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Abstract

Deployment of distributed applications in heterogeneous environments is an interest-
ing yet complex area in the software life cycle. A proper deployment infrastructure
can alleviate many important issues related to software execution and management
such as finding suitable location for application components and automation of
low-level deployment tasks. It also promotes component-based software design and
enables creating more sophisticated dynamic and adaptive solutions. Applying adap-
tation to the software deployment process has great potential. Generally, it allows
reacting to context changes and reorganizing application components to improve
their execution. Specifically, it may support ubiquitous environments, autonomic
computing solutions and highly available systems. This work presents design, imple-
mentation and evaluation of the Adaptive Deployment Framework (ADF) created in
the course of our research in this area.

The key role in adaptive deployment plays the model-based approach to software
deployment. By separation between a model of software and a model of execution
environment, it improves reusability and enables automation of the deployment
process. However, many of the existing model-based solutions are limited to the
spatial distribution of application components in the execution environment. We
extended the notion of deployment and defined three basic deployment dimensions:
spatial, temporal and semantic. Deployment can be considered in each of these
dimensions separately but also the dimensions can be combined together creating
more elaborated deployment scenarios.

One of the important requirements that enable adaptive deployment is avail-
ability of reconfiguration mechanisms. What mechanisms are needed, however,
depends on the way how deployment update is performed. We distinguished four
possible redeployment techniques: full, deep, shallow and runtime redeployment. In
this thesis we concentrate on runtime redeployment which is supposed to guarantee
the most agile adaptive deployment system. To realize runtime redeployment we
designed, implemented and evaluated runtime component migration mechanism. It
is the foundation for the ADF framework. We found that the component level and
particularly the CCM model, used as a basis for application design, is very well suited
for migration and enables effective deployment adaptation.

For the purpose of evaluation of our Adaptive Deployment Framework we
designed and implemented Force-Directed Deployment Planning (FDDP) a novel
approach to deployment planning. It demonstrates that adaptive deployment can be
successfully used to improve application performance.
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Chapter 1

Introduction

Computing infrastructure has evolved over the last decades, moving from
a mainframe-centric, batch processing model, through two- and three-tier
client-server architectures, to recent very diverse distributed computing
models. From the software perspective they include Component-Oriented
Architecture (COA), Service-Oriented Architecture (SOA), Message-Oriented
Middleware (MOM) and many others. In these diverse and often complex
distributed environments the problem of software deployment becomes an
important factor in deciding on software usability, performance and depend-
ability. Anyone who tried to install, configure and run a Java Enterprise
Edition application sever such as JBoss1 or Glassfish2 faced hundreds of
pages of installation and administration guide. They include knowledge of
how to install and connect the software with the rest of the infrastructure
such as a database engine to achieve the desired functionality and perfor-
mance. As Szyperski aptly expressed,3 “deployment exists in the software life
cycle to bridge the gap between what a software developer could not know
about the execution environment and what the environment’s developer
could not know about the deployable software.” Leaving this gap leads to
many problems with software execution, performance and security. Con-
versely, proper tools can produce an application deployment well-suited to
the execution environment and, as a result, can ease starting the system.

Deployment is a process that makes software provided by a producer
available for use by a consumer. In its basic form it consists of software
retrieval, installation and execution activities, whereas the full deployment
process also includes software updating, reconfiguration and removal. Un-
fortunately, deployment in open and heterogeneous distributed systems is

1http://www.jboss.org/jbossas
2https://glassfish.dev.java.net
3C. Szyperski, Foreword to Proceedings of Component Deployment, IFIP/ACM Working

Conference, Berlin 2002.
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1. INTRODUCTION 2

a non-trivial task. Unlike closed platforms (such as embedded systems or
simple mobile phone OSs) that operate on a predictable set of applications
and workloads, open systems offer users much more freedom in running
software. This causes often unexpected changes in resource availability as
different, unknown a priori applications compete for the same resources. If,
in addition, the execution environment comprises heterogeneous resources,
deployment becomes a computationally complex task because matching ap-
plication components against execution hosts depends exponentially on the
number of components to be deployed.

In this dissertation we show that by combining a component-based ap-
proach, a well defined deployment model and an adaptation mechanism we
can alleviate these problems. The conducted research resulted in creating
a comprehensive deployment model and its prototype implementation in
the form of an adaptive deployment framework. The prototype offers tools
for automated application deployment and runtime reconfiguration in open,
distributed and heterogeneous systems. In this work we present design
and implementation of our framework and its evaluation that focuses on
application performance.

1.1 Motivation

The fact that deployment of distributed systems becomes a problem is clearly
visible if we consider even simple client-server architectures with thick- and
thin-client approaches.

Historically first, the thick-client architecture gives users higher usability
and a better experience of software by making use of remote (server) and
local (client) resources. For this reason the thick-client approach is the
architecture of choice in the case of interactive applications, which are
particularly susceptible to round trip time delays. Unfortunately, the thick-
client approach suffers from a severe disadvantage — the problem of high
management costs that stems directly form the lack of proper deployment
models.

The answer to this problem has been the introduction of the thin-client
architecture that provides a centralized software service. It requires much
less effort to manage and maintain a system because the problem of deploy-
ment is limited to only one, central software repository.4 Then, instead of
struggling with management of a number of foreign customer sites a service
provider is responsible for only one, their own system. This makes thin-client
architectures a successful solution extensively used around the Internet to-

4We do not necessarily mean a single physical repository but rather a logical entity that
behaves like a single physical repository.



1. INTRODUCTION 3

day. Unfortunately, the weak point of this approach is lower usability and
performance and often greater development effort. Although solutions such
as Asynchronous Javascript And XML (AJAX), Shockwave Flash or Silverlight
are trying to diminish these problems,5 the thin-client approach is not a
silver bullet. There are still many applications e.g. text, voice and video
communication and peer-to-peer file sharing that are rarely used in a web
browser environment.

Moreover, both thick- and thin-client approaches address only a fragment
of the whole area of distributed system architectures. Today’s distributed
services are rarely built from only a client and a server but usually comprise
many more application components. The component-based architecture gives
greater flexibility in application design and shifts application development,
deployment and management to a more granular level. Additionally, many
component-based platforms offer multithreaded operation what is in line with
today’s multicore hardware platforms. Unfortunately, the higher flexibility
offered by component-based design is also the main factor of deployment
complexity. We argue, however, that a proper deployment infrastructure is
the answer to the aforementioned problems for three reasons.

Firstly, the infrastructure can ensure that selected application components
are running in the most (or close to the most) suitable locations. Secondly,
it makes management of distributed software much easier by automation
of many low-level deployment tasks. Thirdly, a well-defined deployment
model allows for more sophisticated dynamic solutions such as on-demand
deployment, deployment controlled by an application itself and also adap-
tive deployment. The last one enables reacting to changes in application
execution context and can support many of the software adaptation needs.
For example, data centres must survive hardware component failures or
sudden surge in resource consumption and need to move computation to
available nodes in runtime. A software deployer might not know a priori
what is the best distribution of application components in an execution envi-
ronment and would like to arrange them in runtime while visualising their
interactions. Under high load some application components may need to
be separated, whereas usually they perform better when collocated. For
these and many more examples, adaptation of deployment can be the en-
abling technique. This motivated us to design and implement the Adaptive
Deployment Framework.

5Recently, applications developed using these solutions are known under the common
term Rich Internet Application (RIA).
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1.2 Approach and Challenges

A software deployment may be related to many different software technolo-
gies and may be considered on different levels of system virtualization. As it
is hardly possible to build a complete solution that fits any of these conditions,
it is important to provide the assumptions we adopted when designing and
implementing our framework. Following are the key points that have had
the most significant influence on our approach and the research challenges
we met.

Component-based middleware. Our solution is based on the CORBA Com-
ponent Model (CCM) defined by OMG in [103]. This model offers many strong
and valuable features that are of key importance for distributed software
systems and its deployment such as: dependency injection, late binding,
two-phase initialization, and event-driven programming. CORBA components
can also be characterized by properties imposed by Szyperski in [119] as
units of: composition, state encapsulation, and independent deployment. This
makes a CCM-based application a good candidates for adaptive deployment.

The CCM technology locates our framework for adaptive application
reconfiguration in the middle between low-level adaptation based on Virtual
Machines (VMs) (as presented by Kotsovinos [70] and Kosiński [69]) and high-
level adaptation of objects or language components (proposed e.g. in [64, 90]
or by the ProActive project6). Comparing to the VM adaptation, our solution
provides greater flexibility and lower overheads because a CCM component is
a much smaller unit of reconfiguration than a Virtual Machine. Comparing
to the objects and language components adaptation, the CCM technology
concerns heterogeneity of software and hardware platforms providing a more
general solution. Moreover, as Quema noticed in [108], large number of
fine-grained classes generated during object-oriented modelling induces a
large number of dependencies between them, thus making it difficult to take
classes out of the context in which they were elaborated. This is especially
important when deployment is considered.

At the middleware level an important research challenge was to propose
a reconfiguration mechanism that will provide enough flexibility for adaptive
deployment infrastructure and will fit the CCM model. The mechanism we
realized is the runtime component migration that enables components to
migrate between hosts without significant disturbance to overall application
processing.

6http://proactive.inria.fr
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Model-based deployment. The key implication of this deployment ap-
proach is clear separation between a model of application and a model of
execution environment. The model-based deployment allows representing
a structure of an application and execution environment in a declarative
manner by means of an Architecture Description Language (ADL). It explicitly
models components, its configurations, connectors, and requirements as well
as execution entities, network interconnections and environment resources.
The declarative approach allows hiding low-level aspects of deployment and
freeing users from most of the work related to application management. In
consequence, it enables not only automation of deployment planning but,
what is more important for us, adaptation of the whole deployment process.

One of the most complete attempts to define a deployment and config-
uration process is the Deployment and Configuration of Component-based
Applications (D&C) specification proposed by OMG in [100]. It defines many
aspects of component deployment such as: component configuration, assem-
bling, packaging and many others. The ADL proposed by the specification
provides a general and expressive means for modelling software applications
and execution environments. However, the D&C specification does not ad-
dress issues related to dynamic deployment and dynamic reconfiguration. It
also leaves undefined resource and requirement definition languages. There-
fore, our research challenges were to propose and implement extensions
of the D&C specification that support deployment reconfiguration as well as
suggest a description language for environment resources and component
requirements definition.

Runtime deployment planning. In open, heterogeneous and distributed
environments optimal or suboptimal static deployment planning is futile
because it is a computationally complex problem. Its complexity stems from
several key facts: large problem search space that grows exponentially with
the number of components, diversity of resources, changing component
requirements that depend on application workload and changing resource
availability that depends on workload consolidation. Consequently, the
deployment process needs an approximate planning approach.

We based the design of our adaptive framework on the conviction that
application reconfiguration and the process of its deployment very much
depend on each other. Reconfiguration to be effectively realized needs a
proper deployment infrastructure, whereas deployment supported by an
approximate planning algorithm needs reconfiguration to apply changes in
runtime. For that reason, one of the important qualities of the planner is its
low computational complexity. Although there exist approximate solutions
that solve the deployment planning problem in a polynomial time, we rose to
the challenge and proposed a novel algorithm that suits open, heterogeneous
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and distributed environments. FDDP is our solution to the planning problem
based on the force-directed methods. Apart from the desired low complexity
it may also be used as an engine for a visualization tool. FDDP produces
nice layouts of application and environment graphs and provides users more
insight into interactions between application components and execution
environment.

Deployment planning in the spatial dimension. As presented later in
Sect. 2.3.2 we defined three dimensions of deployment planning: spatial,
temporal and semantic. Building a complete infrastructure for distributed
applications and heterogeneous execution environments that embrace all
these dimensions is very interesting task, yet complex and requiring a lot of
effort. It is especially true when runtime deployment planning is considered
because each of these dimensions requires a different approach to planning,
monitoring and reconfiguration. Therefore, in this work we limited design
and implementation of our adaptive deployment framework to the spatial
dimension only. For planning in spatial dimension we monitor low-level re-
source utilization and data flow metrics, whereas e.g. the semantic dimension
would require observing high-level Quality of Service (QoS) parameters.

Best-effort resource management. Considering resource management,
the D&C specification defines a static resource reservation and management
approach. This is, however, better suited to the stringent memory and per-
formance constraints of Distributed Real-time and Embedded (DRE) systems.
They often need to meet end-to-end latency or computation deadlines and
explicit resource reservation is one of the means to achieve that [115]. In
this work, however, we focus on deployment of enterprise applications in
an open distributed environments where these constraints are usually much
more relaxed. Consequently, we followed another approach to resource
management and reservation.

Many previous examples showed that costs of resource reservation and
reservation management are not always justified and lose with simple yet ef-
fective best-effort solutions.7 When resource management is considered, the
best-effort approach means that no additional management and reservation
mechanisms exist. Therefore, in the case of extensive application workload
or scarcity of resources the best-effort approach will lead to application ex-
ceptions and service unavailability. However, in most cases when availability
of resources is high enough to carry existing application workload, no addi-
tional reservation mechanisms are required. This is particularly true in the

7This is especially visible when comparing networking mechanisms such as IntServ, Token
ring, WiFi PCF with DiffServ, Ethernet and WiFi DCF respectively. Although the former provide
proper reservation mechanisms, the latter are in common use today.
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context of constantly falling hardware prices and increasing communication
availability.

The best-effort approach to resource management during deployment is
also especially reasonable when adaptation mechanisms are present. Then,
instead of enforcing reservation policies, managing of resources can be
effected by application adaptation. If, additionally, an application has a fine-
grained component-based architecture, an adaptive deployment mechanism
have enough means to ensure proper component distribution. What we
show in this work is that, in many cases, provided with proper adaptation
mechanisms no need for pessimistic resource allocation exists.

1.3 Thesis Statement and Objectives

The motivation, approach and challenges presented above allowed us to
express the aim and main thesis of this work:

Modern component-based systems can be successfully enhanced with
a runtime reconfiguration mechanism and can enable deployment
adaptation of component-based distributed systems.

To verify this thesis we present the design, implementation and evaluation
of the adaptive deployment framework for component-based distributed
applications following the listed research objectives:

1. To analyse exiting deployment and adaptive deployment approaches
and determine their strong and weak sides.

2. To propose a comprehensive model of deployment that enables adaptive
and runtime deployment of component-based distributed applications.

3. To determine and implement mechanisms required to realize deploy-
ment in the spatial dimension which is a selected subset of the func-
tionality defined by the model.

4. To propose and implement a deployment planning algorithm that
suits open, distributed and heterogeneous environments and is able to
support runtime application reconfiguration.

5. To build a prototype of an adaptive deployment framework that com-
bines the aforementioned elements.

6. To evaluate effectiveness of the created prototype in improving applica-
tion performance.
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1.4 Thesis Contributions

The research presented in this thesis has generated a number of original
contributions that we summarize below:

1. The model of deployment for component-based applications that com-
prises spatial, temporal and semantic dimensions of deployment plan-
ning and includes dynamic aspects of deployment such as adaptation
and updates. The model was based on the Platform Independent
Model (PIM) defined in the D&C specification.

2. The design, implementation and evaluation of the adaptive deployment
framework that enables runtime reconfiguration of distributed applica-
tions. The design of the framework follows the Autonomic Computing
approach and, therefore, clearly separates between the layer of adapta-
tion logic and the layer of managed resources. This, in turn, facilitates
changes and further extensions.

3. The design, implementation and evaluation of the basic mechanisms en-
abling deployment adaptation in distributed environments such as the
runtime component migration, communication interception, applica-
tion monitoring and environment monitoring mechanisms. The design
and implementation of the migration mechanism has been supported
with a detailed discussion of key issues and the adopted approach.

4. The design and implementation of FDDP — an approximate deployment
planning algorithm based on force-directed methods. The proposed
algorithm is not the main contribution of this work, however, it is a
novel and promising technique for runtime deployment planning.

1.5 Roadmap

The structure of the remainder of the thesis is organized as follows:

Chapter 2 presents background and related work in the area of application
deployment, deployment automation and its adaptation. The purpose of
this chapter is to provide research context for adaptive deployment, present
important definitions, position our research in the broad area of software
deployment and point out shortcomings of the relevant existing solutions.
This chapter defines also deployment planning dimensions which we regard
as important when distributed deployment is considered.
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Chapter 3 presents overall concept of our Adaptive Deployment Framework
and more closely discusses the key aspects that have had the most influence
on its design. The chapter is split onto two parts. The first raises issues related
to plain software deployment, whereas the second addresses adaptation in
the deployment process. The main outcome of this chapter is formulation of
ADF requirements, however, it also introduces the problem of deployment in
virtualized distributed systems.

Chapter 4 presents design and overview of the framework implementation.
The chapter starts with a brief introduction of the CCM model that was used
to build deployable applications and the framework itself. Then overview
of the framework is presented with clear distinction between the original
D&C deployment infrastructure and our extensions related to deployment
planning, reconfiguration and adaptation.

Chapter 5 focuses on basic building blocks that enable deployment adapta-
tion. The main reason for this chapter is to analyse the runtime component
migration mechanism. It discusses proposed solutions to the fundamental
problems inherent to runtime software migration such as reaching quiescent
state, the problem of residual dependencies and explicit context dependencies
of a component. Further, a brief overview of our implementation of the con-
tainer portable interception mechanism is presented. The chapter presents
also an important issue of instance identification in relation to deployment,
migration and interception mechanisms.

Chapter 6 evaluates all building blocks that are basis for the adaptive de-
ployment framework. This chapter focuses on overheads and performance
issues, however, for plain deployment infrastructure it also includes confor-
mance to the D&C specification.

Chapter 7 discusses the FDDP algorithm and evaluates our deployment
framework. The main purpose of this chapter is to show the presented
adaptive deployment framework in action. A set of experiments investigate the
capabilities of the framework to follow changes in the execution environment
and to optimize overall application performance. This chapter also shows
limitations of FDDP and outlines future research directions that could be taken
to improve it.

Chapter 8 concludes the thesis, presents its limitations and suggests the
potential areas for future work.



Chapter 2

Background and Related Work

Software deployment, in its most basic form, may be defined to be the process
between the acquisition and execution of software. This process is performed
by a software deployer who is the actor that acquires software, prepares
it for execution, and possibly executes it [29]. However, Carzaniga et al.
in [19] form the basis for broader understanding of software deployment.
Their definition characterizes deployment as a process comprising not only
activities related to acquisition, preparation and activation but also updating,
and adaptation of software. To avoid ambiguity in meaning we term the
former basic form of deployment — plain deployment or simply deployment,
whereas the latter, extended form — adaptive deployment.

Despite that application execution is not a part of the deployment process
in neither plain nor adaptive form, the latter definition — by including
updates, adaptation, etc. — expands this process over the execution phase.
The question is how adaptive application deployment differs from application
management if they both are performed in application runtime. We consider
adaptive deployment as means to automatize these aspects of application
management that are related to component installation and instantiation.
The key role is to relieve system administrators from many mundane tasks
such as deployment planning, component configuration, system updates and
reconfiguration. Therefore, we perceive adaptive deployment as a subset of
all tasks related to application management.

In this work we focus on software deployment in component-based dis-
tributed systems, hence two important issues need to be considered: granu-
larity of software components and granularity of an execution environment.
Technologies such as CCM and Enterprise Java Beans (EJB) define components
as fine-grained application building blocks that usually are much smaller
than application modules or software packages. These technologies define
also more fine-grained execution environment elements as deployment of

10
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Figure 2.1: Deployment planning effectiveness in contrast with flexibility of compo-
nent deployment.

components is performed not over an operating system but over a compo-
nent/application server.1 Moreover, for a single application there is often a
need to run many component servers each having different configuration
settings. Consequently, deployment of component-based systems is more flex-
ible comparing to deployment of monolithic applications because a deployer
has more freedom of how to distribute many small application components in
often multi-node execution environment. Unfortunately, this higher flexibility
is also the main factor of deployment complexity. Planning of component
distribution heavily depends on the number of components to deploy and
the number of execution nodes. It is much more effective for simple applica-
tions and environments and grows exponentially with increasing number of
components. Figure 2.1 illustrates this relation graphically.

Another complexity barrier to deployment in open distributed systems is
heterogeneity of execution environment elements. To deploy an application
both components and execution nodes have to be described with a number of
properties determining their requirements and resources respectively. Some
of these properties often change due to various external and internal factors
such as changing number of users or unpredictable node failures. This opens
possibility to use adaptation and makes deployment in these environments a
challenging task and an interesting research area.

Further, in this chapter we present a more detailed definition of the
deployment process. Then, we discuss its automation starting with simple,
single node installations and ending with Grids and systems based on the
SOA paradigm. When deployment of more complex distributed systems is

1Actually components are installed in component containers that are included in a compo-
nent/application server but this is usually an internal part of a deployment process not visible
to a software deployer.



2. BACKGROUND AND RELATED WORK 12

target

execution node

target

execution node

target

execution node

Component-based Application

Target Execution Environment

component

component

component

component

component

component

Figure 2.2: Installation of application components in a distributed execution envi-
ronment.

considered we show, in addition, how it is related to virtualized execution
environments. Later, we discuss planning of deployment which is the most
complex phase of the whole process and hence requires more attention.
Lastly, the background and work related to the main focus of this thesis —
adaptive software deployment — is presented.

2.1 Definition of the Deployment Process

As mentioned earlier, plain deployment of an application includes three main
actions: software retrieval, its installation and activation. When distributed
systems are considered, however, from these three activities the most im-
portant is the installation which comprises of two steps. First, planning
deals with assigning each application component to an appropriate execution
node taking into account the component requirements and node’s resources.2

After deciding where a component will run, the second preparation step
involves transferring component artifacts (such as executable, resource and
software library files) to the nodes indicated in the plan. In other words, the
installation process refers to matching the structure of a component-based
application to the structure of a distributed execution environment. This is
roughly illustrated in Fig. 2.2.

The plain application deployment is, however, too limited when consid-
ering real case component-based applications deployed over a distributed
heterogeneous environments. Applications have to be updated and may be
adapted and reconfigured, therefore, in this work we define a more complete
adaptive deployment process:

2Planning assumes that a component is a unit of independent deployment what is in
accordance with the general definition of component outlined by Szyperski in [119].
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Figure 2.3: Activities in adaptive software deployment.

Adaptive deployment is a continuous process performed at a soft-
ware consumer site that starts after the software is published by
a vendor and leads to application execution. When the applica-
tion is running the adaptive deployment provides measures to
perform application updates and reconfiguration.

Figure 2.3 presents a more detailed view of the adaptive deployment process
in the form of an activity diagram. The two activities at the left side are not
directly included in this process although they create a context for further
activities. Software Release is performed by a software producer who prepares
an application package comprising binary artifacts and a software description.
The package is then published using common means like CD, web site, etc.
During software maintenance phase the producer may occasionally release a
new version of the software what evokes Update activities at the consumer
site. The De-release step is done whenever the producer ceases further
development and support of the published package. The other activities
presented in the figure form the adaptive deployment process performed
at the software consumer site. Following we present their more detailed
description; we grouped together interrelated activities.

Retrieve/Remove — Retrieving is an act of transferring the published soft-
ware package and bringing it into a component software repository
at a consumer site. The location of this repository is not necessarily
related to the place where the software will actually execute. The
Retrieve activity includes also a configuration step which aims to make
the software ready for installation. This step is specific to a particular
consumer who, using the properties defined in the package, can tune
up the software functionality to their needs. For example, configuration
may include setting the font size in GUI components.
An inverse of retrieving is software removal that refers to deleting the
software from the consumer repository. When the application was
previously installed to ensure correctness the remove step assumes
previous application uninstallation.
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Install/Uninstall — Installation is an activity consisting of two steps dis-
cussed above. First is planning where in the distributed environment to
run component instances taking into account component requirements
and execution environment capabilities. This complex step demands a
lot of computation and may have significant influence on application
effectiveness. Further, preparation performs the actions to make the
execution environment ready to run the software. For example, accord-
ing to the provided plan it may do the copying of component artifacts
into appropriate execution nodes. Separation between planning and
preparation is deliberate because there are important cases when plan-
ning shall not have immediate effect on the target environment e.g.
when running multiple instances of the same software.
Once the application has been installed it may be uninstalled. The
Uninstall activity includes removing software from the nodes where
component artifacts were copied.

Activate/Deactivate — The former brings the software to an execution
state. It includes two steps: component instantiation and instance bind-
ing. Separation of these steps is crucial to seamless software activation
esp. when circular dependencies between components exists. In hetero-
geneous environments the instantiation step may be an elaborate task
because it usually depends on properties of the particular hosting node.
The Activate action is the final task in the plain software deployment.
In case of adaptive deployment, an activated application may further
be updated and adapted until it is terminated.
The deactivation step refers to shutting down all running component
instances.

Update — Enables evolution of the software. This is a special case of re-
trieval when existing components are exchanged with their newer
versions provided by software producer. Update may require to de-
activate the application, install a new version of some components,
and further reactivate the software. Otherwise, it can be performed
dynamically in runtime while a previous version is still active.

Reconfigure — Is similar to the Update activity as it involves modifying a
software system that has been previously installed. It differs, however,
from updating in that Update is initiated by remote events, such as a
software producer releasing a new version of a component, whereas
reconfiguration is initiated by internal events e.g. changes in the execu-
tion environment at the consumer site. Reconfiguration is similar to the
installation step in that it often requires planning of deployment which
takes into account new conditions at the consumer site. Planning, in
turn, forces rerunning preparation.
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Our definition is a combination of the definition presented by Carzaniga et al.
in [19] with the one much more formally specified in the D&C specification
[100]. The former identifies software deployment as consisting of activities
such as: release, install, activate, update, and adapt. The latter focuses on
plain deployment only but addresses distributed aspects of this process in
relation to software component technologies. Additionally, it provides a lot
of details about how to represent a component, an application, a target exe-
cution node, how to configure components, and how to perform deployment
planning activity. The D&C specification is perhaps the most complete attempt
to define a deployment and configuration standard [29], even though it
defines merely static aspects of this process. Further in this work we sup-
plement D&C and create a comprehensive model for adaptive deployment
of distributed component-based systems. Before this, however, we need to
discuss deployment automation that is crucial to enable adaptation of this
process.

2.2 Deployment Automation

Automation of deployment is the first step in the way to achieve adaptive
deployment. It is also beneficial, however, for improved correctness, speed
and documentation of the application instantiation. Even having automatized
merely the plain deployment process, we posses a documented receipt that
we can follow to instantiate an application many times with only least effort
required. Today’s deployment tools provide varying levels of automation.
Often, they automatize only selected activities of the process, for others
requiring human intervention. In this section we present selected tools and
approaches to automatic software deployment at different system scales
starting from a deployment on a single computer machine.

2.2.1 Deployment Automation on a Single Machine

As long as the destination of deployment process is a single computer system
its automation is usually well developed. This is mainly due to simplification
of the process because several major obstacles such as system heterogeneity,
distribution and deployment planning simply disappear. Moreover, deploy-
ment on a single machine does not always include application instantiation
which, as a straightforward operation, is left to a user.

Numerous tools support or enable automatic deployment on a single
system and we divided them onto three categories:
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Package managers such as RPM Package Manager (RPM),3 dpkg,4 pkg*5

are the most widely used low-level deployment tools for Linux and UNIX-like
operating systems. These are command-line driven package management
utilities capable of installing, uninstalling, verifying, querying, and updating
software packages. These tools define a package as a discrete bundle of
related files and associated documentation, configuration and meta infor-
mation such as version, description, and signature. The heart of a package
manager system is a database — a software repository containing all of the
meta information of the installed packages. This database is used to keep
track of the files that are changed and created when a package is installed
what enables users to reverse the changes and remove the package later [49].

The managers operate on a package level rather than on a single-file or an
entire application basis. The application is modelled as a graph of interdepen-
dent elements where dependencies are expressed by referring to a package
name or its name and version. The lack of more sophisticated package refer-
encing generates problems known as dependency hell.6 Therefore, numerous
higher-level tools for software package maintenance exist such as Yellowdog
Updater Modified (YUM),7 Advanced Packaging Tool (APT)8 or Portage.9 Their
intention is to provide automated way to retrieve, install, update, and remove
whole graphs of packages forming an application. OpenPKG10 goes even
further and resolves consistency issues between different UNIX-like operating
systems [84].

Application installers provide a bit more sophisticated application model
comparing to the package managers. Windows Installer,11 InstallShield12 and
similar tools are organized around the concepts of components and features.
A feature is a part of the application’s total functionality that a user recognizes
and may decide to install independently, whereas a component is a piece
of the application or product to be installed which is usually hidden from
the user. There is the 1-to-N relationship between a feature and component.
When the user selects a feature for installation, the installer determines
which components must be installed to provide that feature. Authors of
installation packages need to decide how to divide their application into

3http://rpm5.org
4http://www.debian.org
5A set of tools: pkgadd, pkginfo, pkgrm. More info on http://docs.sun.com
6Dependency hell can take several forms: long chain dependencies, circular dependencies,

conflicting dependencies, Internet access dependencies.
7http://linux.duke.edu/projects/yum
8http://www.debian.org
9http://gentoo-portage.com

10http://www.openpkg.org
11http://msdn.microsoft.com
12http://www.installshield.com
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features and components. The selection of features is primarily determined by
the application’s functionality from the user’s perspective, whereas mapping
features on components highly depends on application design.

Similarly to package managers the core of application installers is the
installation database tracking which applications require a particular com-
ponent, which files comprise each component, where each file is installed
in the system, and where component sources are located. Using applica-
tion installers, the deployment process comprises two main phases: feature
acquisition and installation execution. Additionally, if the installation is
unsuccessful, a rollback phase may occur. At the beginning of the acquisi-
tion phase, an application or a user instructs the installer to install selected
features or an application. The installer then progresses through the actions
specified in the prepared installation database and generate a script that
gives a step-by-step procedure for performing the installation. Then, during
the execution phase, the installer passes the information to a process with
elevated privileges and runs the script.

Web-centric Deployment Model is a step forward in deployment automa-
tion. It assists not only in configuration and preparation phases but also
helps in software transfer. In this way web-centric model allows for fully
automation of Retrieve, Install and Update deployment activities.

Several technologies support the web-centric deployment model: pre-
viously Java Applets and ActiveX components, and more recently Java
Web Start [116] (a reference implementation of Java Network Launching
Protocol (JNLP) standard [59]), .Net ClickOnce,13 and ZeroInstall.14 The
main idea behind the web-centric deployment is in locating an application
in a central repository, usually realized as a web server, from where it is
acquired and transparently cached on a user computer. Unless trusted, the
application is run in a protective environment — a sandbox — with restricted
access to local resources. This model provides the following benefits over the
application installers, package managers and package maintenance tools:

• simple deployment: the only action required is initial execution action
which starts a deployment agent retrieving application resources and
running the software,

• transparent updates: upon running an application the deployment
agent checks the currently cached resources against the versions hosted
in the repository and transparently downloads newer versions,

13http://msdn.microsoft.com
14http://0install.net



2. BACKGROUND AND RELATED WORK 18

• incremental updates: only the resources that have been changed are
downloaded. In case only few of the application’s components have
been modified, this can significantly reduce the update time,

• incremental retrieval: often there is no need to download the whole
application at once. Some non-critical components, e.g. a documenta-
tion module, may be downloaded on demand until the first use. This
again can reduce time of the initial installation and later updates,

• off-line support: the recent web-centric deployment technologies allow
downloading all the application resources locally and run the software
off-line without connection to the repository,

• runtime environment deployment: the technologies can also detect
missing parts of a runtime environment (Java Runtime Environment
(JRE) or Common Language Runtime (CLR)) and automatically install
its required version. This further improves user experience of the
deployment automation.

Similarly to the previous deployment techniques, the web-centric deployment
model allows splitting software into smaller components. This enables incre-
mental retrieve and update but is prone to the aforementioned dependency
hell problem. Therefore, usually, the web-centric applications are packaged
independently and instead of sharing their components they let duplicates
be downloaded and cached separately.

As may be seen, the web-centric model ensures significant automation
of the deployment process for single computer machine. The presented
mechanisms find their use also for more complex execution environments.
In such a case, however, to provide full deployment automation they need to
be supported by additional deployment tools. In the following subsection we
discuss techniques used to enable deployment over distributed systems.

2.2.2 Deployment Automation in Distributed System

Application deployment in a distributed system consisting of N computer
machines is more than N-times as complex as on a single computer. More
sophisticated execution environment introduces several additional issues to
be resolved.

One of the main problems is heterogeneity of resources, which generates
the need for requirement specification, resource and requirement descrip-
tion, and in consequence a deployment planning step. The other important
issues are the need for coordination of deployment actions, support for
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distributed sequencing, instantiation synchronization and dependency res-
olution. Moreover, as Gokhale et al. discussed in [56], configuration of
application components pose much more problems in distributed systems
than on a single machine. They noticed how tedious and error-prone is to
manually ensure that all parameters exposed by software components are
consistent throughout the whole distributed system.

All these issues clearly indicate that distributed deployment requires
support by some kind of automation tool that should cover as much of
deployment activities as possible. The three most relevant solutions for this
are: script-based, language-based and model-based deployment [120].

Script-based deployment

To achieve distributed deployment the script-based approach makes as much
use of the existing technology and tools as possible. The basis for this
method is a set of scripts (e.g. written in bash15) that coordinate main
deployment activities. Software distribution may be done using a secure copy
tool (scp), package installation using presented earlier package managers,
and configuration by applying predefined configuration files.

For small scale deployments this approach is easy to understand and
convenient for system administrators who use all these tools on a daily basis.
However, it is not suitable for more complex applications or more complex
execution environments as scripts tend to become long and obscure. It has
also limited expressiveness regarding to resource description what makes the
automation not always achievable.

Language-based deployment

It overcomes some of the limitations of script-based approach by using a
specialized configuration language, parsers and tools to perform deployment
tasks. A number of frameworks exist that follow this approach such as
SmartFrog,16 Abacus [127] and GScript [85]. Although they are much
different in details they share the same general idea — all deployment
activities are described by a deployer in the form of a program that is executed
by a dedicated interpreter.

Usually, language-based deployment frameworks consist of three ele-
ments: (1) a component model, (2) a language for describing configuration,
dependencies and deployment workflow, (3) a distributed deployment and

15http://www.gnu.org/software/bash
16http://smartfrog.org
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management runtime environment. The component model defines an ab-
straction layer for management of software being deployed. Each separate
software element is represented in the model by a ‘configurator’ component
that encapsulates its current state, configuration and provides a manage-
ment interface.17 With the provided language a deployer can make use of
this interface to configure the software and create a workflow coordinating
deployment tasks. A prepared deployment workflow is then executed by
the distributed deployment engine that enacts the workflow to achieve and
maintain the desired application state. GScript provides also the ability to
express composition in space as well as composition in time. The former
involves direct connections between components to allow control and data
to pass directly between them. The latter assumes that components do not
have to be directly connected. Instead, their interfaces can be invoked by the
deployment coordinator.

Several important benefits stem from using the language-based deploy-
ment approach. Mainly, it allows deployment engine to continue application
management while the system is running. This enables more sophisticated
management strategies like software reconfiguration, automation of updates
and on-demand deployment. However, language-based deployment mod-
elling does not allow for full deployment automation as it requires a user to
be involved in preparation of a deployment workflow at some stage. This
deployment workflow depends on the specific application composition and
execution environment and can hardly be automatically generated. With
language-based approach it is also difficult to address heterogeneity of re-
sources and components. In order to address these issues the model-based
techniques may be used.

Model-based deployment

Currently, this is the most advanced approach to deployment. It uses an
Architecture Description Language to model structure of a software applica-
tion and structure of an execution environment. An ADL explicitly represents
components, connectors, component configurations and their requirements
on one side, and execution nodes, network connections and resources on the
other. This clear separation between software and environment models is one
of the key advantages of the model-based approach. The environment-side
components can in a declarative manner expose their resources, whereas
software-side components can declare their requirements. This improves
reusability and enables full automation of the process. The model of a
software can be reused when deploying the software in different execution

17For example, the most sophisticated of these tools SmartFrog distinguishes 5 component
states: installed, initiated, started, terminated, and failed.
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environments. Similarly, the model of an execution environment may be
reused for deployment of many different applications. Moreover, when COA-
based systems are considered, their architecture model can naturally be a
basis for a definition of the software deployment model. This makes the
model-based approach especially suitable for the component-based systems.

There exist many frameworks that follow model-based deployment. MOC-
CAcino [85], Deployment And Configuration Engine (DAnCE) [31], Deploy-
Ware [47] are only a few examples. MOCCAcino facilitates deployment
and management of computationally-intensive applications on grids and
is specifically suited for Common Component Architecture (CCA). DAnCE

addresses deployment of CCM applications. Similarly to our solution, it is
based on the D&C specification that standardizes many aspects of config-
uration and deployment for component-based systems. DAnCE, however,
enhances the D&C data models to describe deployment concerns related to
real-time QoS requirements and middleware service configuration and de-
ployment [115]. DeployWare is based on the Fractal component model18

and abstracts concepts of the deployment independently of the underlying
paradigm and technology. It provides a Domain-Specific Modeling (DSM)
language and a metamodel to mask software heterogeneity. Everything in
DeployWare is being modelled as a component: properties are represented
as a composite component that contains the configurable properties of a soft-
ware, dependencies are composites that contain references to other software
components, even procedures, such as install, configure or start, are repre-
sented as components symbolizing the instructions. These instructions are
runnable components that use the DeployWare libraries to realize elementary
deployment tasks.

Most of the existing frameworks propose a proprietary solutions to model-
based deployment that address different, often specific, needs. There are,
however, some efforts made to create a standard for the model-based ap-
proach to deployment in distributed systems. Two particularly notable are:
the Common Information Model (CIM) standard defined by Distributed Man-
agement Task Force (DMTF) in [35] and the Deployment and Configuration
of Component-based Applications specification produced by OMG [100].

Common Information Model together with closely related Web-Based En-
terprise Management (WBEM)19 are standards developed by a consortium
of major hardware and software vendors called the DMTF. CIM provides the
framework by which a system can be managed using common building blocks
rather than proprietary software. The standard comprises a meta-schema and
a number of management schemas that are the building blocks for manage-

18http://fractal.ow2.org
19http://www.dmtf.org/standards/wbem
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ment platforms and management applications, such as device configuration,
performance management, and change management. WBEM, in addition,
aims at unifying the management of enterprise computing environments
using a set of standard Internet technologies like HTTP, XML and DTD [33].

Software deployment is defined in the application schema. It intends
to describe applications with structures ranging from standalone desktop
applications to a sophisticated, multi-platform distributed, Internet-based
systems. The schema incorporates three major concepts: (1) structure of an
application, (2) life cycle of an application, and (3) the transition between
states in the application life cycle. The structure of an application consists of
the four following components:

Software Element is a collection of one or more files and associated details
that are individually deployed and managed on a particular platform.
It represents the fundamental building block of the CIM application
management information model.

Software Feature is a collection of software elements that performs a partic-
ular function or role in the more general Software Product. This level
of granularity is intended to be meaningful to a consumer or user of
the application. This concept allows software products or application
systems to be decomposed into units that have a meaning to users
rather than units that reflect how the product or application was built
(i.e., Software Elements).

Software Product is a collection of software features that can be acquired
as a unit. Acquisition implies an agreement between the consumer and
supplier, which may have implications in terms of licensing, support,
or warranty.

Application System is a collection of software features that can be managed
as an independent unit that supports a particular business function.

Basing on these elements, the CIM model allows managing application life
cycle using four activities: (1) deployment, (2) installation and configuration,
(3) startup, (4) operation including monitoring. These activities have direct
relation to the software elements’ states that are captured by the application
model (Fig. 2.4).

The deployable state describes the element in its distributable form (for
example, in a software repository), as well as the details and operations
required to move the element to the next, installable state. The installable
state describes the element as ready for installation (e.g. as a zip file that can
be decompressed and installed). Also, the details and operations required to
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Figure 2.4: The life cycle of a CIM Software Element.

move the element to the executable state or back to the deployable state can
be defined. The executable state describes the element as ready to start/run,
as well as the details and operations required to move the element to the
running state (i.e. the next state) or back to the installable state. Finally, the
running state describes the element as it is configured and running.

The second version of the CIM Application Management Model is not
expected to capture all the information required to deploy application in a
distributed environment. However, the model provides a base upon which
additional modelling concepts can be added [34]. The two most important
aspects which we regard as missing are: the lack of support for distributed
applications and a low abstraction level for software elements. The Appli-
cation Management Model does not address the problem of deployment of
applications build from distributed components that are intended to work
over a distributed execution environment. There are no means to describe de-
pendencies between remote components like a connection interface, protocol
used in communication or requirements against network links. The elements
that are building blocks of an application in CIM are black-box components.
It means that relations between them are expressed by the Software Element
� Software Feature � Software Product aggregations only. Therefore,
to incorporate aspects of application distribution into the CIM deployment
model significant extensions would be required.

Deployment and Configuration of Component-based Applications is
defined by OMG and specifies a Platform Independent Model which follows
the general idea that deployment process remains the same independently
of the underlying technology of software realization. The PIM can further
be customized with Platform Specific Models (PSMs) (such as PSM for CCM

[103, Chap. 14]) to address deployment aspects specific to a particular
software technology. D&C segments the PIM in two dimensions: (1) data
vs management and (2) component software vs target vs execution. This
segmentation gives six complementary views on the process of deployment
and configuration, thereby creating a rich framework for deployment of
distributed applications.
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The models defined in D&C are supplemented with the definition of
abstract actors that manipulate the data, are clients to the interfaces, and
enact the various phases of deployment. Usually, part of the actor will be
implemented in software tools, aiding a user in development and deployment
of an application. There are three categories for actors: development, target,
and deployment, mirroring one of the segmentation dimensions. Actors in
the first category are concerned with the various phases of implementing
a component, starting with an interface design and eventually creating
a component package. The basic idea of component-based development
defined in D&C is to divide an application into small reusable components
that can be connected to other components via ports. A set of interconnected
components creates an assembly that can be seen as a component in itself,
and therefore can be used recursively. The only actor in the target category
— Domain Administrator — describes the local target environment and all
its resources. The target environment is composed of nodes, interconnects
and bridges. Nodes have computational capabilities and are a target for
executing component implementations. Interconnects provide a direct shared
connection between nodes (e.g. representing an Ethernet cable). Bridges
route between interconnects, modelling both routers and switches. Actors
in the deployment category take existing component packages, and deploy
them into the target environment in order to create running applications.

Although the D&C specification creates a very good basis for automation
of software deployment in distributed systems, it leaves some important
aspects undefined. The main issues are the lack of languages for specify-
ing component’s selection and resource requirements as well as inadequate
specification of target environment management and monitoring. Moreover,
D&C does not address dynamic aspects of application deployment, which are
crucial to adaptive deployment. The selection requirements express users’
needs that are meant to drive the selection among alternative component
implementations. Each of these implementations offers some capabilities and
planning requires agreement of the vocabulary on both sides. Despite that no
such vocabulary is specified, some efforts are made to define it with respect
to QoS.20 The resource requirements express needs of a component imple-
mentation against resources of an execution node and are a communication
channel between development tools and the management layer of a target
environment. Without a standard definition of the resource requirements
automation of deployment may be limited because of possible mismatch
between component requirements and environment resources description.

Considering monitoring and management of a target execution environ-
ment, the D&C specification proposes only basic support expressed in the

20Work of G. Deng [31] and more recently “UML Profile for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms” specification [104] address this issue.
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Figure 2.5: The multilevel virtualization model.

form of the TargetManager interface. This key area of software deployment
also needs extensions.

2.2.3 Deployment Automation in Virtualized Environments

Modern computer systems are now sufficiently powerful to present users with
the illusion that one physical machine consists of multiple virtual machines
each running a separate, and possibly different, instance of an operating
system. However, virtualization can apply not only to the OS layer but to a
range of different system layers including hardware-level device virtualiza-
tion, operating system-level virtualization, and high-level language virtual
machines [16].

The fundamental idea behind virtualization is to introduce an additional
layer of indirection in accessing resources so that a lower-level resource can
be transparently mapped to one or more higher-level resources or, to the
contrary, many low-level resources can be mapped to one high-level resource.
This concept is illustrated in Fig. 2.5 which shows, additionally, that each
virtualization level has its own control layer responsible for management and
enforcement of mapping between two adjacent levels. The mapping may be
expressed using the three following basic concepts [123]:

partitioning — the ability to run multiple systems on a single physical sys-
tem in order to share more effectively underlying hardware resources
(e.g. OS virtualization with VMware [123] or Xen [129]),

consolidation — opposite to the partitioning, focuses on reducing number
of visible and accessible resources simplifying the view of a system at
the higher level (e.g. Unix-like disk management21),

21Using mount command in Unix-like systems many physical disk drives can be combined
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containment — leads to unification of the infrastructure by covering differ-
ent lower-level resources with a unified virtual abstraction layer (e.g.
Java or .NET Virtual Machine).

Virtualization techniques are widely used in modern computer systems in-
creasing their manageability and flexibility. The choice of virtualization
level decides about the availability of management and monitoring mech-
anisms. It also has direct influence on how resources are described, what
their properties are, and in consequence what software requirements may
be. Actually, the choice of virtualization level have impact on every phase
of design, development and management of software applications including
software deployment.

The main concept behind existing deployment solutions that take virtual-
ization into account (such as N1 Service Provisioning System (N1 SPS) [117],
InstallAnywhere22 or Installable Unit Deployment Descriptor (IUDD) [124]
and Solution Deployment Descriptor (SDD) specifications [92]) is the ability
to represent the hosted–hosting relationship between resources. A host repre-
sents an execution environment for a hosted resource like, for example, a
web application server is an execution environment for a web application.
This kind of aggregation can be nested arbitrarily depending on number of
virtualization layers in a target execution environment.

The important benefit of deployment in virtualized environments is that
it can encompass deployment on all desired layers. Therefore, a typical
use case would be to deploy an operating system on a physical machine,
then deploy application server on this operating system, and finally install
and execute a user application. Automation of this process can greatly
simplify administration and maintenance of complex multilayer execution
environments. However, to the best of our knowledge, none of the existing
platforms or standards supporting deployment in virtualized environments
allows for fully automatized model-based deployment in distributed systems.
Either they support distributed systems with language-based deployment or
focus on model-based approach dedicated to a single machine. Integration
of these two approaches, although increasing complexity of deployment,
would allow for creating a comprehensive solution for automatic distributed
deployment. Furthermore, it would enable investigating adaptive deployment
in virtualized environments which is an interesting research area.

to create one file system.
22http://www.acresso.com.
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2.2.4 Deployment Automation in Grids

Despite Grids are distributed and virtualized environments, we distinguish
them here due to an important additional aspects they introduce to the
problem of software deployment. To the complexity of deployment caused by
system virtualization, heterogeneity and variability of resources, Grid-based
systems add heterogeneity of organizations. Very often these organizations
differ in management policies, rules and regulations under which they are
functioning. In result, their collaboration involves such technical challenges
as cross-organization authentication, authorization, resource access and
resource discovery [48].

Automation of deployment in Grids refers to distributed job scheduling
and is now widely available, e.g. in Condor,23 Globus,24 Sun Grid Engine
(SGE)25 and ProActive.26 A job is a segment of work. Each job includes a
description of what to do and a set of property definitions that describe how
the job should be run. Job deployment in these environments follows the
model-based approach: each job is accompanied by a resource requirement
descriptor that is analysed by a scheduler after the job has been submitted.
Provided with this information the scheduler decides where to send the job
for execution.

Usually job submission systems operate on the process level. It means
that a job is often a program running directly in the OS. In more complex
cases, a job may be a set of program instances, such as Array Jobs in SGE,
that run independently on different parts of data. It may also be a set of
interrelated program instances such as a parallel application or a dependency
tree application. The former is composed of cooperating program instances
that must all be executed at the same time, often with requirements about
how the programs are distributed across the resources. The latter uses a
Direct Acyclic Graph (DAG) to model dependencies between tasks. Vertices
in the graph represent computation, whereas edges identify dependencies.
Often communication interface between jobs in Grid is limited to file ex-
change or, in case of parallel jobs used in large scale scientific computation,
to the specialized Message Passing Interface (MPI) interface. In this work we
address higher abstraction level offered by a component-based middleware.
We find this a richer and more expressive approach when designing and
developing distributed applications.

ProActive is more sophisticated in this respect and allows not only schedul-
ing of stand-alone executables but also proactive applications which can

23http://www.cs.wisc.edu/condor
24http://www.globus.org/toolkit
25http://www.sun.com/software/sge
26http://proactive.inria.fr
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model components [94]. Therefore, similarly to our work, ProActive can
support application design according to COA. It is, however, restricted to
Java language only, whereas in this work we look for a solution which is
language independent. ProActive uses also a different and interesting ap-
proach to job deployment. Jobs are bound with the execution environment
through the VirtualNode element, which is abstraction for a location of
resources. A single VirtualNode can be mapped onto one or several Java
Virtual Machine (JVM) processes which can be created on or acquired from
a physical node [18]. Nonetheless, the mapping is done manually and the
platform does not address the problem of deployment planning.

More recently, there has been a move towards utilising Web Services (WS)
to build Grid and other distributed applications. A WS-based application is
represented as a set of services that communicate through the exchange of
messages using widely accepted standards for describing service interfaces
(WSDL) and transferring those messages (SOAP) [128]. However, this kind of
applications is much more related to the SOA paradigm and, therefore, we
discuss it separately in the following section.

2.2.5 Deployment Automation in SOA

The main idea behind Service-Oriented Architecture is to orchestrate existing
loosely coupled services to perform a desired function or a business process.
Usually, the orchestration involves enacting an application workflow that
delegates subsequent tasks to appropriate services.

Considering deployment of a SOA-based application four actions need to
be discussed: discovery, selection, service deployment and binding (Fig. 2.6).
Discovery involves searching for an appropriate service instances that com-
prise an application workflow. SOA is based on the premise that most of the
applications can be built using existing services and for most of the service
types there exists a set of competitive instances available. Therefore, the
next step refers to comparing the available service instances and selecting
the most appropriate for the application being deployed. Proper selection
requires ability to describe service capabilities and application requirements.
Occasionally, however, none of the existing services can meet application
requirements and then the desired service needs to be deployed on-demand.
Even if it is supposed to be less frequent, it might be required for more
specialized applications and services. Still, deployment of a service itself
does not differ much from the approaches discussed yet. Depending on its
design it may involve simple single machine deployment or more complex
distributed or Grid deployment. Eventually, when all required services are
found and accessible, deployment of the SOA-based application turns to the
binding step. This aims at enabling communication between services and
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Figure 2.6: Four steps of deployment of SOA applications. The dashed line denotes
the less frequent flow is SOA deployment. The highlighted block repre-
sents the area of this work.

involves all the problems related to software adapters, message exchange
and transformation as well as coherency of service semantics.

Automation of deployment in SOA requires automation of all consecutive
steps and, therefore, is more complex than all previously discussed problems.
Currently, this is an area of active research and existing solutions address
this process partially rather than providing a thorough automatic solution to
deployment of SOA-based applications. Chukmol proposes in [22] a frame-
work for WS discovery. Project Dynasoar27 provides a generic infrastructure
for the dynamic on-demand deployment of Web Services. Lécué et al. discuss
in [77] issues related to composition of stateful services. It is the matter
of future research if a complete answer to the problem of deployment of
SOA-based applications can be found. In this work, however, we focused on
deployment of a single service. The assumption we made is that the service
is a component-based and distributed application.

2.3 Deployment Planning

The solutions discussed already automatize the deployment process to high
extent, yet for adaptive deployment to be effective full automation is required.
It means that all deployment activities, starting from Retrieve and ending
with Update and Adapt, need to be automatized. Even if most of them are
straightforward and technical tasks, in case of distributed and heterogeneous
systems deployment planning becomes a significant barrier to overcome.
As mentioned earlier, to ensure full automation of deployment planning a
model-based approach should be considered. Then the planning concerns
matching software components against environment resources taking into
account component requirements and resource availability. This ostensible
simplicity is, however, not always easy to attain and this section presents

27http://www.neresc.ac.uk/projects/dynasoar
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more detailed discussion about the deployment planning problem itself and
the sources of its complexity.

2.3.1 Definition of Deployment Planning

Planning of component deployment should not be confused with the classic
planning problem that refers to searching for a sequence of actions which
shall be carried out to get a system from an initial state to a desired goal
state [75, Sect. 2].28 Considering model-based deployment, we rather follow
the D&C specification that defines deployment planning as:

an activity that takes the requirements of the software to be de-
ployed, along with the resources of the target environment on
which the software will be executed, and decides which imple-
mentation and how and where the software will be run in that
environment.

Therefore, in deployment planning what is interesting is not the sequence
of actions to find a viable component placement but rather the goal state
itself. This goal state, which is a proper deployment plan, is such a placement
of components in the environment that satisfies all the requirements of the
components and their interconnections not exceeding resource availability of
the execution nodes and network links.

Deployment planning should also be distinguished from Component Place-
ment Problem (CPP) [66] and its more general form Application Configuration
Problem (ACP)29 [67]. The main goal of these NP-hard problems is in con-
structing a deployable application given specifications of environment, com-
ponents, and user goals. For example, having four components: MailClient,
MailServer, Encryptor and Decryptor, the ACP and CPP would consider
two possible mailing applications. One consisting of only MailClient, and
MailServer and the other comprising all four components. Then if a user
goal is to protect message privacy, an ACP/CPP problem solver should de-
cide which one to use. In case the environment has security mechanisms
embedded, the valid solution would be the two-component application as

28An example of the classic planning problem would be to find a sequence of moves of a
mobile robot to change its position from location A to location B. This concept of planning is
also used in N1 Service Provisioning System to describe deployment plans. In N1 SPS a plan:
is a sequence of instructions that is used to manage one or more components on the specified
hosts. For example, a plan might install three components and initiate the startup control of
another component [118]. It is unlikely, however, that a deployment plan in N1 SPS is created
with no human intervention.

29The CPP is a restricted variety of the ACP problem in that its goal is to find a configuration
in the absence of the time aspect.
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Figure 2.7: Three dimensions of software deployment planning.

Encryptor and Decryptor components are redundant and decrease applica-
tion performance. Otherwise, if there exist some insecure links and nodes
between client and server components, the valid solution would be the lat-
ter application that includes an encryption mechanism. In the deployment
planning problem, however, what we consider is a software package with a
precomposed application. It means that the set of application components
and their interconnections are already defined in the package and hence the
deployment planning problem is easier to solve than the CPP or ACP which in
general are undecidable [67].

2.3.2 Planning Dimensions

In the most common sense, when component deployment is considered, only
the spatial dimension is taken into account. This means that deployment
planning can only decide where in the target environment software com-
ponents will be located and executed. However, it is possible to provide a
broader view on this process and then decompose it on a number of inde-
pendent dimensions. As shown in Fig. 2.7, we distinguish three dimensions
of deployment planning: spatial, temporal and semantic. To the best of our
knowledge the literature does not define these dimensions explicitly, there-
fore, following we provide their definitions together with references to other
similar approaches.

Irrespective of the deployment dimension the basis for model-based
deployment planning is the structure of an application to be deployed. It may
express relations between components, their dependencies, requirements,
collocation constraints and requirements of component links. The other
inputs to the planning process depend on a selected dimension.

The temporal planning dimension. Historically, when computer systems
were dominated by mainframes, time sharing was the main approach to
deploy and execute applications. The scarcity of resources posed the problem
of running multiple tasks on a single machine concurrently and the answer
to this were CPU scheduling algorithms [45, 113].
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Planning in the temporal dimension is closely related to local schedul-
ing. As an input it takes the structure of an application, a resource pool
that determines limitations of the execution environment and a graph of
temporal dependencies between application components. Usually, such a
graph is defined in the form of a DAG that specifies a precedence order in
which components must be deployed and undeployed. Temporal deployment
planning differs from scheduling merely in that it considers components of
one application rather then unrelated tasks executed in an OS.

The inputs to the basic temporal planning we define as follows:

A — a set of component instances forming an application,

D = 〈A,O〉 — a DAG defining precedence order of deployment actions;

A is the set of component instances — vertices in the DAG;

O is a set of arcs that determine the precedence order,

R — a resource pool that application components can demand,

and the result of the temporal deployment planning is plan Ptemporal that we
define as:

Ptemporal =
{
(i,T ) : ∀i∈A∃T∈T such that instance i is running in time range T

}
while the following constraints are satisfied:

∀T∈T∀r∈R

∑
i∈P(T )

|ri| < |r| ∧

∀(i,T )∈Ptemporal∀ j∈N−d
D [i] sup(T j) < inf(T ) ∧

∀(i,T )∈Ptemporal∀ j∈N+d
D [i] sup(T ) < inf(T j)

where:

T — a set of identified time ranges determining when component

instances are running,

Ti — the time range when instance i is running,

P(T ) — a set of all instances planned to be executed in time range T ,

|r|— amount of resource r available in a resource pool,

|ri|— amount of resource r required by the instance i,

N+/−d
D [i] — closed dth out-/in- neighbourhood of an instance i, where d is

the diameter of D.30 It denotes all successors/predecessors of i.

30Notation according to Bang-Jensen and Gutin [8].
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Usually, during deployment planning in the temporal dimension the
optimization objective is to minimize the time span required to execute the
application:

min(max
T∈T

(sup(T )) −min
T∈T

(inf(T )))

The spatial planning dimension. With the appearance of workstations
and personal computers more and more resources were available and then
spatial dimension played the main role. In that time the problem was not
when but where to run software components to achieve the best results.
This included all the problems of component distribution, heterogeneity of
resources and changes in their availability.

The spatial dimension refers to the physical location of components in the
execution environment. The inputs to the basic spatial planning are:

A — a set of component instances forming an application,

L — a set of links between the application components,

N — a set of execution nodes forming an execution environment,

C — a set of interconnections forming a network connecting the nodes,

and the result of the spatial deployment planning is plan Pspatial that we
define as:

Pspatial = 〈PA, PL〉

PA =
{
(i, n) : ∀i∈A∃n∈N such that instance i is running on node n

}
PL =

{
(l, c) : ∀l∈L∃c∈C such that link l uses interconnect c

}
while the following constraints are satisfied:

∀n∈N∀r∈Rn

∑
i∈PA(n)

|r(i)| < |r| ∧ ∀c∈C∀r∈Rc

∑
l∈PL(c)

|r(l)| < |r|

where:

Rx — a resource pool of a node or interconnect,

|r|— total amount of resource r available in a resource pool,

|r(·)|— amount of resource r required by a component instance or link,

PA(n) — a set of all instances planned to execute on node n,

PL(c) — a set of all links planned to use interconnection c.

Planning in the spatial dimension has no single optimization constraint
and usually there exists a set of QoS metrics that are optimized during
planning. Moreover, the presented definition describes only the basic form of
the problem and more elaborate versions are possible e.g. such that define
locality constraints for component instances to separate them on
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The semantic planning dimension. Nowadays, with the abundance of
computing resources we often meet a situation when for a particular com-
ponent/service type there is already a set of semantically equivalent compo-
nents/services running and available. Therefore, the problem we face is not
when and where a component should be executed but rather which one to
choose to obtain the best results.

When considering inputs in the semantic deployment, we focus on QoS

metrics provided by services rather than on exact node or network resources
availability. It is hardly possible to investigate service provider’s network
and analyse resource availability of their execution environment. Therefore,
inputs to this problem we define as:

A — a set of component instances forming an application,

S i — a set of services that are available and semantically equivalent to

component instance i,

Q — a set of QoS metrics to be satisfied,

and the result of the semantic deployment planning is plan Psemantic that we
define as:

Psemantic =
{
(i, s) : ∀i∈A∃s∈S i instance i is realized by service s

}
while the following constraint is satisfied:

∀(i,s)∈Psemantic∀q∈Q s satisfies qi

where:

q(i) — is QoS metric required to be satisfied by instance i.

Semantic planning may be used for describing deployment of applications
designed according to the SOA paradigm. SOA assumes that an application is
orchestrated using a set of existing services of which some realize the same
contract. In this case deployment planning problem is to select which service
instances will be used in the actual processing.31

Combining dimensions. The presented dimensions can be considered in-
dependently of each other or can be combined together creating more elab-
orated deployment scenarios. For example, the spatio-temporal dimension
can address the problem of scheduling of interrelated jobs in grids [113].
Combining the spatial and semantic dimensions one can model the problem

31It is worth noting that in SOA the deployment preparation phase may only be limited to
interconnecting existing service instances.
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of full SOA deployment, which includes both service selection and service
deployment. Ultimately, when all three dimensions are considered together
it is possible to model very sophisticated deployment scenarios with runtime
services’ selection and undeployment.

The only aspect which we regard missing in the multidimensional de-
ployment planning is context awareness. Contextual deployment refers to
the problem of software deployment in reaction to changes in its execution
environment and binds deployment actions with the state of selected context
variables. The need for context-aware deployment stems from two important
facts: ubiquity of computing devices and interests in autonomic computing.
In both these cases changes in execution context are drivers influencing ap-
plication behaviour, and deployment is one way to express this influence. For
example, if we would like to use all mobile nodes in a network to run a single
application such as text communicator, context-aware deployment can easily
support this need. Whenever a mobile node is detected in the network the
deployment infrastructure can initiate deployment of application components
to this node. Similarly, when a node leaves the network the infrastructure
located on the node can undeploy all unneeded components. Awareness to
context is one of the prerequisites to adaptive deployment which needs to
observe application’s execution environment to perform suitable adaptation
actions.

However, context-aware deployment evades the model-based planning
approach mainly due to complexity of context representation and processing.
More natural to address this aspect are language-based techniques such
as presented by Dubus and Merle in [38], which uses an Event Condition
Action (ECA) language to react on context changes. Similarly, our deploy-
ment framework uses combination of the model-based and language-based
deployment to address the complexity of adaptive application deployment.

2.3.3 Complexity of Deployment Planning

In this work we focus mainly on spatial dimension of application deployment.
However, the definition of the problem presented above is only its basic
form and, therefore, to analyse complexity of this problem we first present
the D&C models. They allow for more complete definition of application
and execution environment. The D&C data models create a very expressive
framework for describing a software package and target environment as
needed for planning in the spatial dimension. On the one hand in the
software package description it is possible to include (Fig. 2.8): selection
requirements to identify a component implementation with desired component
capabilities, connection requirements to express required qualities of a network
connection, locality constraints used for requesting collocation or separation
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Figure 2.8: A coarse illustration of the software package structure defined in D&C.

of component instances and deploy requirements matched against target node
resources. On the other hand to describe an execution environment the D&C

Target Data Model allows specifying node and network resource capabilities
as a set of (type, name, value) tuples. The only missing link in the D&C is a
description of user goals which is left as an implementation specific feature.
Nevertheless, making use of all the flexibility provided by this framework
allows creating very accurate software and site models. The problem is,
however, how to effectively plan component deployment given such amount
of information and constraints.

Even when most of the constraints in a description are omitted (namely
selection requirements, connection requirements, locality constraints and
component capabilities) planning of component deployment may be repre-
sented as the variable-sized Bin Packing Problem (BPP).32 In this variant of
the packing problem, items must be packed into bins of various sizes and the
goal is to minimize the total volume of the used bins. Application components
with different requirements are represented by items, and heterogeneous
execution nodes with different resources are represented by bins of various
sizes.33

The basic BPP and wide variety of its variants has been extensively studied
since the 60’s. The problem is known to be NP-hard [23] but there exist
approximation algorithms solving it in polynomial time. Nevertheless, real
component deployment problem is much more complex to solve. Adding only
locality constraints to the software package description results in the variable-

32Assuming that the objective of the planning is to minimize the number of execution nodes
which will run application components, the deployment problem is a variant of bin packing
problem. When the goal is to minimize load of each execution nodes the problem becomes a
variant of multiprocessor scheduling problem [79].

33It is worth noting that even if components require and nodes offer multiple different
resources, the deployment problem does not become the multi-dimensional BPP.
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sized bin packing with conflicts problem which is much more difficult to tackle
as it generalizes both the variable size bin-packing and graph colouring
problems [42].

Complexity of deployment planning comes from the large search space
that, in case of spatial dimension, depends exponentially on the number of
application components and number of nodes. If n is a number of execution
nodes and m is a number of components to deploy, the search space has the
size equal to nm which is the number of permutations with repetition. When
planning we need to select m nodes which will host the components from
the total set of n and each node may be chosen more than once. Due to the
size of the search space solving the deployment planning problem for real
size inputs can be realized by approximation algorithms only. However, all
the efforts to find an effective algorithms based on BPP and its variants are
inadequate. Deployment planning cannot be limited to processing only static
software package and execution environment descriptors. The main reason
for this is dynamic nature of both application and execution environment.

Planning in Open Distributed Systems

Open distributed systems are highly unpredictable in nature. Unlike closed
platforms (e.g. embedded systems or simple mobile phone OSs) that run
a predefined set of applications and workloads, open systems allow users
more freedom in this respect. Dynamism of the open systems stems from the
following key facts:

• resource needs of applications may change depending on their execu-
tion phase, user interaction, current workload, etc.,

• availability of resources provided by execution nodes may change due
to node failures as well as application and/or server consolidation;
usually a node runs more than a single application or operating system
concurrently,

• availability of resources provided by network connections may change
depending on link failures, applications workload, changing commu-
nication patterns, sharing the network between different applications,
and many others.

Since all these factors are changing during application runtime, static de-
scription of requirements and resources cannot be sufficient. To deal with
this issue during planning we divided node capabilities and component
requirements into static and dynamic:
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static resource — characterize properties of a node which are independent
of the number and kind of components executed on this node. An
example of a static resource may be the type of CPU architecture or a
shared library installed on the node,

static requirement — define constant and essential component needs. If a
static requirement of a component cannot be satisfied by the execution
environment, the component cannot be instantiated. A kind of static
requirements are the type of CPU architecture or the minimum size of
memory required to run a component,

dynamic resource — are allocated to the installed components and may
depend on the number of components running and their allocation
needs. Dynamic resources are further divided into shareable (e.g.
memory, CPU, hard disk space) and non-shareable (e.g. an externally
connected device such as a scanner),

dynamic requirement — characterize dynamic needs of a component and
often depend on external factors hardly predictable in advance. An
example of dynamic requirement may be size of memory needed by a
component when running.

Using a description language to characterize static environment resources
and static software requirements is straightforward. If they are identified, it is
enough to include them in a node or component description. Conversely, de-
scribing dynamic resource and requirements elicits many important questions
such as:

• how to express component requirements if they depend on a number
of concurrently processed requests?

• what if they also depend on request size?

• what if they depend on availability of some other resources?

There exist attempts to describe resource usage as a function of some input
variables (e.g. [63, 66]). Although they could enable more accurate resource
description, their main flaw is in finding functions that would appropriately
describe relevant dependencies. For more complex use cases it seems hardly
possible because searching for these kind of dependencies requires extensive
and expensive tests of each particular software component. Such tests are
fully reasonable and often required for real-time embedded systems when
the execution environment is more predictable and user must be assured the
application will not fail unexpectedly. Generally, however, if an application is
assembled from a variety of components provided by different vendors and is
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supposed to run in open environments, another approach is needed. It is not
possible, or at least not reasonable, to determine what are resource needs
of a component for every possible combination of input values and then
conduct these tests for each application component separately and together
forming an application.

Similarly, major obstacles are encountered when describing dynamic
resources of the execution environment. Both, computer machines and
computer networks are typically shared between more than one application34

and usually lack mechanisms guaranteeing the strict timeliness and quality
requirements. In this multiple application deployment problem it is not easy
to predict resource availability and ensure that a newly deployed application
will not encounter any resource shortage.

Planning of deployment in open distributed systems requires, therefore,
a different method to overcome the aforementioned problems. A promising
approach is to introduce dynamic deployment that could adapt to changes in
application needs and environment capabilities.

2.4 Adaptive Deployment

As presented in the previous section, deployment planning is a difficult task
not only due to high computation complexity but also because of the dynamic
nature of a running application and its execution environment. Adaptive
deployment is an approach that helps to address both these issues. It allows
dividing the problem of deployment planning on an iterative process that
can be improved in runtime and, therefore, an application can be deployed
more quickly. It also enables an application to be reconfigured in reaction to
the changes in environment and workload.

However, adaptive deployment has much more potential. Development
of software adaptation is driven by three main factors in the computing
field: (1) emergence of ubiquitous computing, which dissolves the boundaries
for how, when, and where humans and computers interact, (2) increasing
interest in autonomic computing, which focuses on systems able to manage
and protect themselves with as little as possible human guidance, and (3)
the need for highly available systems, that ensure operational continuity
for extended periods and must accommodate change during those periods
[60, 88]. Adaptive deployment can well support all these areas.

Previous work clearly indicate that introduction of adaptability to the
deployment process substantially improves its usability and increases ap-

34Recently, this trend is even more noticeable with the advent of system virtualization
techniques such as VMware (http://www.vmware.com) and Xen (http://www.xen.org).
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plication flexibility. S. Zaidenberg et al. present in [130] how reaction to
context changes ease deployment in ubiquitous environments. Similarly, in
[38] Dubus and Merle show that dynamic deployment allows programmers
to express contextual dependencies in the application structure. For example,
appearance of a mobile node in a network may invoke a deployment action
that installs and launches a desired component on the node. In this way the
application can “expand” or “shrink” as nodes are appearing and disappear-
ing in the network. P. Backx et al. in [7] present a prototype platform for
autonomic adaptive deployment which aims at reducing network overhead.
This solution uses a simple heuristic to move components towards or away
from clients resulting in gains up to 20%. Moreover, the experimental results
which we present in [4] show that even simple algorithm can substantially
improve execution effectiveness. Comparing to even distribution of soft-
ware components in the environment the reduction of the execution time
for different use cases was in range between 5 to 60%. In [15] we discuss
how adaptability allows controlling of QoS in so called virtual redeployment
process. Further, Ayed and Berbers in [6] argue that adaptive deployment
makes possible to introduce context-awareness into pervasive applications.
Generally, adaptability of deployment allows reacting to context changes
and reorganizing the application according to specified rules. It also enables
delivering more sophisticated optimization objectives such as maximizing
application throughput and minimizing mean response time that are hardly
possible with only static and non-adaptive deployment.

2.4.1 Definition of Adaptation

Considering software engineering, there are two different meanings of soft-
ware adaptation in general. One is closely related to Component-Based
Software Engineering (CBSE) and deals with problems of constructing ap-
plications from Commercial Off-The-Shelf (COTS) components. This kind
of adaptation aims at deriving automatically, from generated or end-user
specified composition contracts, pieces of software — adaptors — to solve
interaction mismatch [17]. The other meaning of software adaptation, and
the one used in this work, is close to the general sense of this term which
denotes adjustment to environmental conditions.35 Again, this adjustment
may be realized in two distinct ways:

a) as adjustment of a sense organ to the intensity or quality of stimulation
or,

b) as modification of an organism or its parts that makes it more fit for
existence under the conditions of its environment.

35Merriam-Webster’s On-line Dictionary: adaptation2



2. BACKGROUND AND RELATED WORK 41

From the software engineer standpoint the former kind is known as pa-
rameter adaptation, which modifies program variables that determine its
behaviour. This type of adjustment, used e.g. in TCP, can tune parameters or
direct an application to use a different existing strategy. It cannot, however,
adopt new, unplanned strategies. The latter kind of adaptation, known in
computer science as compositional adaptation, is able to exchange algorithmic
or structural system components improving program’s fit to the current envi-
ronment state. With compositional adaptation, an application can not only
tune its variables or select a strategy but it may recompose its components or
adopt new algorithms for addressing concerns that were unforeseen in the
development phase [88].

When component-based software is considered, the parameter adapta-
tion is focused more on a single component adjusting its operation to the
execution environment. Conversely, the compositional adaptation allows
(re)organizing application components according to a higher-level adaptation
strategy. Deployment of component-based systems is much more related to
the latter type of adaptation. Therefore, this work concentrates mainly on
compositional adaptation and its applicability to deployment process showing
benefits that accrue from this combination.

2.4.2 Benefits of Adaptive Deployment

The computational complexity of planning phase derives from large search
space36 which planning algorithms have to scour for a viable solution. If
deployment is static, meaning that each application component is running
bound to a fixed location during whole execution time, well prepared plan is
crucial and has great impact on application effectiveness. Having adaptive
deployment mechanisms available at runtime, complex and time consuming
exact planning may be replaced with heuristics, approximate algorithms
or simply searching for any valid solution as proposed in [100]. Adaptive
deployment allows relaxing requirements on planning algorithms for the
quality of solutions found. Although usually a better initial plan will lower
reallocation overhead during execution, this must not be a case in general.
The simple rule is that for environments where reallocation is more expensive
better and possibly more complex planning algorithms should be considered.
On the contrary, in environments with lightweight reallocation mechanisms
the planning may be limited to only low complexity approximate algorithms.

The next, significant benefit influencing effectiveness and accuracy of
deployment planning is hidden behind describing resources of an execution
environment and requirements of application components. As discussed

36As described in Sect. 2.3.3 the search space in spatial deployment planning grows
exponentially depending on the number of nodes and the number of components.
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previously, this seemingly simple prerequisite is not easy to achieve in open
environments when nodes share resources between different components,
applications or even operating systems. If only static deployment is possible,
planning requires for all potential resource consumers a priori knowledge
of the worst case conditions or specifying intricate resource availability and
usage functions such as proposed in [63, 67]. Moreover, it requires some
resource reservation mechanism what, in turn, implies that any resource
allocation has to be under control of a resource manager. This makes static
planning in open distributed systems of low efficiency and often limited
usability. With the use of adaptation these constraints can again be relaxed.

By definition, adaptation allows following changes in the environment,
hence enables resource management which is more sensible of the current
allocation needs. Having adaptation mechanisms there is no real need for
pessimistic resource allocation. It is only the matter of an appropriate adap-
tation algorithm to detect if any changes in deployment are needed to satisfy
the current allocation demands. For example, when two components run-
ning on a single machine compete for the same resource and this resource
becomes depleted, adaptive deployment can redeploy one of the components
to another, more appropriate machine. Therefore, when describing compo-
nent’s requirements it is sufficient to specify only its prerequisites i.e. these
requirements which if not satisfied, will restrain a component from execution.
In result component and environment descriptors can be simplified because
it is unnecessary to specify dynamic resource requirements and capabilities.
Moreover, there is no need to predict resource allocation as well as to search
for dependencies between resource usage.

Another advantage of the adaptive deployment process is the ability to be
combined with any of the deployment dimensions defined earlier allowing
for their more sophisticated event-driven behaviour. Adaptation can take
control over deployment actions in response to very different events e.g.:

• (un)deployment of an application component,

• (dis)appearance of a node in the execution environment,

• change in reliability of a network connection,

• (dis)appearance of a service or component,

• appearance of an updated version of a component,

• a user-defined event.

In this way it enables achieving high-level goals such as meeting QoS require-
ments, improving availability, performance, reliability, etc.
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Providing adaptive deployment for a component-based distributed system
is, however, a difficult task. One of the major obstacles are dependencies
between application components and between the components and their
execution environment. Therefore, appropriate techniques and patterns are
required to help disentangling these elements and to enable free deployment
adaptation. Most commonly used patterns for this purpose are architectural
reflection and autonomic computing.

2.4.3 Reflective Systems

The concept of reflection refers to the capability of a system to reason about
and act upon itself. The term reflective system, as defined in [81], describes a
system which (1) incorporates structures representing (aspects of) itself, and
(2) the sum of these structures — self-representation — is casually connected
to the system it represents. Casually connected means that changes made to
the self-representation are immediately mirrored in the underlying system’s
actual state and behaviour, and vice versa [26]. Therefore, it is possible to
state that:

a) the reflective system always has an accurate representation of itself,

b) the status and computation of the system are always in compliance
with this representation.

In order to realize these statements reflection offers two activities: intro-
spection to let an application observe its own behaviour, and intercession to
let a system or application act on these observations and modify its own
behaviour [88]. The exact meaning of these activities depends on the ab-
straction level the reflection is performed on, e.g. in computational reflection
it is the programming language which provides support for reconfiguration
of its objects and object models, while in architectural reflection the reconfig-
uration refers to the observation and manipulation of the graph of software
architecture [37].

Component-based applications are especially amenable to architectural
reflection because they are inherently realized as a graph of interconnected
components. The problem of self-representation is usually resolved by means
of an ADL used in design and development. Therefore, a component-based
application to be fully reflective needs to provide the intercession mechanism
and ensure that the model is casually connected with the application itself.
In other words, consistency between the model and the running system must
be satisfied.
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Considering deployment of component-based applications, the archi-
tectural reflection expresses itself by providing a language to describe de-
ployment in an execution environment and by delivering mechanisms to
dynamically reconfigure application in runtime. In this work we show our
approach to address these issues. However, given a reflective distributed
application there is still a need for support of end-user deployment require-
ments. Complexity of deployment in heterogeneous distributed environments
needs to be hidden behind a convenient interface which allows for high-level
control. One way to reach this goal is to use autonomic computing approach.

2.4.4 Autonomic Computing

Autonomic Computing (AC) is inspired by the functioning of the human ner-
vous system and aims at designing and building self-managing systems [61].
The main reason for autonomic computing appears whenever the scale and
complexity of a system or application grows to the extent that their manual
configuration and management is too challenging. Due to our autonomic ner-
vous system we are freed by non-conscious activities from the low-level com-
plexity of managing our bodies to perform high-level tasks — the conscious
activities. Similarly, autonomic systems provide a high-level management
interface hiding its low-level intricacies [114]. There is, however, important
difference between autonomic capabilities in the human body, which are
involuntary, and self-managing autonomic capabilities of computer systems.
The latter can perform tasks according to a provided, adaptable policy rather
than a hard-coded procedure. For example, if an operating system manages
task scheduling and creates the illusion of parallel execution, we cannot call
it autonomic unless it allows users to change this procedure with another
one following different management policy.

Autonomic Computing initiative was first introduced by IBM in 2001. The
main building blocks of the proposed model are a managed resource and
Autonomic Manager (AM) (Fig. 2.9). The managed resource is a hardware or
software component that provides any kind of management interface like a
computer system, database engine or a mobile robot. It is accessible through
a touchpoint — a component implementing standard sensor and effector
interfaces. This reduces management complexity as, instead of diversity of
manageability interfaces associated with various types of managed resources,
the AM is provided with a well defined sensor and effector interfaces of their
touchpoints.

The Autonomic Manager is a component that implements the control loop
consisting of four stages: Monitor, Analyse, Plan and Execute (MAPE). Moni-
toring provides information from managed resources which is collected and
analyzed. As a result of the analysis step, adaptation needs are determined.
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Figure 2.9: Building blocks of the Autonomic Computing model.

Further, a plan which fulfils the needs is created, and executed in the last
stage. To realize this loop the MAPE components may use rules, correlations,
beliefs, expectations, histories and any other useful information available to
the AM [114].

The use of autonomic computing in software deployment and administra-
tion is a promising technique which has been noticed recently [10, 12, 24].
There are several important advantages of this approach:

• autonomic administration allows reconfigurations to be performed
without human intervention,

• high-level support for deployment and configuration of applications
reduces errors and administrator’s effort,

• autonomic management is a method for better resource utilization as
resources can be allocated on-demand.

With the increasing complexity of software and hardware system architec-
tures, autonomic computing offers yet another advantage. Following the AC

approach it is possible to create AM hierarchies dividing the management
activities among different manager components. For large systems, this
divide and conquer strategy can again improve manageability.

2.5 Adaptive Deployment Platforms

In this section we present selected existing platforms that have been de-
veloped to allow the adaptive deployment of distributed applications. Our
analysis focus on four aspects which we regard as pivotal when adaptive
deployment is considered:
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1. Model of components — deployment operates on components, there-
fore, it is important to examine platforms and determine what a com-
ponent is, how rich the component model is and if they are language
independent.

2. Model of deployment — in this aspect we analyse planning dimensions
supported by the platforms, if they support open or closed systems and
heterogeneity of resources.

3. Model of adaptation — analysing adaptation we first focus on the
level of deployment automation that a platform offers. Automation
of deployment is the key enabler of adaptive deployment. Then we
discuss what reconfiguration mechanisms the platforms offer and how
a user is able to set desired adaptation policies.

This analysis allowed us to show the area covered by the existing solutions,
point out their shortcomings and prepare for setting the requirements of
adaptive deployment framework.

Prism-MW Platform

In [90] M. Mikić-Rakić presents Prism-MW — a platform and an architec-
tural middleware for improving availability of a large system of small mobile
devices. The key driver of the programming-in-the-small-and-many mid-
dleware platform is the assumption that the main source of degradation
of the system’s availability is disconnection. Therefore, the platform em-
ploys autonomous, run-time redeployment to increase system’s availability
by enabling the system to (1) monitor its operation, (2) estimate its new
deployment architecture, and (3) effect the estimated architecture. Since
estimating a system’s optimal deployment i.e. deployment planning is an
exponentially complex problem, Prism-MW provide a set of approximative
algorithms with different levels of trade-off between complexity and achieved
availability.

Prism-MW is an interesting approach showing how dynamic redeploy-
ment can increase the availability of systems of small and mobile devices. It
proposes a set of models, algorithms, techniques, and tools for improving
availability via runtime reconfiguration.

Model of components. Prism-MW defines a proprietary component model
dedicated to small mobile devices. It has been optimized to run on resource-
constrained devices with low amounts of memory and slow processing speeds.
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The basic building block of the model is a Brick that encapsulates com-
mon features of its subclasses (such as Component, Port and Connector).
Components perform computations in an architecture and may maintain
their own internal state. Components interact with each other by exchanging
events via their ports. Ports are the loci of interaction in an architecture. Each
component can have an arbitrary number of attached ports each of which
can connect to at most one other port. To support other kinds of delivery
semantics (e.g. multicast, broadcast, anycast) the model defines connectors.
Connectors are used to control the routing of events among the attached.
In order to support the needs of dynamically changing applications, each
Prism-MW component or connector is capable of adding or removing ports
at run-time.

Being dedicated to small devices, Prism-MW is simple and requires only
minimal effort to master its basics. However, its simplicity reflects itself in
too much simplification sometimes. Prism-MW defines the non-recursive
model of a component what can result in a large number of components
comprising an application. Moreover the relation between a component
and a thread of execution resembles the active-object approach proposed
by ProActive.37 Therefore, components in Prism-MW are very fine-grained
and can be compared to a language object rather than to a larger building
block of an application. Another simplification in the model is the ability to
communicate by event exchange only. Although this model can be used to
address other patterns of communication such as Remote Procedure Call (RPC)
or data streaming, it would require additional development effort to achieve
this.

Prism-MW is language independent. It’s core has been implemented in
Java JVM but subsets of the functionality have also been implemented in
Java KVM, C++, EVC++, Python, and Qualcomm’s Brew.

Model of deployment. Prism-MW does not directly address the problem
of component deployment in heterogeneous environments. Instead a user
can use a separate tool Prism-DE to execute a prepared initial deployment
plan. Prism-DE can ensure that a set of topological rules is consistent with a
modelled topology. However, it uses very simplified model of a component
and does not define resources except for their identifier and IP address.
Moreover, it is unclear how, if at all, this information is used in runtime to
ensure correctness of a new application deployment.

Model of adaptation. The Prism-MW platform is dedicated to improve
system availability. It provides a set of algorithms for runtime deployment

37http://proactive.inria.fr
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planning that differ in complexity and quality of the solution. The platform
allows for automatic switching between the algorithms basing on collected
historical data. However, given limited view on adaptation, Prism-MW
does not allow users to specify their requirements or influence algorithm
behaviour.

Considering level of deployment automation, Prism-MW together with
external tools (namely Prism-DE and DeSi) offers automation of particular
deployment activities. DeSi enables initial planning allowing an engineer
to rapidly explore the space of possible deployments for a given system,
determine the deployments that will result in greatest improvements in
availability, and assess and visualize system’s sensitivity to changes in specific
parameters and deployment constraints. Prism-DE allows executing the
created initial deployment plan i.e. it runs an application according to a
specified plan. The extensions to the Prism-MW platform allow for runtime
deployment planning and application reconfiguration.

Although the whole deployment process requires user intervention and,
therefore, is not fully automatized, in runtime an application can be auto-
matically reconfigured. Similarly to our solution, the basic reconfiguration
mechanism used in Prism-MW is runtime component migration. It is not
clear, however, how Prism-MW addresses the problem of reaching quiescence
state, state portability and reconnection. Due to simplified model of com-
munication that is limited to events transferring, we assume the problem of
migration is reduced to serialization of the component state together with
queued events and moving these data to a target location.

Jade and TUNe

Jade is a framework to ease deployment of Java 2 Enterprise Edition (J2EE)
applications. It provides automatic scripting-based deployment and con-
figuration tools for clustered applications using autonomic computing ap-
proach [5, 9]. The main principle of Jade is to wrap legacy software elements
in components and administrate this software infrastructure as a component
architecture. To model the infrastructure Jade relies on the Fractal38 ADL

model [12].

In order to implement wrappers encapsulating existing software and
to implement reconfiguration programs in Jade, the administrator of the
environment has to learn yet another framework. Therefore, more recently
work on Jade evolved to the TUNe platform which aims at providing a higher
level formalism for wrapping, deployment, and reconfiguration. The main
motivation is to hide the details of the component model the framework relies

38http://fractal.ow2.org
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on and to provide a more intuitive policy specification interface [12]. TUNe
introduces three main elements: (1) a wrapping description language used to
specify the behaviour of wrappers, (2) the Unified Modeling Language (UML)
profile for describing deployment schemas which they use instead of Fractal
ADL and (3) the UML profile to describe reconfiguration state diagrams which
operate on previously described deployment schema.

The main application target for Jade and TUNe is the administration of
servers distributed over a cluster of machines or a grid infrastructure.

Model of components. Jade and TUNe address the management of very
heterogeneous software which includes web servers, servlet containers, EJB

containers and database engines. Due to diversity of the managed software
the key design choice in the frameworks is to rely on a component model to
provide a uniform management interface for any managed resource. Both
use Fractal as a component model which is a modular, extensible and pro-
gramming language independent. The Fractal components have a reflective
structure that is organized into membrane and content. The membrane of
a component defines its abstractions, interfaces and its meta-level methods,
arranged in specialized controllers and providing the introspection and re-
configuration operations [112]. The content may include either the code
directly implementing functional component behaviour (primitive) or other
components (composite).

Model of deployment. To model software components both Jade and
TUNe use Fractal ADL. TUNe provides also a specialized Wrapping Descrip-
tion Language (WDL) which is used to specify behaviour of wrapper com-
ponents to hide complexity of Fractal ADL. Moreover, in TUNe deployment
is based on a UML profile for describing deployment schemas. The deploy-
ment schema describes the general organization of the deployment (types
of software to deploy, interconnection pattern). Neither Jade nor TUNe,
however, does not model execution environment except for basic information
such as hostFamily attribute which gives a hint regarding the allocation of
nodes [21]. This limits applicability of the solutions to clusters of similar
machines rather than heterogeneous systems.

Model of adaptation. Both frameworks are based on the principles of
reflective and autonomic software. Any software managed with Jade and
TUNe is wrapped in a Fractal component which interfaces its administration
procedures. Considering deployment automation, Jade requires additional
operations performed by hand to organise the deployment, such as starting
Jade daemons/servers, registering them in a naming service [47]. Moreover,
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neither Jade nor Tune address the deployment planning problem what again
limits automation of deployment.

Once an application has been deployed it is monitored and reconfigured
dynamically. TUNe provides a UML profile to define state diagrams that are
input to the manager which automatize the reconfiguration process. The
diagrams facilitate expressing reconfiguration goals such as self-repair in the
case of server failure or self-optimization illustrating dynamic (de)allocation
of nodes. Jade and TUNe address reconfiguration of legacy software, there-
fore, the use of more advanced reconfiguration mechanisms such as migration
is limited.

Grid Component Model and ProActive

Grid Component Model (GCM) [24] is an extension to the Fractal component
model in order to better target Grid infrastructure which is characterized by
highly dynamic, heterogeneous and networked target architectures. A proto-
type implementation of GCM is currently available as part of the ProActive
library from the GridCOMP project.39

The Grid Component Model may be perceived as a competitive with the
CCM model.

Model of components. GCM builds on the Fractal component model and
exhibits three important features: hierarchical composition, collective inter-
actions and autonomic management. Similarly to Fractal, a GCM component
is composed of two main parts: the membrane and the content (shortly
presented above). The GCM supports variety of communication patterns such
as: many-to-one and one-to-many communication, and different communi-
cation semantics including asynchronous remote method invocation, events
based, and streaming based communication. GCM components support also
autonomic behaviour as well as functional and non-functional adaptability.
This entails the ability to add, replace and remove dynamically entities, and
also dynamically changing the bindings between components. Overall, the
GCM is a very rich component model for distributed applications.

Model of deployment. Deployment of components in GCM is relying on
virtual nodes. A virtual node is an abstraction of an execution node which
allows for separation between logical and physical infrastructure. Virtual
nodes are used in the code or in the ADL description to abstract names, cre-
ation and connection protocols to physical resources. They may encapsulate

39http://gridcomp.ercim.org
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resource properties and cardinality to ensure that during deployment plan-
ning components bound with a particular virtual node are located on an
appropriate physical resource.

However, more sophisticated description of application requirements and
environment capabilities are left for the future. GCM envisage extensions
with respect to instance topology of nodes, including point-to-point QoS,
hardware or OS constraints, interconnect preferences. In the future, it might
also introduce constraints at the level of the component itself [24, Sect. 6].

Model of adaptation. GCM is designed around the concepts of Autonomic
Computing and reflective software. The model envisage several levels of
autonomic managers embedded in components, that take care of the non-
functional features of the component programs. The bottom level is repre-
sented by components having no autonomic control at all. At the next level
lie components exhibiting a passive behaviour: they have (non-functional)
server interfaces only, for both introspection and intercession. The top
level in the range consists of the fully autonomic components. They exhibit
self-management skills with respect to all or some of the self-* aspects. Addi-
tionally, an interesting concept proposed by the GCM model are behavioural
skeletons [2]. They provide a programmer with the ability to implement
autonomic managers without taking care of the details related to parallelism.

ProActive, as a platform implementing GCM, offers a vast number of
tools that can support different adaptation needs. For example, it allows for
monitoring, load balancing and runtime object migration. The migration is
transparent and happens while the application containing the active objects is
running and without interruptions in the application. Load balancing enables
either the work sharing or work stealing approach to share load between
nodes. In the low level the load balancing uses migration of ProActive objects
between nodes. However, neither load balancing nor migration function-
ality are available at the GCM level [93, Sect. 29 and 31]. Moreover, both
ProActive and GCM lack ready-to-use solutions for adaptation of component
deployment.

Internet Operating System

K. El Maghraoui proposes in [82] a framework for dynamic middleware-
triggered reconfiguration of applications in Grid environments. The Internet
Operating System (IOS) middleware provides a virtual execution environment
that hides complex resource management and reconfiguration issues from
high-level applications. IOS has been designed with the following key charac-
teristics: (1) architecture modularity to allow for extensible and pluggable
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reconfiguration mechanisms to accommodate various execution environ-
ments and different applications, (2) generic interfaces to allow various
programming models and technologies to leverage IOS dynamic reconfigura-
tion mechanisms, (3) decentralized strategies to achieve scalable decisions,
and (4) adaptability to dynamic environments to allow applications to adjust
their resource allocations following the availability of resources.

IOS is currently being used as an experimental test bed mainly for scientific
applications. It is a step in ongoing research efforts to realize the vision of
efficient, seamless, and easy deployment of applications in dynamic grid
environments.

Model of components. An IOS-enabled environment is a set of agents
that forms a virtual network. The agents are implemented as SALSA actors
and inherit all their autonomous features. Simple Actor Language System
and Architecture (SALSA) is a language for developing actor-oriented appli-
cations [122]. It provides programming abstractions to implement actor
primitives such as creation and asynchronous communication. Actors are
inherently concurrent and distributed objects that communicate with each
other via asynchronous message passing. They encapsulate state and a set
of methods and are controlled by a single thread of execution. Moreover,
SALSA’s runtime environment provides support for actor migration. All this
makes SALSA actors very similar to active objects defined by ProActive. Both
actors and active objects exhibit very fine-grained structure and merely the
event-based communication model.

The actor model in IOS has been also used to manage existing MPI applica-
tions. For this purpose, the platform provides IOS/MPI proxy that implements
an actor emulation mechanism whereby MPI processes are viewed by the IOS

middleware as actors. This allows MPI processes to take advantage of the au-
tonomous nature of actors such as universal naming, asynchronous message
passing, and migration capabilities. The presented approach resembles the
previously discussed AC model which has also been used by Jade and TUNe
to manage software.

Model of deployment. The grid in IOS is considered as a set of resources
modelled as a graph where the vertices represent computational resources
and the edges represent the network connectivity between them. However,
the work focuses mainly on load balancing issues using the work stealing
approach. To be usable this approach requires that the execution environment
is prepared to run mobile actors a priori. As IOS concentrates on runtime
aspects of reconfiguration, the deployment problem not considered at all.
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Model of adaptation. IOS provides mechanisms that allow analysing pro-
filed application communication patterns, capturing the dynamics of the
underlying physical resources, and utilizing the profiled information to re-
configure application through migration or malleability. For runtime entity
reconfiguration IOS uses SALSA actors and the PCM library. The Process Check-
pointing and Migration (PCM) library enables dynamic reconfiguration of
iterative MPI programs by providing the necessary tools for checkpointing,
and migration.

From the user point of view the focus of IOS is on load balancing of
iterative applications. Reconfiguration in IOS has been designed to work
with the applications with regular distribution of data.40 The platform
provides different strategies for load balancing such as random work-stealing,
application and network topology sensitive work-stealing. However, the
proposed splitting and merging policies cannot directly be used for other
application models and non-uniform data distribution. Devising malleability
strategies for non-iterative applications is left for the future. Moreover, the
current PCM extensions do not consider multi-threaded MPI systems what
again limits the area of application for adaptive mechanisms offered by IOS.

2.6 Conclusions

With the increasing complexity and distribution of computer systems there is
also a growing demand for automatic and adaptive deployment tools. This
chapter reviewed state-of-the-art solutions in the area of software deployment
and adaptive software deployment. Although many efforts are undertaken to
resolve the issues involved in application and system deployment, they are
frequently limited in scope. Table 2.1 presents the area of major challenges
and which of these are met by the adaptive platforms presented in the
previous section.

Rich Component Model. One of the defining properties of components,
expressed by Szyperski in [119], is that they are units of independent de-
ployment. This implies that deployment platforms should operate on a
component level. However, the definition of ‘component’, or more precisely,
‘deployment unit’ differs substantially between these platforms. Jade/TUNe
operates on a legacy software which is managed by wrapper components
developed in Fractal, IOS is based on SALSA actors that resemble distributed
objects rather than components, Prism-MW proposes a simplified component
model which again is similar to distributed objects. In our opinion only GCM

40It supports block, cyclic, and block-cyclic data distribution models. More about this can
be found in [78].
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Table 2.1: Main challenges for adaptive deployment framework and how they are
met by existing solutions.

Jade/ GCM/ Target
Challenges IOS Prism TUNe ProActive ADF

rich component model X X XX XXX XXX

progr. languages independent – XX – X X

deployment dimensions spatial spatial spatial spatial spatial,
temporal,*
semantic*

open execution environments X – – X XXX

resource heterogeneity XXX X – – XX

resource description language – – – – XX

support for virtualization – – – X –

deployment automation – XX XX XX XXX

runtime reconfiguration X X X – XXX

user-defined adaptation policies – – – – X

standard-based – – X X XX

*support for this is limited to modelling only.

defines a component model that could be perceived as rich in distributed
environments. Our work is based on the competitive CCM model. The main
features supported by both CCM and GCM components are: multiple communi-
cation ports, different communication styles (synchronous RPC, asynchronous
event-based communication and data streaming), multi-threading, interoper-
ability,41 hierarchical composition.42 In this work we address the problem of
deployment in a selected rich component model.

Programming Languages Independent. All of the reviewed frameworks
were created in the Java language. This was also the main development
language for GCM/ProActive and Prism. However, GCM is a generic model
that could potentially be implemented in other languages, whereas selected
functionality of Prism-MW was implemented in C++, Python and other
programming languages. A deployment framework should promote interop-
erability between languages what increases its usability.

41Currently, interoperability of the GCM components is limited because the only existing
implementation is built in Java.

42Although CCM does not allow for explicit component aggregation, a hierarchy of compo-
nents can be created using the D&C packaging model.
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Deployment Dimensions. All of the presented platforms consider only spa-
tial dimension of deployment i.e. mapping of components to execution nodes.
Unfortunately, support for the other two dimensions is rarely present in
adaptive and non-adaptive platforms alike. Currently, we observe a growing
research interest in the area of semantic deployment and, therefore, expect
more solutions to become available in the near future. Support for differ-
ent deployment dimensions greatly increases applicability of a deployment
framework and, therefore, is a valuable feature. In this work we mainly
support the spatial deployment dimension, however, our deployment models
enable representing the other two dimensions.

Open Execution Environments. Deployment in distributed systems be-
comes especially interesting when the execution environment is not closed
and predictable but allows for resource sharing between different applica-
tions. Prism focuses on improving software availability in the presence of
connectivity loss and does not consider other applications running concur-
rently. Similarly, Jade and TUNe address the problem of reconfiguration
to face high loads and provide higher scalability. However, they focus on
adaptation of a single service only. Conversely, both IOS and GCM provide
tools to monitor execution environment in runtime and, therefore, can indi-
rectly support open environments. It is a desirable and useful feature, if an
adaptive deployment framework can support open environments.

Heterogeneity of Resources. This is one of the most important features of
a distributed execution environment. If all resources are homogeneous such
as in a cluster system, the problem of distributed deployment is simplified
to transferring software artifacts and executing software in a coordinated
manner. The key challenges in deployment, like complexity of deployment
planning, stem exactly from the resource heterogeneity. Among the reviewed
platforms only IOS considered this issue in depth. In Prism heterogeneity of
resources is also discussed but the solution is limited to memory resources
only. A deployment framework targeted at distributed systems should tackle
heterogeneity of resource lest it become a limitation of usability.

Resource Description Language. One of the most developed models of
resources CIM has been proposed by DMTF for more than ten years. Neverthe-
less, none of the platforms use resource description languages to represent
application requirements and resource capabilities in a consistent manner.
This feature of a deployment platform is especially important in case of the
model-based approach. Then use of a proper description language increases
portability of application and execution environment descriptors. The same
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application package can be deployed in different environments and the same
environment can be used to host different applications.

Support for Virtualization. Virtualization in software deployment is a
relatively new concept. On the one hand it can greatly improve usability
of a deployment platform, on the other hand it increases its complexity.
Among the reviewed platforms only GCM/ProActive considers virtualization
in deployment. However, the notion of VirtualNode is only a limited view
on the potential value hidden in software deployment in virtualized systems.

Deployment Automation. To conduct proper deployment adaptation it is
needed to ensure automation of substantial part of the deployment process.
This includes at least the installation, activation and reconfiguration activities.
Most of the reviewed platforms offered automation of these steps excluding,
however, initial deployment planning. Only Prism provided tools to ease
initial deployment planning, however, they needed human intervention. Our
goal is to automatize this three aforementioned steps such that given merely
a software and environment description it is possible to launch and adapt
application deployment.

Runtime Reconfiguration. Except from GCM/ProActive all other platforms
deliver tools for runtime application reconfiguration. In case of IOS and
Prism-MW it is the runtime migration mechanism, whereas Jade/TUNe
allows changing component attributes or bindings between them what can
reflect itself as e.g. add or remove a software replica. The GCM/ProActive
platform does not offer runtime reconfiguration mechanisms. Despite the
fact that ProActive enables object migration this feature is not available at
higher, GCM component level. It is a real challenge to support advanced
reconfiguration mechanisms such as migration in rich component models
represented by CCM or GCM.

User-defined Adaptation Policies. The reviewed platforms do not allow
users to control how the adaptation is performed. Instead, they propose a
set of algorithms that improve certain aspects of application behaviour in a
predefined way. For example, Prism addresses application availability using
three deployment planning algorithms that satisfy the constraints posed by
memory and restrictions on the locations of software components. IOS offers
a set of work stealing algorithms to control system reconfiguration. However,
devising fully autonomic adaptation algorithms that would fit any application
and environment seems to be hardly possible. Therefore, to improve usability
of adaptation the underlying algorithms should enable users to take part in
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the decision process. We aim to provide users with some interface to control
the adaptation process.

Standard-based solution. Often the existing deployment platforms pro-
pose their own architecture description languages, resource description lan-
guages and deployment models. Currently, however, there exist well defined
standards that can and should be used instead of resolving the same prob-
lems again and again. For example, using a common resource representation
proposed by the CIM standard allows avoiding naming coordination problems
and improves reuse of application and environment models. It is desirable
yet not always simple to adhere to the existing standards. However, to in-
crease portability a deployment framework should promote standard-based
development.

* * *

The presented analysis shows the inherent complexity of the software
deployment problem in distributed environments. Currently, two major
trends trying to escape from deployment intricacies are visible. Firstly, raising
hopes are reposed in Software as a Service (SaaS), cloud computing and the
“mashup” approach. Secondly, software is more and more often delivered as
a black box containing a virtual image of the whole software stack from an
operating system to a user application.

We argue that neither of these approaches does not really solve the
problem. To effectively deliver reliable services and reliable software a
comprehensive deployment platform has to be provided. We cannot simply
avoid service deployment in SaaS leaving it as a providers’ issue. Providers
need tools to automatically deploy the service and more, they need tools
which can easily adapt to current users’ needs and resource availability.
However, even if we assume the services are ‘there’, and the providers have
ensured to run and maintain them, a challenge which immediately appears
is the planning in the semantic dimension. One of the questions it raises
is how from the set of equivalent services choose these which are the most
appropriate from the user standpoint.

Delivering software in the form of a virtual image has also many draw-
backs. From a customer point of view it eliminates the problem of assembling
software into a complete application. However, an image has to be preconfig-
ured and, therefore, can satisfy needs of only a certain subset of customers.
For others, different software configurations should be offered what ulti-
mately leads to a vast number of virtual images each of which enclosing a
distinct combination of configuration settings. Maintenance of such a library
of images is a significant effort. Additionally, this full-stack delivery does
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not promote proper software sharing and may waste a lot of resources at a
consumer site.

Instead of evading the issues connected with software deployment, in this
work we analyse the needs and propose a solution to the deployment problem
addressing requirements of component-based distributed applications.



Chapter 3

Towards Adaptive Software
Deployment

The previous chapter has outlined the main challenges in the area of software
deployment. Many of them remain open, hence to bridge this gap we propose
the adaptive approach to deployment. We argue that adaptive reconfiguration
of software deployment is the key feature that enable effective execution of
distributed systems. In the case of static approach, the initial deployment,
even if well suited, is not sufficient to follow inevitable changes in application
workload and resource availability and may quickly deteriorate. Conversely,
adaptation of deployment makes the software able to react to the changes. It
also allows for simplification in application and environment definition by
avoiding the need to include dynamic resources in their descriptors.

In this chapter we present the overall concept of our adaptive deployment
platform for distributed systems. Our discussion concentrates around the
following key aspects (Fig. 3.1):

• plain deployment platform

– component-based application design,

– distributed application and execution environment,

– planning dimensions,

– virtualization,

• adaptive deployment platform,

– resource monitoring and management,

– application monitoring and management,

– runtime deployment planning.

59
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Figure 3.1: The key aspects leading towards the adaptive software deployment
platform.

To develop our concept we leveraged the existing knowledge in the area of
software deployment and based the solution on the Deployment and Configu-
ration of Component-based Applications (D&C) specification and the Common
Information Model (CIM) schema. Both deliver a very general models that
are pivotal to software deployment. The D&C specification standardizes many
aspects of component deployment including: component configuration, as-
sembling, packaging, package configuration and deployment. Dearle1 in [29]
characterized it as “perhaps the most complete attempt to define a deploy-
ment and configuration standard.” The strength of D&C is in its compliance
with the Model Driven Architecture (MDA) approach. It defines a Platform
Independent Model and allows for its further customization with Platform
Specific Models.2 D&C follows the idea that in general the deployment process
remains the same independently of the underlying technology of software
realization. The CIM schema provides a definition for resource representation
that alleviates problems with coordination of resource descriptions. For exam-
ple, some systems could report its processor name as “Intel(R) Pentium(R) 4
CPU 2.66GHz”, whereas others would describe the same CPU as “Pentium(R)
4”. This mismatch in description results in problems with deployment plan-
ning because it is often not obvious how to verify if a particular requirement
can be satisfied by available resources. Kotsovinos noticed in [70] that most
distributed deployment platforms either do not tackle the naming coordina-
tion problem, or address it by allowing only specific resources to be declared.
We ensure portability of application and environment descriptions using a
well established resource representation schema defined by CIM.

1The author is, inter alia, a co-editor of the Proceedings of Third International Conference
on Component Deployment, Grenoble, France, November 2005 [30].

2For example, a PSM for CCM is defined in [103, Chap. 14].
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3.1 Plain Deployment Platform

For many basic activities an adaptive deployment platform requires support
from the plain deployment infrastructure. Therefore, first we present the key
points that have the major influence on the overall concept of our adaptive
deployment platform.

3.1.1 Support for Component-based Applications

Currently, we are surrounded by various software technologies offering differ-
ent meanings for the term ‘component’, therefore, it is important to present
the definition which we adopted in this work. Szyperski in [119] presents
three defining properties of software components — they are units of: com-
position, state encapsulation, and independent deployment. The same three
properties can be found in the definition provided by the D&C specification
which is one used in our work. It describes a component as:

a modular part of a system that encapsulates its contents and whose
manifestation is replaceable within its environment. A component
defines its behaviour in terms of provided and required interfaces.
As such, a component serves as a type, whose conformance is
defined by these provided and required interfaces.

Modularity is the property which guarantees that application is not a large
black-box but a composition of smaller elements. Each of these elements
encapsulates a part of the application code and possibly state when the
application is running. Lastly, the property of being replaceable not only
indicates the ability to be replaced by other components e.g. provided by
different vendors but also enables independent deployment. If a single
component can be replaced in the whole application, it implies that this
component can be independently deployed.

Apart from these three key component properties, the other important de-
tail in the presented definition is the specification of component’s behaviour
in terms of provided and required interfaces. This manifests itself by: (1)
creating clear boundaries of a component, (2) separating a component from
its execution context, (3) enabling its replaceability and (4) ability to express
dependencies between components in a well defined form. The last property
is valuable because many of the existing deployment solutions, even if con-
sidering an application as a set of software components, distinguish them
merely by reference to its name and/or version.3 Nonetheless, for adaptive

3To name some examples: InstallAnywhere, Java Network Launching Protocol, N1 SPS,
Solution Deployment Descriptor, SmartFrog, Microsoft Installer.
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Figure 3.2: The global view on deployment activities.

deployment even more significant is separation between a component and
its execution context. It facilitates creating a highly transparent adaptation
mechanism. Our main idea is to keep as much of the adaptation infrastruc-
ture as possible out of the component business code and free developers
from their intricacies. For example, to monitor intensity of communication
between components we would like to intercept the traffic in a components’
container such that the components were unaware of the estimation being in
progress. Similarly, to move a component between execution nodes most of
the migration details should be hidden from programmers.

3.1.2 Support for Deployment in Distributed Systems

In order to deploy software in distributed execution environments the general
definition of the deployment process presented earlier in Sect. 2.1 needs to
be supplemented with additional details. Deployment in distributed environ-
ments can be split onto two abstraction levels: global and local. Globally, it
encompasses all activities that involve application or target environment as
a whole. For example, planning of component distribution in the execution
environment is the activity that needs to be done at the global scale. It
refers to every application component and decides where in the environment
would be the best to run it. Locally, software deployment involves a single
execution node and only these application components which were assigned
to it. In this case deployment planning may need e.g. to determine how many
containers are necessary for the components to satisfy their configuration
requirements. Differences between these two levels are depicted in Fig. 3.2
and 3.3.

As presented in Fig. 3.2, deployment performed at the global level
includes most of the defined earlier activities. Moreover, their meaning
is largely consistent with the provided definition except for Prepare and
Instantiate steps. At the global level software installation and reconfigura-
tion activities coordinate rather than perform preparation, which is actually
done at the local level. Similarly, after the preparation step and during
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Figure 3.3: The local view on deployment activities.

activation the instantiation of components is also delegated to the proper
execution nodes.

At the local level the deployment process is simplified and meaning of
its activities is slightly different because it depends on the kind of the target
execution environment. First, as shown in Fig. 3.3, it does not embrace
Retrieve and Remove activities. They are done at the global level only.
The former refers to transferring software from a producer’s site to a con-
sumer’s global repository where it is configured, whereas the latter removes
the software from the repository. Second, installation does not pertain to
the whole environment but only a single execution node. In the case of
middleware-based execution environment, which is considered in this work,
planning at the local level determines containers required to run software
components. Next, the preparation step involves running the containers to
make the environment ready to instantiate the components. Later, activa-
tion refers to running the software components on the node and performs
local component binding. The Bind deployment step is also present at the
global level where it refers to binding components between execution nodes.
Similarly, the Reconfigure activity is present on the global and local levels.
Locally, however, it refers to changes within a single execution node such as
e.g. creating a separate container in the case of high workload to make better
use of multicore CPU architecture. The global and local separation of recon-
figuration very well corresponds with the hierarchical approach proposed by
Autonomic Computing.

Another aspect relevant to deployment in distributed systems is the
automation of this process. As discussed earlier in Sect. 2.2.2, three major
solutions to this problem are:

• script-based deployment,

• language-based deployment, and

• model-based deployment.
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Figure 3.4: Separation between models of the software application and execution
environment enables automatic planning.

For adaptive software deployment, however, only the model-based approach
is suitable. It enables full automation of the planning phase, whereas the
other two solutions would require human intervention in preparing appropri-
ate scripts or deployment descriptors. The key feature of the model-based
deployment that enables automation is in creating two separate models that
describe software application and execution environment. Provided this,
planning can automatically match elements of these models (Fig. 3.4). How
in detail this matching is done, however, depends on planning dimensions
considered e.g. in the case of spatial deployment it refers to looking for
“the best” execution node to run a software component. The next section
discusses this aspect more thoroughly.

3.1.3 Support for Deployment Planning Dimensions

Planning dimensions, which we defined in the previous chapter (Sect. 2.3.2),
are especially related to model-based deployment. They enable addressing
certain deployment characteristics that cannot be pre-programmed (e.g. using
a scripting language) but must be expressed in a declarative way. Usually
however, the existing deployment models focus on the spatial dimension only,
which is important but alone does not allow for more elaborate temporal and
semantic dependencies. Using only spatial deployment a planner may not
be able to tackle problems such as execution ordering or using an existing
service instead of creating a new component instance.

The concept of our adaptive deployment platform includes model-based
deployment in all three dimensions defined earlier. This enables fully au-
tomatic planning and opens way to implement comprehensive deployment
tools for distributed component-based applications. Appendix C describes our
extensions to the D&C specification required to model deployment planning
in all dimensions discussed in this section.
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Figure 3.5: General view on the spatial planning dimension.

Spatial Deployment Planning

In order to plan software deployment in the spatial dimension two inputs are
required (Fig. 3.5). On the one side, a planner needs an application model
consisting of software components that are connected using their provided
and required interfaces. Both the components and the connections declare
resource requirements that must/should be satisfied by the environment. On
the other side, the planner needs a model of target environment consisting of
execution nodes that are interconnected with network links and bridges. All
environment elements declare resources that can be offered to components
and their connections.

Planning of deployment in the spatial dimension tries to find “the best”
assignment of each application component to an execution node taking into
account requirements of the component itself and all its connections. For the
planner to do the proper matching both requirements and resources need to
be described in the same resource description language (the CIM schema can
well be used for this purpose). The output from the planner is a deployment
plan that defines the assignments for all components and connections. Each
component instance in the deployment plan is matched with exactly one
execution node, whereas a connection may traverse multiple interconnects
and bridges.



3. TOWARDS ADAPTIVE SOFTWARE DEPLOYMENT 66

Application Model
Common Service Description Language

Common Capabilities Description Language

semantic 
planning

Instance 
Deployment
Description

Deployment 
Plan

Description

Component 
Instance

Description

Requirement

Application
Description

Capabilities

Running 
Service 

Description

1 Running 
Service 

Description

Service Model

Figure 3.6: General view on the semantic planning dimension.

Semantic Deployment Planning

The basic elements needed for semantic planning are twofold: (1) an applica-
tion model including component requirements and (2) a service description
comprising its capabilities (Fig. 3.6). Descriptions of a component instance
and a service allow for matching functional features i.e. to determine seman-
tic equivalence between them, whereas non-functional characteristics such
as mean response time or a number of processed transactions per second
are expressed by requirements and capabilities. Planning in the semantic
dimension tries to find “the best” available service that can be used as an
application component. However, the planner to be able to match between
component and services needs proper description languages such as IDL or
WSDL for functional description and e.g. “UML Profile for Modelling QoS and
Fault Tolerance Characteristics and Mechanisms” [104] for non-functional
description. The output from the semantic planner is a deployment plan that
for each application component provides a reference to a running service.

A service is usually a black-box entity which internal structure is only
rarely disclosed. From the point of view of the planner, services can be as-
sessed merely by observing their exposed features and behaviour. Therefore,
the model required to plan deployment in the semantic dimension is simpli-
fied when compared to the spatial dimension. Complexity of the semantic
planning is, however, comparable to planning in the spatial dimension.4

4To prove this it is enough to notice that for each application component: (a) every
machine that hosts a semantically equivalent service could be a potential execution node
for that component and (b) every potential execution node with the component deployed
becomes an available service to be considered by the semantic planner.
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Temporal Deployment Planning

In order to support the temporal deployment planning we propose a simple
solution based on the work from the job scheduling area [3, 85, 107, 113].
On the one side, the planning uses the temporal collocation structure that
enables creating order of deployment actions, on the other side it is related
to some resource and/or capabilities available in the execution environment
(Fig. 3.7). The result of planning in the temporal dimension is a plan than
comprises temporal collocations between components modified according
to the constraints implied by matching requirements to resources and/or
capabilities. In the same time the temporal collocations from the plan are
consistent with the deployment order defined in the application model.

We distinguished three kinds of temporal collocations. The StartTo-
Start and FinishToFinish allow creating synchronization barriers, whereas
FinishToStart provides means to create deployment task sequences. Using
these collocation kinds5 together with temporal collocation structures, a
packager and planner can easily represent a broad range of Direct Acyclic
Graphs modelling relations between deployment of component instances. In
Fig. 3.8 we present an example of an application with such dependencies.
The collocation structures bind together a number of component instances
with a selected collocation kind.

5All of them are borrowed from the project management discipline where they are used in
defining task dependencies.
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Figure 3.8: A sample application with temporal deployment dependencies repre-
sented (a) as a DAG and (b) using the TemporalCollocation structures;
the numbers in red show a viable sequence of deployment tasks.

Purely temporal dimension planning operates on a single machine what
effectively becomes equivalent to the local task scheduling problem. When
combined with other dimensions it considers resources of execution nodes
and/or capabilities of available services and address the problem of dis-
tributed job scheduling. It is important to note, however, that temporal
deployment planning is not a way to achieve processing of workflows and
should not be compared to approaches such as Spatio-Temporal Component
Model (STCM) proposed in [11]. This is because the intention of a deploy-
ment engine is not to participate in data flow between components but only
to instantiate and interconnect them according to a specified order. Workflow
modelling languages aim at offering fine-grained structures that create a
Turing-complete language,6 whereas our intention is for the temporal deploy-
ment planning to operate on coarse-grained deployment activities (such as
Prepare, Instantiate, Bind).

Apart from the deployment model, which is relatively easy to equip
with structures for modelling temporal dependencies, an important issue is
also plan realization. Execution of a plan comprising temporal collocations
requires a significant change in a plan executor facility. When the spatial or
semantic deployment planning are considered the plan executor can be a
passive entity that simply instantiates and binds application components in
reaction to user requests. Conversely, temporal deployment requires not only
the executor to start and stop component instances but also a mechanism
to constantly monitor current components’ status. Only, in reaction to the
changes in components’ deployment states can the plan executor enforce

6For example, a widely accepted Business Process Execution Language (BPEL) is considered
to be Turing-complete [40].
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appropriate deployment order. Later in this work we present a mechanism
enabling realization of temporal deployment plans.

3.1.4 Support for Virtualization

Virtualization is very common in contemporary computer systems and, there-
fore, becomes an important aspect that any deployment framework should
consider. At least two major benefits stem from supporting virtualization in
the deployment process. Firstly, it can isolate resources between applications
making the execution environment more predictable what, in consequence,
simplifies the planning problem. Secondly, it gives measures to configure
and manage software systems in more granular way what enables interesting
adaptation techniques. However, this is also an earnest endeavour to imple-
ment an infrastructure that enables distributed deployment on many different
virtualization levels. In this section we shortly present the main issues that
need to be addressed to consider virtualization in the distributed deployment
process. More detailed discussion would require separate, extensive research
which is out of the scope of this work.

Proper description of an execution environment is an essential part of a de-
ployment framework, especially now with the advent of system virtualization
techniques such as VMWare,7 Xen8 and Solaris Containers.9 Virtualization
may express itself not only on the operating system layer, though. A web
application server can host a Java Enterprise Edition (JEE) application, a
database server can host a data table, and a JVM process can host a Java
application. Virtually anything that can receive an installable object may
be considered an execution environment [62]. Consequently, a deployment
platform needs to have the ability to support this feature of software systems
which sometimes are perceived as software components and sometimes as
an execution environment (Fig. 3.9).

Unfortunately, to the best of our knowledge, none of the existing ADLs

support describing virtualized distributed systems. Usually, they provide a
simple two-layered model with a component-based application being de-
ployed over a distributed execution environment. Although the application
models often allow creating recursive component hierarchies of arbitrary
depth (e.g. D&C, Fractal), this kind of recursion is related to the same, single
virtualization level. We term it horizontal component aggregation. Only the
Solution Deployment Descriptor specification [92] addresses multilayered
environments but it is limited to non-distributed systems.10

7http://www.vmware.org
8http://www.xensource.org
9http://www.sun.com/software/solaris/virtualization.jsp

10SDD provides “ability to describe software solution packages for both single and multi-
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Figure 3.9: The multilayer structure of deployment models in virtualized environ-
ments.

As proposed in our previous work [16] it is possible to divide execution
environment on several virtualization layers. Table 3.1 presents some of the
most common levels and proposes appropriate mapping for selected types
of execution nodes and related software components. This relation means
that the node at the selected level can host components of the related kind.
In other words, the component can be deployed on the corresponding node.
The table is by no means complete and may further be extended in case
of more sophisticated execution environments. For example, having hosts
equipped with Solaris 10 OS we could add the project level just between the
operating system and process levels.11

Following we present a brief discussion on the factors that need to be
explored when designing a deployment model for distributed virtualized
environments. More detailed analysis requires a separate extensive research
and is out of scope of this work.

recursive execution environment — due to multilayered structure of vir-
tualized systems the environment model may not only describe a flat
structure of execution nodes and network connections but needs to be
made recursive. In this way it will be possible to model all the nested
virtual layers in the environment,

vertical component aggregation — a natural consequence of the recursive

platform heterogeneous environments”. However, it does not allow for modelling network
environments. Support for multi-platform systems manifests itself in the ability to include in
a SDD package different versions of the software, each designated for different platform.

11Solaris projects group processes into a manageable entities controlled by Resource API.
Therefore, an OS administrator is able to control access to resources for all processes included
in a project at once.
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Table 3.1: An example of mapping of an execution node and software component
entities for selected virtualization levels.

Virtualization Level Execution Node Component

4 sub-process component container CORBA component

3 process component server CCM container

2 operating system OS instance CCM comp. server

1 OS virt. layer hypervisor OS instance

0 computer host OS instance

execution environment model is recursion in the application model, too.
However, the widely accepted horizontal component aggregation is not
enough to address different virtualization layers. It only allows hiding
an internal structure of a component behind a well defined high-level
component interface. Apart from this, there is a need for expressing
hosting–hosted relations in order to model container–component-like
dependencies,

automation of deployment — given the recursive definition of the execu-
tion environment and application the question is how to automatically
deploy subsequent software layers of this environment. Provided that
at an appropriate virtualization level a node can be seen as a compo-
nent instance (c.f. Tab. 3.1) it seems possible to exploit the deployment
platform to perform on-demand deployment on all subsequent levels
starting from the lowest level defined,

classification of virtualized nodes — enabling recursion in the environ-
ment model, nodes can be nested one in another. Unfortunately, het-
erogeneity of distributed systems allows that different hosts can have
different number of virtualization layers and different layers can host
different component types. Consequently, to enable automatic plan-
ning, a deployment planner must have means to distinguish between
different node types.

The issues presented above do not exhaust the problem of support for virtu-
alization in application deployment but only reveal complexity of the subject.
There are many other more detailed issues like resource representation or
locality constraints, which we do not discuss here as virtualization is not the
main topic of this work. Indeed, support for virtualization in deployment is
an interesting research area that is worth closer investigation.
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3.2 Support for Adaptation

The basic approach to model-based application deployment assumes off-line
spatial planning and static deployment of components over a target execution
environment. Our extensions proposed in the previous sections of this
chapter extend this basic approach enabling deployment planning in temporal
and semantic dimensions. We discussed also deployment in multi-layered
virtualized environments. However, in the case of open heterogeneous and
distributed systems the discussed extensions to the model are still inadequate.
Following is the summary of the main issues that need to be considered as
well:

• sharing of resources between different applications or different com-
ponents of the same application makes the execution environment
constantly changing what hampers precise description of the execution
nodes and makes static deployment planning fragile,

• requirements of application components often depend on some external
variables such as the number of users connected or the amount of
input data, which usually cannot be foreseen before and even during
application execution,

• high complexity of the deployment planning problem makes exact plan-
ning impossible in real case scenarios when the number of components
and execution nodes easily exceeds ten.

In result, static deployment over open distributed execution environments is
a difficult problem and may easily lead to poor application performance or
inefficient resource consumption. To overcome this we enrich the deployment
model with elements that enable compositional adaptation of applications.
We follow the assumption presented by Maghraoui in [83] that reconfigurable
systems enjoy higher application performance because they improve system
utilization by allowing more flexible and efficient resource usage.

3.2.1 Requirements for Adaptive Deployment

We based our solution to adaptive deployment of component-based applica-
tions on the two paradigms presented earlier in Chap. 2: the architectural
reflection and autonomic computing. The reflection leads to separate an
application and execution environment from their self-representation and to
provide appropriate observation and manipulation interfaces. The autonomic
computing enables binding the observation and manipulation tools with the
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MAPE control loop that hides low-level deployment tasks behind a high-level
management interface.

The plain software deployment build upon the model-based approach pro-
vides means to create self-representation of an application and environment.
However, to achieve their proper observation, manipulation and autonomic
management additional mechanisms are required:

• monitoring of an execution environment that uses the appropriate
language to describe the environment and its resources. In the case
of heterogeneous systems this is difficult to achieve, although some
activities trying to resolve issues in this area are coordinated and
standardized by DMTF forum defining the Common Information Model,

• monitoring of running applications that uses the appropriate language
to describe an application and its requirements. It is essential for this
language to be compatible with the resource description language,
otherwise it may disable deployment planning. Moreover, it is desirable
for monitoring to be transparent to applications to prevent monitoring
aspects being entangled with the application business code,

• redeployment mechanisms that enable application reconfiguration. The
availability of these mechanisms to high extent determines flexibility
and strength of the adaptation process,

• adaptation algorithms controlling the process of deployment planning
by realizing deployment strategies and taking into account user-defined
goals.

The following sections discuss these requirements in more details.

3.2.2 Monitoring Facilities

A lot of work has already been done in the area of monitoring and many tools
and solutions are ready to use. For this reason, in the course of research we fo-
cused on analysis and selection of a technology that would best fit an adaptive
deployment in heterogeneous environments. As mentioned earlier, the choice
we made was to use the standards proposed by DMTF i.e. CIM that together
with WBEM offer a portable solution to monitor and manage distributed sys-
tems. CIM defines a conceptual information model for describing computing
and business entities in a distributed environment. It attempts to unify and
extend the existing instrumentation and management standards like Simple
Network Management Protocol (SNMP), Desktop Management Interface (DMI)
andCommon Management Information Protocol (CMIP). WBEM, in addition,
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aims at unifying the management of enterprise computing environments
using a set of standard Internet technologies like HTTP, XML and DTD [33].

The strong side of these standards and implementing tools is in their
availability across different operating systems such as MS Windows, Linux
and Solaris. In result, we can use the CIM model as a common vocabulary
to describe target environment resources irrespective of their hardware and
software platform. Using this language we can also express application
requirements. The problem that remains unresolved is, however, monitoring
of applications. As long as the CIM model is considered the application
monitoring is limited to J2EE application only. Therefore, to address the
problem of application monitoring additional extensions and development
effort are required.

3.2.3 Reconfiguration Mechanisms

The actual set of reconfiguration mechanisms needed for adaptive deploy-
ment depends on the way how software redeployment is performed. Fig-
ure 3.10 presents the state diagram of the adaptive deployment process with
highlighted four possible redeployment techniques. This process may be
applied to the software application as a whole, to a group of application
components or even to each component separately. If the state is changed
for the whole application, this implies that all components change their state
accordingly. However, the change in a state of a single component does not
imply any changes in the overall application state.

In the diagram we highlighted activity paths that are part of application
adaptation on different deployment stages.12 We distinguish four levels of
deployment adaptation:

Full redeployment is the most basic form of adaptation. To perform full re-
deployment a running application has to be deactivated and uninstalled.
Then planning can occur that takes into account current execution con-
ditions and an adaptation strategy. Once the new plan is ready, all
application components are again installed and activated. This kind of
adaptive deployment can be easily performed with either manual or
automatic deployment tools. Unfortunately, the need to deactivate and
uninstall the whole application is often too restrictive making this com-
mon redeployment technique of limited use for adaptive deployment.

12When compared to the activity diagrams presented earlier in Figs. 3.2 and 3.3, this
diagram contains an additional Passivate activity (leading to the Passivated state). It is
absent in the previous activity diagrams to make them more comprehensible and also because
passivation is more important during redeployment than during the deployment process in
general.
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Figure 3.10: The state diagram of the adaptive deployment process with four adap-
tation techniques highlighted: full redeployment (continuous line), deep
redeployment (long-dashed line), shallow redeployment (short-dashed
line) and runtime redeployment (dotted line).

Deep redeployment is very similar to the full redeployment technique. The
improvement stems from the fact that deep redeployment does not
perform uninstallation step but only deactivates the application. Once
all component instances are destroyed (with or without preserving
their state) a new plan is prepared. For the components which location
has changed installation takes place, then all components are activated.
In this way some Uninstall actions are avoided but for the cost of
higher resource consumption.
Similarly to the full redeployment, this technique may enable less
invasive application reconfiguration if some tools for state preservation
are used. Still, however, the need for deactivation poses noticeable
interruptions in application execution.

Shallow redeployment is more conservative technique because it does not
deactivate an application at all. To perform shallow redeployment the
application is suspended preserving its current state. Then required
changes in deployment plan are applied and the components that need
to be relocated are installed and activated in their new locations.
For this technique, component state preservation is mandatory. Other-
wise, activation would result in state inconsistency between relocated
and not relocated components. Moreover, shallow redeployment re-
quires a mechanism for component rebinding because all relocated
components need to be bound again with their neighbours.
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Runtime redeployment is the most seamless adaptation technique. It aims
at performing adaptation without even suspending the application.
Plan changes are applied in runtime what requires more sophisticated
mechanisms than simple state preservation.
In [14, 15] we distinguish two complementary runtime redeployment
mechanisms. First, component migration combines several lower-level
tools like: component passivation, state preservation and links rebind-
ing. All these to provide a mechanism that is able to move particular
components from place to place suspending only the minimal part
of the application. The main idea behind the second mechanism —
virtual redeployment — is to make use of system virtualization layer
in order to modify the parameters of the execution environment. This
allows imposing changes that from the application point of view can be
identical to changing components’ actual location but do not require
any component suspension.

The presented redeployment techniques need that the infrastructure provides
some of the following low-level reconfiguration mechanisms:

• state preservation,

• passivation,

• link rebinding,

• runtime migration,

• virtual redeployment.

The key mechanism is the ability to store and load the application runtime
state. This may be applied irrespective of the technique used and determines
how seamless reconfiguration can be. Provided with a state preservation
even full redeployment technique can create illusion of runtime reconfigu-
ration. From the point of view of external clients, this view is somewhat
blurred because when contacting deactivated application they receive an
error. Nevertheless, from the application point of view, state preservation in
full and deep redeployment is visible as runtime reconfiguration, provided
that the time scale is not considered.

In order to avoid the problem of application availability and to improve
external experience of the reconfiguration process, passivation mechanism
can be used. The ability to suspend the application or selected components
not only helps to alleviate communication problems but also decreases time
needed for the reconfiguration. First, if a component is passivated, the
communication infrastructure can hold all incoming requests and issue them
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later when it becomes active. Second, it is also much more effective to switch
a component state from passivated to activated than to instantiate and bind
it after deactivation.

Link rebinding is the mechanisms that is required for shallow and run-
time redeployment. When some components change their location while
they neighbours are still instantiated, they need to be reconnected. Three
rebinding techniques exists: deep update, chain of reference and use of home
location agent. A proper combination of the passivation, state preservation
and link rebinding makes basis for another important reconfiguration mech-
anism — runtime component migration. Later in this work we show how
migration can effectively support runtime redeployment and also we discuss
all the basic mechanisms in more details.

A different way to achieve runtime redeployment is to make use of a
system virtualization layer by means of virtual redeployment. Unfortunately,
virtual redeployment to be effective requires fine-grained isolation of ap-
plication components. It is ideally when each component is running in a
separate manageable container. Then, controlling resources of this container
enables the virtual redeployment of the hosted component. Otherwise, the
redeployment mechanism operates on a group of components what is not
always desirable.

3.2.4 Adaptation Control Loop

Provided with monitoring facilities and reconfiguration mechanisms we now
can follow the Autonomic Computing paradigm and focus on the remaining
two steps of its MAPE control loop: analyse and planning. In relation to the
software deployment the AC analyse step is actually deployment planning
and the AC planning step is the way how adaptation manager implements
the newly prepared deployment plan. The latter largely depends on the
reconfiguration mechanisms available and is rather a technical problem. The
former requires much more attention though.

The goal of the analyse step is to reason about monitoring observations
that arrive constantly and prepare a new deployment plan. Unfortunately,
deployment planning is a NP-hard problem, hence we cannot afford that every
iteration of the MAPE control loop would run an exact planning algorithm.
Instead, an approximate algorithm is required. The algorithm needs to be
responsive enough to follow and properly react to the changes in environment
and application. Moreover, due to iterative nature of the adaptation process
it is desirable for the algorithm to improve its results iteratively, too. We
propose a solution based on force-directed methods that exhibit many useful
features in relation to adaptive deployment planning. Later in this work we
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discuss a family of Force-Directed Algorithms and present our approach to
the runtime deployment planning problem.

3.3 Summary

This chapter has presented the main elements that are part of our concept
of adaptive deployment framework. The discussion has been grounded in
the model-based approach to deployment which enables fully automatic
planning and hence allows for adaptive application deployment. Model-
based deployment assumes component design of software what very well fits
with our adaptive deployment framework. Separation between a software
component and its execution context facilitates achieving transparency of the
framework. Much of the infrastructure can be embedded in the components’
context leaving business code untouched.

We have pointed at the need for standard resource and requirement
description language and propose to use the CIM model. It can be used in
static description of environment resources and application requirements as
well as in dynamic resource monitoring. Another important issue is to provide
reconfiguration mechanisms that enable deployment adaptation. We have
presented four levels of redeployment and showed how state preservation,
component passivation, and other basic mechanisms are useful to achieve
them. Finally, the issue of control loop for adaptive planning has been briefly
introduced while a more in depth discussion is presented further in this work.

Apart from adaptation in deployment, we have also shortly presented
two interesting research areas closely related to model-based deployment:
planning in temporal and semantic dimensions, and influence of system
virtualization on a deployment model. Although they are not the main
focus of this work, both these aspects are important when deployment
in heterogeneous distributed systems is considered. We believe that with
growing interest in application deployment also these issues will be addressed
by future deployment models and solutions.



Chapter 4

Adaptive Deployment
Framework

In the previous chapters we outlined that adaptation is the only choice to
perform effective software deployment in open distributed computer systems.
Due to variability of execution environment resources and variability of
application requirements the static approach to deployment is inadequate.
To build an adaptive deployment framework for such systems, however,
a number of issues needs to be considered. We discussed them in the
previous chapter, whereas further in this work we describe a framework that
implements selected aspects of the presented concept.

The framework implementation has been divided on the following three
phases identified in the course of realization:

• building a plain deployment infrastructure that implements the model-
based deployment,1

• devising planning algorithms and creating a deployment planner,

• building an adaptation infrastructure comprising of monitoring, recon-
figuration and runtime planning mechanisms.

Each of these tasks is in itself a complex and challenging undertaking and it
seems hardly possible to create a comprehensive framework that provides
all of them in an exhaustive manner. Therefore, our implementation of the
framework is a proof of concept showing that the proposed solution can
be realized and successfully used for deployment adaptation. One of the
important limitations of the framework is support for spatial deployment

1Unfortunately, OpenCCM — the component platform we used to implement the frame-
work does not provide this infrastructure.

79
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planning only. The problem of deployment planning in all three dimensions
is, however, difficult and would require a separate extensive research.

Before discussing the details of the framework implementation we briefly
present the technologies selected to realize the platform what had significant
influence on its implementation.

4.1 The Model of Deployable Components

From the variety of available software component technologies for distributed
systems (such as CCM, EJB, Fractal, GCM, SCA) we selected the CORBA Com-
ponent Model (CCM) proposed by OMG in [103]. This technology, although
not attained popularity, offers many strong and valuable features that are
important for distributed component-based software systems in general and
deployment frameworks in particular. CCM inherently realizes such design
patterns as dependency injection,2 late binding, two-phase initialization,
event-driven programming, clear separation between a component and its
execution context and many others. Actually, the CCM combined with PSM

for CCM defined in the D&C specification is, in our opinion, one of the most
advanced component models designed to support communication, software
development and deployment in heterogeneous, distributed systems.

The basis for the model is a software component entity (Fig. 4.1) that
defines its behaviour with provided and required ports. Ports enable con-
necting that can be thought of as a “bus” with multiple ports putting data on
the bus, and multiple ports taking data off the bus [99]. Although currently
ports are a common feature of many other component technologies, what
distinguishes CCM is that they serve for three basic and disparate types of
communication. Facets and receptacles are used for synchronous operational
invocations, event publishers and consumers are used for asynchronous event
communication. Lastly, stream sources and sinks are used for transferring
continuous data streams. We believe that this particular characteristic of
the CCM model makes it very attractive for both application designers and
developers. Unfortunately, tight relation to complex and declining CORBA

technology makes the model of less impact on software technology today.

A number of work has been devoted to the CCM technology [89, 125, 126]
and deployment of CCM-based applications [6, 31, 74]. Therefore, we limit
our discussion to point out only the most important characteristics that
decided on our choice of CCM as the technology for realization of adaptation
framework:

2Martin Fowler in [50] discusses inversion of control and its special case — dependency
injection.
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Figure 4.1: Illustration of the general concept of a component in the CCM model.

• CCM defines a general and “strong” components model for distributed
systems what makes implementing the adaptive deployment framework
an interesting and challenging task,

• the CCM model offers communication transparency and potential diver-
sity of implementation technologies. This is important when realizing
deployment in heterogeneous environments as most of them already
support the CORBA standard,

• the D&C specification provides for the CCM model a transformation from
the Platform Independent Model to the Platform Specific Model what
facilitates implementation,

• there exist several open source platforms implementing the CCM model
what allowed us to extend the model and incorporate the extensions
into a selected platform.

The choice of the CCM technology for realization of our deployment frame-
work means that further in this work whenever we use the term component,
it refers to a CORBA component unless otherwise stated.

4.2 Overview of the Framework

The overall architecture of our adaptive deployment framework derives much
from the models defined in the D&C specification. D&C proposes the structure
of a plain deployment platform and based on this we added support for
adaptive software deployment. As discussed in the previous chapter, the
framework performs deployment at two abstraction levels: globally and
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Figure 4.2: The global view on the architecture of our deployment framework. The
highlighted elements represent extensions to the original D&C model.

locally. Global deployment tasks encompass planning, connecting and adap-
tation of component deployment over the whole execution environment,
whereas local deployment includes artifacts retrieval, components instantia-
tion, local binding and management functions.

The global view on the architecture is presented in Fig. 4.2. The high-
lighted elements represent extensions to the original D&C plain deployment
infrastructure. The first-stage planner performs simple plan searching using
information provided by the TargetManager and RepositoryManagers. The
former describes all elements of the target execution environment, whereas
the latter offer description of the software packages being deployed. The
AdaptationManager, provided with a reference to the running application
instance and domain information acquired from the TargetManager, per-
forms appropriate deployment adaptation. Functionality of the remaining
elements in the global view is defined by the D&C specification [100, Chap. 7].
RepositoryManagers maintain and manage component package data. The
packages can be installed directly in a software repository or by reference
that points to some external locations. Repository managers can also provide
a list of all installed packages. The TargetManager is the central point that
collects and provides all the information about the execution domain and
tracks resource usage within the domain. Finally, the ExecutionManager is
responsible for execution of a deployment plan. It delegates deployment
actions down to the local level and binds together component instances run-
ning on different nodes. For resource management the ExecutionManager
is also associated with the TargetManager.

Locally, the main role in software deployment plays the NodeManager
element which receives from the ExecutionManager the part of the whole
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Figure 4.3: The local view on the architecture of our deployment framework. The
highlighted elements represent extensions to the original D&C model.

deployment plan that has been assigned to the managed node (Fig. 4.3). The
NodeManager is responsible for retrieving all the software artifacts relevant
to the subset of components and for preparing the node to instantiate them.
The preparation includes e.g. running and configuring component servers
and containers. After preparation and instantiation of components, the
manager configures them and performs their local binding. The Adaptation-
Manager, presented also in this view, indicates that selected sensors and
effectors of the adaptation infrastructure are present on every node in the
execution environment. To avoid unnecessary overhead related to contact-
ing the TargetManager, communication between sensors and effectors and
the AdaptationManager is direct. We make use of the event distribution
mechanism offered by CCM, which is very suitable for this purpose.

Further in this chapter we present more details of the implemented
framework discussing the plain and adaptive deployment infrastructure.

4.3 Plain Deployment Infrastructure

In the course of implementation of the plain deployment infrastructure we
realized most of the requirements imposed by the D&C specification and
the “Deployment PSM for CCM” chapter [103, Chap. 14]. To minimize
redundancy of information with the specification, we focus in this section
mainly on these implementation aspects and decisions that were interesting,
unspecified or related to our extensions to the model.
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4.3.1 Repository Manager

The RepositoryManager is a simple element that manages component data.
Our implementation provides two access interfaces: the RepositoryManager
CORBA interface and additional HTTP interface (Fig. 4.4). The former, as
defined in the D&C specification, enables management of the repository. The
latter allows downloading component artifact files using URL references. This
is convenient because URLs are human-readable and can be easily included in
XML-based application description files. To store all files related to a software
package, the manager uses a local file system.

4.3.2 Target Manager

The TargetManager is responsible for two tasks: providing information
about the target domain and tracking resource usage within the domain. Our
implementation of the manager supports only the former functionality. The
domain data is read from XML files and then is accessible using the Target-
Manager CORBA interface defined in D&C. More advanced implementation of
the manager would perform dynamic domain discovery. This is, however, a
complex and rather technical task, hence we decided not to realize it.

We also did not implement tracking of resource usage. We took a different
approach when realizing the deployment framework. To be useful, a resource
tracking mechanism must have exclusive rights to allocate and deallocate
resources what is in stark contrast to openness of the execution environ-
ment which we assumed. Therefore, we adopted the best-effort approach
to resource management, which is much more effective than strict resource
reservation and management.3 The main idea behind our adaptation frame-
work is to let all applications share the common execution environment.
Then, our infrastructure supplied with data from environment observation
can perform adaptation of a selected application.

3This problem was already discussed in Sect. 1.2.
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4.3.3 First-stage Planner

The key element of a model-based deployment infrastructure is a planner,
which process package information and description of an execution environ-
ment to produce a deployment plan. In our setting the planner is supposed
to work in an open and dynamic distributed system. It means that changes
in the execution environment and application may be caused by some un-
controllable, external factors. For this reason, an important characteristic of
the planner is high responsiveness. The more immediate response from the
planner is, the higher chances are that input information used for planning
is consistent with the most recent state of the domain and application during
plan execution.

As discussed earlier in this work, deployment planning is a NP-hard
problem. Therefore, to tackle this complex task effectively we distinguished
two types of deployment planners:

• an initial, first-stage planner, and

• an runtime, adaptation planner.

The main idea behind the first-stage planner is to provide an initial de-
ployment plan with respect to mainly static information i.e. static resource
properties and component requirements. Further, we assume that this initial
plan will be improved in runtime taking into account dynamic and volatile
information coming from the monitoring infrastructure. In this way we
avoid the need for accurate information about resource consumption and
pessimistic resource allocation. The adaptation planner is specifically de-
signed to analyse dynamic system information. The main difference between
these two planners lays in the level of correctness. While adaptation planner
works on dynamic and often volatile data and is by definition less accurate,
the first-stage planner strictly matches all static information from component
requirements against available resources.

The Basic Approach to Planning

The basis for the initial, first-stage planner that we implemented is Best-
First Search (BFS) algorithm with the first-fit heuristic. The main difference
between the proposed algorithm and well known bin packing algorithms
(first-fit, next-fit, etc.) stems from the limited number of nodes the de-
ployment algorithm operates on. Searching for the solution, BFS may need
sometimes to backtrack and change a previously selected node while a bin
packing algorithm would simply open a new bin.
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Table 4.1: Preferred BFS heuristics for initial deployment planning.

layout larger domains smaller domains

disperse next-fit worst-fit

compact first-fit best-fit

The first-fit function starts placing components beginning from the first
node considered. If a component does not fit, a next node is visited until all
nodes are scanned through (planning failure) or all components are assigned
(planning success). Apart from first-fit, BFS can use other similar heuristics
such as next-fit, best-fit or worst-fit. The next-fit differs from first-fit in that it
starts placing components on consecutive nodes instead of starting from the
first one selected. The other two heuristics require a bit more processing. For
each component being placed they search a node with the most amount of
free resources in case of the worst-fit, or the least amount of free resources in
case of the best-fit function. Selection of a heuristic allows users to influence
the initial component deployment to some extent. The next-fit and worst-fit
tend to distribute components over nodes more evenly, whereas first-fit and
best-fit compact them on a much lower number of nodes.

From the user point of view an interesting concern is also time complexity
of the search algorithm. The next- and first-fit heuristics are less complex than
worst- and best-fit by a factor of O(n), where n is the number of execution
nodes. This is because for each step the latter methods need to inspect
all nodes searching for the worst/best component matching. Therefore,
for large execution domains and large number of application components
preferred are the next- and first-fit functions, whereas for smaller domains
the difference in time complexity is not substantial and the worst- and best-fit
heuristics should be used instead as they provide better results. Table 4.1
shows a brief summary of this comparison.

More Detailed Planning Requirements

Apart from these general aspects, there exists a number of additional issues,
specific to D&C and CCM, which are also very important for deployment
planning:

• a software package may contain a number of equivalent component
implementations that may have significantly different requirements
and capabilities,

• components are assembled together using connections between ports.
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The connections may also have requirements against Interconnect
and Bridge domain elements,

• both component and connection requirements may be of many different
types and against many different resources,

• planning algorithms need to satisfy locality constraints.

Given the choice of component implementations available, the BFS algorithm
may need to backtrack if a plan cannot be found in the first pass. Due to
multiple distinct resources and multiple distinct capabilities it is, in general,
a multi-objective problem to decide which implementation should be consid-
ered first and which left for later examination. To provide a simple solution
for this we treat the set of available component implementations included in
a ComponentPackageDescription as an ordered list that entails user pref-
erences. The farther in the list an implementation is the less preferred it is
considered.

Secondly, requirements of component connections are the aspect defined
in the D&C models that makes it very valuable and distinguishes this specifica-
tion form other deployment standards. Support for connection requirements,
however, increases complexity of planning problem by a factor of O(n), where
n is a number of application components. This is because for each considered
component all its connections with other components need to be verified.

The next issue, different resource types, again increases complexity of
the planner algorithm. Usually, however, the number of requirements and
resources is much smaller than the number of nodes and components, hence
this factor does not significantly influence overall time complexity of the
searching. It is also worth noting that different resource types can be used as
another control parameter in deployment planning. Having an assembly of
component instances, a heuristic can first consider the components earlier
in the assembly instance list. However, provided with a priority of resource
types (e.g. that memory size is more important than CPU utilization), it
can pick the component with the highest/lowest resource demand. Taking
both, the need for matching requirement against resources and prioritized
selection of components from the assembly, increases complexity of the
searching algorithm only by the factor of O(n log n), where n is the number of
component requirements.

Locality constraints, the last of the aforementioned problems, may cause
much more trouble when planning of deployment is considered. Imposing
locality constraints on components can be modelled as the graph-colouring
problem which is known to be NP-hard in general case [73]. Following we
provide a mapping of the locality constraints problem on graph-colouring.4

4It is based on the mapping for job scheduling presented by Marx in [87].
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Let G be the conflict graph of the application components. Ver-
tices of G correspond to components, whereas edges correspond
to locality constraints. Two components are connected with an
edge if they cannot be executed on the same execution node. The
colours correspond to hosts in the execution domain. Resolution
of the locality constraints problem is actually the problem of find-
ing k-colouring of the conflict graph G, where k is the number of
hosts.

Fortunately, when deployment planning is considered the number of hosts
is usually much higher than the maximum degree of the conflict graph.
Therefore, despite that k-colouring is NP-hard, in such cases it can be solved
relatively easy e.g. using a greedy colouring algorithms [55].

Due to extensive development effort required to implement all of these
features we decided to keep low complexity of the algorithm and to simplify
the first-stage planner code. Our solution does not address the problem of
locality constraints and connection requirements.

4.3.4 Deployment Plan Execution

The deployment approach proposed by OMG in the D&C specification realizes
the plain deployment process.5 As depicted in Fig. 4.5, the deployment
steps are performed using three operations (preparePlan, startLaunch and
finishLaunch) and a group of dedicated interfaces.

From a user point of view the main entry point to the deployment infras-
tructure is ExecutionManager. Provided with a deployment plan it begins
the whole process of application deployment. First, it enables a user to
install components on the nodes assigned in the plan, which means it realizes
the Prepare task that is a part of the Install activity (path S1.1–S1.4).
In return, the user receives a reference to a DomainApplicationManager
object used further to start the activation process. By invoking startLaunch
operation the activation is initiated i.e. the Instantiate deployment step
is performed (path S2.1–S2.4). This results in a reference to a Domain-
Application object. Finally, the user can perform the Bind step and finish
the activation process using the finishLaunch operation (path S3.1–S3.2a).
After this call the application is up and running.

Our implementation of the ExecutionManager, NodeManager and all
other related interfaces follows the general recommendations included in
D&C, hence we do not discuss it in more details. What is more interesting,
however, is added support for application reconfiguration. As dynamic

5In contrast to adaptive deployment, as defined earlier in Sect. 2.1.
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Figure 4.5: A collaboration diagram showing deployment plan execution. The high-
lighted entities represent our extensions to the original D&C specification
that enable runtime deployment adaptation.

aspects of application deployment are beyond the scope of the current D&C

specification,6 to support adaptiveness in deployment some advancements
to the model were inevitable. We extended the presented scenario such
that invoking the finishLaunch operation returns a reference to a new
model entity — a DomainRunningApplication object (path S3.1–S3.4b).
This, in turn, allows a user and adaptation manager to perform deployment
adaptation by means of the startUpdate and finishUpdate operations.

As shown in Fig. 4.6, the Domain and NodeRunningApplication are in-
terfaces derived from the RunningApplication interface. They follow the
approach adopted by the OMG specification and realizes two-phase initial-
ization pattern. The startUpdate operation corresponds to startLaunch
from the ApplicationManager interface and initiates the update by making
deployment plan changes and possibly by creating/destroying component
instances. The finishUpdate operation corresponds to finishLaunch from
the Application interface and must be called to commit the update what
may also involve completing components’ configuration, interconnecting and
activating them.

6This was officially confirmed in the resolution to the Issue #7746 available on the
mailing list of the Deployment Revision Task Force at http://www.omg.org/issues/
deployment-rtf.html
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Figure 4.6: The interface enabling adaptation of application deployment.

An important detail worth mentioning here is the way how an application
update may be performed. We distinguish two such methods: internal and
external. If the update is requested to be done internally, it means that
the implementation of the RunningApplication interface is responsible for
realizing all the actions involved in the update. Depending on the implemen-
tation it may result in realizing any of the redeployment techniques presented
in the previous chapter, namely full, deep, shallow or runtime redeployment.
The other, external reconfiguration method, requests RunningApplication
to make changes only in the deployment plan. All the actions required to per-
form the actual update are done externally to the deployment infrastructure.
In case when the external update completes successfully, the finishUpdate
operation allows for committing plan changes. It is the responsibility of
an external reconfiguration mechanism to ensure consistency between the
updated deployment plan and the real state of the application deployment.

In our adaptation framework we use both of these update methods.
Internal updates are performed whenever we need to deploy the hosting
infrastructure in a new location in the execution domain. It includes re-
trieving, installing and activating a component server, container and factory.
The other, external method is used to redeploy a component instance be-
tween two locations in runtime. In this case we use a component migration
mechanism that performs all needed reconfiguration actions externally to
the deployment infrastructure. What internal update does in our imple-
mentation is simply the full component (re)deployment. Conversely, the
external update follows the runtime redeployment technique by changing
only the application deployment plan while more advanced reconfiguration
steps are done by a dedicated external effector. Separation between these
two kinds of deployment updates facilitates framework extensibility. While
internal updates are fixed for a given deployment infrastructure, the external
kind allows for testing and development of new methods of reconfiguration
techniques without any changes in the deployment infrastructure.
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Figure 4.7: Two layers of the adaptive deployment framework.

4.4 Adaptive Deployment Infrastructure

When designing the adaptive framework for software deployment we fol-
lowed the Autonomic Computing paradigm proposed by IBM. As shown in
Fig. 4.7, the architecture of the infrastructure may be divided onto two layers:
(1) the adaptation logic layer and (2) the management infrastructure layer.
Between these layers there are provided well defined sensor and effector
interfaces what facilitates replacing the adaptation logic as well as extending
the infrastructure layer.

An important assumption we made when designing the adaptation infras-
tructure is that we consider deployment adaptation of a single application
hosted in a shared distributed execution environment. This decision makes
design and implementation of the adaptation logic easier yet does not limit
flexibility of the framework. Following the principles of separation of con-
cerns, Autonomic Computing proposes that a hierarchy of managers can be
created. Then, a higher-level manager could coordinate lower-level man-
agers each of which managing a single dedicated application. In result this
hierarchical approach enables management of many user applications in a
shared environment.

The architecture of the management infrastructure has also been split on
two distinct parts. One is responsible for monitoring and management of the
execution environment and may be shared by many adaptation managers,
whereas the other is responsible for component monitoring and manage-
ment and is dedicated to a particular application.7 Figure 4.8 shows a more
detailed model of our adaptive deployment framework. The manager is
supplied with monitoring information delivered from the environment (ES

sensor channel) and application (AS sensor channel). The collected data is
used to make decision on how to reconfigure the application (AE effector
channel) and/or the environment (EE effector channel). The model creates

7When system virtualization is considered, these two parts should further be divided onto
more layers each of which responsible for a single virtualization layer.
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Figure 4.8: The model of adaptive deployment framework showing separation be-
tween application and environment layers. It creates four adaptation
control loops: AS − AE , AS − EE , ES − EE and ES − AE .

four potential adaptation control loops that AdaptationManager can utilize
to control deployment. The existing prototype implementation of the frame-
work makes use of two of them AS −AE and ES −EE, however, in our previous
work some experimentation was done to exploit AS − EE and ES − EE loops,
too. We present this approach in the next section when discussing about the
virtual redeployment effector.

4.4.1 The Management Layer — Sensors and Effectors

The key elements of the management layer are sensor and effector elements.
We decided to build all the sensors and effectors in our framework as separate
CORBA components that follow the same general design presented in Fig. 4.9.
Three main factors influenced this decision:

• the component-based approach very well fits to the nature of sensors
and effectors which present a separate, well defined functionality,

• apart from the single sensor/effector interface a CCM component can
have multiple ports and attributes. This is very convenient in the case
of sensors which offer two ways of accessing monitoring data: by
polling the resourceSensor provider port (pull model) or by notifica-
tion through the resourceUpdate event port (push model),
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Figure 4.9: The general design of the sensor and effector components.

• using the available deployment infrastructure, sensor and effector
components can be easily deployed and undeployed depending on
the adaptation needs. This allows decreasing overheads related to
unnecessary monitoring and management of the environment.

The Sensor and Effector interfaces are partially based on the Properties
design pattern commonly used by e.g. CORBA Property Service [96] and
Java Management eXtension (JMX) technology.8 Apart from the basic ability
to get and set property values, the interfaces provide reflective means to
discover what properties or operations are offered by a managed element.
What distinguishes the Sensor and Effector interfaces from the Properties
pattern, however, is that they include operations to get and set extended
properties. The extended properties are these which can be get or set
providing an additional contextual information. This enables us to cover
with one sensor a set of similar managed entities. For example, to monitor
intensity of communication between many components it would be highly
inefficient to attach a separate sensing element to each communication
link. Conversely, using the extended properties one sensor may monitor
many different component links and provide that information by means of
an extended property. A client is then able to get the monitoring data by
specifying the property name together with a link identification.

An important detail of the presented sensor and effector components is
the configuration attribute. It allows accessing properties of the component
itself and, in this way, enables controlling how the component works. A good
illustration of a configuration property is the UpdateInterval property of
sensors that determines the rate of generated resource update events.

In the course of the framework development we implemented the follow-
ing sensors and effectors:

8Full IDL specification of these interfaces is included in Appendix A.
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• CIM-based CPU and memory sensors,

• Container Portable Interceptor (COPI)-based link and communication
sensors,

• instance sensor, and

• component migration effector.

It is worth noting, however, that the sensor and effector components are
only a facade for internal mechanisms required to realize their functionality.
Following we shortly characterize the component-based part of the sensors
and effector, whereas their internal structure and embedding in the execution
environment is discussed in the next chapter.

CIM-based Sensors

Common Information Model is an important model when monitoring and
management of distributed systems is considered. It defines representation
for most of the vital dynamic parameters of operating and computer systems.
Therefore, CIM-based sensors can provide this information for our Adaptive
Deployment Framework. To monitor an execution environment we used
only a small part of the whole model proposed by DMTF and use only small
number of CIM classes that describe computer’s CPU, operating system, and
file system. Table 4.2 shows the names of implemented sensor components
together with the CIM classes they use and the selection of the monitored
properties.

What is useful when working with the CIM model is that it defines prop-
erties together with units of measurement e.g. the OS FreePhysicalMemory
property describes the number of kilobytes of physical memory currently
unused and available. Often, such a definition is enough to obtain accurate
measurement independent of the OS platform. An exception is however the
CPU LoadPercentage property that describes processor load, averaged over
the last minute, in percent. This value depends on processor type and OS

scheduler algorithm and thus can hardly be compared between different CPUs

and OSes.9

The implemented CIM-based sensors are gateways between WBEM and
CCM technologies. This is in line with the Autonomic Computing approach
which recommends that Autonomic Manager use only the well defined
sensor and effector interfaces covering different monitoring and management
technologies with a selected common standard technology.

9We noticed a considerable difference between CPU load reports on two PCs one with Linux
and one with MS Windows operating systems.
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Table 4.2: CIM-based sensors provided by the framework.

Sensor name CIM class Properties used

CPUSensor CIM_Processor LoadPercentage
CurrentClockSpeed
MaxClockSpeed

MemorySensor CIM_OperatingSystem FreePhysicalMemory
FreeVirtualMemory
TotalVirtualMemorySize
TotalVisibleMemorySize

COPI-based Sensors

The purpose of these sensors is to measure basic properties of communication
links between components. Link sensor assesses communication intensity of
all ports connecting selected two components and provides information such
as the number of operation calls in a time unit, the size of data transferred
in a time unit, Round Trip Time (RTT). Communication sensor measures the
general communication intensity of a component in relation to its maximum
intensity over a selected period of time. This sensor informs about average
number of operations and average amount of data sent and received by all
ports of a component.

In order to monitor network communication, two common approaches
are possible: active and passive. The active monitoring relies on injecting test
packets into the network and then measuring Quality of Service obtained
from the network. The passive approach, on the contrary, uses hardware
and/or software tools to observe the traffic as it passes by [1, 25]. To
estimate the communication link parameters we followed the less invasive,
passive approach. Our implementation makes use of the native OpenCCM
interception infrastructure and COPIs which we implemented in the course of
this work.

Using these two mechanisms we can attach an interceptor to any of
the component’s ports and observe every communication attempt taking
place on the port being intercepted.10 When collecting raw monitoring data,
the sensor performs its initial processing (i.e. estimation of the desired link
parameters) and then makes this higher-level information available through
its ports.

10The interception mechanism is not available for stream ports because the two specifica-
tions: Streams4CCM [99] and COPI [101] has not yet been properly integrated.
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Instance Sensor

The instance sensor allows observing creation and destruction of component
instances in runtime. It can be used to support deployment mechanisms
such as the execution of temporal plans and the runtime component migra-
tion. Firstly, notifications from the sensor enable a plan executor to monitor
appearance and disappearance of component instances and follow a DAG

denoting temporal dependencies. By observation of component creation
events, it is possible to impose StartToStart temporal collocations, whereas
destruction events allow applying FinishToStart and FinishToFinish col-
locations. Secondly, ability to detect creation and destruction of component
instances facilitates error detection during component migration. Provided
with a confirmation if a new component’s incarnation appeared at the tar-
get location and the old one disappeared from the source location, we can
monitor correctness of a component move and throw an exception when
necessary.

The CCM model provides two common methods for creating and destroy-
ing component instances. One, uses a standard component’s factory defined
by the model i.e. the CCMHome interface that is means to manage instances
of a specified component type. The other, makes use of component’s entry
points and a deployment infrastructure. Originally, the second method ap-
peared only in the D&C specification but later it was incorporated into the
CCM model, too.

InstanceSensor provides a consistent method for observation when
instances are created and destroyed irrespective of the responsible entity.
It makes use of the factory listener mechanism included in the OpenCCM
platform that allows attaching a listener at three different levels: home,
container or component server. For example, attaching a factory listener to a
component server enables our sensor to monitor every attempt of instance
creation or destruction that takes place in any factory and any container
running in this component server.

Migration Effector

The basis for the migration effector was the Component Migration Service
(CMS) developed in our previous work [14]. However, for the purpose of the
adaptive deployment framework instead of using the specific CMS interface
we exposed component migration facility through the generic Effector
interface. This enables connecting with the AdaptationManager directly.

MigrationEffector accepts only one operation which moves a compo-
nent from its current location to a selected destination location. Usually, the
movement follows the three stages presented in Fig. 4.10: (1) freezing the
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Figure 4.10: A sequence diagram of successful migration between HERE and THERE
locations.

state of a component, (2) moving the component to a destination location,
and (3) reconnecting the component.

As shown in the figure, to move a component the migration effector
operates on component’s factory (the CCMRefuge object) which is an ex-
tended version of the standard CCMHome interface. This makes an implicit
requirement for the destination location to be prepared to host the com-
ponent infrastructure. Before a migration can occur, the destination must
run a CCMRefuge factory, container and component server. Moreover, all
these infrastructure elements need to be configured according to the original
deployment plan used to instantiate the migrating component. This clearly
shows how component migration is dependent on the deployment infras-
tructure. In our solution the AdaptationManager component is in charge of
coordination between the migration and deployment tasks.
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Virtual Redeployment Effector

Runtime component migration is a reconfiguration mechanisms that operates
at the application layer. A complementary mechanism, operating at the
execution environment layer, is virtual redeployment. This technique is
available when the deployment process is performed over a virtualized
execution environment. Then, instead of changing components’ location
what happens during migration, it is possible to adjust properties of the
environment. For example, increasing memory resources allocated to a node
hosting a component (e.g. an OS container) may have the same result as
moving the component to a node with larger amount of memory.

In our previous work [15] we showed that this kind of adaptation may be
performed in an effective and transparent way. The transparency means that
from the applications’ point of view virtual redeployment is entirely invisible.
Moreover, given a virtualization management layer provided with an operat-
ing system or virtual machines such as VMware or Xen, virtual redeployment
is far less complicated to implement than the runtime component migration.
To be done it does not need any modifications to the component execution
environment but merely an access to a virtualization control layer.

The easiness of how virtual redeployment may be incorporated into an
existing component platforms is a major advantage of this technique. The
main drawback is, however, the required level of node granularity. Consider-
ing system virtualization, the finest manageable unit is a process.11 Usually,
a single process encapsulates a component server which runs several contain-
ers, and a container rarely hosts only a single component (Fig. 4.11). This
makes 1-to-N relation between a hosting process and a running component
what constraints the virtual redeployment technique to operate on groups
of collocated components rather than on particular instances. The relation
is even worse when lower virtualization layers are considered such as OS

containers and operating system virtualization.

Consequently, the virtual redeployment technique is an attractive mecha-
nisms that may support deployment adaptation but is not enough to achieve
flexible application reconfiguration. Moreover, to make maximum use of
the virtual redeployment, the adaptive deployment infrastructure would
require support for virtualization. This is, however, out of scope of this work,
hence we focus merely on runtime component migration as the more flexible
reconfiguration approach.

11Some attempts to create a subprocess management units are Java Isolation together with
Resource Consumption Management APIs [27, 28, 105] and .Net application domains. While
the future of the isolates is unclear, the application domains focus mainly on isolation and do
not offer any resource management functionality.
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4.4.2 The Adaptation Layer

The key element of the adaptation layer in our deployment framework is the
AdaptationManager component. It is realized according to the AC paradigm
and implements the Autonomic Manager (AM) element. As mentioned earlier,
one of the most important assumptions we adopted when designing the
manager was that it is responsible for management and adaptation of exactly
one user application. This decision does not limit flexibility of the framework
but proposes to distinguish high-level Autonomic Managers that coordinate
operation of multiple lower-level managers.

In this work we focus on designing the lower-level AM only. Figure
4.12 presents a general view on the AdaptationManager component. The
Decider interface enables linking the manager with higher-level managers
(through the parentDecider uses port) and lower-level managers and other
AC elements (using the decisionPoint provides port). Our prototype imple-
mentation does not use these ports, though. Attribute appInstance allows
setting the application instance that the manager is in charge of. Other ports
are used to communicate with sensors and effectors.

As discussed earlier in this work, the main building block of the AM

element in general and AdaptationManager in particular is the MAPE control
loop. Using CCM technology and the proposed design of this component the
first and last elements of the loop, namely monitor and execute, are naturally
available within the CCM middleware layer. The manager can receive events
and invoke required operations using plain CCM communication mechanisms.
The real challenge when developing AM is, however, to implement the analyse
and plan stages. In the case of application deployment the AC analyse step
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Figure 4.12: The general design of the AdaptationManager component.

refers to adaptive deployment planning which analyses the current state
of a running system and searches for a better application deployment plan.
The MAPE planning is the way how the elaborated deployment plan shall be
effected in the target execution environment. Following is a more detailed
description of how we implemented the MAPE control loop in our Adaptation-
Manager.

Monitor and Analyse

Adaptation is based on monitoring of the application and its execution
environment. To perform monitoring tasks, the AdaptationManager needs
to run and connect appropriate sensors. The component-based design of the
monitoring infrastructure brings one important benefit — it allows attaching
and detaching the monitoring sensors on demand. The AdaptationManager
makes use of this feature when it is made to manage a particular application.
Then, using the deployment infrastructure, it does two actions. First, it runs
a separate system-like application to monitor the execution environment.
Second, it updates the application being managed to monitor its components.
The ability to perform application update in runtime proved very useful when
instrumenting the application. The manager starts and configures only these
sensor components that are required in particular situation. This is clearly
visible in the case of LinkSensor, which is attached to these components
only that are susceptible for reconfiguration i.e. these which are mobile.12

Observation of links between two immobile components is in our case futile
because neither of the adjacent component can be moved.

Another monitoring facility used by the manager is HomeSensor. By pro-
viding information about creation and destruction of component instances,
it is very helpful when migration mechanism is performed. The sensor en-
ables additional verification if migration of a component was successfully

12We can easily detect mobility of components by checking if they implement the CCM-
Refugee interface. More about this is presented in the next chapter which discusses the
component migration mechanism.
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Figure 4.13: The collaboration diagram showing how migration process is observed
by the AdaptationManager.

completed and in this way improves failure detection. Figure 4.13 presents
a scenario when the AdaptationManager invokes move operation on the
LocationEffector component. Apart from the result returned by the effec-
tor itself, the manager observes the migration being notified by appropriate
HomeSensors.

Information from the application monitoring together with data com-
ing from monitoring of the execution environment are collected by the
AdaptationManager and then used in the analyse step. This step includes
preparation of the deployment plan in runtime for which we use an adaptive
planner. Runtime adaptive planning is, however, a complex task that requires
more detailed discussion and thus later in this work we devoted a separate
chapter to present it.

Plan and Execute

Provided with a plan update generated by the analyse step, the next MAPE

steps include planning how to effect it using the deployment infrastructure
and migration effector. As said in the previous section, the component
migration mechanism allows moving a component between locations, pro-
vided that the destination location is prepared to host the component. The



4. ADAPTIVE DEPLOYMENT FRAMEWORK 102

MigrationEffector developed in the course of this work does not ensure
coherence between deployment infrastructure and the current location of
application components. This is the role of AdaptationManager to perform
the appropriate state synchronization.

Figure 4.14 presents a sequence diagram showing interaction between
the manager and deployment infrastructure. Reconfiguration is done in
two steps. First the manager determines if the destination location runs
the needed component infrastructure. Whenever there is no appropriate
CCMRefuge able to host the migrating component type, AdaptationManager
starts internal application update to deploy the factory component. In that
case the startUpdate operation may not only run CCMRefuge factory but
also is likely to start a new component server and container. They are
started if the destination location has not hosted these elements already or
any of the existing factory, container or component server has inappropriate
configuration settings. Once everything is started properly, the finishUpdate
operation is invoked to commit changes in the application deployment.
Having a proper CCMRefuge running in the target location, the second step
of the reconfiguration is performed. This time, however, the manager begins
an external application update because we use external MigrationEffector
to do the redeployment. Finally when the migration is successful the update
is committed with finishUpdate.

4.5 Framework Usage Scenario

In this section we present steps required to use our ADF for managing deploy-
ment of a user application. To better illustrate the whole process we showed
in Fig. 4.15 the flow of data between all ADF entities involved.

1. An administrator of an execution environment prepares its description
according to the D&C Target Data Model. It is the best if resources of the
environment elements are specified with a widely accepted language
such as the CIM schema. The complete description is then passed to the
TargetManager (step 1a).

2. Software deployer acquires a software application from a producer and
packages it according to the D&C Component Data Model. Resource
requirements of application components need to be expressed in con-
sistency with the environment resource declaration e.g. using the CIM

schema. Packaging may be avoided if the producer provides a D&C/CIM-
compatible package already. Next, the application package is uploaded
to a selected repository by means of its RepositoryManager interface
(step 1b).
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Figure 4.14: A sequence diagram showing two-step interaction between the
AdaptationManager and the deployment infrastructure during a single
reconfiguration attempt; (a) shows preparation of the target location
to run components — internal update; (b) shows component migration
— external update.
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3. Using our first-stage planner, software deployer can search for an initial
deployment plan. The planner acquires environment and application
data (steps 2a and 2b respectively) and produces an initial deployment
plan.

4. The initial deployment plan, in the form of the DeploymentPlan object,
is passed for execution to the ExecutionManager (step 3). This results
in splitting the plan into parts and deploying these parts over all rel-
evant NodeManagers (step 4). In return software deployer receives a
reference to the application instance (step 5).

5. Next, software deployer prepares a deployment plan for the ADF in-
frastructure. We developed a simple ADF plan generator that helps in
the plan preparation. The plan includes all sensors and effectors that
are independent of an application (e.g. environment sensors) together
with the AdaptationManager component. The provided application
reference is used to configure the AdaptationManager. Having the
infrastructure plan, software deployer can execute it (step 6).

6. During initialization, the AdaptationManager produces a patched de-
ployment plan for the managed application. The patch is used in an
internal update (step 7) which runs all application sensors. The set of
required sensors mainly depends on the adaptation algorithm and is
specific to the manager.

7. Once, the AdaptationManager finished the update it continuously mon-
itors state of the system and performs appropriate application reconfig-
uration (step 8 and later).

4.6 Summary

In this chapter we have presented an overview of Adaptive Deployment
Framework we realized in the course of this research. The basis for the
framework is the D&C specification, therefore we have limited the discussion
mainly to these implementation details that are not covered by the original
document. The foundation for the design and implementation of framework
elements is CORBA Component Model. We motivated this choice with several
key features of the technology: CCM defines an interesting and advanced
component model, it is suitable for heterogeneous environments and has
already been integrated with the D&C deployment models.

In this chapter we have briefly overviewed the plain deployment infras-
tructure implemented according to D&C with some of the extensions proposed
earlier in Chap. 3. To tackle the complex problem of deployment planning
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we split this task between two planners: an initial — first-stage planner and
a runtime adaptive planner. This enabled us to reduce complexity of the
initial planning that can focus only on static properties of the system. Later,
we have discussed more closely the adaptation infrastructure and presented
a usage scenario that allowed us to illustrate how ADF entities collaborate to
perform deployment adaptation.

The part of the framework responsible for deployment adaptation was
designed and implemented according to the CCM model. By enclosing sensors,
effectors and the adaptation manager within CCM components, we not only
leverage built-in communication mechanisms but also:

• can easily follow the Autonomic Computing paradigm when designing
the adaptation infrastructure,

• can clearly separate the adaptation logic from sensors and effectors.
This, in turn, enables the adaptation logic to be easily exchanged for
some other, improved version,

• make use of the plain deployment infrastructure to deploy the manager,
sensor and effector components,

• are able to deploy sensors and effectors on demand to only these
locations where they are really needed. This minimizes overhead
incurred by the instrumentation.

It is important to mention that the sensor, effector and adaptation manager
components implemented in the course of this work are only a facade for
internal mechanisms working behind the scenes. In the next chapters we
delve deeper into implementation details and discuss runtime component
migration and component portable interceptors mechanisms followed by a
runtime deployment planning algorithm.



Chapter 5

Monitoring and Management
Infrastructure

Our Adaptive Deployment Framework, modelled according to the Autonomic
Computing paradigm, separates an adaptation logic from a low-level mon-
itoring and management infrastructure. The previous chapter presented a
general overview of both these layers and the way how they interact with
each other. In this chapter we discuss an important problem of interfacing
the management layer with an execution environment. We only focus on the
application management sublayer because monitoring and management of
the execution environment is ensured by the CIM and WBEM infrastructure.

From the set of defined earlier redeployment techniques we concentrate
in this work on runtime redeployment. To implement this technique we used
runtime component migration as a basic reconfiguration mechanism and
transparent communication interception for application monitoring. The
main motivation for this choice was as follows:

• runtime redeployment is supposed to guarantee the most agile adaptive
deployment system,1

• the responsiveness of the deployment adaptation enables using more
sophisticated runtime planning algorithms, and finally

• it is a challenging endeavour to build all the mechanisms that enable
the component migration and communication interception.

The issues discussed in this chapter are closely related to the underlying
technologies we used for ADF implementation i.e. CORBA and CCM. We believe,

1Adaptation agility is a property of an adaptive system that determines speed and accuracy
with which it detects and responds to changes in its execution context. The term was first
coined by Noble et al. in [91].
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however, that the main discussion points can be used for other distributed
communication platforms as well.

5.1 Support for Runtime Component Migration

In this section we present the most important issues related to implementa-
tion of the runtime migration mechanism for CCM-based components. Addi-
tional details can be found in our previous work [13, 14].

The CORBA environment is well suited to resolving the problem of object
migration in runtime. Built-in facilities such as Portable Object Adapter,
servant managers, and ForwardRequest exception may well be used to
support a migration mechanism for CORBA objects and CCM components.
Before we present how to move a component from one place to another in
runtime, it is important to analyse how, in general, movement of objects in a
distributed environment is performed. An important assumption we made is
that the objects which we consider are multithreaded. It means there exists
1-to-N relation between a mobile distributed object and execution threads
that operate on its state. Although this is in contrary with the approach
proposed by e.g. ProActive and it significantly increases complexity of object
migration, multithreaded operation addresses a common use case that could
potentially be applied to a variety of technologies such as CCM, GCM and
Windows Communication Foundation (WCF). Moreover, it much better fits
the increasing interest in multicore computer systems.

Following we present the stages which a running object has to go through
when migrating from one location to another. :

1. Suspending the object is required to store its state consistently. The
main issue here is in preserving the safety and integrity of the object
and thus the whole system. Following suspension, the execution plat-
form still has to deal with incoming, ongoing and outgoing requests,
therefore suspension requires the object to achieve quiescent state.2

From the object standpoint it means that after suspension and before
activation it must not respond to any requests that can change its state.
Otherwise, the stored state of the object would not match the actual
state altered by the invocations and this would lead directly to loss of
information. These issues are well discussed in [106].

2As defined in [72], an object is in quiescent state if: (1) it is not currently engaged in
a call that it initiated, (2) it will not initiate new calls, (3) it is not currently engaged in
servicing a call, and (4) no calls have been or will be initiated by other objects which require
service from this object. As presented later, we relax the last condition and require that no
calls initiated by others will reach this object.
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2. Storing the state of the suspended object alone or together with code.
Which action is to be performed depends on availability of the code at
the destination. It is also crucial to answer the question what the state
of the object is. If the object is connected with others, we must know
whether they need to be copied as well or perhaps can be accessed
remotely (shallow/deep copy problem). To make things even more
complicated, storing state may also take into account heterogeneity of
the environment and prepare a copy in an easily transferable format.
Some of these issues are covered in [65, 68, 95, 97]. As our work is
based on OpenCCM platform implemented in Java we may simplify
this important aspect and focus more on other migration issues.

3. Moving the state between the source and target locations. This step is
quite straightforward although migration requires the target location
to be ready to accept incoming objects. For this reason, an appropriate
hosting infrastructure must be prepared at the destination. Moreover,
in case of problems with transferring the data, it should be possible
to withdraw the whole process and return the system to the state just
before the object suspension.

4. Loading the state of the object at the destination. This step requires the
code of the moving object to be available at the destination. In case of
heterogeneous environments, such as CORBA and CCM, this requirement
is sometimes hard to fulfil — e.g. how to move a Java implementation
of an object to an Object Request Broker (ORB) based on C++ language.
Loading is much easier if we can assume platform homogeneity, such
as offered by Java or .Net environments. Again, a proper deployment
infrastructure can alleviate this problem by planning that directs the
moving object to these locations only which can host it.

5. Reconnecting of the moved object in such a way that every other
object/client communicating with the migrating object should not see
any change in behaviour. Three possible techniques of referencing a
moved object exists: (1) deep update, (2) chain of reference, or (3)
use of home location agent. More details about this issue are presented
later.

6. Activating the new incarnation of the object at the new location fol-
lowed by destroying the original one at the previous location. This is
the final step which ends the whole process of migration and results in
the fully functional system.

All the presented steps are pivotal to implement migration mechanism for
distributed objects and components. Later in this section we discuss some of
the most important issues that we encountered when implementing runtime
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Figure 5.1: Four possible cases of when dealing with requests during object passiva-
tion.

component migration. What is worth mentioning here is that in the following
discussion we often refer to CORBA objects instead of CORBA components.
Firstly, this is because CCM does not in itself provide any mechanism that
facilitates migration of components. Therefore the solutions we propose
are based at the object level. Secondly, this is not a real issue as, to some
extent, a CORBA component may be perceived as a collection of CORBA objects.
Accordingly, whenever we refer to an object it means that this issue concerns
both: objects and components (more specifically an instance of CCMObject
and all server-side ports of the component instance). Otherwise, the problem
is related to components only.

5.1.1 Suspension and Dealing with Requests

One of the major challenges required to respond to when resolving runtime
migration problem is dealing with requests which an object is or should be
involved in. In other words this is a problem of reaching quiescent state as
defined in [72]. This problem arises when the object is going to be suspended
to preserve consistency of its state but it is still entangled in some request
processing. As illustrated in Fig. 5.1, four possible cases are important for an
object to deals with:

a) incoming requests while it is suspended,

b) ongoing requests invoked just before suspension,

c) outgoing requests invoked by the object just before suspension, and

d) returning requests invoked on the object as a result of previous outgoing
requests.



5. MONITORING AND MANAGEMENT INFRASTRUCTURE 111

For the first problem we considered two solutions. One involves collecting
all incoming requests until the component is reactivated again. In case of
successful migration all the collected invocations are redirected to the new
location using standard CORBA ForwardRequest exception. The problem with
this approach is, however, that in case of abundance of incoming requests the
collecting buffer is becoming quickly full and, ultimately, when it reaches the
size limit any subsequent invocations need to be discarded. Moreover, this
approach is prone to deadlocks in case of returning synchronous invocations
that, similar all the others, are blocked waiting for reactivation. The other
more straightforward approach is to discard all the incoming invocations
immediately after the suspension succeeded and until the component is
reactivated. For this purpose, we use the CORBA TRANSIENT exception that
informs the caller about some temporary communication problems. In
reaction to this exception the caller ORB usually automatically reissues a
request again.3 Although it shifts the problem of incoming requests to
the client side, ORB can hide it from the client and ensure a transparent
resolution.

Unfortunately, the case of ongoing requests is more troublesome when
dealt at the application or middleware level. In a multithreaded environment4

it is likely to happen that a component serves one or more client calls while
suspension is requested. In general case, we cannot easily pre-empt the
thread responsible for a request in service and, therefore, passivation cannot
progress until all these call are finished. Otherwise, they could influence the
state of the object what would result in loss of information during storing
phase. To address this issue we make use of the standard ServantLocator
manager. Two operations of the manager interface — preinvoke and post-
invoke — are used to count the number of ongoing requests. The locator
ensures that passivation does not progress until all ongoing operations are
finished and in the same time, by discarding all other incoming requests,
it avoids starvation of this process. Such a simple solution may, however,
impose significant delays in suspending an object what developers should
take into account when programming a mobile object. Once the passivation
has started they ought to finish all ongoing request as soon as possible.

The third of the mentioned problems — outgoing requests when passi-
vation of the object is requested — may cause even more delays. Outgoing
requests may result from earlier ongoing invocations but also can be issued

3The exact reaction on the exception depends on the exception minor code and completion
status. In this case, we use minor code 1 which means that request was discarded because of
resource exhaustion or discarding state of the target POA. The CompletionStatus is set to
COMPLETED_NO as the invocation never reaches the application code.

4Our implementation assumes the multithread threading model of a mobile component.
It means that the container will not prevent multiple threads from entering the component
simultaneously, which is much more interesting case comparing to the serialize threading
model. The latter protects the component from any concurrent calls.
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by the object itself e.g. by some internal execution thread. Again, it is impor-
tant that the object is suspended when all outgoing invocations are finished
already. Otherwise, the returning result could introduce some inconsistencies
between the stored and current state of the object. There is no easy way,
however, to determine the number of outgoing requests at the middleware
level. In case the object communicates with external entities using only
one selected communication technology such as CORBA, we could use the
standard COPI interception mechanism. Conversely, if the object interacts
with its environment by some other means too, it is hardly possible to pro-
vide an appropriate interception mechanism for all other communication
technologies. We decided not to restrict developers in the matter how they
communicate with external entities for the cost of their awareness of the
object passivation. The benefit of this approach is that explicit passivation
makes programmers to consider more carefully how the mobile object may
interact with the external world. This is also important for returning requests.

The last issue, which tackles returning requests, is a combination of
the outgoing and incoming request problems. It occurs when an outgoing
synchronous operation call on some external entity causes eventually an
invocation on the object itself. Restricting the way how an object may
communicate with its environment we considered solving the problem by
means of the Object Transaction Service (OTS) service [98]. An interesting
property of OTS is an implicit propagation of a transaction context, which
we could use to mark outgoing requests. In this way we could distinguish
the returning requests that contain the transaction context from other purely
external incoming invocations. A disadvantage of this approach is that
not only it restricts the communication technology of the object but also
it requires transferring of a transaction context by all external entities on
the invocation path.5 This is in case of heterogeneous distributed systems
very hard to attain. Later, in this chapter we present a simple pattern which
component developers can follow to tackle the problem or returning requests
and passivation.

5.1.2 Factory Support for Reconnection

Another major challenge related to migration is reconnection between the
migrated object and all other clients and entities that it interacts with. The
importance of the reconnection stems from its direct impact on the residual
dependencies problem which is one of the most fundamental issues related
to mobility of a running code. The residual dependencies problem is the

5In the area of Distributed Transaction Processing (DTP) this is a well known problem that
is addressed e.g. by XA standard [80]. We find this approach too perplexing for a migration
service, though.
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level of dependency of a migrating entity on the source location and it is
the main factor that restrains broad use of migration mechanism. Poorly
designed reconnection causes that successive movements of an object make it
dependent on more and more systems what, in result, substantially reduces
fault tolerance of the entity and the application as a whole. Therefore, it
is important to carefully analyse how reconnection in distributed systems
is done. In general, three possible techniques of resolving this issue exist:
(1) deep update, (2) chain of reference, or (3) use of a home location agent.

From the deployment standpoint the first technique is the most obvious
choice. If deployment infrastructure is able to connect all the components
during application activation, it is also able to reconnect the moved compo-
nents i.e. disconnect and connect again according to an updated plan. This
approach presents, however, two undesirable effects. It is very expensive
because it involves updating all other related components and, in fact, not a
viable solution in distributed environments such as CORBA, since the clients
may not yet exist when migration occurs.6 Moreover, it is likely that the
clients of the migrating component are not under management of our de-
ployment infrastructure, hence they would need another way to refresh their
references.

The second technique — chain of reference — is impractical due to
significant inefficiencies in communication and because it aggravates the
residual dependency problem as more and more systems are involved in
transfer between clients and the object. For this reasons, we realized the
reconnection following the last approach i.e. using a Home Location Agent
(HLA) that seems to be the most appropriate for resolving the problem of
referencing mobile entities in distributed systems.7 Moreover, the solution
with HLA very well fits the design of the CCM model. There is no need for any
additional external location services, such as one proposed in [64] and [93,
Sect. 11.5], as this role can be taken over by a component factory. A factory
has all the code needed to create a component instance, therefore, it can be
easily extended to be able to recreate an instance if provided with a stored
component state and become HLA.

For every component the CCM model provides a standard factory interface
CCMHome, which we simply extended to fulfil requirements of accepting mo-
bile components — CCMRefugees. As shown in the Listing 5.1 the CCMRefuge
interface has five operations supporting movement of components.

Listing 5.1: The IDL definition of the extended component factory interface

import ::Components::CCMHome;
import ::Components::CCMException;

6A very captivating explanation of this problem is presented by Henning in [58].
7The same approach for referencing portable hosts can be found in the MobileIP proto-

col [44].
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import ::CosLifeCycle::Criteria;

interface CCMRefuge : CCMHome {
Criteria refugee_freeze( in CCMRefugee refugee_here )
raises (CCMException);

void refugee_moved( in CCMRefugee refugee_there )
raises (CCMException);

void refugee_unfreeze( in CCMRefugee refugee_here )
raises (CCMException);

CCMRefugee refugee_accept( in Criteria refugee_state )
raises (CCMException);

void refugee_update( in CCMRefugee refugee_there )
raises (CCMException);

};

The presented extensions to the factory interface are threefold:

• required at the source location — three operations refugee_freeze,
refugee_moved and refugee_unfreeze. The aim of the first is to pre-
pare a component and the infrastructure for movement. It suspends the
component and returns its state in a Criteria sequence. The second
operation is responsible for reconnection of the moved component.
Its argument refers to the instance created at the destination. The
last operation, refugee_unfreeze, is called in the case of movement
failure when it is needed to reverse suspension of a component and
return the system to the state just before migration attempt,

• required at the destination location — the refugee_accept operation
is invoked to ask the target factory to accept a moving component. The
operation returns a newly created incarnation of the component used
further to reconnect the references. In case of problems, the operation
throws an exception that is a signal to withdraw whole migration
attempt and call refugee_unfreeze at the source.

• required at the HLA location — refugee_update is an internal operation
that does a part of the reconnection task. It is used by the source factory
to update the agent about the most recent component location.

Figures 5.2a-d present how the presented operations are used by Migration-
Effector in the most common cases. First case depicts a successful migration
from the location where the home agent CCMRefuge is running. Second
scenario, presented in Fig. 5.2b, is a bit more complex because the home
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agent needs to be updated with the most recent location of the component.
The update is a part of the reconnection process and, therefore, is done by
the source factory. The last two diagrams present the most common failures
during migration. One is caused by the destination factory reporting an
exception on the refugee_accept operation. The other, less common, may
be induced by some problems with reconnection.

All these scenarios show that from the point of view of Migration-
Effector (or any other client requesting migration) using the extended
factories to move a component is very simple and in most cases limited to
only three operation calls. This is, however, only an external facade which
needs to be supported by lower-level mechanisms. The core of our solu-
tion makes use of the ServantLocator manager and the ForwardRequest
exception. Mobile components are always run in containers that use servant
locator to find appropriate servants for them and their server-side ports. This
locating is done with help of the Active Object Map (AOM) table.8 However,
when a component has moved to a foreign location and a servant cannot
be found in AOM, the locator looks to the additional migratory table. This
table maintains association between component or port identification and the
location of a component; either the most recent if this is the HLA container or
pointing to the HLA if this is any other container where the component was
running previously. Once the remote location of the component was found in
the migratory table, the locator raises a ForwardRequest exception to direct
the caller where to find the target.

This solution very well fits the existing CORBA approach to object mo-
bility and guarantees effectiveness and high scalability of the reconnection
mechanism. When a component is located in its home container (i.e. the
one that includes HLA) there is no additional overhead in request processing.
The locator behaves exactly the same as in the case of immobile components.
Overhead appears only when a component is running outside of its home con-
tainer. Then, a client contacting a previous location of a component receives
a forward request to the component’s HLA. Next, invoking operation on the
HLA it receives a forward request again. This time, however, redirection leads
to the actual location where a component is running.

5.1.3 Life Cycle of a Mobile Component

The aim of our solution for component migration was not to provide a purely
transparent mechanism for programmers, which we think is hardly possible
to attain at the middleware level, but rather to create a framework that helps
them to deal with component mobility. One of the major benefits of making

8Actually, AOM is a table used internally by the POA object adapter but we use this concept
in exactly the same way.
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most common case of unsuccessful migration caused by problems with
accepting a refugee component, (d) the second most common case of
unsuccessful migration caused by problems with reconnection.



5. MONITORING AND MANAGEMENT INFRASTRUCTURE 117

component developers aware of migration is substantial freedom of using
software and hardware platforms of their choice for implementation. For
our prototype ADF framework, the basis for component development is the
Java language and CORBA Component Model platform but our intention was
not to limit access to local resources or native communication technologies.
Instead of enclosing a component in merely the CORBA technology and IDL

interfaces, we aim at opening its implementation for the outside world. This
is in contrary to one of the properties of a component provided by Szyperski
in [119] who states that:

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only.

Although the explicit context dependencies facilitate component reuse, porta-
bility and mobility, we argue that imposing such constraints on components
is impractical. For example, it would not allow a component programmer
to create a new thread to do some background task unless the component’s
context provides suitable thread management API. It would also forbid creat-
ing a GUI interface unless the container explicitly provides a graphics API. In
general, it would cause problems with accessing any local resources that are
not covered by the appropriate context interfaces.

We decided to follow the opposite direction and let programmers use as
much of technology and resources as they want and without any constraints.
However, they need to be aware that if a component is mobile it may happen
that during activation some resources may be not available. In the case a
developer does not want to deal with situations when vital resources are un-
available, they may describe such specific requirements of a component in its
deployment descriptor. In result, having the migration mechanism integrated
with a deployment infrastructure, they can consciously limit component’s
mobility to only selected platforms. In the same time, programmers are freed
from most of the burden of migration issues as it is resolved by the proposed
middleware layer.

In order to make developers involved in the migration process smoothly,
we extended components’ life cycle. Again, the CCM model proved very conve-
nient for this task. Listing 5.2 presents a definition of the RefugeeComponent
callback interface that is a base for any mobile component implementation.

Listing 5.2: The IDL definition of a mobile component callback interface

import ::Components::CCMException;
import ::Components::EnterpriseComponent;
import ::CosLifeCycle::Criteria;

local interface RefugeeComponent : EnterpriseComponent
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{
void ccm_refugee_passivate( )
raises (CCMException);

void ccm_refugee_activate( )
raises (CCMException);

void ccm_refugee_store( out Criteria state )
raises (CCMException);

void ccm_refugee_load( in Criteria state )
raises (CCMException);

void ccm_refugee_remove( )
raises (CCMException);

};

Operations in this interface are invoked by a component’s container and
indicate changes in life cycle of a mobile component. They should be used
by a component developer to control: resource usage, progress in communi-
cation and internal state of the component. Following we describe the exact
meaning and proposed use of each operation:

• ccm_refugee_passivate is called just before passivation of a compo-
nent. A developer shall use this indicator to prepare the component for
storing phase i.e. the component should interrupt any activities which
may change its state after return from this operation. By throwing an
exception, a developer may inform the migration infrastructure that
the component is not yet prepared for the migration attempt. Later in
this section we present more details on the most common scenarios
related to the passivation problem,

• ccm_refugee_store is called to store the current state of a component
after it was suspended. Although some languages such as Java and C#
can serialize classes automatically by means of the reflection mecha-
nism, in this work we adopted manual approach in order to preserve
greater portability of CORBA environment,

• ccm_refugee_load is opposite to the store operation and shall be used
by developers to restore the state of a component. All information
included in the provided state argument should be enough to recreate
the component instance to the form as close as possible to the one
just before passivation. Once this operation is invoked, a developer is
certain that the current instance is located on the destination host.

• ccm_refugee_activate is called in two cases. Firstly, after successful
migration the operation is invoked on the newly created component
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instance at the target location. Otherwise, if migration fails, it is
called at the source location to indicate that the component returns
to its operation as if migration attempt have not occurred at all. In
general, ccm_refugee_activate indicates that an instance is going to
be activated and gives developers chance to prepare the component to
running state,

• ccm_refugee_remove is called on the component at the source location
whenever the migration attempt is successful. The aim of this operation
is to indicate that the component should release all resources acquired
during its work at the source location. Once ccm_refugee_remove has
returned, any other operation will not be called on this instance and a
developer shall assume that it is destroyed.

All these callback operations are crucial for a component programmer to
develop a well functioning mobile component. From this set, however,
the most troublesome might be implementing the ccm_refugee_passivate
operation when returning synchronous operations are expected.

5.1.4 Passivation During Synchronous Requests

In a multithreaded component environment special care is required while
dealing with operations that can result in synchronous returning request
and component passivation has been requested. We term these operations
composite because they refer to some remote system what results in a callback
call. The major problem in such a scenario stems from the fact that incoming
requests do not convey any additional context information and cannot be
easily distinguished from returning requests. Therefore, to properly deal
with this situation some application-level knowledge is required.

The general contract is that when a component instance receives a notifi-
cation of passivation it should stop all threads of execution such that during
ccm_refugee_store it can safely store its state. Writing non-composite oper-
ations, developers may pay less attention to passivation. After returning from
ccm_refugee_passivate the container will block any new incoming calls
and wait until all ongoing requests are finished. However, when a composite
operation is in progress it may happen that it made a synchronous call to
some external system, is waiting for a returning callback call and a passiva-
tion has been requested. In this case, a developer has to consider two options:
(1) they can simply return from ccm_refugee_passivate or (2) they can
hold ccm_refugee_passivate until returning operation is processed. The
consequences are presented in Fig. 5.3a–b.

The advantage of the first approach is its simplicity. A callback request
coming from the external system, similarly to all other incoming request,
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Figure 5.3: Two options of handling passivation requests when a composite opera-
tion is in progress; (a) a simple approach which allows for application
exception, (b) holding passivation until the operation finishes.
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would not reach the component executor but result in the TRANSIENT excep-
tion instead. If this exception results in an application exception returned
from the remote operation call, this scenario is valid. It may happen, however,
that the external system will try reissuing callback operation indefinitely what
leads to a deadlock. In such a case a better approach may be to use a boolean
flag to mark the remote operation call and hold the passivation until the
remote call returns (Fig 5.3b). Unfortunately, disadvantage of this solution is
that if passivation is blocked, all other incoming requests will be accepted as
valid what could result in starvation of the passivation process. Figure 5.4
presents the solution we implemented using two boolean flags. It is based
on the previous idea which blocks passivation until a remote operation is
completed but, additionally, it uses a second boolean flag to mark passivation
in progress. When accepting all other operations, a programmer can check if
passivation is in progress and throw the TRANSIENT exception when needed.
Developers can adopt this to address the passivation issue properly. It is
worth noting, however, that the discussed problem is related to synchronous
remote invocation only and does affect event-based and asynchronous calls.

5.1.5 Summary

The presented migration infrastructure provides programmers with a con-
venient mechanisms supporting mobility of components in runtime. The
approach adopted does not provide fully transparent solution that seems to
be unattainable for multithreaded middleware-based systems. Instead, we
propose an extension to component’s life cycle that makes developers aware
of the migration process and, in the same way, does not impose substantial
constraints on the range of resources and software technologies used in
component’s implementation.

We found that the component level and particularly the CCM model is
very well suited for migration. Not only the components are of proper
granularity but also they can be deployed separately which is very important
for migration. Deployment infrastructure allows determining if a target
location is able to accept a mobile component and enables preparing required
execution infrastructure.

Our prototype implementation of the migration mechanism shows that
the most important issues related to this problem were successfully resolved.
There are, however, many directions that could be further developed to
make the mechanism more convenient and comprehensive. One, especially
interesting, is support for migration of components with stream ports. We
were involved in work on a prototype implementation of the Streams for
CCM extension [71] and believe that these two concepts can be successfully
integrated.
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5.2 COPI-based Application Monitoring

The interceptor design pattern has found its use in many cases such as
message logging, encryption, filtering and monitoring. We use intercep-
tors in ADF mainly for transparent application monitoring. Under the um-
brella of CORBA standards two interception mechanisms are defined: Portable
Interceptors (PIs) [102, Sect. 16] related to plain CORBA objects and Container
Portable Interceptors (COPIs) [101] addressing interception of components.
Plain PIs were proposed much earlier and are available on many ORB plat-
forms, however, they are inadequate to intercept component instances. The
main reason for this is the problem with determining component instance
identity esp. when a client-side component is considered (i.e. a component
with receptacle, publisher or emitter ports). More recently, however, OMG

defined the COPI interception mechanism that takes into account the CCM

container architecture and the component setting. Unfortunately, this mecha-
nism is rarely available in existing CCM platforms.

The main advantage of the COPI mechanism is in the ability to identify
both communicating sides: a client- and a server-side component.9 This
enables many useful use cases such as enforcing security and QoS policies.
Moreover, the mechanism may be used not only to monitor but also to
change the intercepted requests. The COPI specification defines two levels
of interceptors: basic and extended (Fig. 5.5). The basic COPI interceptors
corresponds to the capabilities of the CORBA PI. They enable observation of
the communication but does not allow influencing on a request. Conversely,
extended interceptors provide an additional functionality to change a request
and, therefore, the primary use of extended level interceptors is to modify
component behaviour. The extended interceptors can for example return
a result for an operation call and can prevent the further call processing
from reaching the operation implementation. This may be important when
integrating security into the component model [111]. Our intention, however,
was merely to monitor the communication patterns between components,
hence we implemented the basic level of COPI interceptors and then integrated
it with the OpenCCM platform.

To implement functionality of the basic interceptors we made use of
OpenCCM container plugins and plain portable interceptors. Figure 5.6
shows the detailed view on how request is transmitted from a client-side to a
server-side component. Our COPIController container plugin is attached to
client-side component ports and collects needed identification information

9Actually, the CCM model does not distinguish between client-side and server-side com-
ponents. However, we use these terms to underline the fact that components can have
two kinds of ports: client-side (receptacle, event publisher, source) and server-side (facet,
event consumer, sink). COPI provides means to identify both communicating components
irrespective where the interceptor has been attached.
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Figure 5.6: The detailed view on request transmission between client and server
components when the COPI infrastructure is enabled.

which is stored in the PICurrent object related to the request. The basic
COPI service is implemented as a plain PI that reads information stored in
PICurrent and invokes all registered COPIs. After all container portable
interceptors has been called the identification information is passed to the
server-side component in the ServiceContext object associated with every
client request. At the server side, ORB calls all registered portable interceptors
and our basic COPI service. The service reads identification information
from the request ServiceContext object and invokes all server-side COPI

interceptors. Finally, the request is passed to the server component.

The major difficulty when implementing the COPI specification was to
achieve proper identification of both communicating components. Currently,
the handling of component instance identifiers is not supported by the CCM

model. Therefore, we proposed a non-standard way to identify instances.
The following section provides more details on this issue.

5.3 Component Instance Identification

Proper identification of component instances plays key role in many use
cases. The Quality of Service for CORBA Components specification [101] uses
identity of a component instance when associating non-functional properties
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with them. We consider instance identification as very important for COPI,
deployment and migration mechanisms. The deployment infrastructure
needs identifying instances to bind, update and destroy them properly. The
COPI interception must identify both communicating sides as soon as a request
reaches a client-side stub. Lastly, the migration mechanism needs component
identification to do correct request forwarding.

According to the CCM specification [103, Sect. 6.1.4 and 6.4.4] compo-
nent instances are identified primarily by its component references, and
secondarily by its set of facet references. The model provides the same_-
component operation that allows clients to determine reliably whether two
references belong to the same component instance. Additionally, it offers
the get_component operation that allows them to navigate from port to
a component’s reference. However, the definition of “same” component
instance is ultimately up to the component implementer, in that they may
provide a customized implementation of this operation. We find the proposed
approach not efficient enough especially when the interception mechanism
is considered. To verify if two references represent the same component with
the same_component operation it requires at least one remote call.

Apart from instance identification proposed by CCM, the deployment
infrastructure based on the D&C specification uses another two forms of
identification. First, user-defined, is included in a software package descriptor
represented using the Component Data Model. It combines name attributes
from package and instance descriptions forming a “path” of the instance’s
origins in the model. The length of this path depends on the recursion
level of application assembly components. Second form of identification is
carried by a deployment plan created according to the Execution Data Model.
It keeps association that enables navigating from instances included in a
DeploymentPlan to appropriate instances included in a software package
description. Neither of these identifiers, however, are related to a running
instance of a CCM component which they describe.

To create relation between a running component instance and its de-
scription we proposed two extensions to the D&C models (Fig. 5.7a–b). The
DnCComponent interface ought to be implemented by a CCM component to
allow component users to: (1) determine the name of the component in-
stance as described in the deployment plan and (2) retrieve a reference to
the RunningApplication object which enables asking for the current deploy-
ment plan of the application. Using this plan and having the instance name
we can e.g. determine deployment requirements of a selected component
what is needed for component migration. Additionally, RunningApplication
provides operations for searching component instances within a deployment
plan. Together the proposed interfaces allow for easy navigation between
running component instances and their deployment descriptions.
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Figure 5.7: The extensions creating a link between a running component instance
and a deployment plan; (a) the DnCComponent interface enables iden-
tification of a running application and component instance name; (b)
the RunningApplication interface allows finding running component
instances and the deployment plan related to the application.

Unfortunately, the name of a component instance included in a deploy-
ment plan cannot be used as a proper component identifier for the COPI and
migration mechanisms. The deployment identifier is not globally unique
as the same plan can be executed multiple times in a domain. Therefore,
the DnCComponent interface and instance identification included in the D&C

models are used mainly for deployment purposes, whereas COPI and run-
time migration require an additional component identification. Container
Portable Interceptors need instance identifiers by definition — to enable
identification of communicating sides. The component migration mecha-
nism requires instance identifiers to be a unique property of a component,
which is invariant while the component is moving from a location to location.
Otherwise, it would be impossible to follow a moving instance and redirect
communication properly. In result two issues of instance identification need
to be addressed: (1) uniqueness of the identity to ensure that two different
component instances have different identifiers even if they origin from the
same deployment plan executed more than once and (2) ability to deter-
mine instance’s identity given its reference to be able to follow a migrating
component.

In order to ensure uniqueness of the identifiers we simply use Universally
Unique IDentifiers (UUIDs). They do not need any centralized authority to
administer them and may be automatically generated preserving uniqueness
with very high probability [76].

The problem of how to determine instance’s identity is more difficult to
solve. As mentioned earlier in this section, the same_component and get_-
component operations are means to compare component and facet identity.
They are, however, not enough to determine its identification. To ensure
effective way to retrieve component identifiers we decided to include the
instance identifier in component and all server-side port references. More
specifically, we included the component id in the object_id part of the
CORBA reference that point to the component and server-side ports. For the
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cost of broken opacity of the reference10 some important benefits stem from
this approach:

• any reference to a component instance is all what is needed to identify
it unambiguously, hence we can avoid any remote calls for this purpose.
Moreover, we avoid calling the same_component operation to compare
references,

• by including the component identifier in all server-side ports of a
component, we avoid get_component remote calls to navigate from a
port to the component reference.

• a ServantLocator can easily decode a unique component’s identifier
what guarantees low space complexity of redirection. Even if a mobile
component visits a certain location many times it will always be bound
to the same id in the AOM table.

The presented solution is a simple yet effective way to identify components.
For the fact that instance identification is an important quality of a component
model we believe that future versions of the CCM model will incorporate it in
a similar fashion.

5.4 Summary

In this chapter we have presented the low-level mechanisms that work
behind the high-level sensor and effector interfaces. The main focus of this
chapter was to provide more details on a very interesting problem of runtime
component migration. We have shown most of the issues related to this
reconfiguration mechanism such as the problem of component suspension,
reaching quiescent state and reconnection. We have also presented how
the CCM model may be effectively extended to provide measures to perform
runtime migration. With simple extensions to the standard factory interface
and component life cycle we offer programmers a convenient framework to
develop mobile components. Although our approach does not provide fully
transparent mobility it ensures a substantial freedom in how components
may be implemented and does not impose constraints on resources and
software technologies used.

10The CORBA standard assumes opacity of object and component references. This is,
however, an area of discussion if this is a proper approach because many successful solutions
such as Representational State Transfer (REST) and Internet Communication Engine (ICE) use
explicit, human-readable values to refer to remote objects.
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The other important mechanism presented is component interception.
We have shortly characterized the COPI specification implemented in the
course of this work, which is a fine tool for application-level monitoring.

Later in this chapter we have described the problem of component in-
stance identification which is important for the deployment, interception
and migration mechanisms. We have shown that instance identification for
deployment purposes is separate from lower-level instance identification as
required by COPI and runtime migration. Neither CCM nor D&C provide a
viable solution to the latter mechanisms. We have proposed a solution that
includes UUID-based identifier in every component and port reference. For
the cost of broken reference opacity we ensure a simple yet effective instance
identification.



Chapter 6

Evaluation of the Framework
Building Blocks

This chapter presents the first part of the evaluation of our adaptive deploy-
ment framework. It focuses on the lower layer of the framework consisting
of: plain deployment infrastructure, runtime component migration and ap-
plication monitoring.

The principal goal of this chapter is to present effectiveness of the frame-
work building blocks irrespective of a solution used for deployment adap-
tation. Independently of the kind and quality of an adaptation algorithm
used, we show and discuss minimum costs incurred by an application that
is being adapted. Another aspect presented in this chapter is conformance
of our solution with the D&C specification which was the basis for our plain
deployment infrastructure.

6.1 Configuration of the Testing Environment

The software and hardware configuration is listed in Tab. 6.1. In total, the
environment included 11 machines hosting 4 different operating systems and
was connected with the computer network as shown in Fig. 6.1. LAN 1 was

Table 6.1: The software and hardware configuration of the testing environment.

Computer ID M0 M1 M2 M3 − M10
CPU family Intel Core 2 Duo Intel Centrino Duo Pentium 4 UltraSPARC-IIe
CPU clock speed 2.66 GHz 2.6 GHz 2 GHz 650 MHz
Memory size 3 GB 3 GB 1 GB 1 GB
Operating system Windows Vista Windows XP Linux 2.6 Solaris 9

129
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Figure 6.1: The topology of the testing environment.

the Distributed Systems Research Group’s local Gigabit Ethernet network,
whereas LAN 2 was a dedicated Gigabit Ethernet network connecting the
cluster of 8 machines M3 − M10.

6.2 Testing Applications

To test different aspects of the adaptive deployment platform and its building
blocks we designed and implemented two testing applications. Our intention
was to simulate three common cases: (1) processing-intensive applications,
(2) communication-intensive applications and (3) “mixed” applications (par-
tially processing-, partially communication-intensive systems). This allowed
us to better assess the influence of tested mechanisms on a distributed system.

6.2.1 Traffic Generator

This application represents a class of communication-intensive applications.
The architecture of Traffic Generator is presented in Fig. 6.2. The key compo-
nent of this application is Runner which is declared mobile (the «Refugee»
stereotype) and can be moved between different RunnerHome factories (the
«Refuge» stereotype). As shown in the figure, Runner accepts two types of
traffic produced by the Generator component: operation calls and events.
Received traffic is passed immediately to the Receiver. All three components
send to the Logger information indicating submission/reception of the traffic
messages what allows us to monitor any loss or errors in communication. The
Generator component can be configured to produce traffic of different in-
tensity such as best-effort, random distribution and specified frequency. This
enables simulating a broad range of communication-intensive applications.
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Figure 6.2: The architecture of the Traffic Generator application.

6.2.2 Asymmetric Ray Tracing

This application was implemented to simulate more sophisticated distributed
systems. It renders 3D scenes using the ray tracing technique, however, to
introduce more asymmetry in the way how the rendering work is distributed
throughout the application we designed and developed an additional layer of
control. Depending on its configuration, Asymmetric Ray Tracing (ART) can
represent a class of processing-intensive, communication-intensive or “mixed”
(partially processing-, partially communication-intensive) applications. The
ray tracing technique is an embarrassingly parallel problem1 and, therefore,
can be easily implemented as a distributed system. Parallel ray tracing is
usually solved using the master-worker architecture where master distributes
between workers parts of the image (chunks) to render and then collects
the results. This basic form of the ray tracing application exhibits a lot of
symmetry, though. Workers are offered parts of the same scene and render
chunks of the same size. Even if image chunks have different complexity,
on average workers will process comparable number of the chunks and
will use comparable amount of CPU and network resources. Therefore, to
simulate more asymmetric processing and communication patterns we added
to the system the Controller component. It controls many Managers each
of which controls a set of Worker components. Manager stores its own
configuration parameters such as: a number of rendering workers, scene to
be rendered, size of the scene, size of an image chunk. This design allowed

1In [51, Sect. 7.1] G.C. Fox et al. defined an embarrassingly parallel class of problems as
these which spatial structure allows a simple parallelization as no (temporal) synchronization
is involved. These problems characterize with the modest node-to-node communication re-
quirements what makes them particularly suitable for a distributed computing implementation
on a network of workstations.
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Figure 6.3: The architecture of the Asymmetric Ray Tracing application.

us to simulate applications that have processing-intensive nature (a complex
scene, large chunk size), communication-intensive characteristic (a simple
scene, small image chunks, many workers), or any combination of these.
Moreover, controlling the number of scenes to be rendered by a Manager, we
can influence how long selected parts of the application are executed.

Figure 6.3 presents the architecture of the ART system. The Worker and
Manager components are declared mobile, the others are immobile. The
Controller component uses the Manager’s provides port to set configuration
parameters and receives events about progress of the rendering. Display is a
GUI component that receives image chunks from managers and presents them
to a user. Controller uses Display interface to dynamically bind Manager
instances with Displays. Additionally, it uses ManagerHome and WorkerHome
factories to create a number of Manager and Worker components as defined
by a user.

6.3 Evaluation of the Plain Deployment Infrastruc-
ture

The aim of this section is twofold. First, to show conformance of our plain
deployment infrastructure with the D&C specification which was the founda-
tion for our ADF framework presented in this work. Second, to demonstrate
effectiveness of the infrastructure when performing basic application deploy-
ment tasks. Apart from only conformance issues, the first part also verifies
usability of the D&C specification for deployment in open heterogeneous and
distributed systems. We clarify why some parts of the specification were not
implemented in our framework.
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The second part — performance evaluation — is important because the
plain deployment infrastructure is used not only for the initial application
deployment but also whenever its reconfiguration is requested. Although
the deployment activities are performed in background and do not directly
influence application they may affect the adaptation process resulting in
degradation of application performance. Later in this chapter we show
relation between the plain deployment infrastructure and the reconfiguration
mechanism.

6.3.1 Conformance to the D&C Specification

Developing an implementation fully conformant to the D&C specification
requires a lot of effort. The intention of this research was not to implement
the complete specification but rather verify what elements are needed to
enable adaptiveness in the deployment process. For this reason we have
not developed all the defined functionality, nonetheless, the implemented
functionality is as much compliant with D&C as possible.

The D&C specification defines segmentation of the deployment model in
the two following dimensions:

1. Data Models vs. Management Models — that distinguishes between a
model of descriptive information and the model of runtime entities that
process that information,

2. Component Software vs. Target vs. Execution — that separates the de-
ployment model on three segments representing: (1) an application
software package, (2) a target execution environment running the
software, and (3) an execution infrastructure used to deploy and start
software in a target environment.

These dimensions define six different pages of the model [100, Sect. 7.1.3].
Our adaptive framework makes use of three pages referring to the Data Mod-
els dimensions exactly as they are defined in the specification. Conformance
to the other three pages is presented in the remainder of this section.

Target Management Model

The key functionality defined in this model is accessible through the Target-
Manager interface. Our infrastructure implements two of the five operations
defined i.e.: getResources and updateDomain. The manager reads a static
description of a target execution domain from an XML file (see Appx. B)
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Figure 6.4: Extensions of the Execution Management Model related to runtime appli-
cation reconfiguration.

and makes it available through getResources. The updateDomain operation
allows for updating this static information with the current monitoring data.

The other three operations of the TargetManager interface are related to
resource reservation management. We have not implemented this functional-
ity of the manager because we accepted the assumption that our adaptive
deployment framework works in the best-effort manner. This approach is
more appropriate for adaptation in open distributed environments as it avoids
the need of specifying intricate resource reservation functions.

Execution Management Model

This model is the fundamental and the most complex part of the D&C deploy-
ment specification. We implemented all its relevant elements2 together with
our extensions that enable runtime reconfiguration. The infrastructure can be
accessed either using the standard D&C interfaces or through our proprietary
interfaces. The model was extended with three new entities: Running-
Application, DomainRunningApplication and NodeRunningApplication
(Fig. 6.4). The structure of this extension reflects the existing structure of an
application in D&C which separates the model between a global (domain) and
local (node) infrastructure. A running application can be updated in runtime
according to a deployment plan provided to the startUpdate operation.
Update has been split on two stages what follows two-phase initialization
scheme of D&C-based applications.3

2The distributed Logger facility is the only missing D&C entity in our implementation. It is
not properly mapped by PSM for CCM transformation and, therefore, its exact form remains
unclear. Instead, we use local logging facility offered by Java API.

3The full definition of the changes to the D&C specification is included in Appendix A.
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Again, the elements of the execution management model that we did not
implemented are related to resource management. Therefore, our Domain-
ApplicationManager is not connected to the TargetManager and does not
reserve resources when performing deployment. Moreover, we did not realize
the getDynamicResource operation included in the NodeManager interface
that allows for retrieving values of dynamic satisfier properties associated
with a managed node. Our framework does not use this functionality because
information about dynamic properties are collected directly from monitoring
sensors. In this way we avoid unnecessary delays and can better control the
how monitoring of the execution environment is performed.

Component Management Model

The D&C Component Management Model defines only a single Repository-
Manager interface. The primary goal of the manager is to support an appli-
cation packager, software provider and end-user in maintaining collection
of software packages. Our ADF framework does not focus on application
development and publishing, therefore, the implementation we developed is
limited to only these operations that are necessary for the first-stage planner
to prepare an initial deployment plan. It includes package installation and
searching.

Additionally, our repository manager provides means to retrieve com-
ponent artifact files. For this purpose the specification suggests using URL

references that can be easily included in XML descriptor files, hence the
manager contains a simple HTTP server that enables such referencing.

Overall Conformance Statistics

Table 6.2 presents quantitative view on the conformance of our implemen-
tation with the D&C specification. In the table we included all three man-
agement models and presented the number of implemented entities and
operations comparing to all entities and operations defined in the models.

As may be seen, the most important part for the specification — Execution
Management Model — is implemented in more than 90%. The unimple-
mented functionality is related to resource reservation which is in contrary to
the best-effort resource management approach we accepted. The proposed
solution offers three new entities concerning runtime application reconfig-
uration. The extensions in the Component Management Model denote the
provided HTTP interface.
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Table 6.2: The number and percentage of the entities and operations defined in D&C

that are implemented by our deployment infrastructure.

Execution Model No. of entities No. of operations

Component Management Model 1/1 (100%) 5/8 (63%)
+extensions 0 +1

Target Management Model 1/2 (50%) 2/7 (29%)
Execution Management Model 8/9 (89%) 13/14 (93%)

+extensions +3 +5

Total 10/12 (83%) 20/29 (69%)
+extensions +3 +6

6.3.2 Performance of the Deployment Infrastructure

In this section we focus on performance aspects of the implemented plain
deployment infrastructure. As already mentioned, effectiveness of the in-
frastructure has only indirect influence on application, nevertheless it may
impact on agility of the adaptation process.4 In this work we use the compo-
nent migration mechanism as a basis for application adaptation and plain
deployment is a prerequisite for the migration. Before component migration
can take place the plain deployment infrastructure is used to prepare an
execution environment according to a new deployment plan. Two issues are
important in this case: (1) influence of the preparation step on application
performance, and (2) the time required to perform the preparation. To
host a mobile component a target execution node needs to run component’s
factory and this in turn requires a proper container and component server
to be running, too. If any of these entities need to be deployed on a target
node depends on whether the node runs the hosting infrastructure already
and whether its configuration is consistent with the required by the mobile
component. In the worst case all of the entities are deployed.

The exact influence of the reconfiguration preparation step on application
performance depends on the number and location of nodes being involved.
When the preparation affects unoccupied nodes it causes only minor disrup-
tion for the network. More significant impact is made, however, when there
is a need to deploy the hosting infrastructure on nodes which already execute
some application components. We observed such a case and measured its
influence on performance of the ART application. In this test we ran all the
application components on a single node and requested a number of different
updates. Table 6.3 shows the measurements for different settings.

4As mentioned earlier in Chap. 5 on page 107, adaptation agility is a property of an
adaptive system that determines speed and accuracy with which it detects and responds to
changes in its execution context.
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Table 6.3: Time (in seconds) required to complete a single run of the ART application
with and without deployment updates.

Target
No update

10 deployment updates

node factory container comp. server

M0 66.1(±2.2%) 66.0(±1.2%) 64.0(±2.7%) 72.8(±1.9%)
M2 252.8(±4.4%) 265.5(±1.2%) 256.6(±2.3%) 297.8(±1.1%)

As expected, the most disruptive case was when preparation included
instantiation of a component server, container and factory (the last column).
Deployment of a new component server involves creating a new JVM process
in the operating system and this is the most expensive part of the whole
preparation. For cases when only a container and/or factory was deployed,
degradation of performance per one deployment update was negligible
(below 1‰). Somewhat surprising was the fact that running a container and
factory (fourth column) was faster than creating a new factory within an
existing container (third column). After a closer analysis it appeared that
during the factory-only update the Java VM performed additional garbage
collection which did not occur when the factory and container update was
performed. Another unexpected behaviour we noticed when comparing
results on machine M0. Running the container and factory update rendered
better results than leaving the application untouched. We tested this case
many times and the only explanation we could find was that the OS scheduler
on Windows Vista machine M0 promoted the testing process which was in
the foreground at the time of the test.5

Overall, even if the most significant impact on application performance is
caused by running fresh component server instances the need for separate
servers on a node already hosting application components is relatively rare.
In most cases it is enough to create a new factory or, if a component has some
specific configuration requirements, to create a separate container within the
existing component server. Consequently, influence of the preparation step
on application performance can be considered as only minor.

The second problem related to the reconfiguration preparation is its
completion time. We measured time required to perform a deployment
update of the ART application. Figure 6.5 shows the target environment
which consisted of three hosts: M10 and two others named A and B. The
exact assignment of the execution nodes to the presented target hosts A
and B is shown in Tab. 6.4. Initially, only the Controller component was
deployed. Later, during the tests, we updated this deployment with three

5This is in accordance with Inside the Windows Vista Kernel: Part 1 by M. Russinovich
http://technet.microsoft.com/en-us/magazine/2007.02.vistakernel.aspx
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Figure 6.5: Target environment used for testing time required to prepare reconfigu-
ration of the ART application. Host M10 was initially deployed with the
Controller component. Hosts A and B were updated with three other
components.

Table 6.4: Time (in seconds) required to update deployment of the ART application
depending on the target execution nodes.

Target host startUpdate finishUpdate Total time
A B

M0 M0 2.659(±1.5%) 0.020(±13.0%) 2.679(±1.6%)
M2 M2 4.299(±1.2%) 0.035(±4.6%) 4.334(±1.3%)
M0 M2 5.795(±1.3%) 0.032(±11.9%) 5.827(±1.3%)
M0 M3 11.718(±1.3%) 0.024(±26.5%) 11.742(±1.3%)
M2 M3 13.400(±0.7%) 0.037(±6.6%) 13.437(±0.7%)
M3 M3 13.165(±1.1%) 0.109(±2.8%) 13.274(±1.0%)
M3 M0 14.850(±1.6%) 0.138(±2.1%) 14.988(±1.6%)
M3 M2 15.678(±1.0%) 0.133(±4.0%) 15.811(±1.0%)
M3 M4 21.741(±0.7%) 0.142(±7.6%) 21.883(±0.7%)

other components as shown in the figure. Table 6.4 includes measurements
of deployment time for different target hosts A and B. The process comprised
of two steps presented in the table: startUpdate and finishUpdate. It
is clearly visible that the vast amount of time (about 97%) was consumed
by the startUpdate operation. In this test it included full preparation
(i.e. instantiation of component server processes, containers and homes)
because the target nodes A and B were not hosting any of the application
components yet.

As shown later, the time required to prepare the execution infrastructure is
more than three orders of magnitude longer than the time required to perform
migration. Unfortunately, the longer the time is, the lower responsiveness
of the reconfiguration mechanism is and the less agile adaptation can be.
Figure 6.6a presents a case when preparation and reconfiguration actions are
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Figure 6.6: Influence of the reconfiguration preparation step on adaptation agility.

fast enough to be accomplished before the next application reconfiguration
attempt. When the deployment infrastructure receives a reconfiguration
request event, it starts preparation of the infrastructure according to the
provided plan. Only after this step the adaptation infrastructure can perform
the actual reconfiguration of the application (i.e. migration of components).
Depending on the quality of the adaptation algorithm used, it should result
in some performance gains. However, in the case when preparation is longer
than the interval between decisions coming from the adaptation algorithm,
some undesirable effects will occur. First, depicted in Fig. 6.6b, is the problem
of missing reconfiguration attempts. It causes an obsolete reconfiguration
action to be done despite the fact that the adaptation algorithm requests
a new, possibly contradictory, action to be performed. This may lead to
deterioration in application performance. Second, reconfiguration storms
is shown in Fig. 6.6c. By postponing reconfiguration requests it causes
the system to be constantly reconfigured. When designing the adaptation
algorithm we took both these issues into account.

6.3.3 Possible Extensions

Two important aspects are not at all addressed by our deployment infras-
tructure: security and transaction-awareness. Both are crucial for produc-
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tion use of the platform. Security in deployment is required to ensure
basic credibility of the platform and to protect users from spreading viruses
and other malicious software. Transaction-awareness provides measures
to cope with failures during distributed deployment. Developing a secure
and transaction-aware deployment infrastructure is, however, a large and
complex undertaking and was deliberately omitted from this work.

6.4 Performance of the Migration Mechanism

In this section we assess performance of the migration mechanism consid-
ering three aspects. First is the time required to carry out migration of a
component. Second is the influence of this mechanism on application per-
formance. Third is the comparison of performance between the original
implementation of the CCM platform (OpenCCM) and the platform extended
with support for runtime component migration.

6.4.1 Effectiveness of the Migration Mechanism

In this test we used five identical Sun Blade machines and the Traffic Gen-
erator application. The deployment of the testing application is presented
in Fig. 6.7. In this test the Runner component was being moved by the
MigrationService component 2000 times starting from the host M3 (the
home location) through M4, M5, etc. To focus merely on migration aspects
in this test and avoid disruptions caused by infrastructure preparation, on
all hosts the RunnerHome factory was deployed a priori. Moving the Runner
component between identical hosts we could observe how performance of
component migration depended on location of adjacent application compo-
nents.

Table 6.5 shows the gathered results with separation on subsequent
migration steps. As expected, the quickest response (67.5 ms) was whenever
the home location (host M3) was directly involved in Runner migration. This
is mainly due to faster reconnect step which involves the refugee_moved and
refugee_update operations.6 The former is called on the source Refuge,
whereas the latter on the home Refuge. In the case of M3 → M4 jump,
the M3 host was both the source and home Refuge, hence refugee_update
invocation was avoided. However, in case of the M7 → M3 jump reconnection
was faster due to collocation of the home Refuge and the migration service
component that controlled Runner migration. This collocation was also
the reason why the accept step (always called on the target factory) was
the fastest for the M7 → M3 jump. Remaining locations exhibited almost

6This was discussed earlier in Sect. 5.1.2 on page 112.
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Figure 6.7: The deployment of the Traffic Generator application among five Sun
Blades servers. The dotted line shows the migration path of the Runner
component.

Table 6.5: Time (in milliseconds) required to perform subsequent migration steps
when moving a component between the indicated locations.

Move Freeze Accept Reconnect Total time

M3 → M4 14.4(±45%) 35.6(±26%) 17.5(±31%) 67.5(±21%)
M4 → M5 14.0(±52%) 36.6(±27%) 29.7(±29%) 80.4(±22%)
M5 → M6 13.3(±48%) 40.0(±28%) 30.0(±30%) 79.8(±22%)
M6 → M7 14.9(±51%) 35.6(±29%) 29.8(±35%) 80.3(±24%)
M7 → M3 13.8(±54%) 31.0(±27%) 23.6(±30%) 68.4(±23%)

identical performance (about 80.0 ms) that was nearly 20% worse than the
fastest M3 → M4 jump.

Overall, the test shows that migration of a simple stateless component
requires about 70 ms. This time factor is important when considering deploy-
ment adaptation because it causes interruption in the component functioning
what, in turn, may influence the whole application. Depending on the
application architecture interruption of a single component can have very
different ramifications on application performance. In this example the
Runner component is the central point between Generator and Receiver
and, therefore, each migration of this component resulted in interruption to
the whole application.
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Figure 6.8: Deployment of components when testing influence of migration on call
performance.

6.4.2 Influence of Migration on Communication Performance

The goal of this test was to verify how migration influences call performance
of a mobile component. Generator sent to the Runner component as many
events as it was able to process and we observed how location of Runner
affected message processing. The test was conducted using four Blade ma-
chines as component refuges and three other Blades to control the migration
and generate traffic. The exact deployment of the testing application is
depicted in Fig. 6.8. Separation between the RunnerHome factories and the
rest of application components was intentional to create the same conditions
for all Runner jumps. As shown in the figure, Runner was being moved in a
cycle: M6 → M7 → M8 → M9 → M6 starting from home location M6.

The results presented in Fig. 6.9 show the average number of event
transfers per second and their RTT. The test was repeated in a cycle and in
the figure we highlighted one such cycle with four periods when component
was executing on machines: M6, M7, M8 and M9 respectively. As shown in the
figure, Runner executing in its home location performs nearly twice as fast
as being located in a non-home location. This was because the Generator
component used the original object reference of Runner and when it was
executing at the home location no additional redirection was required.7 It
is also visible that consecutive movements of the Runner component did
not introduce any degradation in the communication performance. This
clearly indicates that there is no chain of reference built while a component
is moving and proves correctness of our implementation.

7Usually, this behaviour would not be observed as ORB caches the most recent redirection
to a specified object reference. Unfortunately, the ORB implementation we used in the tests
(OpenORB) caused problems when redirection caching was turned on.
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Figure 6.9: Influence of migration on the number of operation invocations per
second and invocations’ RTT.

6.4.3 Influence of Migration on Processing Performance

In order to measure influence of component migration on application per-
formance we used the Asymmetric Ray Tracing application. We simulated
communication-intensive and CPU-intensive applications by controlling the
size of an image chunk being processed by a Worker.8 In this test there was
exactly one Manager and one Worker running. To assess migration costs we
used a single controller machine and a cluster of four identical Sun Blade
servers. Figure 6.10 presents deployment of the ART application in this execu-
tion environment. By moving Worker between the Blades we did not expect
any gains in processing performance because of the same hardware and
software configuration. We could rather observe decrease in performance
incurred by the application due to component migration.

Table 6.6 shows the measurements in three cases. First, when Worker
was running in its home location (host M3) and no moves were done. Second,
when Worker was running in a non-home location and no moves were done.
Third, when the Worker component was moving between all Blade hosts in
a cycle, starting from the home location. In this case component migration
was performed 20 times, once per 8 seconds. When moving, Worker was
running 25% of its execution time in the home Refuge and 75% in non-
home Refuges. After the last move and until the end of each test it was

8The larger the chunk size is, the more processing-intensive the application becomes.



6. EVALUATION OF THE FRAMEWORK BUILDING BLOCKS 144

Controller

Display

Host M0

Host M3 Host M4

<<Refuge>>

Worker Home
Host M5Host M6

<<Refuge>>

Worker Home
<<Refuge>>

Worker Home

<<Refuge>>

Worker Home

<<Refugee>>

Worker

<<Refugee>>

Manager

<<Refuge>>

Manager
Home

Migration
Service

Figure 6.10: Deployment of components during the test that verified influence of
component migration on its processing performance.

Table 6.6: Time (in seconds) required to
perform a ray tracing task de-
pending on chunk size, Worker
location and its mobility.

Chunk at home at non-home 20 moves
size no moves no moves 1/8 Hz

4×4 516.4(±1.2%) 612.7(±2.9%) 557.4(±5.4%)
8×8 267.8(±1.4%) 301.1(±0.7%) 292.1(±3.6%)

16×16 181.3(±1.0%) 183.1(±1.0%) 199.4(±0.6%)
32×32 154.3(±0.7%) 153.4(±0.4%) 171.2(±1.1%)
64×64 143.1(±0.8%) 139.3(±1.4%) 160.4(±1.9%)

128×128 137.2(±0.6%) 132.9(±1.9%) 211.0(±7.7%)
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Figure 6.11: Performance overheads
incurred by the ART ap-
plication related to a sin-
gle Worker move.

again running in the home location. Given this and the time of the first
and last move we calculated the absolute deceleration and average decrease
in performance of the ART application per single Worker move. Results are
presented in Fig. 6.11. In most cases the overheads were very low (below
1%), however, for large image chunks, i.e. CPU-intensive components, we
observed significant increase in processing time and a sudden surge of the
overheads.

When moving, the Worker component does not store any parts of a ren-
dered image chunk and after activation in a new location it starts rendering
the recently rendered chunk from the beginning. The main drawback of this
simple implementation can be noticed when time required to calculate a
single image chunk increases. If it is comparable to the interval between two
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subsequent moves, the application will incur high overhead (for chunk size
128x128 and interval 8 seconds). For larger chunks of shorter intervals the
application may even be blocked. We deal with this problem by rejecting too
frequent migration attempts — migration of the Worker component will be
rejected until it produces at least one image chunk.

During migration a component is passivated and requested to store its
state. As we implemented the weak migration approach,9 it is rarely possible
to store the component’s state exactly as it is when the passivation event
occurs. Instead, if the component is involved in some operations when the
passivation is requested, it may follow one of the three solutions. First, if
it is acceptable, it may interrupt processing of the operations immediately
and loose some state. Second, it may postpone passivation event until all
the operations are finished or a restore point is reached.10 Third, it may
reject migration request. Figure 6.12 depicts these three cases comparing
them with the strong migration approach. For strong migration (Fig. 6.12a),
execution of a component can be resumed exactly from the state of passiva-
tion (mn) and, therefore, the only overhead is the time required to perform
the actual component migration. Conversely, for weak migration the three
aforementioned cases are possible. Figure 6.12b depicts the case when pas-
sivation is conducted immediately on migration request (m1, m2, and m3)
but execution is resumed from the most recent restore point (s, b and c).
In this case overhead is twofold: related to migration itself and related to
rerunning component from the restore to passivation point (s→ m1, b→ m2
and c→ m3). Second and potentially more effective solution is presented in
Fig. 6.12c. In this case migration is postponed until the next restore point is
reached (m1 → a, m2 → c and m3 → d) and the application incurs overheads
of component migration only. The delay of the move operation is sustained
by the entity performing component migration. The third case, which is
followed by our Worker component, is presented in Fig. 6.12d. It is similar to
the case (a) but migration requests are rejected until a component reaches at
least one restore point. This avoids component starvation if migration is too
frequent because the component can guarantee that it will progress towards
at least one restore point before it allows any movement.

In the case of Worker that rendered large image chunks (128x128) the
surge in overhead presented earlier was connected with the state loss. The
time needed to accomplish rendering with migration was nearly twice as

9Weak component migration is the approach that moves entity’s code and state. It is limited
when compared to strong migration that, additionally, transfers current program counter.
Strong migration allows for resuming processing exactly in the stage it was interrupted,
whereas weak migration requires explicit passivation. At the middleware level, however,
access to the program counter is limited and, therefore, implementing the strong migration
approach seems to be hardly possible. More about strong and weak migration is explained by
A. Fuggeta et al. in [53].

10We discussed some of these issues in Sect. 5.1.4 on page 119.
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Figure 6.13: Deployment of the Asymmetric Ray Tracing application to measure
overheads of the our migration-aware CCM platform.

long as in the case with no component migration. It means that the time
needed to render a single image chunk must have been longer than 8 seconds
and moves, if not rejected, were related to loss of almost the whole rendered
chunk. Developers should take these problems into account when program-
ming support for migration of their components because poorly designed
passivation and state checkpointing can yield disappointing results.

6.4.4 Overhead of the Migration Infrastructure

The purpose of this test was to measure overhead related to running our
mobile-aware infrastructure when compared to the original OpenCCM im-
plementation. To assess the overhead we used the Asymmetric Ray Tracing
application in the deployment settings presented in Fig. 6.13. This time the
application was executed twice: (1) using the original OpenCCM platform,
(2) using the modified version of this platform supporting mobile compo-
nents. In this test no component migration was performed but we simply
compared application performance for three application settings. First sim-
ulated comm.-intensive applications (rendering a number of simple scenes
using small image chunk size), second simulated CPU-intensive systems (ren-
dering complex scenes with large image chunks). The last was a mixed
configuration where parts of the application were more comm.-intensive and
parts more CPU-intensive.

Table 6.7 presents execution times for different application settings. As
may be seen, our extension of the CCM infrastructure does not introduce
any performance overheads. Conversely, it exhibits small performance gains
which are result of improvements in thread management.
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Table 6.7: Execution time (in seconds) of the ART application for the original and
mobility-aware OpenCCM platforms.

Application Original Mobility-aware
settings OpenCCM OpenCCM Overhead

comm.-intensive 472.1(±0.3%) 463.0(±0.3%) −1.9%
CPU-intensive 304.3(±0.1%) 291.9(±1.0%) −4.1%
mixed 515.8(±0.8%) 516.7(±1.8%) 0.2%

6.5 Overhead of Monitoring Infrastructure

Monitoring infrastructure is an important part of any adaptive framework.
It supplies the adaptation engine with crucial, runtime data that convey
information about the current state of an adapted system. Unfortunately,
monitoring almost always introduce performance degradation to the moni-
tored system and hence it is important to measure and minimize its influence.

One of the advantages of our framework is the ability to install and
uninstall monitoring sensors on demand in runtime. This allows decreasing
the overheads when some monitoring information is not available for a
certain type of applications or not required for an adaptation algorithm used.
Note, however, that at the middleware layer monitoring sensors often require
proper instrumentation of the execution environment. While our framework
allows uninstalling sensors, it cannot remove the instrumentation which also
may have negative influence on application performance. For example, to
assess intensity of communication between components we implemented the
LinkSensor component that requires the COPI infrastructure to be running.
This infrastructure needs to be enabled in a container and even if we uninstall
the LinkSensor, it will still be running and introduce some overheads for
call performance.

In the following tests we measured influence of both: the instrumentation
layer and sensors. For CIM-based sensors we tested environment with and
without the WBEM infrastructure running and with and without CPUSensor
and MemorySensor installed. For CommSensor and LinkSensor we tested
environment with and without the COPI infrastructure running and with-
/without sensors installed. More limited were tests of HomeSensor because it
uses a proprietary OpenCCM home listener infrastructure that cannot be eas-
ily uninstalled. Therefore, in the case of HomeSensor tests, we only compare
application performance with and without the sensor installed.

To assess CIM- and COPI-based sensors we used the Asymmetric Ray Trac-
ing application. It was deployed as shown previously in Fig. 6.13 and was
applied the same three configuration settings that simulate communication-
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Table 6.8: Execution time (in seconds) of Asymmetric Ray Tracing depending if the
WBEM infrastructure and CIM-based sensors were enabled.

Application
settings

WBEM

disabled

WBEM enabled

no CPU- Memory- CPU- and Null-
sensors Sensor Sensor MemorySensor Sensor

CPU-intensive 290.0(±0.8%) 290.6(±0.6%) 349.6(±0.8%) 349.9(±1.5%) 415.0(±0.5%) 293.3(±1.6%)
comm.-int. 429.7(±0.6%) 430.1(±1.0%) 521.3(±0.7%) 521.3(±1.3%) 611.0(±0.3%) 438.2(±0.4%)
mixed 514.7(±0.8%) 516.8(±1.2%) 616.7(±0.5%) 617.1(±1.5%) 735.9(±0.6%) 526.8(±0.8%)

Table 6.9: Execution time (in seconds) of Asymmetric Ray Tracing depending if the
COPI infrastructure and COPI-based sensors were enabled.

Application
settings

COPI

disabled

COPI enabled

no Link- Comm- Link- and
sensors Sensor Sensor CommSensor

CPU intensive 290.0(±0.8%) 290.9(±0.2%) 293.6(±0.6%) 299.6(±0.7%) 308.5(±1.0%)
comm. intensive 429.7(±0.6%) 463.6(±0.6%) 476.3(±0.7%) 471.4(±0.4%) 480.9(±0.4%)
mixed 514.7(±0.8%) 529.7(±1.0%) 527.0(±0.9%) 543.4(±1.9%) 543.0(±1.1%)

intensive, processing-intensive and mixed (partially comm.-, partially CPU-
intensive) applications. Table 6.8 shows the results collected for CIM-based
sensors. Running the WBEM infrastructure had only a minor influence on ap-
plication performance: in case of the CPU-intensive application setting there
was no noticeable overhead and for the other two settings a decrease of 1–2%
was measured. However, installing and running sensors introduced substan-
tial penalty for the monitored application which was executing about 20%
longer if one sensor was installed. Installing two sensors on a node caused
over 40% increase in execution time irrespective of the application settings.
Surprisingly, such a high overhead was not result of the sensor operation but
rather activation of the WBEM infrastructure. When a sensor was not installed
in the system the infrastructure remained dormant. However, installation of
the sensor activateed a WBEM agent which consumeed substantial amount
of resources.11 To verify this we implemented the NullSensor component
that differs from the CPUSensor only in that it does not call the WBEM in-
frastructure but reports random data instead. Results show that overhead
caused by the NullSensor implementation is as low as 1-2% irrespective of
the application settings.

Much different are measurements gathered for COPI-based sensors. Ta-
ble 6.9 shows that installation of the COPI infrastructure has only minor
influence on application performance unless it is a communication-intensive
application. In the tested settings, for the CPU-intensive and mixed settings
the COPI infrastructure caused as low as 1–3% decrease in performance,

11We performed the tests mainly on low-power Sun Blade Servers where running the WBEM
infrastructure consumed a lot of memory and CPU resources.
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Table 6.10: Total migration time (in milliseconds) of the Runner component with
HomeSensor disabled and enabled.

Application HomeSensor HomeSensor
settings disabled enabled Overhead

1000 jumps, best-effort 63.7(±20.0%) 68.7(±19.7%) 7.8%

whereas for the communication-intensive setting overhead was about 7%.
Similarly, installation of COPI-based sensors had only minor influence on
non communication-intensive applications (1–4% overhead) which increased
to about 9% for the communication-intensive settings. Substantial penalty
for the latter settings was result of running the COPI infrastructure that in-
tercepted every invocation between components. The higher the rate of
communication was the more frequently interception occured and higher
overhead was.

In order to measure overheads caused by the HomeSensor we used the
Traffic Generator application with migration infrastructure enabled. Moving
a component between containers involves creating and destroying its consec-
utive incarnations, therefore, it is a good testing scenario for the HomeSensor.
In this test we moved the Runner component 1000 times between four ma-
chines as fast as possible. As shown in Table 6.10, overhead for a single
component movement (one create and one destroy operation) was about 8%.
It is worth noting, however, that overall overhead for application perfor-
mance depends on how often application creates and destroys component
instances.

6.6 Summary and Conclusions

This chapter presented evaluation of the three building blocks of our adaptive
deployment framework: the plain deployment infrastructure, monitoring
and component migration mechanisms. The deployment infrastructure im-
plements the most important parts of the D&C specification leaving unim-
plemented elements related to resource reservation and management. We
adopted the best-effort approach to the resource management rather than
strict resource management proposed by D&C. Later, we showed that al-
though effectiveness of the plain deployment does not influence application
performance directly it may affect agility of the adaptation process. This,
in turn, may cause indirect performance degradation and some undesirable
effects such as reconfiguration storms. To avoid them an adaptation mecha-
nism needs to take effectiveness of the plain deployment infrastructure as an
important input factor for system reconfiguration.
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When testing the runtime component migration mechanism, we measured
the absolute time required to perform a single move of a simple component.
We also presented results that indicate correctness of our implementation.
Moving a component many times between different machines did not affect
its performance. Further, we showed that component migration may have
only minor influence on application performance esp. when a component
does not involve long processing. For CPU-intensive components the key
issue is to effectively manage their state on passivation. Unfortunately, at
middleware layer we cannot afford for the strong migration mechanism and,
using the weak approach, components are susceptible for state loss. We
discussed three possible solutions for this problem: reverting to the recent
restore point, postponing a migration request and rejecting a migration
request. Which of these is the most appropriate for a particular component
and application is difficult to answer and, therefore, we leave this decision to
programmers. Our framework provides, however, all required tools to easily
follow any of these solutions.

Lastly, we focused on monitoring infrastructure and presented influence
of environment and application monitoring on application performance. The
major overhead we measured was for CIM-based sensors that used WBEM

infrastructure to collect the data. However, the source of the problem was in
high requirements of the Solaris’ WBEM infrastructure rather than in sensor im-
plementation itself. The costs related to running COPI-based application mon-
itoring was relatively low unless the application exhibited comm.-intensive
characteristic. Finally, we measured overhead of HomeSensor that enables
monitoring of creation and destruction of component instances. Although
results show a substantial overhead, its actual influence on application per-
formance largely depends on how often the application creates and destroys
component instances. Overall, to minimize monitoring costs incurred by
an application the presented infrastructure offers on-demand installation
and uninstallation of sensors. This may be used to attach sensors by an
adaptation mechanism in runtime.



Chapter 7

Adaptive Deployment with
Force-Directed Algorithms

In the previous chapters we presented and evaluated most of the elements of
the adaptive deployment framework developed in the course of this research.
The last missing part in the description of the framework is the adaptation
logic that coordinates the way how sensors and effectors cooperate together.
The main task of this key element is to collect information from sensors,
analyze it and produce a deployment plan that improves overall application
performance. In this chapter we describe an approach for adaptive deploy-
ment planning that closes the control loop of the proposed ADF framework.

We based our solution on the fact that in model-based deployment both
an application and execution environment are represented as graphs. Ver-
tices of these graphs symbolize components and execution nodes, whereas
edges represent component links and network interconnections respectively.
Moreover, by adding an edge between each component vertex and its hosting
node vertex, we can represent a deployed application as a graph which is a
combination of the two mentioned graphs. This draws an idea to deal with
the deployment planning problem using graph layout algorithms.

From a diversity of graph layout algorithms we focus in this work on
Force-Directed Algorithms (FDAs) as some of the most flexible methods to
calculate layouts of simple undirected graphs [121]. Graphs drawn with
these algorithms tend to be aesthetically pleasing, exhibit symmetries and,
for planar graphs, are often cross-free. Typical applications for FDAs are
graph layout and derived problems such as layout in VLSI [20, 39], sensor
networks [43] and visualization in data mining [32, 46]. However, due to
their simplicity and flexibility they can be easily adapted and extended to
fulfill other layout criteria. Further in this chapter we show how FDA can be
used to drive adaptive deployment planning.

152
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7.1 Overview of FDA algorithms

Force-directed algorithms are the methods of choice for drawing general
graphs. Interest in these methods stems from their aesthetically pleasing
drawings, applicability to general graphs and conceptual simplicity. They
view a graph as a system of bodies with forces acting between them. Adjacent
nodes connected with an edge have an attractive force and nodes without an
edge between them repel each other.

In general, FDAs use an energy (or cost) function E that assigns to each
embedding ρ : G ∈ Rn of a graph G in some Euclidean space Rn a non-
negative number E(ρ). The algorithms are based on the premise that minima
of reasonably chosen energy functions produce desirable graph layouts. The
main differences between FDAs are in the choice of energy function and the
methods for its minimization [54]. One of the common approaches is to
simulate a physical N-body system in which there are repulsive forces (e.g.
an electrostatic force between charged particles) between all nodes and
attractive forces (e.g. a spring force) between nodes which are adjacent [52,
109]. Then, the goal of the algorithm is to minimize kinetic energy of this
system (Listing 7.1).

Listing 7.1: Pseudocode of a basic Force-Directed Algorithm

Force_Directed_Algorithm (G : graph)
begin

set up vertices in random locations
repeat

energy := 0
for each v in V(G)
begin

vertex.force := 0

for each u in V(G) - {v}
v.force += repulsive_force( v, u )

for each e in E(v, G)
v.force += attractive_force( v, e )

v.velocity += v.force / v.mass // time interval == 1
v.velocity *= damping
v.location += v.velocity // time interval == 1
energy += v.mass * v.velocity * v.velocity

end
until energy < small_constant

end

A characteristic feature of force-directed algorithms is their iterative nature.
For simple, static graphs the algorithm loop is finished when system energy
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drops below a given small constant. For dynamic graphs1 this loop can be
infinite enabling adaptation to the changes in the modeled system. This
particular feature is very useful when modeling dynamic systems with con-
stantly changing attributes such as applications running in open distributed
execution environments.

The main disadvantages of the presented basic FDA is computational
complexity and finding poor local minima. Complexity of the algorithm
stems from the fact that each iteration of the algorithm computes O(|E|)
attractive forces and O(|V2|) repulsive forces. There exist, however, several
solutions that allow computing graph layout with O(n log(n)) time cost [43,
57, 110] enabling real-time graph visualization consisting of tens or even
hundreds thousand of vertices. Similarly, the problem of poor local minima
becomes an obstacle with the increasing number of vertices. For the purpose
of component deployment, however, neither the time complexity nor the
local minima problem are deterrent. This is because software applications
and execution environments usually do not comprise of more than several
hundreds of components and nodes. For large scale deployments both these
issues need further research that is out of scope of this thesis.

7.2 Force-Directed Deployment Planning

The Force-Directed Deployment Planning (FDDP) is a proposed method of
deployment planning that makes use of a force-directed algorithm to support
adaptive application deployment. As said earlier, a deployment plan of a
component-based application can be represented as a graph consisting of two
subgraphs: one denoting an execution environment, the other an application
being deployed. The actual deployment is represented by edges between
verticies of these two subgraphs indicating the hosted–hosting relationship
between a component and its execution node. FDDP aims to lay out the
environment and application subgraphs and then to map them to each other
in a way which yields the best application performance. For example, if an
application tends to communicate in a hub-and-spoke manner with a single
coordination component and many border components, it will perform best
when hosting environment has star-like topology, too. Then the coordination
component can be located on the central node and all other vertices on
border nodes. The proposed FDDP planning uses the force-directed method to
accomplish all three tasks: to lay out the application subgraph, to lay out the
execution environment subgraph and to map these subgraphs to each other.

1By dynamic we mean that different attributes of a graph may vary in time such as the
number of vertices and edges or the forces between vertices.
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Figure 7.1: Examples of graphs that represent (a) an execution environment and
(b) a component-based application in FDDP.

7.2.1 Graph Representation of the Deployment Problem

Before applying a force-directed algorithm to the deployment planning prob-
lem we need to model application and execution environment as graphs.
This could be done in many different ways but we use models defined in the
D&C specification as a basis.

To represent an execution environment we use the Target Data Model
from D&C. It defines three main elements: Node, Interconnect and Bridge.
Node represents any element in the environment able to host application com-
ponents — typically a computer machine.2 Interconnect usually models a
computer network that connects closely related host nodes. It is often used
to represent local area networks but may also describe overlay networks,
point-to-point links or any other connections used as means of communi-
cation between components. Lastly, Bridge is an abstract network element
that joins two or more Interconnects. Depending on what an adjacent
Interconnects are, a Bridge may represent a network switch, router, gate-
way, proxy or any other element located on a border between Interconnects.
For the purpose of FDDP and applications designed according to the CCM

model we assumed the most natural mapping where: Nodes represent host
computers, Interconnects model computer networks and Bridges describe
network routers. All these elements are vertices in the execution environ-
ment graph, while edges always connect Interconnects with the other two
elements (Fig. 7.1a). Every edge in the graph is assigned a target length value
that is inversely proportional to the Interconnects’ throughput. FDDP tries
to lay out the graph to minimize the difference between the actual distance
of adjacent vertices and the target length of the connecting edge.

The graph representing an application consists of only one kind of vertices.
We use InstanceDeploymentDescriptions from the Execution Data Model

2Other examples could be: an OS on a virtualized host or a component server.
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Figure 7.2: An example of a graph representing application deployment in FDDP.
Thick black lines denote [component–host node] links; gray solid lines
depict interconnect links; gray dashed lines represent [component–
component] links.

as graph vertices and connect them with edges only if they communicate
(Fig. 7.1b). Instead of using PlanConnectionDescription element of a
deployment plan we detect communication of components in runtime by
exploiting application monitoring. This enables us to assign each edge a
value of communication intensity and take it into account when arranging
graph vertices.

Lastly, to model the actual deployment of the component-based applica-
tion in the execution environment we use the node attribute of Instance-
DeploymentDescription. It defines one-to-many mapping between compo-
nent and node vertices that may be represented as an edge between vertices.
Figure 7.2 presents an example of such a mapping.

7.2.2 Forces in FDDP

The basic idea behind any FDA-based graph drawing algorithm is to use forces
that will control movement of graph vertices. The algorithms differ between
each other in the number and kind of the forces used. When designing the
FDDP algorithm we splitted the whole deployment graph lay out problem into
three simpler subtasks: (1) to arrange the execution environment subgraph,
(2) to arrange the application subgraph, (3) to match these two subgraphs to
each other.

In order to lay out the environment graph we used two sets of forces
(Fig. 7.3). Rnn was a constant repulsive force acting between all node ver-
tices, whereas attractive force Ani was acting between node vertices and



7. ADAPTIVE DEPLOYMENT WITH FORCE-DIRECTED ALGORITHMS 157

B

N

N

II

N

N

N

Figure 7.3: An illustration of repulsive Rnn (red arrows) and attractive Ani (blue
arrows) forces between vertices of a graph representing an execution
environment in FDDP.

adjacent Interconnects. The properties of the link influenced strength of
the Ani force which was proportional to the quality of the link.3 The higher
quality of an interconnect the closer adjacent node vertices were located.
Similarly, to arrange an application graph we used two sets of forces. Again,
all component nodes repeled each other with a constant force Rcc, while an
attractive force Acc was acting between directly communicating components
only. The strength of this force was proportional to communication intensity.
This was desirable because we wanted to minimize the nework distance
between the most intensively communicating components. By bringing the
components closer to each other the quality of network links was higher and
we could avoid unwanted network delays and errors. Lastly, for matching of
the application and environment subgraphs we used two kinds of attractive
forces. Ach was a constant force acting between a component and its current
host node. It represented costs related to component migration. The other,
Acn, was acting between a component and all execution nodes and was pro-
portional to the amount of resources available on each node. In result, these
two forces made powerful nodes attract components stronger, whereas nodes
with fully allocated resources attract only the components they currently
hosted.

3As link quality we considered network throughput but other metrics could also be included
such as latency, reliability, load and error rate.
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We did not introduce any repulsive forces between components and
nodes subgraphs. After experimentation it appeared that more stable is the
solution where the application and environment graphs are separated by
a constant distance. Both graphs were laid out on 2-dimensional planes
and were separated along the third dimension. It resembles behaviour of
charged particles in a capacitor where the particles can move around the
capacitor plates but cannot cross a dielectric. The attractive forces influence
the direction of their movement until the equilibrium is reached. Concluding,
below is the summary of the forces interacting in the FDDP model:

• Rnn (a repulsive node–node force) — a constant force between all node
vertices as if they are charged particles; responsible for nodes layout,

• Ani (an attractive node–interconnect force) — a force proportional to
quality of a link; responsible for grouping together nodes connected
with high quality newtork links,

• Rcc (a repulsive component–component force) — a constant force
between all component vertices as if they are charged particles; respon-
sible for components layout,

• Acc (an attractive component–component force) — a force propor-
tional to communication intensity between components; responsible
for grouping together communicating components,

• Ach (an attractive component–host node force) — a constant force
between a component and its hosting node; expresses costs of moving
a component between nodes,

• Acn (an attractive component–node force) — a force proportional to the
power of a node that acts on all application components; responsible
for distribution of components among execution nodes.

After some experimentation we chose the following functions to model
behaviour of this force-directed system. First, to lay out graphs representing
an application and execution environment we used:

Ani(d) ∼ Acc(d) ∼ l · d and Rnn(d) ∼ Rcc(d) ∼ −
k · c1 · c2

d2

where d is a distance between two vertices, l is a model parameter
associated with the link between the vertices (similar to resilience of a
spring), k is a global constant, and c1, c2 are model parameters associated
with repulsing vertices (they resemble charge of particles). To model the
attracting forces acting between these two subgraphs we used:
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Ach(d) ∼ l · d and Acn(d) ∼
G · m1 · m2

d2

where l and d are defined as above, G is a global constant, and m1, m2 are
model parameters associated with attracting vertices (they resemble mass of
particles).

Given the presented selection of forces, we needed to map them onto
some observable values that could be collected by monitoring sensors.

7.2.3 Mapping of Observables on Model Parameters

When designing FDDP we divided the deployment planning problem onto
two separate tasks: matching static and matching dynamic attributes of
component requirements against resources. FDDP focuses merely on dynamic
attributes of the system, while matching static properties is done by the
plain deployment infrastructure. This is because static attributes need to
be precisely validated, whereas approximate and iterative nature of force-
directed methods can better follow dynamic observables. Based on this
assumption we proposed mapping between model parameters and system
observables for all six forces presented earlier.

First, to layout the execution environment graph we used two forces: Ani

and Rnn. Our intention was to lay out its vertices in such a way that directly
connected nodes with high quality links were close to each other, whereas
nodes indirectly connected or these with low quality network links were
located farther away. To achieve this we calculated the l parameter of the Ani

force as:

l =
A

link throughput

where A was a constant defined during experimentation and ‘link through-
put’ was a selected quality metric of a network interconnect. The c1 and c2
parameters of repulsive force Rnn were constants set experimentally. The
higher their values were set the farther away vertices were located. Conse-
quently, distribution of execution node vertices in the model space depended
on one dynamic observable — the link throughput — the better interconnect’s
throughput was the closer vertices were positioned.

Similarly, to lay out an application graph we used two forces: Acc and
Rcc. Again, we wanted to place application components in such a way that
frequently communicating components were closer to each other, while these
which did not communicate directly could be farther away. To achieve this
we calculated l parameter of the Acc force as:
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l =
B

communication intensity

where B was a constant and ‘communication intensity’ was a metric that
described how intensively two components communicate between each other.
We defined this parameter as a ratio between the current and the maximum
number of operation invocations per second.The parameters of the Rcc force
were constants set experimentally, hence distribution of component node
vertices in the FDDP model space was influenced merely by communication
intensity dynamic observable. In result, the more intense communication was
the closer components were located what well corresponded with the layout
of the execution environment graph. By tunning strength of the Rnn and Rcc

forces we could acheive appropriate initial matching between application
component and execution node graphs.

The last step was to find a mapping for the Ach and Acn forces acting
between these two subgraphs. We followed the idea that proper matching
would result in an improved application performance, therefore, we aimed to
favorize nodes with more resources available. The Acn force was responsible
for attracting components to potential host nodes. We set the m1 parameter
of this force as:

m1 = C · resource availability

where C was a constant and resource availability took into account free
CPU and memory resources. Value of the m2 parameter was a constant set
experimentally. Consequently, more powerful nodes were the source of a
highly attractive force, whereas fully saturated execution nodes exhibited
only minimum attractive force. Finally, to represent costs related to com-
ponent migration we introduced the Ach force and set its l parameter as a
constant.

7.2.4 Experimenting with the FDDP Model

The presented mapping between system observables and model parameters
is by no means exhaustive and many other solutions could be proposed.
Therefore, we perceive FDDP not as a black-box algorithm but rather as an
adaptation tool that should be tuned for specific application and execution
environment. FDDP offers users many configurable model parameters that
can be adjusted to achieve desired behaviour. We experimented with several
applications trying to determine model parameters that result in some useful
high-level adaptation policies. Although we could not find one universal
parameters setting that would fit any kind of applications, we observed
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interesting properties of the FDDP model that can be used to control the
deployment adaptation process. Thus, to achieve:

• even distribution of components over all execution nodes — decrease
the Acc force and increase the Acn force,

• compact distribution of components — increase the Acc force and
decrease the Acn force,

• higher system reliability — use settings similar to the compact distribu-
tion but take node reliability as an additional metric when calculating
the Acn force,

• lower migration overhead — increase the Ach force.

These general guidelines show that despite the approximate nature of the
force-directed algorithms it is possible to achieve high-level adaptation strate-
gies. Nevertheless, more extensive tests should be conducted to find finer
dependencies and more precise relations.

7.3 Evaluation of the Adaptive Deployment Frame-
work

In order to evaluate our Adaptive Deployment Framework in general and the
FDDP algorithm in particular we focus in this section on four aspects. First, we
discuss a user interface of the AdaptationManager component that enables
user interaction with the framework. Second, we present overhead incurred
by an application when the ADF framework was active. Third, we show
influence of our framework on application performance. Last, we describe
behaviour of the application being adapted in case of an external disturbance.
All this allows for qualitative analysis of the ADF framework.

7.3.1 Using the ADF Framework

Earlier in this work (see Sect. 4.5 on page 102), we presented general
scenario that can be followed to adapt deployment of an application. From a
deployer point of view the main interface to the framework is provided by
GUI of the AdaptationManager component (Fig. 7.4). It supports three main
activities in runtime:

• observation of the current application deployment in the environment
as well as behaviour of the FDDP algorithm,
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Figure 7.4: The GUI of the prototype adaptation manager component. Green boxes
illustrate application components, white boxes represent host nodes,
clouds depict interconnects.

• interaction with the migration effector by the drag-and-drop mecha-
nism that allows users to move components between host nodes,

• setting FDDP model parameters to influence operation of FDDP.

As discussed earlier, the force-directed methods produce aesthetically pleas-
ing layouts, therefore, we use this feature to visualize the execution environ-
ment, software application and its current deployment. Both the application
and environment graphs are presented on a single 2-dimensional plane and
are bound between each other with links from each component node to its
current host node. Links between components and nodes are either solid
lines indicating non-mobile components or dashed lines representing mobile
components. The manager discovers which components are mobile by check-
ing if they support interface CCMRefugee. Additionally, GUI links components
between each other to present the current communication intensity. This
allows observing application communication patterns in runtime.

For mobile components, the GUI of the manager enables users to move
the components between hosts with a mouse. When a component vertex
approaches a host vertex to an arbitrary distance (either dragged by a user
or moved by FDDP), the AdaptationManager signals the deployment infras-
tructure to perform runtime reconfiguration. In the first phase it is verified if
a particular component can be moved to the indicated host node. Using plan
validation, component requirements are matched against node resources. If
this matching is successful i.e. the node is able to host the component, further
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redeployment steps are performed and finally migration of the component
occurs. In the case when matching is unsuccessful, the component is added
to the host’s black list, which means that further migration attempts of the
component to this particular host node will be abandoned and the attractive
force between these two nodes is zeroed.

The graphical interface of the manager component also enables obser-
vation and influence on the operation of FDDP. A user can set a number of
model parameters such as k and c factors of the Rnn force, global damping and
many others and observe how they influence deployment adaptation. This
allowed us to determine the set of the FDDP adaptation strategies discussed
in the previous section.

7.3.2 Costs of Runtime Adaptation

In the previous chapter we presented costs related to running lower level
infrastructure that enables runtime adaptation. In this section we focus on
overall costs incurred by an application when adaptation is performed. This
includes costs related to running the monitoring infrastructure as well as the
adaptation manager. To estimate the overheads we measured execution time
of the test application deployed on four Sun Blade servers and one controller
node — host M0. Running the test with the adaptation infrastructure in
operation we did not expect any gains from adaptation because the applica-
tion comprised of only one Worker component and all four hosts M3–M6 had
the same hardware and software configuration. Instead, we could observe
negative influence of the ADF on the application execution time.

Figure 7.5 depicts deployment of the testing application (the components
in black) and adaptation infrastructure (the components in red). The dashed
line marks components that were dynamically deployed as a result of Worker
migration. They comprise of WorkerHome, which is required to support the
mobile Worker component, and three sensor components needed for applica-
tion monitoring. These sensors were initially deployed only on machines that
run the application (host M0, M3 and M4). Later, when Worker was moving
between all Blade hosts, the AdaptationManager deployed application sen-
sors on all remaining machines. Conversely, CPUSensor was deployed on all
hosts in the execution environment to supply the AdaptationManager with
the current state of CPU utilization of all nodes.

Results for different configuration and deployment settings are collected
in Table 7.1. As expected, the best performance was achieved when no
adaptation infrastructure was running. In this case the system comprised of
components drawn in solid black lines in the figure and Worker executing in
host M3. For 10×10 and 32×32 chunk size, running the ADF infrastructure
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Figure 7.5: Deployment of the ART application together with ADF to verify costs
related to its operation.

Table 7.1: Execution time (in seconds) of the ART application with the ADF infras-
tructure disabled and enabled showing the overheads introduced by the
framework.

With ADF enabled

Chunk No ADF At home At non-home
size at home no moves 1 move 10 moves

10×10 117.0(±1.3%) 151.9(±1.2%) 184.2(±0.1%) 196.5(±1.9%)
32×32 74.0(±2.0%) 92.9(±1.5%) 107.9(±0.9%) 117.3(±0.6%)

caused 30% and 26% increase of execution time, respectively (column 3).
However, when Worker was moved to node M4 which was its non-home
location (column 4), the observed increase of execution time was 57% and
46%, respectively.4 Finally, we measured application performance when
the Worker component was dragged by a user 10 times between hosts M3–
M6. The observed overhead of 68% and 59% in performance includes the
costs related to deployment of all infrastructure and application components
needed (depicted in dashed line in the figure) as well as costs of migration
and redirection to non-home locations.

It is worth noting that the presented test was designed to show the worst
case adaptation scenario. Moving the Worker component was related to
interruption of the whole application because it was the only computing
element in the application. As discussed in the previous chapter, migration

4As discussed earlier in Sect. 6.4.2 on page 142, this was the result of redirection which
was not cached by the selected ORB implementation.
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Table 7.2: Selected static and initial deployments together with the measured exe-
cution time of the ART application.

Deployment Manager A Manager B Manager C Execution
name 4 Workers 5 Workers 4 Workers time [s]

Static 0 M0 M2 M3 465.7(±1.0%)
Static 1 M0 M2 M4 459.3(±1.1%)
Static 2 M2 M0 M4 250.1(±0.5%)
Static 3 M3 M0 M2 981.6(±1.2%)
Static 4 M0 M3 M2 1083.0(±1.0%)
Adaptive 0 M0 M2 M3 254.8(±12.5%)
Adaptive 3 M3 M0 M2 289.9(±16.2%)

of the Worker was also connected with state loss. Moreover, when moving
the Worker component to a previously not used node (nodes M5 and M6),
the AdaptationManager had to deploy most of the adaptation infrastructure.
Usually, however, when application comprises more mobile components,
some of which are of the same type, the incurred overheads will be signifi-
cantly lower.

7.3.3 Application Performance

In this section we compare application performance for selected manual
deployments with the results achieved when the adaptation infrastructure
was enabled. We evaluate overall effectiveness of application adaptation and
in particular efficacy of the FDDP algorithm. For this test we used six machines
and the Asymmetric Ray Tracing application. The application included three
Manager components that realized mixed, communication- and processing-
intensive ray tracing scenarios in parallel. Figure 7.6 depicts a selected
application deployment, whereas all tested deployments are summarized in
Tab. 7.2. The table presents location of the Manager and Worker component
but does not include the Controller and Display because for all tests they
were placed on host M0. The deployments ‘Adaptive 0’ and ‘Adaptive 3’ denote
the initial application deployments ‘Static 0’ and ‘Static 3’ when adaptation
infrastructure was enabled. These were changed in runtime as adaptation
was performed.

The deployment table includes only a small subset of all possible static
deployments. However, we tried to select potentially the best settings taking
into account performance of the host machines and complexity of the ray
tracing tasks. Therefore, vast majority of the static deployments would
exhibit worse results than these presented here.
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Figure 7.6: A selected deployment of the ART application used for testing effective-
ness of our ADF framework.

Surprisingly, the results show that despite of relatively high costs related
to running ADF, an application can greatly benefit from deployment adapta-
tion. When the adaptation infrastructure was running, execution time was
comparable to the best static deployment we found (Fig. 7.7). We can see
three main reasons why these results were so satisfactory. Firstly, in the
case of static deployment overall time of application execution was equal
to the slowest assignment: [machine ⇐ task to render] e.g. deployment
‘Static 4’ is the slowest presented because slow machine M3 was assigned
the hardest task B to process. When adaptation was enabled free machines
were able to host some workers and do parts of the job on behalf of the
others. However, this was only possible due to inherently parallel nature of
the ray tracing problem, which can be easily split into smaller parts. Thus,
the fastest M0 host was quickly available after it completed the preassigned
task and then it attracted some foreign Workers. Moreover, when adaptation
was enabled not only the machines initially planned to do the rendering
were involved in processing but also all other free hosts in the domain. In
result the application was automatically distributed over the whole execution
domain.

Additionally, the presented results confirm what was expected — the
initial application deployment is important for achieving the best results.
Comparing deployment ‘Adaptive 0’ with ‘Adaptive 3’ we observed nearly 14%
increase in execution time. It was the cost of reconfiguration from ill-suited
initial component distribution to a more effective detected by ADF.
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Figure 7.7: Execution time for different deployments of Asymmetric Ray Tracing.

7.3.4 Adaptation to an External Disturbance

The previous section showed that, for some class of applications, adapta-
tion can yield very good results which can hardly be achieved with only
manual deployment. Our adaptive framework, however, not only allows
increasing performance but also can react to an external distrubance and
reconfigure application in a way that avoids allocating overloaded nodes. In
this testing scenario we were running two instances of the Asymmetric Ray
Tracing application: one, deployed statically, played the role of disturbance,
while the control instance was adapted by our ADF framework. Figure 7.8
shows deployment of the disturbing instance and the processing load spread
over the execution nodes. Nodes M0, M2 and M3 were hosting the most
CPU-intensive Worker components. Nodes M4 and M5 were running low
demanding Managers which merely generate input for workers and relay the
results to the Display component. Lastly, node M6 hosted the Controller
and Display components that required more processing power because
Display collected and presented image chunks from all the managers.

During the test we noticed desirable behaviour of the ADF framework.
When the disturbing instance was active we deployed the control instance
and observed its reconfiguration. Figures 7.9 and 7.10 present screenshots
of the ADF console window. We augmented the figures to ease node identi-
fication and to mark the external workload they were assigned. The initial
deployment of the control instance placed all mobile components on node
M2, while Controller and Display were located on node M0. The figures
show migration of Workers towards the least loaded nodes M7, M4 and M5.
Most components moved to the node M7 which was free from any external
disturbance, whereas nodes M4 and M5 hosted less number of components.

In order to evaluate how this adaptation process influence application
performance we compared execution time of the control instance when it
was managed by ADF with times collected for selected static deployments of
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Figure 7.8: Deployment of the application that played role of an external distur-
bance. Color bars show the processing load carried by a host machine.

Figure 7.9: Distribution of application components in the first phase of application
adaptation; red labels were added to this screenshot to allow correct
identification of the execution nodes and to show their load from an
external disturbance.
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Figure 7.10: Distribution of application components that avoids an external dis-
turbance; red labels were added to this screenshot to allow correct
identification of the execution nodes and to show their load from the
external disturbance.

the control application. In all these tests the distrubance instance was active.
Table 7.3 presents the results in relation to static and adaptive deployments.
In all cases the Controller and Display component were deployed on the
machine M0. As shown in the table, despite the high costs of adaptation ADF

proved to be able to increase overall application performance in the presence
of an external disturbance. This time, performance of the application man-
aged by ADF was much better than the best static deployment — we noticed
over 20% of decrease in execution time comparing to deployment ‘Static 1’.
This scenario shows that in particular settings adaptation of deployment can
be an effective tool for improving application performance.

To better understand why the results were so positive it is important to
notice that disturbance was deployed on the fastest nodes in the environment
i.e. M0 and M2. Therefore, any static deployment that involved these nodes
made the control instance performing significantly worse. Furthermore, in
the middle of application execution the disturbing instance released the
second the fastest machine M2 what again had major impact on performance.
All statically deployed components were bound to their hosts while the
mobile Workers were attracted by a free powerful machine. The change in
the disturbance was required to distinguish this testing scenario from the
case presented in the previous section. Overall, the results show that ADF is
able to adapt component-based system to an external disturbance and that
adaptation can improve application performance.
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Table 7.3: Execution time (in seconds) for selected static deployments of the ART

application in comparison to the application managed by ADF.

Managers Workers Execution
Deployment locations locations time

Static 0 {A, B, C}⇒ M2 {A, B, C}⇒ M0 519.8(±0.7%)

Static 1 A⇒ M5, B⇒ M4 {A, B}⇒ M2 448.8(±0.9%)
C⇒ M3 C⇒ M6

Static 2 {A, C}⇒ M5 {A, B, C}⇒ M2 590.7(±0.6%)
B⇒ M4

Static 3 A⇒ M2, B⇒ M4 {A, B}⇒ M2 454.0(±0.6%)
C⇒ M5 C⇒ M6

Adaptive 4 {A, B, C}⇒ M2 {A, B, C}⇒ M2 353.1(±9.1%)

7.4 Limitations of the FDDP Planner

When adapting deployment of applications the FDDP algorithm tries to solve
three different subproblems: (1) arranging execution environment graph,
(2) arranging application graph and (2) matching these two graphs between
each other. The first two problems are relatively easy tasks for force-directed
methods. We achieved a very pleasant looking network and application
graph layouts that were sensible for changes in communication patterns and
resource availability. FDDP could easily follow these changes in runtime. The
main difficulties we found when experimenting with the algorithm were
related to the latter — the matching problem. The key issues that made the
force-directed approach problematic were:

• difficult mapping between model parameters and real system observ-
ables — we proposed an example mapping but it was not easy to find
an appropriate forces for a particular observable. For example is was
not obivous how quality of a network link or intensity of communi-
cation should influence host and component vertices. The former we
modeled as link length, whereas the latter as link resilience. However,
many other mappings could be proposed and tested,

• unclear relation between model parameters of the environment graph
and application graph — for example it was not obvious how to set
length of edges representing network connections in relation to the
length of edges representing links between components. Setting net-
work edges too long made components be bound to their host nodes,
while setting them too short caused too many migration requests,
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• problems with scalability and limited use of model parameters — we
did not find any other way for tuning model parameters than by ex-
perimentation. Improperly set parameters result in instability of FDDP

for certain application conditions. Once found, the correct parameter
values cannot be directly applied for systems of different size. The
positive fact is that as long as parameters are valid for a certain number
of components and execution nodes they can be applied to different
applications and do not depend on application architecture,

• unclear user-level control — although we presented some rules how to
achieve a number of high-level adaptation policies it is not easy to find
such rules for any kind of user-level control policy. Therefore, to apply
other adaptation policies more experimentation would be required.

7.5 Summary and Conclusions

In this chapter we presented and evaluated the key elements of our adap-
tive deployment framework: the AdaptationManager component and the
FDDP planning algorithm which is a novel approach to software deployment
adaptation.

We briefly presented the graphical user interface of the manager and
discussed how it enables interaction with the running application and FDDP.
Later we measured costs of runtime adaptation and showed that our proto-
type implementation incurs up to 60% overhead on application execution
time. Despite of high costs, however, we achieved very promising results in
respect to application performance and deployment adaptability. Execution
time for an application managed by our framework was comparable to the
best static deployment we found. Moreover, in emergence of an external
disturbance the framework was able to avoid overloaded execution nodes
and move application components towards less utilized hosts. This resulted
in over 20% decrease of execution time.

We found that key points to achieve such good results were: component-
based design (esp. according to the CCM model), effective reconfiguration
mechanism (i.e. runtime component migration) and suitable deployment
planning algorithm. Firstly, the component-based architecture forces pro-
grammers to split a system into well defined parts what enables better
parallelization and reconfiguration making adaptation easier to conduct.
Secondly, the component migration mechanism combined with a plain de-
ployment infrastructure proved to be effective means to achieve deployment
adaptation. Relatively low overhead of migration makes it suitable for use
in runtime deployment reconfiguration. Lastly, the idea of modelling a
distributed system as a set of interacting physical bodies very well fits its
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dynamism. Although the proposed force-directed deployment planning is
not the main contribution of this work, it well illustrates the potential of the
constructed platform in performing deployment adaptation. Flexibility of
the force-directed approach allows adapting it to different user criteria. We
proposed some general rules for mapping user-level adaptation strategies
onto model parameters. Unfortunately, the flexibility of FDAs is also their
major disadvantage. We could not find a way different than experimentation
to determine a proper mapping of observables onto model forces and setting
correct values for their parameters. The abundance of possible mappings
and parameter settings makes the problem of using FDDP for deployment
planning the area of further research. Nonetheless, we find this approach to
be promising.



Chapter 8

Conclusions and Possible
Research Directions

In this work we have presented an adaptive deployment framework for
distributed software systems running in heterogeneous environments. The
framework is dedicated for component-based applications built on top of
a middleware layer. This locates our solution between adaptive platforms
based on system virtualization and solutions exploiting object-oriented re-
configuration techniques. We find this approach right. On the one hand
component-based software design makes adaptation easier to conduct while
on the other hand it can be more effective than fine-grained object-based
solutions. Moreover, the component-based application modelling promotes
separation between component’s business code and its execution environ-
ment what facilitates achieving reconfiguration transparency. It also very
well corresponds to the model-based deployment methods that enable au-
tomation of deployment planning, thereby clearing the way for deployment
adaptation.

The basis for an adaptive deployment framework is a plain deployment
infrastructure. Building a complete deployment infrastructure for component-
based distributed applications and heterogeneous environments is earnest
endeavour though. Therefore, in this work we focused only on these aspects
that are crucial for deployment adaptation. One of them is the problem of
deployment planning. We have shown that this complex step may benefit
from adaptation by splitting it onto two simpler tasks: initial and runtime
planning. The initial deployment planning can focus merely on static at-
tributes of the software and execution environment what greatly simplifies
description of their requirements and resources. The generated initial plan
can then be improved in runtime when more accurate data on the operation
of the whole system are available.

173
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To conduct deployment adaptation we used spatial reconfiguration of
software using the runtime component migration mechanism. The design
and implementation of this mechanism is one of the major contributions
of this work. It proved to be fast and lightweight enough as a deployment
reconfiguration tool. However, providing runtime migration in the CCM

environment that supports asynchronous and multithreaded operation was
a difficult task. This environment poses many fundamental issues that
need to be addressed by a migration mechanism such as portable state
preservation, residual dependencies and reaching quiescent state. As they can
hardly be hidden from developers without enforcing significant constraints on
component implementation, we proposed a solution that involves developers
in component migration. By means of extensions to component life cycle, we
allow for a lot of freedom in the way how components can be implemented
and also we make developers aware of the issues inherent to the migration
process. This, we believe, can help building components that make most of
the runtime mobility.

In heterogeneous environments a component migration mechanism re-
quires a deployment infrastructure to operate properly. The deployment
infrastructure can validate reconfiguration requests and prepare the execu-
tion environment for changes. Therefore, runtime component migration
and software deployment are complementary mechanisms which combined
together create a synergy that can improve management and performance
of distributed applications. We showed that despite its costs, support from
our ADF framework can very positively influence on application performance.
The conducted experiments have demonstrated that for a certain class of
systems, which we simulated by the Asymmetric Ray Tracing application,
adaptive deployment yields very good results in terms of execution time. We
achieved results comparable to the best static deployment found and in the
case of external disturbance our ADF reduced execution time by 20%. Such
satisfactory results were achieved even though our prototype implementation
imposes relatively high overheads.

Our adaptive deployment framework was built using the component-
based approach and the Autonomic Computing paradigm. This facilitates
its further extensions in respect of new planning algorithms as well as new
sensor and effector components. There are, however, many other potential ex-
tensions that involve more radical changes. A very interesting one is support
for virtualization. A combination of the model-based approach for distributed
systems proposed by the D&C specification with vertical software deployment
defined in the Solution Deployment Descriptor specification could result
in a very robust deployment infrastructure. Such an infrastructure would
make deployment of application easier because together with the application
itself it could deploy its execution environment (e.g. a JEE application, JEE

application server and JRE environment). This, however, would be only a step
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on the way to adaptive distributed deployment in virtualized heterogeneous
environments.

Another interesting area of further research embrace the force-directed
methods in deployment. In this work we discussed design and implementa-
tion of FDDP — a novel approach to runtime component deployment. Our
experiments showed that FDDP can effectively perform deployment adapta-
tion, however, there is still a number of issues that require closer investigation.
The main one is scalability of the approach. We tested FDDP in a LAN connect-
ing up to 11 hosts and simple applications consisting of 3–25 components.
Even in such limited settings we observed the need for manual tuning of
model parameters. Otherwise, the algorithm was unstable. It would be
especially interesting to search for a self-tuning solution for FDDP that could
adapt the algorithm to the particular conditions of the execution environment
and size of the application.

Further investigation could also be pursued in the area of deployment
planning in temporal and semantic dimensions. Ability to plan in all three
dimensions defined in this work can again increase usability of a deployment
infrastructure. An important point is that some of the mechanisms developed
in the course of this research could be used for the enacting plans in other
dimensions. For example, component instance monitoring can support exe-
cution of temporal plans, whereas runtime plan updates can ease switching
between service instances in semantic deployment.

Apart from these high-level extension objectives we consider two tech-
nical issues that are crucial to implement before the production use of our
prototype framework is possible. First is the security which is undermined
if deployment is too straightforward. Automation of deployment makes
dissemination of software, including malicious code, much easier. Therefore,
the key aspect is to protect host machines from hackers’ attacks. Second issue
is transaction-awareness. In our research we made an optimistic assumption
that validation of deployment descriptors is enough to properly deploy a
component. However, numerous problems can appear during component
deployment even if it fits the target machine. Implementing deployment
process supported by transactions is critical for its correct operation in case
of errors.

In this work we have shown how adaptive deployment can improve
application performance. Nevertheless, adaptation of deployment process
facilitates many other interesting applications such as execution of code as
close to data as possible, increasing system reliability and improving overall
user experience. We hope that the presented work will inspire readers to
conduct other research in this fascinating area.



Appendix A

IDL interfaces

Listing A.1: The excerpt from the Deployment.idl file showing the proposed exten-
sions to the D&C models.

enum PatchOperation { AddOp, DelOp, SetOp };
enum UpdateKind { InternalUpdate , ExternalUpdate };

interface RunningApplication
{
/**
* This operation not only updates the plan of the
* application but also does all the required steps to
* execute the plan and to ensure consistency between
* the deployment plan and the managed application
* deployment. Similarly to the launch operations this
* operation also has two phases, one responsible for
* instance changes (if required). The second for doing
* proper interconnection.
*/

CORBA::OctetSeq startUpdate(
in UpdateKind kind,
in CORBA::StringSeq elements,
in DeploymentPlan patch,
in PatchOperation operation ,
out Connections providedReference)

raises (
ResourceNotAvailable , PlanError ,
InvalidProperty , InvalidNodeExecParameter ,
InvalidComponentExecParameter , UpdateError);

/**
* This is the second and the last step of the update
* operation which mimics the launch pattern proposed in
* D&C. This operation allows interconnection between

176



A. IDL INTERFACES 177

* the updated instances and the rest of the system.
*/

DeploymentPlan finishUpdate(
in CORBA::OctetSeq cookie,
in Connections providedReference)

raises (UpdateError , InvalidConnection);

/**
* This is used to cancel update request.
*/
void cancelUpdate(

in CORBA::OctetSeq cookie);

/**
* Deactivates operation of the running application.
* All resources should be freed and the application
* should not be accessible any more.
*/
void stop()
raises (StopError);

/**
* Provides the most recent deployment plan for the
* application instance taking into account all
* updates. Updating plan can cause differences between
* this deployment plan and the plan returned by
* NodeApplicationManager.
*/

DeploymentPlan getDeploymentPlan();

/**
* Allows looking for an object instance using instance
* name from the application deployment plan.
*/
Object findInstanceByName(

in string instanceName)
raises(NoSuchName);

};

// The reason to distinguish between node and domain
// running application interfaces is to have knowledge
// what kind of object one manipulates with and to avoid
// mistakes of calling operation on the wrong
// implementation. It is expected that these
// implementations will differ significantly.
//

interface NodeRunningApplication : RunningApplication
{ };
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interface DomainRunningApplication : RunningApplication
{ };

Listing A.2: IDL definition of Sensor and Effector interfaces

interface Sensor
{

PropertyTypes getSensorPropertyNames();

PropertyTypes getSensorPropertyArgs(
in string propertyName )

raises (UnknownProperty);

any getProperty(
in string propertyName)

raises (UnknownProperty);

AnySeq getProperties(
in StringSeq propertyNames)

raises (UnknownProperty);

any getXProperty(
in string propertyName ,
in Properties args)

raises (UnknownProperty , InvalidArgument);
};

interface Effector
{

PropertyTypes getEffectorPropertyNames();

PropertyTypes getEffectorPropertyArgs(
in string propertyName)

raises (UnknownProperty);

PropertyTypes getEffectorOperationNames();

PropertyTypes getEffectorOperationArgs(
in string name)

raises (UnknownOperation);

void setProperty(
in string name,
in any value)

raises (UnknownProperty);

void setProperties(
in Properties props)

raises (UnknownProperty);
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void setXProperty(
in Property prop,
in Properties args)

raises (UnknownProperty , InvalidArgument);

any invokeOperation(
in string name,
in Properties args)

raises (UnknownOperation , InvalidArgument);
};

Listing A.3: IDL definition of the PropertyUpdate event

eventtype PropertyUpdate
{
public string senderName;
public Properties properties;

};



Appendix B

Description of an Execution
Environment

This Appendix presents an excerpt from a description of our testing execu-
tion environment used in evaluation. The topology of the environment is
presented in Figure 6.1 on page 130.

Listing B.1: An example of a Domain description.

<?xml version="1.0" encoding="UTF-8"?>
<Deployment:Domain

xmlns="http://www.omg.org/Deployment"
xmlns:Deployment="http://www.omg.org/Deployment">

<UUID>1f4303e0 -2eea-47c2-be39-73f5aade410f</UUID>
<label>A test bed domain</label>

<infoProperty>
<name>description</name>
<value>

<type><kind>tk_string</kind></type>
<value>

<string>
This is full test bed domain prepared for
evaluation of ADF building blocks and the
framework itself.
</string>

</value>
</value>

</infoProperty>

<node href="cx.xml" />
<node href="cx-1.xml" />
<node href="cx-2.xml" />
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<node href="cx-3.xml" />
<node href="cx-4.xml" />
<node href="cx-5.xml" />
<node href="cx-6.xml" />
<node href="cx-7.xml" />
<node href="wolf.xml" />
<node href="hare.xml" />
<node href="iris.xml" />

<interconnect href="net_10_1_17.xml" />
<interconnect href="net_149_156_97.xml" />

<bridge href="rt_dsrg-cx.xml" />
</Deployment:Domain>

Listing B.2 presents an excerpt from a node definition. To describe the
CPU and OS resources we used the CIM schema and a set of selected classes
and their properties.

Listing B.2: XML description of a selected Node.

<?xml version="1.0" encoding="UTF-8"?>
<Deployment:Node

xmlns="http://www.omg.org/Deployment"
xmlns:Deployment="http://www.omg.org/Deployment">

<name>cx-3</name>
<label>CX-3 Blade Machine</label>
<connection href="net_10_1_17.xml" />

<resource>
<name>CPU0</name>
<resourceType>CIM_Processor</resourceType>
<property>

<name>Family</name>
<kind>Attribute</kind>
<value>

<type><kind>tk_short</kind></type>
<value><short>2</short></value>

</value>
</property>
<property>

<name>MaxClockSpeed</name>
<kind>Maximum</kind>
<value>

<type><kind>tk_ulong</kind></type>
<value><ulong>650</ulong></value>

</value>
</property>

</resource>
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<resource>
<name>RunningOS</name>
<resourceType>CIM_OperatingSystem</resourceType>
<property>

<name>OSType</name>
<kind>Attribute</kind>
<value>

<type><kind>tk_short</kind></type>
<value><short>30</short></value>

</value>
</property>
<property>

<name>TotalVirtualMemorySize</name>
<kind>Maximum</kind>
<value>

<type><kind>tk_ulonglong</kind></type>
<value><ulonglong>2097000</ulonglong></value>

</value>
</property>
<!-- all other relevant static properties... -->

</resource>
<!-- all other relevant resources... -->

</Deployment:Node>

For describing resources of interconnects and bridges (Listings B.3 and
B.4), CIM does not fit well to the approach to represent network proposed
in the D&C specification. The CIM schema is very detailed in this respect
(see [36]), whereas D&C proposes a general and less accurate view on a
network. For this reason, we decided to describe network elements with
a proprietary resources and properties. This implies that an application
description needs to be aware of what resources and properties can be
requested.

Listing B.3: The XML definition of a selected interconnect form the testing execution
domain

<Interconnect
xmlns="http://www.omg.org/Deployment"
xmlns:Deployment="http://www.omg.org/Deployment">

<name>10_1_17_0</name>

<connect href="cx-1.xml" />
<connect href="cx-2.xml" />
<connect href="cx-3.xml" />
<!-- all other nodes ... -->

<connection href="rt_dsrg-cx.xml" />
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<resource>
<name>Blades network throughput</name>
<resourceType>network throughput</resourceType>
<property>

<name>LAN throughput</name>
<kind>Capacity</kind>
<value>

<type><kind>tk_ulonglong</kind></type>
<value><ulonglong>1000000</ulonglong></value>

</value>
</property>

</resource>
<!-- all other resources ... -->

</Interconnect>

Listing B.4: The XML definition of a bridge between DSRG’s LAN and the dedicated
LAN connecting Blade servers.

<Bridge
xmlns="http://www.omg.org/Deployment"
xmlns:Deployment="http://www.omg.org/Deployment">

<name>Router DSRG-CX</name>
<label>A router between DSRGs and 10.1.17.0 LANs</label>

<connect href="net_149_156_97.xml" />
<connect href="net_10_1_17.xml" />

<resource>
<name>bridge throughput</name>
<resourceType>network throughput</resourceType>
<property>

<name>LAN throughput</name>
<kind>Capacity</kind>
<value>

<type><kind>tk_ulonglong</kind></type>
<value><ulonglong>10000000</ulonglong></value>

</value>
</property>

</resource>
</Bridge>



Appendix C

Support for the Planning
Dimensions

Spatial Deployment Planning

This dimension is already supported by the D&C specification and no further
changes are required to its models.

Semantic Deployment Planning

The semantic planning dimension, although not considered by the D&C

specification, can be easily supported with only minor structural changes.
The basic elements needed for semantic planning are already present in the
specification:

• a component implementation can declare its capabilities,

• a component implementation can declare dependencies on other appli-
cations,

• an assembly component implementation can declare references to
external applications’ ports.

Originally, the capabilities declared by a component implementation are
means to enable selection of an implementation from any of the equivalent
implementations included in an application package being deployed. There
is no reason, however, why they cannot be used also to select an active
application from several already running instances. To do this we need

184
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<< Description >>

Implementation Dependency
<< Manager >>

Application

<< Implementer >>

Resource

<< Description >>

Requirement

resourceType

name

+requirement

+resource

*

*

(a) (b)

Figure C.1: Extensions to the D&C models enabling semantic deployment planning;
(a) an additional association added to the Execution Management Model;
(b) an additional association between elements from the Common Ele-
ments model

to add an association between the Application entity and the Resource
structure (Fig. C.1a).1

To be able to express dependencies on other running applications, a
component implementation being deployed must have measures to provide
desired requirements. Therefore, dependencies included in the Component-
ImplementationDescription structure and described by Implementation-
Dependency may not only determine required application types but also
should include additional requirements against running application resources
(Fig. C.1b). Later they will be matched in the planning phase.

Finally, when a planner has selected the running application instances
that are to be connected with the newly deployed application, it can refer to
their ports using the ExternalReferenceEndpoint structure.

These minor corrections presented above enable a semantic binding
strategy. A packager or developer define dependencies on types and resources
of external services (denoted by Application structure), then the planner
selects the most appropriate running instances and the executor binds these
services together with the newly deployed application. The ability to specify
service resources is means to realize robust semantic deployment planning.
During service execution, resources can be updated by a monitoring facility
and convey dynamic information about current QoS characteristics like mean
response time, service availability, number of transactions per second, etc.

1Capabilities differ from resources only in that they are not consumable and cannot
include dynamic properties. The reason why originally a component implementation includes
capabilities but not resources stems from the fact that it describes static attributes that cannot
change. However, in this case we consider running applications which attributes are dynamic
and, therefore, are better described by resources.
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<< Planner >>

Instance Deployment 

Description

+constrainedInstance1..*

<< Assembler >>

Subcomponent Instantiation 

Description

+constrainedInstance1..*

<< Assembler >>

TemporalCollocation

constraint : TemporalCollocationKind

<< Planner >>

PlanTemporalCollocation

constraint : TemporalCollocationKind

(a) (b) (c)

<< enumeration >>

Temporal 

Collocation Kind

StartToStart

FinishToStart

FinishToFinish

Figure C.2: Extensions to the D&C models enabling temporal deployment planning;
(a) The collocation kind added to the Common Elements model; (b)
The collocation structure added to the Component Data Model; (c) The
collocation structure added to the Execution Data Model.

Temporal Deployment Planning

Comparing to imperative language-based approach, the existing ADLs do not
offer as much flexibility as required to support deployment in time. Support
for temporal deployment planning is a possible solution for this limitation.
A deployment plan in the D&C specification is a collection of component
instance descriptions that are assigned to nodes in the target execution
environment. In this specification the assumption is that all application
components declared in the plan shall be activated in the same time when
the deployment process begins.

To support temporal planning our extensions are based on the work from
the job scheduling area [86, 107] and are analogous to the structures that
define locality constraints in the D&C models. By introducing another type of
collocation constraints we enable defining temporal dependencies modelled
as a DAG. The extensions include TemporalCollocation and PlanTemporal-
Collocation structures and the TemporalCollocationKind enumeration
and are depicted in Fig. C.2.

We distinguished three kinds of temporal collocations. The StartTo-
Start and FinishToFinish allow creating synchronization barriers, whereas
FinishToStart provides means to create deployment task sequences. Using
these collocation kinds2 together with temporal collocation structures a pack-
ager and planner can easily represent a broad range of DAG graphs modelling
temporal dependencies between deployment of component instances. To
ensure backward compatibility with the original D&C model we assume that
component instances not bound with any temporal constraint are activated
at the beginning, together with all root components of DAG graphs.

2All of them are borrowed from the project management discipline where they are used in
defining task dependencies.
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Acronyms

AC Autonomic Computing

ACP Application Configuration Problem

ADF Adaptive Deployment Framework — the framework for adaptive
deployment of distributed systems that resulted from the research
presented in this work.

ADL Architecture Description Language

AJAX Asynchronous Javascript And XML

AM Autonomic Manager

AOM Active Object Map

API Application Programming Interface

APT Advanced Packaging Tool

ART Asymmetric Ray Tracing — one of our applications used for testing
the ADF.

BPP Bin Packing Problem

BFS Best-First Search

BPEL Business Process Execution Language

CBSE Component-Based Software Engineering

CCA Common Component Architecture

CCM CORBA Component Model

CIM Common Information Model

CLR Common Language Runtime

CMIP Common Management Information Protocol
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CMS Component Migration Service

COA Component-Oriented Architecture

COPI Container Portable Interceptor

CORBA Common Object Request Broker Architecture

COTS Commercial Off-The-Shelf

CPP Component Placement Problem

CPU Central Processing Unit

DAG Direct Acyclic Graph

DAnCE Deployment And Configuration Engine

DCF Distributed Coordination Function

D&C Deployment and Configuration of Component-based Applications —
the specification proposed by OMG in [100] which is a basis for the
model-based deployment approach used in this work.

DMI Desktop Management Interface

DMTF Distributed Management Task Force

DRE Distributed Real-time and Embedded

DSM Domain-Specific Modeling

DSRG Distributed Systems Research Group — the research group which
the author is a member of.

DTD Document Type Definition

DTP Distributed Transaction Processing

ECA Event Condition Action

EJB Enterprise Java Beans

FDA Force-Directed Algorithm

FDDP Force-Directed Deployment Planning — proposed in this work, a
novel approach to deployment planning based on FDA.

GCM Grid Component Model

GUI Graphical User Interface
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HLA Home Location Agent

HTTP Hyper-Text Transfer Protocol

IBM International Business Machines

ICE Internet Communication Engine

IDL Interface Definition Language

IOS Internet Operating System

IP Internet Protocol

IUDD Installable Unit Deployment Descriptor

J2EE Java 2 Enterprise Edition

JEE Java Enterprise Edition

JMX Java Management eXtension

JNLP Java Network Launching Protocol

JRE Java Runtime Environment

JVM Java Virtual Machine

LAN Local Area Network

MAPE Monitor, Analyse, Plan and Execute

MDA Model Driven Architecture

MOM Message-Oriented Middleware

MPI Message Passing Interface

MSI Microsoft Installer

N1 SPS N1 Service Provisioning System

OMG Object Management Group

ORB Object Request Broker

OS Operating System

OTS Object Transaction Service

PCF Point Coordination Function

PCM Process Checkpointing and Migration
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POA Portable Object Adapter

PC Personal Computer

PI Portable Interceptor

PIM Platform Independent Model

PSM Platform Specific Model

QoS Quality of Service

REST Representational State Transfer

RPC Remote Procedure Call

RIA Rich Internet Application

RPM RPM Package Manager

RTT Round Trip Time

SaaS Software as a Service

SALSA Simple Actor Language System and Architecture

SCA Service Component Architecture

SDD Solution Deployment Descriptor

SGE Sun Grid Engine

SNMP Simple Network Management Protocol

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

STCM Spatio-Temporal Component Model

TCP Transmission Control Protocol

UML Unified Modeling Language

URL Uniform Resource Locator

UUID Universally Unique IDentifier

YUM Yellowdog Updater Modified

VLSI Very Large Scale of Integration

VM Virtual Machine
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WBEM Web-Based Enterprise Management

WCF Windows Communication Foundation

WDL Wrapping Description Language

WS Web Services

WSDL Web Services Description Language

XML eXtensible Markup Language
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