lesion border is the hallmark of melanoma).

In our study, the results obtained with this algorithm are later used to compute values of more complex

indexes describing the epidermal morphometry (such as variations in epidermal hyperplasia and changes
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in elongation of rete ridges along the lesion) which constitute a feature vector for skin lesion classification

models, as described in Chapter 7.

6.4. Summary

In this chapter we presented an algorithm for automatically measuring the basic morphometry of in-

dividual retes in a segmented epidermis. It firstly determines the route of the epidermis main axis by

searching for the best paths (in terms of criteria based on the path length and distance of its endpoints

from the epidermis “outer” edge) in graphs spanned on the skeleton of the epidermal region. Then, it

approximates the location of retes (i.e., their roots) along that axis by finding those skeleton nodes in

which edges pointing towards the epidermis “outer” edge branch off. The candidates for endpoints of

rete bases are identified by analyzing the curvature of epidermis boundary; the actual endpoints are then

matched with rete roots according to geometric criteria, such as: the relative orientation of a “projection

root–candidate node” vector with respect to the orientation of a given projection, and the distance be-

tween a node and the root. As retes often either contain multiple tips or are partially joined with their

neighboring retes, a post-processing step (merging and/or spiting) is required. Finally, the morphometry

(width, length and height) of individual retes is measured. We proposed metrics useful for the evaluation

of the proposed algorithm, provided the segmentation results, and verified it against the ground truth

prepared by an experienced dermatopathologist.
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7. Feature extraction and classification

To the best of our knowledge, in the literature there are only a few works about automatic diagnosis

of melanocytic lesions seen in H&E-stained skin whole slide biopsy images. Xu et al. [133] proposed a

system for automated classification of skin melanocytic tumors based on the method for the melanocytes

detection in [134] and the method for the epidermis segmentation in [113]. It consists of the following

steps: segmentation of both epidermis and dermis, computation of a set of features related to nuclear

morphology and spatial distribution of melanocytes, lesion classification based on the feature vector

using a multi-class support vector machine. Noroozi and Zakerolhosseini [135] proposed an automated

algorithm capable of differentiating squamous cell carcinoma in situ from actinic keratosis. Its initial

step is epidermis segmentation, followed by the removal of stratum corneum; then, epidermis main axis

is specified using paths in the skeleton of the epidermal region, and the granular layer is removed via

connected components analysis; finally, lesion classification is performed based on intensity profiles

along lines perpendicular to the epidermis main axis. Olsen et al. [136] used deep neural networks to

classify lesion images of basal cell carcinomas, dermal nevi, and seborrheic keratoses.

None of the aforementioned methods actually considers the morphometry of rete ridges and epider-

mal component as a whole, although uniformity and symmetry of both elongation and thickening of rete

ridges as well as uniformity and symmetry of epidermal hyperplasia are among most substantial diagnos-

tic criteria for skin melanocytic lesions [16, 17]. Therefore, we consider the issue of automatic diagnosis

using histopathological images as not yet sufficiently addressed. Since histopathological image analy-

sis is the gold standard for diagnosing and grading skin tissue malignancies, our method will provide a

valuable contribution towards automating this procedure.

7.1. Characteristic features for epidermal morphometry

Based on the clinical experience of dermatopathologists [16, 17] we proposed the following indexes

describing the morphometry of the epidermal component, which can be used to classify skin melanocytic

lesions:

LESION_LEN the lesion length Lπ (the length of the epidermis main axis)

RHO_RETE_ALL the density of all retes: nretes/Lπ
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RHO_RETE_LONG the density of “long” retes: the number of those retes for which the ratio

of their height to the thickness of the epidermal base at their roots is

greater than 0.75, divided by Lπ

THICKNESS_MED the median thickness of the epidermal base

N_HYPERPLASTIC the number of hyperplastic sections of the epidermis, i.e., sections which

are 2 times thicker than the median thickness of epidermis base and they

are at least 90 µm wide (such a threshold was adopted since in some

cases the rete detection algorithm erroneously places the rete base too

far from the actual boundary of the epidermal base, whereas nearly all

retes are at most 90 µm wide, as seen in Figure 6.25)

RHO_HYPERPLASTIC the density of hyperplastic sections: the ratio of the length of all hyper-

plastic sections to the lesion length Lπ

RHO_RETE_LOSS the proportion of the length of sections with loss of rete ridges (i.e.,

sections where for at least 200 µm there is not a single long rete) to the

total lesion length Lπ (such a threshold was adopted since nearly all retes

are at most 90 µm wide, as seen in Figure 6.25, but individual retes are

typically separated one from another by dermal papillae which are often

up to 50 µm wide)

The lesion length Lπ is measured as follows:

Lπ = RI

|πm|−1

∑
i=1

√
(Px

i −Px
i+1)

2 +(Py
i −Py

i+1)
2, (7.1)

i.e., each pair of either horizontal or vertical neighbors is counted as 1 and each pair of diagonal neighbors

is counted as
√

2.

The procedure used to measure the thickness of epidermis as a function of the lesion run length consists

of the following steps. Firstly, at each point of the epidermis main axis two rays are cast perpendicularly

to that axis – but in opposite directions – and for each of these rays the distance to the intersection with

the boundary of the epidermis base region is determined; those distances are then added up. Then, for

each rete the thickness along the section of the main axis within the neighborhood of that rete is linearly

interpolated between its endpoints (i.e., for each rete we consider the section consisting of pixels lying

at most ±l/2 from the center of the rete root, where l is the length of the rete base). Finally, in order

to reduce artifacts, the signal is smoothed using a moving average filtering with the window of size

w = 5px.

Figure 7.1 shows the process of feature extraction for computing the above-mentioned morphometric

indexes.
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(a) Input image (b) Detected retes
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(c) Morphometric features of the lesion

Figure 7.1. The process of feature extraction for computing morphometric indexes: (a) an extract from the

input WSI image (the segmented epidermis is marked with a black line); (b) epidermal morphometry as

detected by our algorithm: epidermal base (dark gray), rete roots (light gray), epidermis main axis (the cyan

line, numbers denote the main axis run length), rete bases (blue lines), rete roots (black dots)), and “ranges”

of retes along the epidermis main axis (red sections of the main axis); (c) a plot depicting basic morpho-

metric features from (b): the raw thickness function (the solid green line), the smoothed and interpolated

thickness function (the solid blue line and dotted red lines), and the location and height of retes (dashed

purple lines).

7.2. Classification

In our study we compared the performance of the following classifiers: multinomial logistic regres-

sion, naïve Bayes classifier, classification tree, and support vector machine (SVM). In particular, the

classification tree and multinomial logistic regression models were included as they yield interpretable

P. Kłeczek Computer vision and machine learning algorithms for dermatopathological image analysis



118 7.2. Classification

results, which can then help propose specific diagnostic guidelines for clinicians (e.g., which features

were most important). Neural networks, although being often used for complex tasks in medical image

processing [137, 138], require a large training dataset in order to make accurate predictions and thus

were not considered in this study.

7.2.1. Multinomial logistic regression

The multinomial logistic regression is a classification model used to predict the probabilities of the

different possible outcomes of a categorically distributed dependent variable, given a set of independent

variables, i.e., we have a training set
{(

x(1),y(1)
)
, . . . ,

(
x(m),y(m)

)}
of m labeled examples, where the

input features are x(i) ∈ Rn, and observation labels y(i) ∈ {1, . . .K}, where K is the number of classes.

Given a test input x, the hypothesis hθ (x) estimates the probability that P(y = k | x) for each value of

k = 1, . . . ,K (it uses a standard softmax function to turn the scores θ>x outputted by the model into

probabilities) [139]:

hθ (x) =


P(y = 1 | x;θ)

P(y = 2 | x;θ)
...

P(y = K | x;θ)

=
1

K
∑
j=1

exp(θ ( j)>x)


exp(θ (1)>x)

exp(θ (2)>x)
...

exp(θ (K)>x)

 (7.2)

The accuracy of the model for a given observation x(i) from the training set is assessed by measuring the

distance D between the two probability vectors: the one containing class probabilities outputted by the

classifier S = hθ

(
x(i)
)

and the one-hot encoded vector L that corresponds to the true label (in one-hot

encoding, the target vector for an observation belonging to class Ck is a binary vector of size K with

all elements zero except for element k, which equals one). In our case, the cross-entropy function is

used [139]:

D(S,L) =−
K

∑
j=1

L j log(S j) (7.3)

To transform the multinomial classification problem into a proper optimization problem the training loss

is defined as the cross-entropy loss averaged over the entire training dataset.

The multinomial logistic regression model was fitted using the Stochastic Average Gradient (SAG)

method [140] with L2 regularization (and regularization parameter C = 1) and the tolerance for stopping

criteria ε = 0.1. The training algorithm used the cross-entropy loss. The usage of the SAG solver required

that the training would be performed on the standardized data, i.e., prior to the training each column

of the predictor data was centered and scaled by the weighted column mean and standard deviation,

respectively. All observations were equally weighted.

7.2.2. Naïve Bayes classifier

Naïve Bayes classifiers are a set of supervised learning algorithms based on applying Bayes’ theorem

with the “naïve” assumption of conditional independence between every pair of features given the value
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of the class variable [141]. Bayes’ theorem states the following relationship, given class variable y and

dependent feature vector x ∈ Rn:

P(y | x) = P(y)P(x | y)
P(x)

(7.4)

Using the naïve conditional independence assumption that

P(xi|y;x1, . . . ,xi−1,xi+1, . . . ,xn) = P(xi|y),

for all i, the relationship in (7.4) is simplified to

P(y | x) = P(y)∏
n
i=1 P(xi | y)
P(x)

. (7.5)

As P(x) is constant given the input, the following classification rule can be applied:

P(y | x) ∝ P(y)
n

∏
i=1

P(xi | y)

⇓

ŷ = argmax
y

P(y)
n

∏
i=1

P(xi | y),

and the Maximum A Posteriori (MAP) estimation can be used to estimate P(y) and P(xi | y); the former

is then the relative frequency of class y in the training set. The different naive Bayes classifiers differ

mainly by the assumptions they make regarding the distribution of P(xi | y).
In our experiment, the naïve Bayes classifier was fitted assuming predictors have Gaussian distribution

and class prior probabilities equal the frequency of occurrence of each class in the dataset. All observa-

tions were equally weighted.

7.2.3. Classification tree

A classification tree uses a decision tree (as a predictive model) to go from remarks about an observa-

tion (represented in the branches) to conclusions about the observation’s class label (represented in the

leaves) – branches represent conjunctions of features that lead to those class labels.

The basic idea of decision tree growing is to choose one among all the possible splits at each node

so that the resulting child nodes are the “purest”. One of the most popular tree-growing algorithm is

the CART algorithm based on “Classification and Regression Trees” by Breiman et al. [142], which

considers only univariate splits (i.e., each split depends on the value of only one predictor variable).

To grow a CART tree for continuous features, the following steps are repeatedly used on each node

starting from the root [142]:

1. Find each feature’s best split.

For each feature, sort its values in ascending order and go through them (starting from top) to

examine each candidate split point v: if the observed feature value is less than or equal v, the case

goes to the left child node, otherwise, it goes to the right. The best split point is the one that maximize
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the splitting criterion the most when the node is split according to it (an example of a splitting

criterion is provided later).
2. Find the node’s best split.

Among the best splits found in step 1, choose the one that maximizes the splitting criterion.
3. If the stopping rules are not satisfied, split the node using its best split found in step 2.

A commonly used splitting criterion is the Gini index, which measures the total variance across the K

classes and is defined as:

Gini(p) =
K

∑
k=1

p̂mk(1− p̂mk) (7.6)

where p̂mk represents the proportion of training observations in the mth region (leaf node) that are from

the kth class [143].

In the process of growing a CART tree the following stopping rules are used:

– If a node becomes pure (i.e., it consists only of cases belonging to the same class), the node will not

be split.

– If all cases in a node have identical feature vectors, the node will not be split.

– If either the size of a node is less than the user-specified minimum node size value or the split of

that node results in a child node whose node size is less than that value, the node will not be split.

– If for the best split of a node the improvement is smaller than the user-specified minimum improve-

ment, the node will not be split.

– The tree depth cannot exceed the user-specified maximum tree depth limit value.

To reduce overfitting (and thus improves predictive accuracy), decision trees are often pruned, e.g., by

discarding the n deepest levels.

The process of predicting a class label of an observation is sequential and hierarchical, and goes as

follows:

1. Start from the root node of the tree.
2. Compare the feature split value in the node with the observed value of that feature: if the observed

value is less than or equal the split value, follow the left branch, otherwise, follow the right branch.
3. Repeat the step 2 until reaching a leaf node.

The decision tree classifier was trained using the standard Classification and Regression Trees (CART)

algorithm (i.e., it selects the split predictor that maximizes the split-criterion gain over all possible splits

of all predictors – in this case, the Gini’s Diversity Index) [142]. To prevent overfitting, model hyperpa-

rameters were obtained via MATLAB’s hyperparameters optimization, which attempts to minimize the

cross-validation loss (error) by varying the parameters: the minimum number of leaf node observations

was set to 3, the minimum number of branch node observations was set to 10, for each split all features

were selected, and the resulting tree was pruned to the 1st level (the value was chosen based on the

stratified cross-validated classification error criterion). Additionally, leaves that originated from the same

parent node, and that yielded a sum of risk values greater or equal to the risk associated with the parent

node, were merged. All observations were equally weighted.
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7.2.4. Support vector machine

The (binary) support vector machine (SVM) model represents the examples as points in space, mapped

so that the examples of the separate categories are divided by a clear gap that is as wide as possible. New

examples are then mapped into that same space and predicted to belong to a category based on the side

of the gap on which they lie [141].

Linearly separable data admits infinitely many decision boundaries that separate the classes, but intu-

itively some of these are better than others. If we take the score of example x as ŝ(x) = wx− b, where

w is a normal vector of the hyperplane and b is the distance between the decision boundary and the

nearest training instances (at least one of each class) as measured along w, then a true positive xi satisfies

wx−b > 0 and a true negative satisfies x j −(wx−b)> 0. The |b|
‖w‖ proportion is called the margin and

the goal of the SVM algorithm is to find a decision boundary maximizing that margin.

Maximizing the margin corresponds to minimizing ‖w‖ (provided that none of the training points fall

inside the margin), leading to a quadratic, constrained optimization problem:

w∗,b∗ = argmin
w,b

‖w‖2 subject to ∀i : yi(xiw+b)≥ 1 (7.7)

For the classification problem, only training examples satisfying the relationship (7.7) (i.e., only training

examples nearest to the decision boundary) are relevant – they are called support vectors (Fig. 7.2).

The equation (7.7) can be used only for linearly separable datasets. In order to be able to deal with

the data that are not linearly separable, a series of slack variables ξi is introduced (one for each example

i = 1,2, . . . ,n). The constraint than takes the following form:

∀i : yi(xiw+b)≥ 1−ξi subject to ∀i : ξi ≥ 0. (7.8)

In order to minimize ‖w‖2 the method of Lagrange multipliers is used. Adding the constraints with

multipliers αi for each training example gives the Lagrange function:

Λ(α1, . . . ,αn) =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

yiy jαiα jxix j subject to ∀i : αi ≥ 0 and
n

∑
i=1

αiyi = 0 (7.9)

To allow the user to define the trade-off between margin maximization and slack variable minimiza-

tion, a parameter C is introduced to the equation (7.9):

Λnonlinear(α1, . . . ,αn) =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

yiy jαiα jxix j (7.10)

subject to

∀i : 0≤ αi ≤C and
n

∑
i=1

αiyi = 0

The generalization of the above equations on nonlinear decision function is done using kernels. It

turns out that the solution to the linear problem involves only the inner products of the observations:

xix j. If the data were mapped into another Euclidean space H (of any number of dimensions) using

some transformation Φ, then the learning algorithm would depend on the original (untransformed) data
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Figure 7.2. The idea of a (linear) SVM. The circled data points are the support vectors, which are the

training examples nearest to the decision boundary. The SVM finds the decision boundary that maximizes

the margin b
‖w‖ .

via the dot product included in H, i.e., via Φ(xi)Φ(x j). By defining a kernel function K as K(xi,x j) =

Φ(xi)Φ(x j) it is enough to use that function in (7.10) and the knowledge of the exact form of Φ is

inessential:

Λk(α1, . . . ,αn) =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

yiy jαiα jK(xi,x j) (7.11)

subject to

∀i : 0≤ αi ≤C and
n

∑
i=1

αiyi = 0

Such a reformulation allows to map the data from lower to higher dimensional space without the need

of performing additional computations. Some of the most common kernel functions used in SVMs are

summarized in Table 7.1.

Due to various complexities, a direct solution of multiclass problems using a single SVM formulation

is usually avoided; instead, a combination of several binary SVM classifiers is used to solve a given

multiclass problem [144]. A common strategy is the “winner-takes-all” (WTA) strategy, in which K

binary classifiers are constructed: the ith classifier output function ρi is trained taking the examples

from the Ci class as positive and the examples from all other classes as negative – a new example x is

assigned to the class with the largest value of ρi. Other strategies include among others max-wins voting

strategy [145], pairwise coupling strategy [146], and directed acyclic graph method [147].

P. Kłeczek Computer vision and machine learning algorithms for dermatopathological image analysis



7.3. Results and discussion 123

Table 7.1. The selected types of kernel functions

Kernel type Kernel formula Limitations

linear K(xi,x j) = xix j

polynomial K(xi,x j) = (γxix j + r)d γ > 0

radial basis function (RBF) K(xi,x j) = exp
(
−γ‖xi−x j‖2

2σ2

)
sigmoidal K(xi,x j) = tanh(γxix j + r) γ > 0

To classify using the SVM model, a multiclass error-correcting output codes (ECOC) model was

trained utilizing the one-vs-all coding for SVMs with the RBF kernel (of scale γ = 1) and the box

constraint C = 1. The RBF kernel has been used since the classification problem stated in this study

consists of sets of observations which cannot be separated linearly (other benefits of using the RBF kernel

are described in [148]). The the WTA strategy was used as for small datasets it yields results comparable

to other strategies which in turn (for larger datasets) typically outperform the WTA strategy [144]. The

training was performed on the standardized data. All observations were equally weighted. The class prior

probabilities were set to the class relative frequencies in the labeling. The training was performed using

the sequential minimal optimization (SMO) algorithm [149].

7.3. Results and discussion

To compare the performance of the selected classifiers we performed a 5-fold stratified cross-validation

(CV) and repeated the procedure 100 times ensuring a unique partitioning in each repetition (due to a

relatively small size of the dataset performing a cross-validation procedure only once would not yield

representative results).

The k-fold CV procedure consists of the follows steps. Firstly, the dataset is randomly split into k

groups. Then, for each unique group that group is taken as a test dataset, whereas observations from the

remaining k− 1 groups are used to fit a model (the score obtained by evaluating the model on the test

set is retained). Finally, the performance of the general model is summarized by averaging evaluation

scores of k fitted models. By averaging over training sets one gets a sense of the variance of the learn-

ing algorithm (however, the training sets in cross-validation have considerable overlap and thus are not

independent) [141].

We trained and compared classifier models in two groups. In the first one the cost of classifying a point

into class j if its true class is i was defined as:

Costeq(i, j) =

0 if i = j

1 otherwise
. (7.12)
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However, since in dermatopathology the cost of misclassifying a malignant lesion as a benign one is

more severe than the cost of misclassifying a benign lesion as a malignant one, in the second group we

trained models using the following (mis)classification cost:

Costdiff(i, j) =


0 if i = j

1 if i 6= j∧ i 6= melanoma

2 if i 6= j∧ i = melanoma

. (7.13)

Boxplots of mean classification errors for each classifier for Costeq are shown in Figure 7.3, whereas

descriptive statistics of each error distribution are summarized in Table 7.2. Same plots and statistics for

Costdiff are presented in Figure 7.4 and Table 7.3. In case of the logistic regression model it is not possible

to directly include the non-uniform misclassification cost. For both cost matrices the SVM classifier

scored lowest median of mean CV error rates. Increasing the “malignant as benign” misclassification

cost resulted in higher median of mean CV error rates for the decision tree and naive Bayes classifiers,

whereas for the SVM classifier the median decreased.

CTree SVM Bayes Logit

20%

30%

40%

50%

Mean CV errors

Figure 7.3. Boxplots of mean CV classification error rates for Costeq (outliers are marked with a “+” mark)

Table 7.2. Summary statistics of mean CV classification error rates for Costeq

Classifier µ σ Q1 median Q3

CTree 0.321 0.033 0.307 0.320 0.347

SVM 0.305 0.027 0.280 0.307 0.320

Bayes 0.323 0.023 0.307 0.320 0.333

Logit 0.391 0.013 0.387 0.387 0.400

In order to compare models fitted using different cost matrices we performed leave-out-one cross

validation (LOOCV). The LOOCV procedure is simply a special case of k-fold CV for k = n, where n

is the number of observations in the dataset. Typically, the LOOCV yields better approximation of the

classification error than the k-fold cross validation (for k < n) [150, 151], especially for small datasets.

Confusion matrices and LOOCV errors for a SVM and a decision tree are presented in Figures 7.5

and 7.6. In case of the SVM classifier changing the cost of a “malignant as benign” misclassification
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Figure 7.4. Boxplots of mean CV classification error rates for Costdiff (outliers are marked with a “+” mark)

Table 7.3. Summary statistics of mean CV classification error rates for Costdiff

Classifier µ σ Q1 median Q3

CTree 0.354 0.038 0.333 0.360 0.373

SVM 0.300 0.029 0.280 0.293 0.313

Bayes 0.329 0.024 0.307 0.320 0.347

resulted in less errors of this type and in a lower LOOCV error rate, whereas in case of the decision tree

classifier there was no change in the number of errors of this type and the LOOCV error rate actually

increased.
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Figure 7.5. Confusion matrices obtained for a SVM using leave-one-out cross-validation (LOOCV) for two

different cost matrices: (a) Costeq, and (b) Costdiff.

Since one of our research objectives was to formulate the basic histopathological criteria related to

epidermal morphometry, we analyzed the results obtained using the decision tree classifier in details.

Figure 7.7 shows a schema of the most accurate decision tree model fitted on the whole dataset using the

Costeq misclassification cost and the same parameter values as described in 7.2, for which the LOOCV

error equaled 29.3%. It can be seen clearly, that predictors and thresholds used for splits are concordant

with the clinical practice: the lesion length depends mainly on how advanced that skin lesion is; since in
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Figure 7.6. Confusion matrices obtained for a decision tree using leave-one-out cross-validation (LOOCV)

for two different cost matrices: (a) Costeq, and (b) Costdiff.

lentigo the epidermal component is effaced and there is a severe loss of rete ridges, the median thickness

and the density of retes (regardless their length) is low; in junctional dysplastic nevi the epidermal archi-

tecture is generally preserved, i.e., there are numerous retes (both short and long ones) and no abnormal

thinning of the epidermis. Unfortunately, it may be hard to fully apply the diagnostic schema proposed

by the decision tree model as diagnostic guidelines for clinicians, as it is hard to measure the median

thickness of the epidermal base with the naked eye.

Since the most important question when diagnosing a skin melanocytic lesion is whether it is benign

or malignant, in Table 7.4 we summarized performance of each classifier for “one-vs-all” binary classi-

fication problems – the highest sensitivity for melanoma detection (96.0%) was scored by a SVM model

trained using the Costdiff cost matrix.

Table 7.4. Accuracy, sensitivity and specificity of “one-vs-all” classifications

Index SVM (Costeq) SVM (Costdiff) CTree (Costeq) CTree (Costdiff)

AccLn 72.0% 78.7% 76.0% 77.3%

SenLn 52.0% 52.0% 64.0% 64.0%

SpeLn 82.0% 92.0% 82.0% 84.0%

AccJD 77.3% 84.0% 81.3% 81.3%

SenJD 64.0% 76.0% 72.0% 80.0%

SpeJD 84.0% 88.0% 86.0% 82.0%

AccMe 86.7% 86.7% 84.0% 88.0%

SenMe 88.0% 96.0% 76.0% 76.0%

SpeMe 86.0% 82.0% 88.0% 94.0%

Ln – lentigo, JD – junctional dysplastic nevus, Me – melanoma
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Figure 7.7. A schema of the decision tree model fitted on the whole dataset for Costeq. In each leaf node

the majority class was marked bold, whereas cases belonging to other classes represent misclassified cases

(Ln – lentigo, JD – junctional dysplastic nevus, Me – melanoma).

Most misclassification errors result from one of the following reasons:

– The epidermis segmentation method fails to remove thick stratum corneum from the resulting seg-

mentation, especially when individual layers of corneocytes resemble puff pastry and are addition-

ally blurred (due to the lack of focus when taking a photo of the lesion boundary region). Conse-

quently, in some cases the median thickness of the epidermal base will be inflated.

– The rete segmentation method does not distinguish epidermal projections being part of skin ap-

pendages (mainly: hairs) from rete roots. Therefore, for some lesions (especially lentigo cases) the

density of retes will be inflated and consequently the proportion of the length of sections with loss

of rete ridges to the total lesion length will be understated.

– In some cases the morphology of lentigo is similar to the morphology of melanoma: in both lesions

one may observe the loss of rete ridges. They could still be distinguished one from another, as in

melanoma typically nests are observed (e.g., at the dermoepidermal junction) and there is a pagetoid
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spread of melanocytes whereas in lentigo no nests are present and melanocytes are arranged in

lentiginous pattern, however, the proposed classification algorithm does not analyze neither nests

nor patterns of melanocytes (since it was not the goal of our study).
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8. Summary

This chapter points out the original contribution of the Author, summarizes the main conclusions

drawn from the study, and outlines future research directions.

8.1. Original contribution

The most important original contribution of this study is the working out, implementation and testing

of a complete system for automated diagnostics of skin melanocytic lesions in H&E-stained histopatho-

logical images (taken using optical microscopes) based on the analysis of lesion’s epidermal morphom-

etry. The proposed system scored the accuracy of 74.7% and 86.7% for the “lentigo vs. junctional dys-

plastic nevus vs. melanoma” and “benign vs. malignant” classification tasks, respectively. To the best of

my knowledge it is the first attempt to automatically determine epidermal morphometry of a lesion and

to utilize that information for the diagnostic purpose.

In order to develop the diagnostic system I proposed and verified algorithms, which constitute its

successive stages, including:

– A tissue segmentation method (described in Chapter 4) which utilizes both global and local infor-

mation about color distribution thus providing fine-grained, reliable, and easy to implement auto-

matic foreground selection in high-resolution images of H&E-stained specimens, tolerant to the

slide magnification, illumination conditions, artifacts and noise. Particularly notable is the use of

global statistical information about color distribution in the image extracted from a 3D histogram of

pixel intensities in the CIELAB color space.

– An epidermis segmentation method (described in Chapter 5) which utilizes information about shape

and distribution of slide background regions in an image as well as information about distribution

and concentration of hematoxylin and eosin stains extracted from their joint histogram (using sta-

tistical and image processing methods). To the best of my knowledge it is the only method which

almost entirely depends on domain-specific knowledge of morphometric and biochemical properties

of skin tissue elements to segment the relevant histopathological structures in human skin.

– A retes segmentation algorithm (described in Chapter 6) which automatically determines the basic

morphometric features of individual rete ridges (i.e., their location, base width, length, and height)

in a segmented epidermis. It is based mainly on analyzing the curvature of the epidermal boundary
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to identify endpoints of projection bases, and on analyzing the skeleton of the epidermal region

in the graph representation, using graph algorithms and morphological operations, to identify rete

bases and the location of retes along the epidermis main axis. Most of the proposed methodology

is a general-purpose solution which can be applied to a wide range of problems in computer vision

related to shape analysis.

The above-mentioned methods are refined versions of algorithms I proposed and published as either

journal articles or articles in conference proceedings:

– P. Kleczek, J. Jaworek-Korjakowska, M. Gorgon. A novel method for tissue segmentation in high-

resolution H&E-stained histopathological whole-slide images. Comput. Med. Imaging Graph.,

2020, vol. 79, 2022, Art. ID 101686, doi: 10.1016/j.compmedimag.2019.101686 [IF (2018) = 3.298]

– P. Kłeczek, G. Dyduch, J. Jaworek-Korjakowska, R. Tadeusiewicz. Automated epidermis segmen-

tation in histopathological images of human skin stained with hematoxylin and eosin. Proc. SPIE

10140, Medical Imaging 2017: Digital Pathology, 101400M (2017), doi:10.1117/12.2249018 [WoS]

– P. Kłeczek, M. Lech, G. Dyduch, J. Jaworek-Korjakowska, R. Tadeusiewicz. Segmentation of black

ink and melanin in skin histopathological images. Proc. SPIE 10581, Medical Imaging 2018: Digital

Pathology, 105811A (2018), doi:10.1117/12.2292859 [WoS]

– P. Kleczek, G. Dyduch, A. Graczyk-Jarzynka, J. Jaworek-Korjakowska. A New Approach to Border

Irregularity Assessment with Application in Skin Pathology. Appl. Sci. (Basel), 2019, 9(10), 2022,

doi:10.3390/app9102022 [IF (2018) = 2.217]

In my opinion, the most important contributions of my research to the field of computer vision are:

– The proposal of a methodology for image segmentation (in Section 5.1) which emphasizes the use-

fulness of the „void analysis”, i.e., the throughout analysis of image regions considered background

regions, particularly based on domain-specific knowledge of morphometric properties of objects in

analyzed images.

– The proposal of a novel general-purpose methodology of shape analysis (in Section 6.1), based

mainly on graph algorithms and morphological operations applied on object’s skeleton, which can

be used to identify projections on objects’ contour and to measure their morphometry.

– The proposal of general-purpose morphometric features of objects (in Section 7.1), which can be

used to describe the jaggedness of object’s contour.

8.2. Conclusions

The main research aim of the proposed project was to determine the tissue structure of human epider-

mis, both normal and pathologically changed, in histopathological images of H&E-stained skin speci-

mens and to identify changes in epidermal morphometry caused by nevi and melanomas using automated

methods of digital image processing and machine learning. In the whole dissertation I unwaveringly

aimed at reaching that goal and proving the following two theses proposed in Section 1.1: (1) using the
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proposed methods for image segmentation and image analysis it is possible to assess the degree of ma-

lignancy of a given skin lesion, and (2) by means of machine learning methods it is possible to formulate

the basic histopathological criteria for diagnosing skin lesions.

In order to do so, I developed (worked out, implemented and tested) a complete system for automated

diagnostics of skin melanocytic lesions in H&E-stained histopathological images (taken using optical

microscopes) based on the analysis of lesion’s epidermal morphometry. That system, which is the most

significant practical accomplishment of my study, was designed to distinguish between the following

three types of skin melanocytic lesions: lentigines (benign lesions), dysplastic junctional nevi (continua

between benign and malignant lesions) and melanomas (malignant lesions). It is composed of four mod-

ules responsible for carrying out the following successive stages of the automatic diagnostic workflow:

tissue segmentation, epidermis segmentation, retes segmentation, and lesion classification. The first three

modules uses automated methods of digital image processing, whereas the last one uses machine learn-

ing. The algorithms of all four aforementioned modules are fully automated and to a large extent based

on domain-specific knowledge of morphometric and biochemical properties of skin tissue structures.

The performance of the whole system was verified on a dataset consisting of 75 high-resolution WSI

images of skin melanocytic lesions (25 for each lesion type) diagnosed by an expert dermatopathologist.

It scored the accuracy of 74.7% and 86.7% for the “lentigo vs. junctional dysplastic nevus vs. melanoma”

and “benign vs. malignant” classification tasks, respectively. Therefore, I imply that the proposed sys-

tem is capable of assessing the metastatic potential of a given skin lesion. In Section 7.3 a classification

tree model (constructed based on morphometric indexes I proposed) is presented, which scored the ac-

curacy of 73.3% and 88.0% for the “lentigo vs. junctional dysplastic nevus vs. melanoma” and “benign

vs. malignant” classification tasks, respectively. That model could be used to help formulate the basic

histopathological criteria related to epidermal morphometry.

The proposed tissue segmentation algorithm performs the foreground/background separation accu-

rately and consistently, regardless of resolution and staining quality of images, with an overall area

overlap of more than 92.9% and a deviation of 5.3% in the overlap. The epidermis segmentation method

scored the mean sensitivity 96.5%, specificity 96.5% and precision 69.5% (it also successfully yielded

meaningful results in all tested cases). The proposed retes segmentation algorithm was verified for two

sets of epidermis segmentation masks: the first consisted of manual segmentations prepared by an ex-

pert dermatopathologist, whereas the second consisted of segmentations obtained automatically using the

method described in Chapter 5). For manual segmentations, 83.2% of manually segmented retes were de-

tected correctly, 14.8% of manually segmented retes were not detected, whereas 4.7% of detected retes

were false positives (the rest cases were debatable). The “strict” Jaccard similarity coefficient for the

task of detecting rete ridges was 0.798 (the main sources of errors were misdetection of micro-retes and

treating skin appendages as retes). The mean absolute value of relative errors was 20.7% for the width

and 16.6% for the length. For automatic segmentations, 42.4% of manually segmented retes were de-

tected correctly, 52.1% of manually segmented retes were not detected, whereas 33.4% of detected retes
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were false positives (the rest cases were debatable). However, such mediocre performance for automatic

segmentations did not significantly affect the results obtained in the classification stage.

Not only is my diagnostic system useful as the whole, but also each of its segmentation modules

has a wide range of applications. In particular, the tissue segmentation method is usually an obligatory

first step in computerized analysis of WSIs (not only in digital dermatopathology), the algorithm for

epidermis segmentation could be used to increase effectiveness of other diagnostics algorithms (e.g.,

those detecting and analyzing distribution of melanocytes in the epidermis), and the rete segmentation

technique could be used to analyze morphometry of other types of skin lesions (e.g., inflammations).

Moreover, I consider methods proposed in this dissertation an important contribution to the field of

computer vision. They present a new methodology for image segmentation which emphasizes the useful-

ness of the „void analysis” (i.e., the throughout analysis of image regions considered background regions,

particularly based on domain-specific knowledge of morphometric properties of objects in analyzed im-

ages), a novel general-purpose methodology of shape analysis (based mainly on graph algorithms and

morphological operations applied on object’s skeleton) useful for the identification of projections on

objects’ contour and for their morphometry measurement, as well as general-purpose morphometric fea-

tures of objects (which can be used to describe the jaggedness of object’s contour).

In my opinion the obtained results let me pronounce that the main research aim of the proposed project

was reached and that both theses were proven.

8.3. Future research directions

The proposed automatic diagnostic algorithm and each of its stages were tested on a large dataset of

60 H&E-stained WSIs images. Even though the obtained segmentation and classification results were

satisfactory, all the methods should be verified on a larger dataset consisting not only more cases, but

also images from various sources (currently only the tissue and epidermis segmentation methods were

tested using images from various sources).

The epidermis segmentation algorithm should be refined so that it would deal better with abundant

lymphohistiocytic infiltrates, regions of dense connective tissue (such as homogenized collagen), hyper-

keratosis, and isolated skin appendages present in the dermis. Currently, the presence of these structures

and/or pathological changes typically decreases the precision rate of the resulting segmentation. The

retes segmentation algorithm should be polished up so that it would detect epidermal projections being

in fact skin appendages, which are currently considered by the algorithm as retes (due to morphological

similarity of both structures). To the best of my knowledge no such a skin appendages segmentation

method was proposed so far.

Finally, the diagnostic algorithm could be extended with a routine to segment nests of melanocytes and

integrated with existing algorithms for the detection of melanocytes (such as the one proposed by Xu et

al. [133]), as the information about their presence and distribution pattern provide valuable diagnostic

information.
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Oświadczam, świadomy odpowiedzialności karnej za poświadczenie nieprawdy, że niniejszą
pracę dyplomową wykonałem osobiście i samodzielnie i nie korzystałem ze źródeł innych niż
wymienione w pracy.
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