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CHAPTER 1. INTRODUCTION 6

Chapter 1

| ntroduction

The history of diagnosis is probably as old as human history. The term “diagnosis” can
be defined in the simplest way as an examination of systems in order to perform detection
and localization of their malfunctions. At first, there was only one object of examina-
tions: human itself. Diagnostic procedures were reduced to use expert knowledge of a
medicine-man or a quack. But the domain of diagnosis enlarged, together with evolution
of the technical civilization, and started including technical systems and technological
installations.

Technical systems are exposed to many external and internal factors which are causes
of slow deterioration of products and possible malfunctions of systems. We can assume
that all malfunctions of technical systems, which occur during a normal work, are un-
desirable and harmful. The malfunctions either reduce quality of produced goods or, in
the worst case, definitely interrupt the production process what generates measurable eco-
nomic losses. The value of loses is sometimes so huge that growing interest in effective
diagnostic methodologies is understandable.

The most serious difficulties with developing good diagnostic methodology for techni-
cal systems are: growing complexity of their structures and variety of technologies in use.
These two factors make a diagnostic process very hard, even for well trained specialists,
and increase time which is necessary for diagnosis and reparation, as well as complexity
of the diagnostic procedures.

In face of the above facts, developing efficient diagnostic methodologies becomes a
very important task. Efficient diagnostic methodology should be able to support human
diagnostic actions or even carry out diagnosis quite automatically. A growing number of
researchers work in this area, which has appeared as an interdisciplinary branch of science
and engineering during the last three decades. The increasing number of research centers
involved in this area of research is a good proof that diagnosis is one of the most important
problems of modern science.

A typical diagnostic procedure can be divided into the following three principal stages
(Isermann and Ballé, 1996):

o fault detection - detection of system misbehaviors,

e faultisolation - localization of detected system misbehaviors,

J. Oleksiak Hierarchical diagnosis of technical systems



CHAPTER 1. INTRODUCTION 7

o fault identification - estimation of size and type of localized misbehavior.

In technical literature referring to diagnosis, fault detection and isolation is often referred
to as FDI activity.

Generally speaking, the idea of fault detection is based on comparison of current be-
havior of a system with the expected behavior of the system. If there are observable
differences, then one can assume that the system does not work correctly. In other words,
the observed behavior of the system is inconsistent with the expected one.

The next step is fault isolation; parts of the system which are responsible for the
observed misbehaviors are localized. The misbehavior is precisely described during fault
identification. Fault isolation and fault identification are sometimes joined together and
called fault diagnosis.

Existing diagnostic methodologies can be divided according to a few different criteria.
The most general ones are: the type of diagnostic knowledge and the type of searching
strategy. Below, the diagnostic methodologies are grouped according to the type of diag-
nostic knowledge which describes system behavior or relations between symptoms and
reasons of defects:

1. Systems described by a well developed model. This class of systems can be di-
agnosed most precisely and in a complete way, but only very limited number of
systems have model which is good enough for such diagnosis. The most typical
solutions applied in practice are usually based on:

e analytical models, such as:

physical equations,

linear input—output models (transfer function),

linear state equations e.g. (Chow and Willsky, 1984),

state observers and Kalman filters e.g. (Chen and Patton, 1999).

e knowledge—-based models e.g. (Reiter, 1987; de Kleer and Williams, 1987;
Genesereth, 1993).

2. Systems described only by general rules. The knowledge is derived from domain
experts. Applied solutions are based mainly on knowledge engineering and compu-
tational intelligence:

casual graphs e.g. (Ligeza and Fuster-Parra, 1997),

fuzzy logic e.g. (Koscielny et al., 1999),

diagnostic matrices e.g. (Koscielny, 2001),
ATMS e.g. (de Kleer, 1986),
diagnostic trees and graphs e.g. (Barlow and Lambert, 1975),

classical Al rule-based expert systems e.g. (Tzafestas Ed., 1989; Liebowitz,
1998).

3. Systems that are not described by any model or rules; all our knowledge of the
systems is based only on observations of their behaviors. Applied solutions:

J. Oleksiak Hierarchical diagnosis of technical systems



CHAPTER 1. INTRODUCTION 8

e pattern recognition e.g. (Korbicz, 1998),
e neural networks e.g. (Sorsa and Koivo, 1993),
e fuzzy neural networks e.g. (Koscielny, 2001).

The most important for us are approaches derived from logical reasoning methods.
Especially, knowledge—based models and causal methodologies are further used in this
thesis. This is so, since precise mathematical models are available only for limited number
of systems, while knowledge engineering and computational intelligence methods are, in
principle, applicable to any system of arbitrary complexity (although the level of precision
may vary depending on the complexity of the system).

The knowledge-based models for diagnosis use inconsistencies between observed and
expected behavior of a system where expected behavior is predicted according to knowl-
edge of a system model. This kind of approaches is also called consistency—based diag-
nosis. Such diagnostic systems do not need the expert knowledge acquisition phase or
training and can diagnose even very new systems for which expert diagnostic knowledge,
based on former experience, does not exist. For such systems, existing models of their
correct behavior, developed during design and simulation of such systems, can be used
for diagnosis.

The main idea of presented further diagnostic models is based on components, similar
to (Reiter, 1987), where system is defined as a set of components and relations among
them. Diagnosis of such a component system is done in two stages: fault detection and
fault isolation. The model of a system has some selected inputs and outputs. Values of
system inputs are measured and used as input for the model. Values of model outputs are
calculated and compared with observed system outputs. If there are significant discrepan-
cies, then system malfunction is detected. A general idea of such a model-based approach
is presented in Figure 1.1.

Input
Output
——>»| SYSTEM j
Residual
+ 1 Signal
_____ - = 0=>0K
| | Expected <>0=>FAULTS
Output

Figure 1.1: General idea of consistency—based diagnosis

In case of detection of faulty behavior, fault isolation is to be performed. Sets of
components which cannot work correctly are identified (the so-called conflict sets (Reiter,
1987)). Conflict sets include components participating in generating outputs of the system

J. Oleksiak Hierarchical diagnosis of technical systems



1.1. Problem description 9

at which discrepancies were detected. The elements of conflicts sets are natural candidates
for being faulty (at least one of them), and a potential diagnosis has to include at least one
component from each conflict set.

On the other hand, Causal methodologies model cause—effect relations which describe
correct and incorrect behavior of the systems under examination. The basic logic functors
(AND, OR, NQOT) are usually used for modeling relations between symptoms and reasons
of faults. Simplicity of this approach is its biggest advantage but sometimes this formalism
is too simply for describing larger systems.

The expert logical graphs constitute an example of the causal methodology. They con-
stitute graphical representations of causal relations (Fuster-Parra, 1996; Ligeza, 2003).
An expert graph is defined as an acyclic, directed graph with nodes modeling symptoms
and arcs referring to causal relations. The types of nodes in such graphs can be: AND
(conjunction), OR (disjunction), and NOT (negation). AND nodes represent logical con-
junctive influence of predecessor nodes on the modeled symptom, OR nodes represent
disjunctive influence, while NOT arcs represent negative (reversed) influence. Diagnoses
are generated by use of simply rules for propagation of node states through an expert
graph combined with search for logical values of input nodes implying the observed mis-
behavior. The AND node is represented in figures as a node with additional arc under the
node, the OR is a pure graph node, and the NOT arc is represented by a arc with black
dot.

1.1 Problem description

Diagnosing of modern technological systems becomes more and more difficult and so-
phisticated task. This is so mainly due to their complexity — contemporary technological
systems are assembled from numerous components which cooperate and recursively in-
clude other components.

Diagnostic descriptions based on the mentioned in previous section diagnostic method-
ologies are usually flat. This means that all components are analyzed simultaneously as
a potential source of faults. When the number of components increases then both com-
plexity of diagnostic reasoning and the time of calculation also increases regardless of
necessary precision of diagnoses and potential influence of new components on the ob-
served symptoms. Single—level diagnostic procedure generates many potential diagnoses
which cannot be verified in a short time.

The problem increasing complexity can be solved by hierarchization of model where
the position in vertical hierarchy represents some level of considered details. Hierarchical
approaches for solving diagnostic problems were considered by few authors only, e.g.:
theoretical description of hierarchical approaches in (Giunchiglia and Walsh, 1989), hier-
archical approach based on subsumption between first—order clauses in (Plaisted, 1980)
or hierarchical diagnosis based on constraints in (Mozetic, 1991), but none of these ap-
proaches proved to be applicable in practice. A recent approach is also presented in (Kos-
cielny, 2004) in the context of FDI based on use of expert-defined diagnostic matrix and
its decomposition to subsystem matrices.

In this thesis another, model-based hierarchical approach is considered. It is based

J. Oleksiak Hierarchical diagnosis of technical systems



1.2. The ams and scope of the thesis 10

on direct modeling of the hierarchy of system components which can recursively include
other components (e.g. Figure 1.2). The diagnostic procedure can refer to a certain level
of component representation. The system to be diagnosed is structured in a hierarchy of
components with respect to its structure and functionality.

/ﬁ//

// // v N

7S

Figure 1.2: Abstract example of hierarchical model

Note that some components of a complex system may have a good diagnostic descrip-
tion and some of them may have only a partial one or even none, e.g. some components
come from different manufacturers or represent quite a different way of operation than
others. If we have a look at the presented before classification then we can see that there
are approaches emerging from classical theory of control and also many approaches be-
longing to “soft computing” class. Hence, it is necessary to find a way of simultaneous
exploration of different diagnostic models for generating diagnoses for so different com-
ponents in the same hierarchical model.

1.2 The aims and scope of the thesis

The thesis is concerned with diagnosis of technical systems with use of Artificial Intelli-
gence approaches. The main focus is on hierarchical diagnosis allowing for multi-level
analysis.

The main goal of this dissertation is to provide a deeper theoretical insight into hi-
erarchical modeling and diagnostic reasoning. This goal is to be accomplished in the
following stages:

e detailed analysis of the state of the art and existing Al approaches to diagnosis,
especially consistency-based ones and causal ones,

e presenting definition and a formal concept of a new generic model for modeling
hierarchical structures of complex systems to be used in diagnostic inference,

e developing a methodology for hierarchical diagnostic reasoning,

J. Oleksiak Hierarchical diagnosis of technical systems



1.2. The ams and scope of the thesis 11

e developing conceptual experimental software supporting hierarchical modeling and
analysis of complex technical systems.

Moreover, auxiliary study of computational complexity, probabilistic aspects, testing
and verification of diagnostic reasoning in case of hierarchical approach is presented.

With reference to the above stated goal, and on the basis of thorough analysis of the
state of the art of Al based diagnostic methodologies, the thesis of the dissertation is for-
mulated as follows:

In case of complex technical systems, it is rational to apply hierarchical diagnostic
approach in order to reduce complexity. An efficient hierarchical diagnostic method-
ology can be developed through composition of consistency-based methods and causal
AND/OR/NQOT graphs into hierarchical multi-level diagnostic procedure. Such an ap-
proach allows for qualitatively new, flexible analysis of complex systems failures and effi-
cient in-depth diagnosis.

Hierarchical multi-level diagnostic procedure combines graph-search methodologies
(for traversing different levels of details with advanced Al-based diagnostic inference
methodologies). During the search for diagnoses it is possible to focus on selected compo-
nents and penetrate the internal structure of them, or stop the procedure at some required
levels of details.

The specific advantages of such an approach include the following innovative features:

e diagnostic reasoning is split into levels; at a specific level the most appropriate
specific diagnostic approach can be selected and applied,

e thanks to reduction of complexity, diagnostic efficiency is improved since at a spe-
cific level only limited number of components (identified by higher level diagnosis)
is to be considered,

o the degree of details of the specific diagnosis can be adjusted to current requirements
and available diagnostic observations,

e hierarchical approach provides significant improvement of scalebility in case of
complex systems,

e current analysis can be focused on subsystems (subcomponents) while other ones
are not taken into consideration,

e the proposed hierarchical methodology allows to incorporate auxiliary mechanisms
for improving efficiency; for example control of diagnostic reasoning based on
probabilistic information or verification procedures.

Last but not least, hierarchical analysis allows for more efficient knowledge repre-
sentation and processing with use of computer applications. This concerns, among other
issues, screen based communication through graphical interface of limited size?.

1Even biggest standard 21" computer displays allow to present only limited part of large models of
industrial systems, some of them having several thousands of components

J. Oleksiak Hierarchical diagnosis of technical systems
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The Reiter’s classical definition of component system introduced by Reiter (1987)
puts forwards a single-level view on system modeling — the system is composed of a
number of equally-ranked, atomic components, connected and interrelated. The behavior
of the system is modeled with a single-level, flat first-order theory. No internal structure
of components is considered.

For the sake of hierarchical diagnosis it is proposed to extend Reiter’s definition of
system over complex systems, recursively composed of components having some internal
structure. A complex system CS is represented here by a set of top—level, interrelated
components.

In the classical Reiter approach elements of the set of COMPONENTS are considered
to be of atomic nature; here complex components and elementary components will be
introduced.

Complex components can be described here by two kinds of logic—-based knowledge
representations:

e Model-based ones with Reiter’s theory as a diagnostic procedure (Reiter, 1987),

e Expert-based causal logical graphs with propagation of values in AND/OR/NOT
graphs as a diagnostic procedure (Fuster-Parra, 1996)).

The model-based description does not require causal modeling, but it is computation-
ally harder and not all technological components have an appropriate model useful in this
kind of approach. The expert causal graphs give possibility to create an efficient diag-
nostic description based on human causal knowledge about relations between reasons of
faults and their observed manifestations. The most important disadvantage is also lack
of graphs for some components, and difficulties with building description for more com-
plex systems with functional dependencies among components. In this thesis both of the
approaches are combined to enable hierarchical diagnostic procedure.

Original results of the thesis include:

1. Development of a formal framework and an original methodology for hierarchical
modeling of complex systems with heterogeneous diagnostic descriptions,

2. Design of an efficient diagnostic procedure with “focus” effect (diagnosis of sub-
systems as separate systems) for the hierarchical model,

3. Development of a verification procedure for the hierarchical diagnostic methodol-
ogy. The procedure uses properties of the hierarchical model,

4. Development of a methodology for using expert knowledge and defect statistics for
ordering diagnoses and improving efficiency of the diagnostic procedure,

5. Design of a computer application for supporting diagnostic procedure with hierar-
chical modeling of complex systems.

Moreover, a number of detailed concepts and definitions is introduced. A critical
review of existing, flat methodologies is provided.

J. Oleksiak Hierarchical diagnosis of technical systems
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1.3 The outline of this thesis
This thesis is structured into four main parts, the bibliography and appendices:

1. Part I: Introduction.
2. Part Il: Survey of diagnostic methodologies.
3. Part IlI: Hierarchical diagnosis.

4. Part IV: Examples and conclusions.

The first part is just one chapter of introduction to this work. A rough survey of
diagnostic methodologies and general problems in diagnostic domain are presented. The
chapter has as its main objective to present an outline of the contents of this thesis.

The second part is composed of three chapters. In this part a critical revision of differ-
ent works of diagnosis is presented.

e Chapter 2. Methodologies of diagnosis - general short survey of selected diagnostic
methodologies. It provides a list of most important logic—-based diagnostic method-
ologies and presents in brief basic ideas of every approach.

e Chapter 3. Causal AND/OR/NOT graphs - more detailed discussion about diag-
nostic methodologies based on classical Al — casual AND/OR/NOT graphs. The
graphs are one of two proposed descriptions of complex components.

e Chapter 4. Model-based approaches - description of two well known model-based
diagnostic approaches. The main idea of this thesis is close to model-based com-
ponent diagnosis. Moreover, model-based description is one from two proposed
alternative descriptions of complex components.

The third part is the main part of this thesis and it is composed of four chapters, among
them the most important one is Chapter 5. This part has as its main objective presentation
of a model for hierarchical diagnostic reasoning which constitutes the main proposal of
this thesis.

e Chapter 5. Hierarchical diagnosis in heterogenic environment - introduces the most
important ideas and formal background for the proposed approach to diagnostic
knowledge representation. The main objective of this chapter is presentation of the
formalism for hierarchical modeling of complex systems.

e Chapter 6. Inter-level mapping for consistency reasoning and casual graphs. A
short presentation of the form of mapping functions for two types of diagnostic
description: models and causal graphs. The mapping functions pass diagnostic
information between levels of the hierarchical model.

e Chapter 7. Diagnostic algorithm - presents a way of diagnostic inference for hier-
archical models. An adequate diagnostic algorithm is introduced.

J. Oleksiak Hierarchical diagnosis of technical systems
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e Chapter 8. Diagnostic process - includes some other elements of hierarchical diag-
nosis such as: fault detection and isolation, verification of diagnoses, methodology
of tests, and ordering diagnoses according to probabilistic information.

The fourth part is oriented to examples, some conclusions and further work. Proposal
of a diagnostic application is also presented there. It is composed of two chapters:

e Chapter 9. Practical examples - simplified examples illustrate how this theory can
be used to establish diagnoses. The computer application for modeling complex
systems is also presented.

e Chapter 10. Concluding remarks and further work - A summary of original results
of the thesis is provided and future lines of work are established.

The references used in this work have been presented in the chapter of Bibliography.
Finally, appendices are presented:

e Appendix A - Reiter’s methodology to calculation of diagnoses,

e Appendix B - the appendix describes some theoretical approaches to hierarchiza-
tion.

J. Oleksiak Hierarchical diagnosis of technical systems
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Chapter 2

M ethodologies of diagnosis

Diagnostic methodologies emerge from almost all domains of modern Computer Science
and Control Theory. Some of them are mentioned in Chapter 1, but the number of original
approaches and hybrid approaches is enormous and might be a subject of a separate book.
For example, an interesting survey of diagnostic methods is presented in (Venkatasubra-
manian et al., 2003); a survey of terminology and classifications of diagnostic approaches
is shown in (KoScielny and Szczepaniak, 1997).

This chapter presents just a few, selected from many others, approaches to diagnosis.
The selection criteria include mainly type of diagnostic procedures and how diagnostic
inference is close to methods used in classical logic. Presented approaches are mainly
fault isolation approaches.

2.1 Diagnostic matrices

Binary diagnostic matrices (Gertler, 1998; Koscielny, 2001) constitute tools belonging
fault isolation group of activities. In this approach, causes of a fault are determined on
the basis of residual signals from a fault detection algorithm, and knowledge about their
relations to real causes of faults.

Let us introduce this approach in more details. Let F' denote a set of possible faults of
a system,
F:{fklk: 1,2,...,K},

and let S be a set of diagnostic (residual) signals that are outputs of detection algorithms,

S:{Sjijzl,Q,...,J}.

The diagnostic relation Rrg, being the core concept in the presented approach, is
defined on the Cartesian product of the sets F' and S, i.e.

RFSCFXS.

The relation has a matrix form; the matrix element r( f, s;) is defined as follows:

0 <fk78j> ¢ RFS?
IR=N <fk,8j> € Rps.

(fr> 55) = vi(fe) = {

J. Oleksiak Hierarchical diagnosis of technical systems



2.1. Diagnostic matrices 17

Table 2.1: A binary diagnostic matrix for the three—tanks system (Koscielny, 2001)

(SIF Al Bl el ol fs]fol fo]l ful fiz] fis | fia |

s. || 1 1]1]1]1

se | 1111 1 1

53 1011 1] 1 1

54 11 1] 1 1

Table 2.2: Example of FIS system (Koscielny, 2003)

SFEl Al L] s [l 6] | £ ]
$1 1 0 1 0 0 1 {0, 1}

So 0| -1 0 +1 | -1 0 {0, +1, -1}
s3 || -1 | +1 [+1,-1] 0 | +1 +1 {0, +1, -1}
S4 01,2 0,1 011,2]| 1,2 {0,1,2}
s3 |+1] O +1 | +1| 0 | +1,-1|{0,+1, -1}

We shall also say that the set of diagnoses is constituted as follows:
DGN = {fk er: \V/j:sjES[Uj(fk) = Uj}

Diagnostic matrices can be determined on the basis of residual equations or expert knowl-
edge. A binary diagnostic matrix for example system (the classical three tanks system,
see Koscielny (2001)) is presented in Table 2.1.

The basic approach with 0 and 1 values can be extended towards incorporating a more
detailed characteristics of diagnostic signals. In this case the values of diagnostic signals
can take more than two values (e.g. —1, 0, +1). Then it is possible to carry out diagnostic
process based on Fault Information Systems FIS. The Fault Information System is based
on Information Systems IS (Pawlak, 1983) and defined as a four-tuple:

FIS = (F,S,Vs,r),

where Vs = {J;,,,es V; Is a set of values of all diagnostic signals, V; is the domain of
diagnostic signal s;, and r is a function such that

T!FXS—)Vs,

and
Vierses r(f,s) € Vs.

Each pair (f, s) has assigned a single value or a set of values. In the first case, such
system is called simple while in the second — rough. An example diagnostic matrix for a
rough system is presented in Table 2.2.

The main disadvantage of diagnostic matrices is that their residual signals are very
specific for the type of the system to be diagnosed and matrices have to be modified when
some parts of the system are changed. Moreover, fault localization for this methodology
is mainly based on expert knowledge and can be ambiguous or incomplete for some cases.

J. Oleksiak Hierarchical diagnosis of technical systems



2.2. Fault trees 18

2.2 Fault trees

The idea concerning this approach is taken from (Barlow and Lambert, 1975). Fault tree
analysis, FTA, evolved in the aerospace industry in the early ’60’s; at present, it is one of
the principal methods of systems safety analysis. It can predict the most likely causes of
system failure in the event of a system breakdown. The goal of fault tree construction is
to model the system conditions that can result in an undesired event.

A fault tree is a model that graphically and logically represents various combinations
of possible events, both fault and normal, occurring in a system that lead to the top event.
An example fault tree is presented in Figure 2.1.

The term event, denotes a dynamic change of state that occurs to a system element.
A fault event is an abnormal system state. A normal event is an event that is expected to
occur. Different kinds of event symbols are used:

e A rectangle defines an event that is the output of a logic gate and is dependent on
the type of logic gate and the inputs to the logic gate.

e A circle defines a basic inherent failure of a system element when operated within
its design specifications.

e A diamond represents a failure, other than a primary failure that is purposely not
developed further.

e A switch event represents an event that is expected to occur or to never occur be-
cause of design and normal conditions, such as a phase change in a system.

The fundamental logic gates for fault tree construction are the OR and the AND gates.
The OR gate describes a situation where the output event will exist if one or more of
the input events exist. The AND gate describes the logical operation that requires the
coexistence of all input events to produce the output event.

2.3 ATMS

TMS (Truth Maintenance System) (de Kleer, 1986) and ATMS (Assumption-based Truth
Maintenance System) (de Kleer, 1986) have been used in problem solving. Several au-
thors have used ATMS in their diagnostic systems, among them: (de Kleer and Williams,
1987), (Struss, 1988), etc. TMSs are devoted to find one solution, ATMSs are devoted to
find all the solutions.

ATMS context is the set formed by the assumptions of a consistent environment com-
bined with all nodes derivable from those assumptions. A characterizing environment for
a context is a set of assumptions from which node of the context can be derived. An
ATMS label is a set of environments associated with every node.

The basic data structure is an ATMS node. It contains the problem solver datum with
which it is associated, the justifications the problem solver has created for it, and a label
computed for it by the ATMS. All nodes are treated identically, and are distinguished only
by their individual pattern of label environments and justifications.

J. Oleksiak Hierarchical diagnosis of technical systems



2.3. ATMS 19

Motor does
not start
Motor Circuit fails to Secondary failure
fails supply current of motor
to start to motor Q

Primary failure Command fault ‘

Motor
casing cracks due
excess. tem. or
external
vibration

Motor seizure
due to inadequate
lubrication
bearings

Secondary failures

Operational stress Environmental stress

Figure 2.1: Example of a fault tree

There are four types of nodes: premises, assumptions, assumed nodes, and derived
nodes. The ATMS associates every datum with its contexts. If a datum is in a context,
then it is in every superset as well (the inconsistent supersets are ignored). The three
basic ATMS actions are creating an ATMS node for a problem-solver datum, creating an
assumption, and adding a justification to a node.

Qualitative reasoning and constraint languages, both involve choosing among alter-
natives. LOCAL (de Kleer, 1976) is a program for troubleshooting electronic circuits
which was incorporated in SOPHIE 111 (Brown, 1982). It uses propagation of constraints
to make predictions about device behavior from component models and circuit measure-
ments. When a fault of the circuit occurs, some of its components is not operating as
intended. Thus, at some point, as the correct component model does not describe the
actual faulty component, the predictions will become inconsistent. The assumptions are
that individual components are functioning correctly. A contradiction implies that some
assumption is violated. Hence the fault is localized to a particular component set. The
best measurement to make next is the one that provides maximal information of the yet
unverified assumptions. This program requires that the assumptions enabling diagnostic
inference have to be explicitly available.
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2.4 EXpert systems

Expert systems are usually rule-based systems with large knowledge base including if—
then rules. Expert diagnostic knowledge is codified in these rules associating symptoms
with underlying faults. Further diagnosis is done by either forward or backward reasoning
based on observations and the rules.

The main stages in an expert system development include:

e knowledge acquisition,
e choice of knowledge representation,

e coding of knowledge in the knowledge base.

This approach, similar to fault trees and ATMS, needs knowledge acquisition stage and
strong validation of acquired knowledge (incompleteness, inconsistency). Moreover, the
number of rules grows rapidly with complexity of the system to be analyzed. Such diag-
nostic systems fails when new, not defined in knowledge base, condition is encountered,
I.e. knowledge collected in rules describes rather experience concerning a specific device
than general knowledge of structure or behavior.

Methodologies of validation and design of rule—based systems with some examples
are described in e.g. (Ligeza, 1996a,b). Designation and verification of rule-based sys-
tems can be supported by specialized software. There are many approaches to graphical
representation of rules and dependencies among of them e.g. (Oleksiak and Ligeza, 2001).

2.5 Case—Based Reasoning

The basic idea of case—based reasoning is that if two problems are similar then it is possi-
ble to solve the first problem by using adapted solution of the second problem (Kolodner,
1983). Hence, it is a form of reasoning by analogy. The set of previously solved cases
constitutes the knowledge base. When a specific problem occurs, a similar situation in
the past is searched for in the knowledge base. If such approximately similar situation is
found then its past solution is adapted for the current problem situation.

The case—based reasoning is successful used in diagnosis, examples can be found in
(Bach and Allemang, 1996).

This approach needs a case acquisition phase and the form of knowledge can vary
depending on the diagnosed system.

2.6 Constraints and constraint abstraction

Mozeti€ proposed hierarchical diagnosis based on constraints where abstraction is reached
by collapsing of values, deletion of variables and simplification of levels (Mozetic, 1991).
A little bit different component hierarchy can be found also in (Mozetic¢, 1989).
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Abstraction of system is built there on the basis of constraints m between independent
variables z (system states) and depend variables y (input—output observations). More
abstract levels have more general constraints. Operator A is a hierarchy operator which
maps variables between two levels. An idea of two level model is shown in Figure 2.2.
There are abstract level 1 and detailed level 2.

Abstract level

N M)
W ©

h(x,%o) h(y.y)

Detailed level (Xy m2(x2,y2) C@

Figure 2.2: Relations of abstraction (Mozetic, 1989)

Example 2.1 (Mozeti€, 1989) The model of an OR gate has an abstract level and a de-
tailed level. The abstract level includes logical disjunction of two inputs. Values of inputs
and outputs are either logic “0”” or logic ““1”. Constraints in this level are:

The detailed level is an electric circuit with some transistors and some passive ele-
ments. Using a Prolog-like notation the model of the circuit can be specified as follows:

07“92(111'(‘/;'”1, Im1), 'U'[:(‘/inZa Iin?)a Ui(%uta Iout)) A
Vcc = 5a V;z = 05

resistor(Vint, Vor, Lin1, 4700),
transistor(Viy, Ve, Ve, Lints L1, Ler),
resistor(Vinz, Vaz, Lin2, 4700),
transistor(Vig, Ve, Ve, Lina, Lo, Lea),
T@SiStOT(%c: va Iccla 470),

I = I + I + I,

resistor(Ve, Vis, Ips, 4700),
transistor(Vis, Vout, Ve, I3, Ies, Ies),
resistor(Vee, Vouts Lec2, 470),

Teeo = I3 + Tout, 0 < Lout, Lot < 0.006.
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Figure 2.3: The OR gate realized by three npn transistors

transistor(Vy, Ve, Ve, Iy, I, I.) <
V=V, +0.7, %V = 0.7

Ve 2 Ve,

I. =100 x I, % Beta = 100

Iy > 0,

I.=1.+1,.

transistor(Vy, Ve, Ve, Iy, I, I.)
Vi =V, 4+ 0.7, %V} = 0.7

V; = V;—; + 03, %‘/cesat =03

Iy > 0,

I. >0,

I, =1 +1I.

transistor(Vy, Ve, Ve, Iy, I, 1) <
Vo < Vo + 0.7, %Vpe = 0.7

%active

%saturated

%cutoff

Ib = Oa

Ic =0,

I, = 0.

resistor(V1,Va, I, R) +

R >0,

V1 — sz =1 x R.
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Hierarchical relations between variables in individual levels are specified by the follow-
ing two clauses:

R0, vi(V,1)) < 0 < V,V < 0.7.
h(1,vi(V,1)) <2< V,V <5.

A diagnostic process can be carried out by using the below clause:

orgl(Inl, In2, Out)
h(Inl,V L),

h(In2,V L),

h(Out, V),
org2(VIin1, Vg, V).

MozetiC puts two consistency conditions on his abstraction:

C1l: Vaa,yp ma(22,y2) = 3wy h(z1,22) V Iy1 h(y1, 42),
C2: Vg, Y (371, 1 ma(w2,92) A (@), 22) A h(Y),90)) =
Fz1, g ma (@, 1) A h(@n,@2) A B(yr, y2).

The C'1 condition restricts incompleteness introduced by the hierarchical operators and
prohibits cases where detailed independent variable =, with abstraction z; is mapped to
detailed dependent variable y, without abstraction. The condition is necessary because the
abstract level does not include some variables or values of variables which are in detailed
level. Therefore, the y; has to exist when z; exists for keeping consistency.

Example 2.2 Values of inputs and outputs in the abstract model are either logic “0”” (0V,
0.7V) or logic “1” (2V, 5V). Any electrical voltage can appear on the detailed model
inputs, but output will be either (OV, 0.3V) or (2.18V, 5V) what corresponds to the two
logic states. Therefore any y, has an abstraction and the condition C1 is satisfied for this
model.

The C2 condition guarantees that if there exists abstraction of independent variable x4
and dependent variable y, and relation m, among them, then there have to exist also an
abstract independent variable z; and an abstract dependent variable ¢, and relation among
them my, such that the independent variable for z, is x5 and the dependent variable for y,
IS Yo.

Example 2.3 All detailed values of all variables having constraints defined at the detailed
level, and which have abstraction, must also have constraints at the abstract level e.g.:

e voltages in the detailed level are:
V;nl = 051 ‘/;nQ = 301 ‘/O’ut - 301

e logic values in the abstract level are:
Inl1=0,In2=1, Out = 1.
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There exist constraints at the abstract level for the above values, and it is of the form
orgl(0,1,1).

This type of abstraction is used in hierarchical version of the CARDIO heart model
(Bratko et al., 1989) which is qualitative model of electrical activity of the heart. The
model maps any arrythmia to all corresponding ECG descriptions.

Limitation of abstraction based on constraints is that modeling of systems is not easy
and expert knowledge must be acquired and codified.

2.7 Hierarchical diagnostic matrices

Hierarchical extension of diagnostic matrices is described in (Koscielny, 2004). A diag-
nosed system is divided into & levels. Let M, denote the number of subsystems at the
h-th level. A subsystem 7 at level A is described by the following three-tuple:
h/n
O) = (Fy,Si, Rils)

n? n?l

where:
F!is a subset of faults for subsystem n at level A,
Sh is a subset of diagnostic signals that they detect faults for subsystem n at level h,

R’,?/; is their diagnostic relation.

The above hierarchical structure has the following properties:
e subsets of diagnostic signals are separate in all subsystems:
STgnﬂSZ:@, mn=1,...,M,, m#mn, gh=1,...,H
e faults—diagnostic signals relations are also separate:
wa/;”le’;/;lzlz), mn=1,....,My, m#mn, ggh=1,...,H

e subsets of faults detected in subsystems at the same hierarchical level are separate:

FrnSh=0, mn=1,...,M,, m#n, h=1,...,H

The hierarchical diagnosing structure is described by the graph:
GHSD = (O, L),
Subsystems are represented by graph nodes
O={0":n=1,...,My, h=1,...,H},
the arcs are defined as

L:{lfﬁf‘n cmyn=1,..., My, m#mn, ggh=1,...,H, g+# h}.
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The arcs connect subsystems which have common elements of the fault set
igh € Lo [Fg 0 Fl £ 0],
the common part of these sets is denoted by
Foh = FINF! g+#h.
The initial diagnosis for subsystem n at level A is defined as:
DGNy* = {fi € Fy : Vjsesn[vi(fi) = vj}

A final diagnosis is different when detected faults belong only to the subsystem, and
different when detected faults belong also to other subsystems. Set F*" includes only
faults detected in the subsystem:

B =E- ) Ea

1 eL

e If DGN" C EMV (faults are not confirmed) then the final diagnosis is equal to the
initial diagnosis DGN" = DGN",

o If DGN™ ¢ F"W (some faults confirmed) then initial diagnosis can be specified
or verified on the basis of diagnoses in other subsystems:

— Fgh £ O A DGN"™ N DGNY =0 = DGN" /2, = {f; € F'W}

- Fgh £OANDGNY N DGNY% + 0= DGN} /9 = DGN* N DGNY%

The diagnosis for a whole system is a collection of final diagnoses obtained from all
subsystems.

The biggest advantage of this approach is decentralization of diagnostic process (faults
detection) on a few computer units what results in significant lowering of calculation time.
Moreover, units become independent in local diagnosis and can be used without central
structure.

The biggest disadvantages are the same as for one—level diagnostic matrices. More-
over, if a fault can be detected in two subsystems, then its diagnostic signals should be
always active when the fault happens. But, diagnostic signals in real systems can be com-
pensated or noisy, so a fault can be detected in the first subsystem and not detected in the
second one.
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Chapter 3

Causal AND/OR/NOT graphs

Casual relations model influences of causes on observed system reactions. This kind
of diagnostic description can be also considered as one of model approaches where the
model is based on expert knowledge. The general idea for failure detection is based on
the notion of expected behavior. A basic underlying assumption is that the experts have a
more or less precise idea of what system behavior they can expect, i.e. they can qualify the
observed behavior as the normal and abnormal one. Further, they are assumed to be able
to recognize different types of abnormal behaviors and classify the observed ones into
specific categories. Thus the notion of expected behavior includes both expected normal
behaviors and various sorts of expected abnormal behaviors. Behaviors are described by
relational models.

The main concept of causality is presented for example in (de Kleer and Brown, 1986;
Iwasaki and Simon, 1986). The graphical representation of causal relations, AND/OR/NOT
graphs, are described for example in (Ligeza and Fuster-Parra, 1997).

3.1 AND/OR/NOT graphs. Basic definitions

Generally, causal graphs are graphical representations of causal relations. A causal rela-
tion between nodes n and n' is an influence of the fact that n occurs on the fact that n’
happens.

There can be a few kinds of causal influences, i.e. different kinds of causal relations
(Console et al., 1989; Console and Torasso, 1992). The three presented below causal
relations refer to the ,,strength” of causality and incompleteness of our knowledge; they
are as follows:

e symptom n causes symptom n' always when the former occurs; moreover, the oc-
currence of n’ is bound to be caused by n. We refer to this type of causation as
sufficient and necessary (NEC),

e symptom n causes symptom n’ always when the former occurs, but there are sev-
eral possible different symptoms causing n' as well. We shall refer to this type of
causation as sufficient (SUF),
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e occurrence of symptom n may cause symptom n’ to occur, however there are cases
when n’ does not follow n. We refer to this weakest type of causation as possible
(MAY).

The NEC relationship is the strongest one, it let us know the most precise information,
but this kind of influence is very rare in real problems. Normally, two last cases are useful.

Now, the formal definition of causal graphs will be introduced:

Definition 3.1 If N is a set of symptoms and ¥ is a set of functions defined on these
symptoms, then a causal graph is a structure G = (N, V).

The definition of causal AND/OR/NOT graphs can be formulated as follows:

Definition 3.2 Let NV denote a set of symptoms, N = DUV U M, where M is a set of
manifestation symptoms, D is a set of elementary diagnoses or disorders, V' is a set of
pre-specified intermediate symptoms. Further, let E* denote a set of relations defining
causal dependencies, and £~ a set of relations defining binary negative dependencies.
The AND/OR/NOT causal graph is a structure (IV, E*, E~) satisfying the following con-
ditions:

e the set of nodes of the graph is the set N = D UV U M (for simplicity we do not
distinguish between the graph nodes and labeling them symptoms),

e the causal relations given by E* and £~ define the arcs in the graph,

e there is set of terminal nodes M and set of initial nodes D in the graph,

e DNV =10,
e DNM =10,
e M NV =0,

e every node has at least one arc going to this node and/or leaving from this node
(the graph is connected),

e there are no loops in the graph.

There are three types of nodes in causal graphs, their graphical representation is pre-
sented in Figure 3.1:

e OR node - logical disjunction of predecessors. If n; is an OR-node, such that
(n1,m4), ..., (ni_1,n;), are all the pairs belonging to E? having n; as the second
argument; then the formula assigned to n; is

ni:mVnQV...\/ni_l,
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e AND node - logical conjunction of predecessors. If n; is an AND-node, such that
(ny,...,ni—1,n;) € E*, then the formula assigned to n; is

n; =Ny ANnag AN ... An;_1,

e NOT node - logical negation of predecessors. If (n;,ny) € E—, the formula as-
signed to n, is of the form:

0, 0 0
0 0 0 0
AND node OR node NOT node

Figure 3.1: Basic nodes

Example 3.1 The graph in Figure 3.2b presents causal relations for an simply logic AND
gate al. Structure of the graph is based on the truth table (Karnaugh, 1953) presented in
Figure 3.2a. The gate has two inputs: aal and bal; and one output mal. There is only
one component - the gate, and the set of potential diagnoses include {a1}.

Symptoms include:

e mal € M is a manifested symptom - the gate output,
e {vall,val2,val3,vald, vals,val6} € V are intermediate symptoms,
e dal € D is an elementary diagnosis - a fault of the AND gate,

e nodes aal and bal are potential observations OBS.

Assumptions constituting the bases for modeling of the causal graphs include the fol-
lowing:

e finite, pre-specified number of components is to be diagnosed; the undertaken con-
trol actions and operational conditions are taken into account as possible causes of
abnormal behavior. The components, possible actions and conditions must be a pri-
ori known, and faulty behavior of the system may be diagnosed only by assigning
faulty behavior to one or more of these components, application of certain actions
and occurrence of operational conditions,
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aal, bal vall

dat \ 00 o1 11/ 10

of o | o |(T)| o
@ 1) o @

val3 val2

mal
/O\
0 vall 0 val2 0 val3

vald /vald val6
0 0 0

L

o) 0 0
aal bal dal

Figure 3.2: Graph AND/OR/NQOT for an AND gate
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e observed steady-state of the dynamic system is to be diagnosed rather than a wrong
change of the state,

¢ the types of abnormal behavior to be diagnosed must be “predefined” in some sense,
i.e. formulae describing qualitative situations referring to expected failures must be
provided,

e the knowledge about causal dependencies among symptoms should be available.

3.2 The causal diagnostic methodology
The diagnostic problem for causal graphs is defined as follows:

Definition 3.3 Diagnostic problem is defined by (G, M, OBS), where M C M is a set of
symptoms together with their logical values to be explained (i. e. the one specifying the
abnormal behavior) and OBS is a set of symptoms observed to be ,,true” or ,,false’ and
thus providing auxiliary information for diagnostic reasoning.

Each node n € N is characterized by a state, a logical value. The state of a node
belongs to set {true, false, unknown}.

Definition 3.4 Let G = (N, E*, E~) be an AND/OR/NOT causal graph, where N =
ni,Mg, ..., nn. Let @ = {q*,¢% ..., q"} be current logical values of nodes. Any set
s=(n',q"),(n% ¢%),...,(n,q¢") will be called a state-set.

Having defined a partial state s, one can obtain the most complete information about
the status of symptoms by propagation of this state. The final state, where no further prop-
agation is possible, will be denoted with s*. The rules for propagation are basically the
ones of logical reasoning; however, depending on the interpretation of causality various
modifications are possible.

Generally speaking, all kinds of reasoning can be divided on three basic categories
(Peirce, 1958):

1. Deduction, an analytic process based on the application of general rules to particular
cases, with the inference of a result;

2. Induction, synthetic reasoning which infers the rule from the case and the result;

3. Abduction, another form of synthetic inference, but of the case from a rule and a
result.

The diagnostic procedure for causal AND/OR/NOT graphs is an abduction procedure,
abduction is backward reasoning and we can write its general rule as follows

B, a=p

(07
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Reasoning based on the rule allows to advance potential hypotheses which are ex-
plained conclusions. Two main abduction rules for OR and AND nodes are (Ligeza,
2003):

n, N VneV...Vn; =n
1 2 (2 7 (31)
N
M, N ANeA...ANn; =>n (3.2)

where k € {1,2,...,i}.
The presented below rules define precisely forward and backward propagation proce-
dures for AND/OR/NOT causal graphs.

Forward propagation of graph states:

1.

OR node true: if at least one of the predecessors of an OR node is true, then the
value of the OR node is set to be true,

. AND node false: if at least one of the predecessor of an AND node is false, then the

value of the AND node is set to be false,

NOT node true: if a predecessor of a NOT node is false, then the value of the NOT
node is set to be true,

NOT node false: if a predecessor of a NOT node is true, then the value of the NOT
node is set to be false.

. OR node false: if all the predecessors of an OR node are false, then the value of this

OR node is set to be false,

. AND node true: if all the predecessors of an AND node are true, then the value of

this AND node is set to be true.

Simple backward propagation of graph states:

1.

OR node false: if an OR node is false, then the values of all its predecessors are set
to be false,

. AND node true: if an AND node is true, then the values of all its predecessors are

set to be true,

NOT node true: if a NOT node is true, then the value of its predecessor is set to be
false,

NOT node false: if a NOT node is false, then the value of its predecessor is set to be
true.

Backward propagation of graph states with selection of predecessors:

1.

OR node true: if an OR node is true, then the value of one its selected predecessor
Is set to be true,
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2. AND node false: if an AND node is false, then the value of one its selected prede-
cessor is set to be false.

The selection allows to find all possible causes of states of OR and AND nodes. Pre-
decessors can be selected in a predefined order or by using some other information e.g.
statistic or expert knowledge. These two rules implements the abductive inference rules
3.1and 3.2.

The above rules define the principles of state propagation. Whenever a rule is applica-
ble, a new symptom value is generated; it is next placed in the set representing the current
state. In case some symptom turns out to take two inconsistent values, the initial state for
propagation is considered to be inconsistent and it is not taken into account any more.

A diagnosis generated on the basis of a causal graph is defined as follows:

Definition 3.5 If G is the AND/OR/NOT causal graph defining the relationship among
symptoms in the analyzed system, M is a set of manifestations to be explained, and OBS
is the set of observations, then a diagnosis is any minimal and consistent set D of initial
symptoms and their values, such that:

e D explains M, i. e. assuming that G specifies the domain theory, G U D &= M,

e D is consistent with observations (and their consequences), i. e. if S* denotes the
maximal state obtained by propagation of the symptom states defined by D U OBS
over GG, then S* is consistent (no symptom is true and false at the same time).

e D is minimal.

Causal AND/OR/NOT graphs enable user to model behaviors of diagnosed systems.
Models can be either single-level (Ligeza and Fuster-Parra, 1997) or multi-levels with
using vertical and horizontal hierarchization (Ligeza and Fuster-Parra, 1998).
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Chapter 4

DX and FDI model-based approaches

Diagnostic knowledge in model-based approaches has a form of an explicit model of the
diagnosed system. The model includes description of correct behavior of the diagnosed
system. If a model is well defined, then real world observations of the system should
be consistent with its predicted behavior, otherwise we have to assume that the system
does not work correctly. Location of discrepancies in the model is a basic information for
diagnostic procedure.

There are two basic approaches to model-based diagnosis: FDI (Fault Detection and
Isolation) and DX (the contraction is taken from the name of DX International Workshop
on Principles of Diagnosis). The FDI approaches are closer to approaches emerging
from Control Theory and statistical analysis e.g (Isermann, 1997; Patton and Chen, 1991;
Frank, 1996) . The DX ones are closer to Computer Science and Artificial Intelligence
domain (Reiter, 1987; de Kleer and Williams, 1987).

This presentation of DX and FDI model-based approaches is based, in great part, on
works of Reiter and IMALAIA group (Intégration de Modéles Alliant Automatique et 1A)
(Cordier et al., 2000). IMALAIA group designed also an interesting formalism unifing
both approaches.

Example 4.1 Further considerations about both kinds of approaches will be illustrated
by simply arithmetic unit (Davis, 1984; de Kleer and Williams, 1987; Reiter, 1987). The
circuit (Figure 4.1) consists of three multipliers: m1, m2, and m3; and two adders: al
and a2. The values of inputsare A = 3, B =2,C = 2, D = 3, and E = 3. The values of
outputs F' = 23 and G = 12. So, there is an inconsistency between the measured value of
output F" and its predicted value.

4.1 The DX model-based diagnosis

4.1.1 Basic definitions

Reiter’s diagnostic framework is based on consistency between correct behavior of a sys-
tem and its observed abnormal behavior. A system is working correctly if there are no
inconsistencies between these two behaviors. If some inconsistencies occur, then some
parts of the system (components) are faulty. A system is defined as follows:
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A=3m—] [X]
ml
F =23
B:2- al ——m
C=2m® | m2 | [Y]
[ \ G=12
D=3m a2 |—m
E=3 g—] m3 (2]

Figure 4.1: A simple arithmetic circuit.

Definition 4.1 (Reiter) A system is a pair (SD, COMPONENTS) where:
1) SD, the system description, is a set of first-order sentences;
2) COMPONENTS, the system components, is a finite set of constants.

Example 4.2 Let us come back to the circuit presented in Figure 4.1. The set of compo-

nents is as follows:
COMPONENTS = {al,a2,m1, m2, m3},

and the system description is:
ADD(z) N —~AB(z) = Output(xz) = Inputl(z) + Input2(z),
MULT (z) A =AB(x) = Output(z) = Inputl(z) * Input2(z),
ADD(al), ADD(a2), MULT (m1), MULT (m2), MULT (m3),
Output(m1) = Inputi (al), Output(m?2) = Input2(al),
Output(m2) = Input! (a2), Output(m3) = Input2(a2),
Input2(ml) = Inputl (m3),

The diagnostic procedure is based on inconsistency between calculated and observed
values of inputs and outputs of the components. The definition of observations is quoted

below:

Definition 4.2 (Reiter) An OBSERVATION of a system is a finite set of first-order sen-
tences. We shall write (SD, COMPONENTS, OBS) for a system with observation OBS.

Example 4.3 Observations for the arithmetic unit are:
Input1 (ml) = 3, Input2(ml) = 2,
Inputl (m2) = 2, Input2(m2) =3
Input1 (m3) = 2, Input2(m3) = 3,
Output(al) = 23, Output(a2) = 12.
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4.1.2 Conflict and hitting sets

System description S D defines normal (,,correct”) behavior of system components. Ab-
normal behavior of a component will be denoted by the predefined predicate AB. If the
set {—AB(c1),...,mAB(c,)} represents the assumption that all the components of the
system work correctly, so SD U {=AB(c1),...,~AB(c,)} represents correct behavior
of the system (all components work correctly). Because of the discrepancies, the system
does not work correctly. Hence, the formula given by

SD U {-AB(c),...,~AB(c))} U OBS

is inconsistent.

A diagnosis is a conjecture that certain components of the system behave abnormally.
This conjecture has to be consistent with what is known about the system and with the
observations.

Definition 4.3 (Reiter) A diagnosis for (SD, COMPONENETS, OBS) is a minimal set
A CCOMPONENTS such that

SDUOBSU{AB(c) |ce A} U{-AB(c) |c € COMPONENTS — A}

is consistent.

Consistency of the system can be restored only by assumption that some of its com-
ponents are faulty. The set of such components constitutes a diagnosis.

Example 4.4 The example diagnosis for our system is {m1}; it means that abnormal
behavior of this element explains observed misbehavior of the device.

Finding all potential diagnoses is not easy, but they can be calculated on the basis of
conflict sets and hitting sets.

Definition 4.4 (Reiter) A conflict set for (SD, COMPONENTS, OBS) is a set of com-
ponents
{c1,...,c,} CCOMPONENTS such that

SD U OBS U{-AB(c1),...,~AB(cx)}

is inconsistent.

A conflict set is any set which has at least one faulty component, i.e. a conflict set for
the system is minimal iff no proper subset of it is a conflict set.

Example 4.5 Let us come back to the example system. The prediction that Output(al) =
12 depends on the correct operation of a1, m1, and m2 (Figure 4.2). Since Output(al) =
23 at least one of the components a1, m1, and m2 must be faulty. Thus the set {a1, m1, m2}
is a conflict set. Since, none of its subset is a conflict set, the conflict {al, m1, m2} is a
minimal conflict set.
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So, a diagnosis is a set which takes at least one component from each conflict set, i.e.
it is a hitting set of all conflict sets.

Definition 4.5 (Reiter) Suppose C is a collection of sets.
A hitting set for Cisaset H C (Jg., S suchthat HN S # () for each S € C.
A hitting set for C is minimal iff no proper subset of it is a hitting set for C.

Then a hitting set is any set having nonempty intersection with each of conflict sets
and build only from elements of conflict sets. Theorem 4.1 is the basis of Reiter’s theory.

Theorem 4.1 (Reiter) A € COMPONENTS is a diagnosis for (SD, COMPONENTS,
OBS) iff A is a minimal hitting set for the collection of conflict sets for (SD, COMPONENTS,
0BS).

Example 4.6 For the arithmetic system, minimal conflict sets are: {a1, m1, m2}, {al, a2,
ml, m3}.

Conflict {al, m1, m2} is obvious (Figure 4.2). One can easily calculate the outputs
of multipliers m1 and m2 equal 6. So, the output of adder a1 should equal 12, but the
observation equals 23 and there is a conflict.

A=3 g—] [X]
ml
F=23
B:2. al —m
| F=12
CZZH m2 | [Y]
| [ L] G=12
D=3g—| a2 ——=
L _ [
e-3m——{ ™ [Ty

Figure 4.2: The conflict set {al, m1, m2}.

Conflict {al, a2, m1, m3} is calculated by use backward calculation (Figure 4.3). The
output of multipliers m1 and m3 equal 6. So, we know calculated value of variable Z and
observed value of variable G. Now, the value of variable Y is calculated by use adder a2
and equals 6. The output of adder a1 should equal 12, but the observation equals 23 and
there is a conflict.

The following minimal hitting sets can be calculated (Figure 4.4):

dy = {al},dy = {ml},ds = {m2,m3},dy = {a2, m2}.

Each one from the hitting sets is the diagnosis because assuming that its components
are faulty allows to restore consistency of the system.

The main disadvantage of DX approaches is high computational complexity and be-
cause of it diagnosis of large systems becomes very hard. Practical applications of this
approach are:
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A=3m— [X]
ml
F=23
B=2._-__| al —m
[ ‘ F =23
C=2mnm m2 ——#&[Y]
[ : G=12
D=3m | a2 —=
E=3 g— m3 (2]

Figure 4.3: The conflict set {a1, a2, m1, m3}.

| |
{lal], ml ﬁmZ“}\\
{lal/, m1 , mSW}

Figure 4.4: The minimal hitting sets.
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e DART (Genesereth, 1984) - diagnostic methodology for logical gates.
e DEDALE (Dague et al., 1987) - testing electronic circuits.

e TIGER (Milne and Travé-Massuyés, 1997) - monitoring and diagnosis of gas tur-
bines. CA-EN module is a model-based diagnostic module.

The model-based diagnostic procedure is an incremental procedure. Diagnoses are
calculated during the first stage, some localized malfunctions are verified and repaired
during the second stage. Afterwards, if new acquired observations are still not consistent
with calculations, the procedure is repeated.

4.2 The FDI model-based diagnosis

4.2.1 Basic definitions

Behavioral model is the main element of FDI approaches. The model is derived, in most
cases, from system structure and shows links between system components and their model
of behavior.

Definition 4.6 (Cordier et al.) The system model SM is defined as the behavioral model
BM, i.e. the set of relations defining the system behavior, together with the observa-
tion model O M, i.e. the set of relations between the variables X of the system and the
observed variables O acquired by the sensors.

Example 4.7 Elementary components are: the adders a1, a2; the multipliers: m1, m2,
m3. The system model SM is hence given by the following equations:

e BM:
- Rml:x=a*c,
- Rm2:y=b*d,
— Rm3:z=c*eg,
— Ral: f=x+y,
- Ra2:g=y+z

e OM:
— RSa:a=A,
- RSb:b= B,
- RSc:c=0C,
- RSd:d= D,
- RSe:e=F,
- RSf:f=F,
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- RSg:g=0G.

Definition 4.7 (Cordier et al.) A diagnostic problem is defined by the system model SM,
a set of observations OBS assigning values to observed variables, and a set of faults F’
(i.e. a set of diagnoses; if we want to use Reiter’s names). A fault can be seen as a set of
faulty components.

Example4.8 OBS ={A=2,B=2,C=3,D=3,E=2F =23,G=12}. The set
of single faults is SF = {F,1, Fy2, Fin1, Fino, Fruz}. The set of faults is F = 257 and a
number of possible faults is equal m = 2!SF1 — 1.

Definition 4.8 (Cordier et al.) The system structure is defined through a binary applica-
tions: SM xV — {0,1}, where V = X [J O is the set of variables. A element of binary
application s(rel,v) = 1 if and only if v appears in relation rel.

4.2.2 Redundancy relations

Redundancy relations are the basis of fault detection and localization in FDI approaches.

Definition 4.9 (Cordier et al.) An analytical redundancy relation (ARR) is a relation en-
tailed by SM which contains only observed variables, and which can therefore be evalu-
ated from OBS. Itis noted » = 0, where r is called the residual of the ARR. For a given
OBS, the instance of the residual is noted val(r, OBS), abbreviated as val(r) when not
ambiguous. Thus, val(r, OBS) = 0 if the observations satisfy the ARR.

ARRs can be obtained from the system model by eliminating the unknown variables.

Example 4.9 A complete matching leads to the following ARRs:
e ARRl: 7y =0whereri = F —-AxC—-BxD,
e ARR2: 7y =0wherero,=G—-BxD—-C x E,
e ARR3: 73 =0wherers=F -G —-AxC+C x E.

Now, a definition of fault signature will be introduced.

Definition 4.10 (Cordier et al.) Given a set R = {ARR;,...,ARR,} of n ARRs and
aset F' = {Fy,..., F,} of m faults, the signature of a fault F} is given by the binary
vector F'S; = [s1j,...,8,4]7 in which s;; is given by: (ARR;, F;) — s;; = 1 if some
components involved in F}; are involved in ARR;, (ARR;, F;) — s;; = 0 otherwise.

Entry s;; = 0 means that occurence of the fault F;; does not affect ARR; (val(r;) = 0).
Otherwise, when s;; = 1 then the fault F; affects ARR; (val(r;) <> 0).

Definition 4.11 (Cordier et al.) Given a set R of n ARRs, the signatures of a set ' of m
faults all put together constitute the so—called signature matrix.
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Table 4.1: The signature matrix

Fal Fa2 le Fm2 Fm3
ARR; | 1 0 1 1 0
ARR, | O 1 0 1 1
ARR3; | 1 1 1 0 1

The signature matrices introduced here are very similar to diagnostic matrices pre-
sented in Chapter 2. The main philosophy is the same, but the terminology is different in
some places.

Example 4.10 In our example, the signature matrix for the set of single faults corre-
sponding to components a1, a2, m1, m2 and m3 is shown in Table 4.1.

If we want to diagnose multiple faults then it is necessary to extend the matrix (Table
4.1). The 26 additional columns (2™ — 1) have a [1, 1, 1]” signature, except for Fy,1 m1}
which has a [1,0, 1]" signature, and Fy42 33 Which has a [0, 1, 1] signature.

The diagnostic sets in the FDI approach are given in terms of the faults accounted
for in the signature matrix. The generation of the diagnostic sets is based on a column
interpretation of the signature matrix and consists in comparing the observation signature
with the fault signatures. This comparison is stated as a decision—-making problem.

Definition 4.12 (Cordier et al.) The signature of an observation OBS is a binary vector
0S8 =1[084,...,08,]" where OS; = 0 iff val(r;, OBS) = 0.

The first step (the detection task) is to build the observation signature, i.e. to decide
whether a residual value is zero or not, in the presence of noise and disturbances. It
is generally stated as a statistical decision-making problem, making use of the available
noise and disturbance models.

Example 4.11 With OBS as above, OS = [1,0,1]7. In the case f = 10 and g = 10,
OS =[1,1,0]" and inthe case f = 10and g = 14, OS = [1, 1, 1]T.

The second step (the isolation task) is to compare the current observation signature
with the fault signatures. A solution to this decision—making problem is to define a con-
sistency criterion as follows:

Definition 4.13 (Cordier et al.) An observation signature OS = [OS1,...,0S,] is con-
sistent with a fault signature F'S; = [sy;, . . ., sn;]” ifand only if OS; = s;; for all 4.

Definition 4.14 (Cordier et al.) The diagnostic sets are given by the faults whose signa-
tures are consistent with the observation signature.
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Example 4.12 The diagnostic sets obtained for the following observation signatures are:
0S =[1,0,1]" & Fay or Fu or Fia 1y,

OS == [1, 1, O]T -~ FMQ,

0S = [1,1,1]F & any multiple fault except Fraiany and Fiag asy-

Diagnoses based on FDI approach for the arithmetic system are {al}, {m1} and
{al,m1}. The same system diagnosed by DX methodology has diagnoses {a1}, {m1},
{a2,m2} and {m2, m3} what means a subsumption of FDI diagnoses. The cause of lack
of two diagnoses is a strong limiting assumption made in FDI approach that several faults
can never compensate each other i.e. ARRs are strongly independent. In many FDI ap-
plications a frequently adopted assumption is that only single fault may occur. There are
many extensions and practical applications of this approach, e.g. (Koscielny and Syfert,
2000; Koécielny and Bartys, 2000).
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Chapter 5

Hierarchical diagnosisin heterogenic
environments

5.1 Introduction

Modern technological systems are usually composed of many specialized parts, which are
recursively composed of other ones. Such parts will be further called components, and a
system build from numerous such components will be called a complex system. Nature of
components can be either functional or structural. A functional component is understood
as a part of a complex system defined by its role (behavior), while a structural component
is a part of a complex system defined by its form. Component approaches to diagnosis
are considered for example in (Genesereth, 1984; Davis, 1984), where they are based on
structural division of larger systems.

Diagnosis of complex systems encounters two basic difficulties. The first one consists
in frequent lack of a common kind of a diagnostic description for the entire system. Some
groups of components can have different nature of work or can be made by different
manufacturers what entails differences in best fitted or available diagnostic description
between groups of components. Then it is not easy to choose a good common diagnostic
description which satisfies all components and does not lose too much information.

The second problem is complexity of the diagnostic description. A proper diagnostic
description for a complex system should include all components which can be changed
during a reparation procedure. When a complex system is really large, then a diagnostic
procedure for such a diagnostic description is computationally costly and can produce a
lot of potential diagnoses.

The proposed diagnostic methodology for complex systems tries to deal with the men-
tioned difficulties in several ways.

Components can be described here by the mentioned before two kinds of logic-based
knowledge representations: models and expert graphs. A model-based description al-
lows to describe components more precisely, but some of the components do not have
well developed models or their models are too complicated and useless for a time-limited
diagnostic procedure. Such components can be described by graph-based descriptions
collecting an expert knowledge about behaviors of components. Because of the two com-
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plementary approaches, the methodology is able to describe systems which cannot be
described by a single, common for all components methodology.

Complexity of diagnostic description is partially reduced by hierarchization, some-
times called abstraction or relaxation. We will call it further a hierarchical approach.
Roughly speaking, original description is divided into a few levels and each level is con-
stituted by “forgetting” some details from a lower level of hierarchy. The highest level is
most general, the lowest one is most detailed and similar to original problem.

Here, the hierarchical structure incorporating various levels is created by inclusion of
components in other components. If a component includes other components, then these
subcomponents constitute next more detailed level of hierarchy. Each level of hierarchy
contains several subcomponents and their borders are determined by either structural or
functional division. Diagnoses obtained from higher levels of hierarchy can be better
specified and validated on lower levels. A hierarchical description is usually, but not
always (Giunchiglia and Walsh, 1989), less complicated and easier to diagnose than the
original detailed description of a problem.

A diagnostic procedure for the presented above hierarchical diagnostic description al-
lows for generation of diagnoses from the highest hierarchical level to the lowest one, i.e.
from the most abstract level to the most detailed level (top—down). Produced diagnoses
include elementary components, which have no subcomponents, or components which
cannot be further diagnosed because of lack of diagnostic information. Additionally, di-
agnoses can be ordered according to probability of malfunctions and verified between
levels of hierarchy (see Chapter 8).

5.2 Basic definitions and assumptions

Let there be given a set of constants ELEMENTARY COMPONENTS (EC, for short) de-
noting the basic components in the sense of (Reiter, 1987), i.e. ones denoted by constants
for which no internal structure is ever considered. A (complex, hierarchically structured)
component can be recursively defined as follows (Oleksiak and Ligeza, 2004):

Definition 5.1 (Component) A component c is either:

e an elementary component ¢ € EC, or

e a complex component ¢ = (CD, SUBC), where CD is the component description
(a set of first—order sentences) and SUBC' is the set of its subcomponents.

Note that the above definition introduces a tree of component structure modeling re-
lations among components and their subcomponents. Elementary components are leaves
of the tree, they do not have any descendants. The root of the tree will be referred to as
the main component. In fact, the main component is the complex system of hierarchical
structure of subcomponents.

If ¢ = (CD,SUBC) is a component, then c is a direct super-component for any
component ¢; € SUBC. Conversely, any ¢; € SUBC'is a direct subcomponent of c. If

J. Oleksiak Hierarchical diagnosis of technical systems



5.2. Basic defi nitions and assumptions 45
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Figure 5.1: The tree of component structure for a hypothetical system

there exists a path, going from the root through some components c; and c; to some leaf,
then ¢; is a super-component for ¢; and ¢; is a subcomponent for c;.

We further assign the level to any node representing some components (subcompo-
nents) in the tree. The root node (and the main component) is assigned a level numbered
0. Any other component is assigned level m + 1, where m is the level of its direct super-
component.

To denote the fact that component ¢; lies at level j within component ¢ we shall write
level(c,¢;) = j or ¢; €; c. If component ¢ is identified in a unique way the notation can
be simplified to level(c;) = j or c.

Any component ¢ is assumed to be identified by its (unique) name or label. To denote
the fact that a component ¢; is a direct subcomponent of ¢ the path-dot notation c.c; will
be used. Further, if there exists a path, going from the root through some components
Ciy Cit1, - - -, Civg 10 SOMeE leaf, and the subsequent nodes are direct subcomponents of the
preceding ones, the path-dot notation will be extended to ¢;.c; 1.¢; -

Any component (either an elementary one or a complex one) can be further described
by a set of variables, typically defining its inputs and outputs. It is assumed that any
component has assigned some functional behavior and its outputs are related to inputs in
some way defined by a model of the component. The input and output variables, together
with some other characteristics of the component (internal state variables, parameters,
etc.) are also referred to as component attributes.

To denote a value of a component attribute the standard O-A-V (Attribute(Object) =
Value) notation will be used e.g. output(al) = 12. The set ATR] includes all attributes
with values of component ¢/. An undefined value is denoted by constant value “null”.

In the proposed approach, combining model-based diagnostic procedures (Reiter, 1987)
and ones based on causal reasoning with AND/OR/NOT logical causal graphs (Fuster-
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Parra, 1996), any component can be perceived from two different perspectives: it can be
identified as an element of the system considered at certain level in the model-based ap-
proach (Reiter, 1987) or in the hierarchical causal graph in the expert approach (Ligeza
and Fuster-Parra, 1997).

The hierarchical model, similarly to the flat model, has to involve real world observa-
tions. The definition of observations is as follows:

Definition 5.2 An observation of a complex component ¢ is a finite set of first-order
sentences. We shall write (CD?, SUBC*', OBS?) for a component with observation
OBS.

Example 5.1 The arithmetic unit ¢? presented in figure 4.1 is modeled hierarchically.
Level 0 is described by model CD? presented in the figure and includes subcomponents
SUBC} = {ml1,m2,m3,al,a2}. Observations are OBS? = {A = 3B = 2,C =
2,D=3FE=3,F=23G=12}.

OF 1F 2F 3F 4F

N SR R T
L
TR YT

m o

0X 0y 1X 1y 2X 2Y 3X 3Y
Figure 5.2: Full adder

One of the diagnoses of the system is d; = {al}. Component description C' D}, of
adder ¢¥.a1' is presented in Figure 5.2, its subcomponents (one-bit adders) are SUBC?, =
{207 Elv 227 23}

5.3 Diagnostic problem

Current observations can be consistent with predicted behavior of a component — and in
such a case the component is believed to work correctly; this is denoted as —~AB(c;) (recall
that AB(c;) denotes the fact that component ¢; behaves in an abnormal way). If current
observations are different from what can be expected on the basis of the component de-
scription (its model), the component is assumed to be faulty — at least one subcomponent
of it behaves in abnormal way; this is denoted as AB(c;). The diagnostic problem for the
hierarchical model can be formulated as follows:

Definition 5.3 (Diagnostic Problem) A diagnostic problem Pl.j for component c{ defined
at level 5 is defined as a four-tuple

P! = (c, CD}, SUBCI™', OBS)
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where CD is the model definition for component ¢/, SUBCI™ are its subcomponents
and OBS are the current observations at level j for component ¢..

Example 5.2 The diagnostic problem for the arithmetic unit at level 0 is specified as
follows:
PP = (&, DY, SUBC!, OBSY).

Note that in the hierarchical approach, the diagnostic problem definition is always
formulated at a certain level of abstraction and refers to some specific component. At level
0 the whole system is to be diagnosed, and the diagnoses refer to its direct subcomponents;
in fact, for ; = 0 we have the classical single-level diagnostic problem as defined in
(Reiter, 1987). At some intermediate level j diagnoses of component ¢/ refer to its direct
subcomponents.

5.4 Inter-level observations mapping

For enabling real hierarchical diagnosis one must define a way of moving a level down,
so that information concerning level j can be efficiently assigned to components of level
j + 1. Two mapping functions for hierarchical systems are defined:

e focus function F' allowing to focus observations on subcomponent attributes,

e hierarchical function H allowing to map attributes to subcomponent observations.

Definition 5.4 (Focus function) A focus function Fij is a function mapping observations
referring to a component ¢! at level j to attributes referring to its direct subcomponents
atlevel j +1

F!: 0BS? &y ATTRIBUTES™™,
where ATTRIBUTES?"" is a collection of sets ATR’,"". Set ATR’"" includes attributes
of subcomponents included in diagnosis d. Diagnosis d solves diagnostic problem P;.

Example 5.3 Let us consider again the model of arithmetic unit in Figure 4.1. The unit
is a model—-described one, and its attributes are inputs and outputs of its subcomponents.
Four diagnoses are calculated: d, = {al}, dy = {m1}, d3s = {a2,m2}, dy = {m2, m3}.

Collection ATTRIBUTES includes four sets of attributes: ATR; , ATR; , ATR;,,
ATR},. For example, ATR}, includes following attributes:

e inputl(al) =6, input2(al) = 6, output(al) = 23.

Definition 5.5 (Hierarchical function) A hierarchical function H,z“ is a function map-
ping attributes referring to a subcomponent c,7€+1 at level 7 + 1 to its observations

H*': ATRI™ — OBSIT.
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Figure 5.3: A focus function

Hierarchical function is mainly used for conversion of a form of diagnostic informa-
tion between hierarchical levels. The conversion is possible if

o j+1 j+1
HdePg/\cifledATRk gATRd .

Example 5.4 The hierarchical function H, for adder a2 converts {input1(a2) = 6,
input2(a2) = 6, output(a2) = 23}, which is a subset of the set of attributes ATR;, €
ATTRIBUTES?, to observations OBS?™. The observations are binary values on inputs
and outputs of lower level components SUBC} (Figure 5.2):

e )X =0,1X=1,2X=1,3X =0,
e )Y =0,1Y =1,2Y =1, 8Y =0,

e OF=1,1F =1,2F =1,3F =0, 4F = 1.

Let /™" be some direct subcomponent of ¢}. The observations referring to ¢/ ™" will
be denoted as OBS™", and there is OBS/™ € H o F(OBSY).

If subcomponent c,i*l is diagnosed as faulty on the basis of observations OBS{ at level
j, then observations OBS{;LI resulting from mapping the observations down to level j +1
can fall into one of the following three categories:

e observations which are consistent with description of correct behavior of subcom-
ponent c,’C“; the description of incorrect behavior of component ¢! is too general.
This case is similar to the 7'C' abstraction (see Appendix B). The diagnosis is re-
fused as false,
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Figure 5.4: A hierarchical function

Behaviors of component c!

undefined

4

(HeF),

Behaviors of component ¢}« c!

Figure 5.5: Fault mapping
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e observations which are consistent with description of incorrect behavior of subcom-
ponent c{c“. In this case the diagnostic procedure can be continued on lower levels
of hierarchy,

e observations which are not consistent with any one from the descriptions. The
descriptions are incomplete, the suggested solution is to stop diagnostic procedure
at this level.

The particular situations are illustrated in Figure 5.5.

Recapitulating, the form of the focus function depends on the type of component de-
scription €D, a form of hierarchical function depends on both: the type of component
description CD’ and the type of subcomponent description CD?*!,

Figure 5.6: A hierarchical and a focus functions

Figure 5.6 presents both of the mapping functions in an intuitive, graphical form.
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Chapter 6

| nter—level mapping for consistency
reasoning and casual graphs

6.1 The focus function

6.1.1 Model—-described components

Attributes for model—-described levels are inputs and outputs of subcomponents. The sub-
components, which are considered in this section, have only one output. This assumption
simplifies considerations without losing their generality (see the next chapter).

Values of attributes depend on: the model, observations and the diagnosis. Calculation
of variables is done by the following simple algorithm:

1 Label as “CALCULATED” all inputs and outputs of sub-
conponents whi ch have observations assigned to them
Label as “CALCULATED” all other inputs and outputs
which are directly connected with these i nputs and
out put s.

2 1f all inputs of a subconponent are
| abel ed as ““CALCULATED”,
AND t he subconponent does not belong to the consi dered
di agnhosi s,
AND t he output of the subconmponent is not |abeled as
“CALCULATED” t hen:

e cal cul ate value of the output of the subconponent,

e | abel the output as “CALCULATED” and delete this
subconponent fromthe nodel,

e | abel also all other inputs and outputs which are
directly connected with the output as “CALCULATED”.

3 1f a subconponent was deleted in the previous step then
repeat the previous step; otherw se proceed.
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4 Choose a subconponent whi ch does not belong to
t he consi dered diagnosi s
AND it is possible to calculate sone
val ues of its inputs, then:

e cal cul ate val ues of the inputs,

e | abel calculated i nputs as “CALCULATED” and del ete
this subconponent fromthe nodel,

e | abel also all other inputs and outputs which are
directly connected with the inputs as “CALCULATED”.

51f a subconponents was deleted in the | ast cycle then
go to step 2; otherw se finish.

If we assume that faults are generated by a minimal number of faulty subcomponents
from conflict sets (minimal hitting sets) then the above algorithm guarantees that all in-
puts and the output of each subcomponent will be calculated without any additional mea-
surements. Otherwise, values of some inputs and outputs of subcomponents cannot be
determined and the values have to be completed by additional observations. Note that fur-
ther analysis of subcomponents on lower hierarchical levels is, in most cases, impossible
without values of all attributes (values of inputs and outputs of subcomponents).

The above assumption allows to carry out diagnosis without engaging additional mea-
surements and tests. So, it is useful for components where it is impossible to get any
further information about subcomponents than values of inputs and outputs of the com-
ponents. Moreover, diagnoses being minimal hitting sets are usually consistent with real
reasons of malfunctions; so, there is high probably that such diagnoses are correct.

Now, we will try to prove the two properties of diagnoses being minimal hitting sets:
1. Allinputs and outputs for each subcomponent can be calculated for such diagnoses.

2. Outputs of each faulty subcomponent can be calculated and the resulting values will
be inconsistent with the ones expected on the basis of the model of correct behavior
of the subcomponent and its observed inputs.

The first property of diagnoses is that all inputs and outputs of each subcomponent
will be calculated if diagnoses are minimal hitting sets. The problem with calculation can
appear only when a subcomponent is recognized as faulty and all its ,,ways of calculation”
(conflict sets) include some other faulty subcomponents. Then some outputs or inputs of
the subcomponent are undefined.

Lemma 6.1 If hitting set h; calculated from a collection of conflict sets
CON = {cony, ..., con} is minimal, then

Vc1 €h; ch €hj:ca#cl

I(c;) — H(cy) # 0 and (cz) — 1(cy) # 0,

where II(c) is a collection of conflict sets such that

II(c) = {con € CON: c € con}.
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Proof 6.1 Assume that hitting set ~; is minimal and there exists a pair of subcomponents
c; and ¢, in a hitting set i; such that

(c;) — (ez) = 0.
It means that
[I(c;) C I(ey)
and the set
hj = h; — {1}
is also a hitting set. Hence
h; C hj

and the hitting set A; is not minimal.

Example 6.1 Let the hitting set ; be defined as follows:

h; = {c1, ¢, 6},
when conflict sets are:
coni = {c1, ¢, c3},
cons = {c1,C2, ¢4},
cong = {cz, cs},
cony = {cg, C1}.

So,
[I(c1) = {cony, cony},

[I(cy) = {cony, cons, cons},

and
H(Cl) g H(CQ).

Subcomponent ¢, is included in the same conflict sets as ¢; and subcomponent ¢; can be
removed from h; and the set will be still a hitting set.

h; = h] — {Cl} = {02,06}.

Moreover, hitting set A is a minimal hitting set.

Theorem 6.1 If diagnosis d; is a minimal hitting set of a collection of conflict sets CON =
{cony, ..., cong} then

Veied; Jeonccon conNd; = {c;}

Each subcomponent in a diagnosis, which is a minimal hitting set, belongs to a conflict
set such that there are no other faulty subcomponents from the diagnosis.

Proof 6.2 The proof results directly from lemma 6.1. If we take a subcomponent ¢, € dj,
then it has to belong to at least one conflict set such that no other subcomponent from d;
belongs to.
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So, inputs and outputs of such subcomponent can be calculated on the basis of the
conflict set. We can describe the conflict set with use of a set of equations which are
inconsistent. When one of the equations, representing the subcomponent is removed from
the set of equations, then the set of equations becomes consistent. Moreover, they are
divided into two consistent and coherent groups.

The first group includes some equations and only one undefined variable - the value of
output of the subcomponent. The value can be calculated (as far as backward calculation
is possible) if a number of equations is greater than or equal to 1, what is true for this
group.

The second group includes some equations and as many undefined variables as the
number of inputs of the subcomponent. The values can be calculated because they were
obtained during refutation procedure which generated the conflict set. Therefore, now,
such calculation is also possible.

Example 6.2 Let the conflict sets are:
cony = {cy, 2},

CONg = {CQ, 63},
cong = {cs, cs}.

One of the minimal diagnoses is
di = {02, 03}-

Values of inputs and outputs of subcomponent ¢, can be calculated on the basis of conflict
set cony, subcomponent c3 can be calculated on the basis of cons.

The second property of diagnoses, which are minimal hitting sets, is that values of
outputs of faulty subcomponents can be calculated (see Theorem 6.1) and they are not
consistent with description C D (correct behavior) of the subcomponents.

If a diagnosis is not minimal hitting set then additional measurements are necessary.
The measurements have to precise values of inputs and outputs of subcomponents which
are undefined or are calculated on the basis of sets of subcomponents which are either not
superset or not equal to some conflict sets.

Theorem 6.2 If diagnosis d; is a minimal hitting set and subcomponent c; is a part
of this diagnosis, and an output of subcomponent ¢, can be calculated on the basis of
other subcomponents and observations then the calculated value will be different than
the expected correct behavior of subcomponent c;.

Example 6.3 Let us consider again the model of arithmetic unit in Figure 4.1. Diagnosis
dy = {ml} is a minimal hitting set of conflict sets: con, = {al,ml,m2}, cony =
{al,a2,m1, m3}. Then calculated values of inputs and outputs are:

e output(ml) = 17,

e inputl (ml) = 3,
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e input2(ml) = 2.

Diagnosis d;, = {m1, m3} is also a hitting set and a diagnosis. The calculated values
are:

e inputl (m3) = 3,
e input2(m3) = 2.

The behavior of component m3 is quite correct and diagnosis d, will be refused on lower
level of hierarchy.

Proof 6.3 Assume that the above theorem is not true. Then it is possible to calculate
output of faulty subcomponent ¢, basing on a set of subcomponents K and the calculated
value is the same as the correct behavior of subcomponent ¢, for specified inputs. Each
conflict set has to include at least one subcomponent that the calculated value of its output
is different than the observed one. Then, according to Theorem 6.1, there exists a conflict
set con, € CON such that the subcomponent is the only one faulty subcomponent of
it. The conflict can be calculated basing on the correct calculated output of the faulty
subcomponent and the rest of subcomponents in the conflict set. Then the set

con,, = K U P,
where
P = con, — ANTECEDENTS (c5) — {cs},

is a conflict set.

The function ANTECEDENTS (c}) returns a set of components that all belongs to
path 9. . ... ¢!, component ¢! does not belong to the set.

o If =3 (oni e con  cony, C con;, V con,, D cony,, then collection of conflicts CON

n

is not a complete family of conflict sets.
o If3 onn ¢ con  comy, C cony, then con;, is not a minimal conflict set.

o If 3 onr c con com,, O cony, then diagnosis has to include at least one subcom-
ponent ¢! from con!!

— If ¢ belongs to the set K, then the subcomponent cannot be calculated based
only on the correct observations.
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— If ¢!/ belongs to the set P, then con,, contents more than one faulty subcompo-
nent and the hitting set is not minimal.

Recapitulating, if diagnoses are minimal hitting sets then all inputs and outputs of
faulty subcomponents can be calculated and the diagnostic procedure can be continued on
lower levels of the hierarchical model. This can be done without additional measurements.

6.1.2 Graph—described components

Observations and intermediate symptoms, taking part in diagnosis of a graph—described
subcomponent s,, become directly attributes of the subcomponent.

Let the list H, include history of state propagation in a causal graph G for a diagnosis
d. Then it is possible to determine all nodes which take a part in creation of diagnosis d
and they are either manifestation symptoms or intermediate symptoms. The nodes (symp-
toms) constitute a set P, and they become attributes of each subcomponent included in
diagnosis d.

Example 6.4 Let us consider a graph—described printer feeder (Figure 6.1). Component

Feeder is at level 1. Its subcomponents are at level 2: Feeder drive, Feeder rolls, Paper,
Holding unit. One of the diagnoses is d; = { Feeder drive}.

Tracktor is Vl/
working ~ K

Paper is not
pulled

Paper slides \\ v3
on tractor \

Paper is v4

blocked q
(Feederdrive) (Feederrolls)( Paper ) (Holding unit)

Figure 6.1: Diagnostic description for a printer feeder

In Figure 6.1, the names in ovals refer to elementary diagnoses (faults) of components;
the symptoms in rectangles define auxiliary observations.

All symptoms from set P;, become attributes of subcomponent Feeder drive, the set
includes the following symptoms:
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e vl,
e Tractor is working,

o Feeder.

Graph description has one unpleasant property: a lot of diagnostic information is lost
during mapping through graph—described components.

Example 6.5 Let component ¢/ be a model-described component, ¢/+! be a graph—described
component, ¢/*2 be a model-described component and ¢/.¢/+1.¢/ 12,

Component ¢/*2 is model-based and needs a precise set of observations e.g. input(m1) =
3. But causal graphs are mainly based on qualitative observations e.g. wvalve is open,
Temp. > 50. Such information is more convenient for an expert who, in most cases, is a
source of knowledge codified in the graphs.

Then the precise information from level j is converted to qualitative information at
level 5 + 1 and further it has to be again converted to precise information at level j +
2. The last convertion is, in most cases, impossible without additional information (e.g.
measurements).

Deficit of information is especially harmful when subcomponents are described by
their models. If values of some attributes are unknown or not precisely evaluated then not
all the conflicts are generated for model—-described subcomponents, since some ways of
calculation of conflicts become unavailable. When not all conflict sets are generated then
not all diagnoses are generated, moreover some diagnoses can be faulty.

Example 6.6 A hypothetical model-described component is diagnosed twice:

e There is one conflict set: {c1, ¢2}. The minimal hitting sets are: {c1}, {c2}.

e There are two conflict sets: {c1, 2}, {¢2, ¢3}. The minimal hitting sets are: {c2},
{c1, ¢3}.

Hitting set {c1}, which is generated in the first case, is a false diagnosis in the second
case. Of course, the component c1 is considered as faulty, but the real faults cannot be
generated only by this single component.

It is possible to carry out such diagnosis but it is also necessary to be aware that set of
diagnoses can be incomplete. We can propose a few approaches to keep information flow
among the distinguished levels of hierarchy at a satisfactory level of precision:

e additional measurements and interaction with users,

e guaranteeing that there are no model—described components below graph—described
components in the hierarchical model,

e parameterization of subcomponents by typical values for certain kinds of faults,
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¢ use of some additional knowledge holders for graph—described components.

The last case is interesting. It can be performed by use of a model, with information
about connections among subcomponents, which is associated to the graph. The model
includes information about proper behavior of some subcomponents, similar to model-
described components, but there are also subcomponents without such information. Such
kind of diagnostic description will be called an extended graph—description; a model as-
sociated with an expert graph will be called an auxiliary model.

Calculation of additional attributes for the extended graph—description is simple. Di-
agnoses are generated on the basis of the expert graph. Additionally, all diagnoses ob-
tained from the graph have to be consistent also with the auxiliary model and observa-
tions.

The presented below algorithm checks diagnoses according to consistency with aux-
iliary models.

1 Del et e subconponents which are part of the diagnosis.
Del et e subconponents wi t hout proper descriptions of
behavi or.

2 Cal cul ate val ues of inputs and outputs of subconponents
in the nodel as long as it is possible.

3 If sone cal cul ated values are inconsistent with sonme ob-
servations then the diagnosis is also inconsistent with
the nodel. O herw se, the diagnosis can be accepted.

After that, it is possibility to calculate values for some inputs/outputs of faulty sub-
components on the basis of the model. The calculation can be done by an algorithm which
is similar to the presented before one for model-described components.

6.2 The hierarchical function

The hierarchical function maps attributes to observations. The role of this function is
usually auxiliary and reduced to conversion of diagnostic information from one form to
another. We can distinguish here four possible configurations of two hierarchical levels
and two types of description:

e Model-model configuration. The hierarchical function maps attributes which rep-
resent a subcomponent inputs or outputs to the same inputs or outputs on the lower
level of hierarchy. Sometimes, it is necessary an additional conversion, e.g. an
integer value is divided into bits (see Example 5.4),

e Model-graph configuration. Observations in the graph are usually propositional
symbols with boolean values, subcomponent attributes are converted to observa-
tions by pre-specified rules e.g.

IF flow(valvel) > 15 THEN valve _full open := TRUE ELSE valve_full _open :=
FALSE.
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e Graph-model configuration. The hierarchical function for this case depends on
additional solutions used with focus function for improving mapping of diagnostic
information. Two typical solutions are similar to these which were presented in
previous points e.g.:
auxiliary model: position := position(encoder),
rules: IF NOT encoder_ok AND flow_max THEN position := 15 AND value := 30,

e Graph—graph configuration. The situation is quite similar to previous point.
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Chapter 7

Diagnostic algorithm

The presented algorithm is an implementation of the hierarchical diagnostic methodology
presented in Chapter 5 and Chapter 6. The algorithm is composed of a global diagnostic
procedure and a local diagnostic procedure. The global diagnostic procedure is started
with given complex component ¢! and its observations OBS?.

In the first step, diagnostic problem P/ is solved by the local diagnostic procedure.
Local diagnoses obtaining during this stage are graphically represented as an intermediate
graph. In the next step, each local diagnosis dy, is analyzed and set of attributes ATRilk+1
for the diagnosis is calculated. This part of the diagnostic procedure implements the focus
function. All sets of attributes and the intermediate graph are returned to global diagnostic
procedure.

The further diagnosis is driven according to depth-first strategy; breadth—first strategy
is also available but is not considered in this chapter. A first local diagnosis d; is taken
from the intermediate graph. Now, some first subcomponent ¢/ ** is chosen from diagno-
sis d; and its observations OBS%Jr1 are calculated on the basis of attributes ATR{E. This
part of the diagnostic algorithm implements the hierarchical function.

When diagnosis is finished for subcomponent cg;“ then next component (in predefined
order) is taken from diagnosis d; and the procedure is repeated up to the last one in the
diagnosis. The same operation is done with the rest of diagnoses for component ¢;.

Next sections present more precisely this diagnostic procedure.

7.1 The local diagnostic algorithm

The local diagnostic algorithm diagnoses components by using proper methodology for
their diagnostic description CD. Result of the local diagnosis is an intermediate graph
being a simple graph with structure specific for the type of component description (Olek-
siak, 2004). The main reason for use of a graph form instead of a simple collection of
diagnoses is that a graphical form is more readable for users.

Two kinds of diagnostic descriptions can be analyzed by the local diagnostic algo-
rithm:

e causal AND/OR/NOT graphs,
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e models (which are useful for consistency based reasoning).

In the first case, diagnosis on the basis of casual AND/OR/NOT graphs is done by
propagation of states. The result of the diagnostic procedure for a graph—described com-
ponent can be written as disjunction of all diagnoses for the component where each diag-
nosis is represented by conjunction of faulty subcomponents. The intermediate graph is
built as follows:

root := createO Node()

FOREACH di agnosi s D; I N di agnosi sSet DO
di agnosi sNode : = creat eAndNode()
addNode(root, di agnosi sNode)

FOR EACH conponent C; IN D, DO

conponent Leaf := createleaf (C;)
addNode( di agnosi sNode, comnponent Leaf)
END FOREACH
END FOREACH

The notation of graph nodes is similar to notation which is used for causal graphs. OR
nodes are ordinary graph nodes; they represent logical disjunction of descendant nodes.
AND nodes are nodes with an additional arc under the node; they represent logical con-
junction of descendant nodes. Leaves of graphs are labeled by component names.

When it is necessary to calculate diagnoses from an intermediate graph then the state
of its root node is set to “true”. Further calculations are done according to state propa-
gation rules in causal AND/OR/NOT graphs. If state of a leaf is “true”, the component,
whose name is on the label, is considered as faulty and becomes a part of a diagnosis.

Example 7.1 The intermediate graph for a hypothetical valve is presented below, com-
ponent description of the valve is a causal graph. Diagnoses for the system are: {f, a}
and {e}.

Nt

(f. o (e}

Figure 7.1: The intermediate graph for a valve
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In the second case, model-described components are diagnosed by the refutation pro-
cedure. Models have to fulfill some limitations; the following assumptions are completing
those included in the original theory (Reiter, 1987):

1. A proper behavior of a subcomponent is described as

Y = f(X),

where
X = (xlaxZ; T3, ... 7xn)7

Y = (yb Y2, Y3, -, yk)
Y is a vector of output variables, X is a vector of input variables.

2. Function f can be calculated forward if all its inputs are specified. Function f ! can
be calculated backward for an input variable if other inputs and outputs are known.

Components with more than one output are (conceptually) split before diagnosis and
they are assembled again just after it. The number of new (virtual) components resulting
from the split is equal to the number of outputs in the original component. If at least one
from the new components is recognized as faulty then the original component is faulty
and will be further diagnosed on lower hierarchical levels (if applicable).

Diagnoses for a model-described component are generated in two stages. At the first
stage, conflict sets are calculated based on component observations and the model. If there
is a difference between the value of an observation and the corresponding value obtained
from the model, then observations are inconsistent with the model. Refutation procedure
generates all possible sets of components which have influence on inconsistencies. At the
second stage, diagnoses are generated from conflict sets; each diagnosis is a hitting set of
all conflict sets.

The collection of conflict sets is transformed to an intermediate graph. The transfor-
mation can be done similar to transformation for graph—described components, but it can
be also done in more compact way which better explains how diagnoses are generated for
model-described components. The last property is especially useful for interaction with
users.

An intermediate graph is built as follows:

root := createAndNode()

FOREACH conflictSet C IN conflictSets DO
conflictNode : = createO Node()
addNode(root, conflict Node)

FOR EACH conponent C; IN G DO

conponent Leaf := createlLeaf (C;)
addNode(confl i ct Node, conponent Leaf)
END FOREACH
END FOREACH
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{al ml m2} {al a2 ml m3}
Figure 7.2: The intermediate graph for the model—described arithmetic system

Example 7.2 The intermediate graph for the model-described arithmetic system in Fig-
ure 4.1 is presented in Figure 7.2. Conflict sets for the system are: {al, m1, m2} and {al,
a2, ml, m3}.

A diagnosis is any hitting set of the conflict sets. This means that it is necessary to
take at least one subcomponent from each conflict set to form a diagnosis. The original
methodology for generation of minimal hitting sets is presented in Appendix A.

The simple graph procedure, which propagates states in such an intermediate graph,
takes one component from each conflict set. Note that some diagnoses generated in this
way may be not minimal with respect to set inclusion. It was shown that minimal hitting
sets have some useful properties for the hierarchical diagnosis, so, it is on purpose to bring
closer diagnoses from intermediate graph to pure minimal hitting sets.

The graph procedure will take subcomponent only from these hitting sets which in-
clude none of the previously selected subcomponents (from previous hitting sets).

The rule partially eliminates hitting sets which include more components than mini-
mum and it is very similar to the main rule for building HS—tree (Reiter, 1987).

Unfortunately, only some non-minimal hitting sets are eliminated in this way because
of sequence of the selected conflict sets (sequential nature of the graph procedure). When
it is necessary to calculate really minimal hitting sets, in set inclusion meaning, then every
generated hitting set should be compared with already produced hitting sets and either
rejected if it is a superset or accepted in place of all its supersets.

7.2 The global diagnostic algorithm

The result of diagnostic process for a complex component is a collection of alternative
diagnoses. Each diagnosis is an explanation of abnormal behavior of the complex compo-
nent and includes some of its subcomponents. All subcomponents in a diagnosis have to
be faulty for keeping consistency between observations and complex component descrip-
tion C'D.
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The logical aspect of hierarchical diagnostic reasoning requires that the following for-
mula is recursively satisfied:

AB(cd)="\/ ( \ AB(™)

dp€D; C'Jr'z+16dk

Recursion of the formula is finished when either the collection of diagnoses for a complex
component is empty or a component is an elementary component. More precisely, the
diagnostic procedure is stopped and returned in the form of a tree of diagnoses when:

1. A diagnosed component is an elementary component. The algorithm turns back
to its supercomponent and the component is recognized as an atomic element of a
diagnosis.

2. Itis impossible to establish values for suitable number of attributes or observations
for a component. The component is treated as an elementary component.

3. Diagnostic procedure is finished without any diagnosis. This happens if either ob-
servations generate a conflict in a causal graph or observations are not generating
any conflict in a model. The algorithm turns back to supercomponent, the currently
examined diagnosis is skipped, and the next diagnosis in order is analyzed.

4. The established values of attributes S; are in conflict with either domains of at-
tributes or other conditions imposed on attributes. The algorithm turns back to its
supercomponent, the current diagnosis is skipped, and the next diagnosis in order
is analyzed. All sets of attributes Ss, such that S; C S, will be also conflicting (for
both model-described and graph—described components).

The final result of diagnostic process can be shown in visual form as a simple tree of
diagnoses T (e.g. Figure 7.3). Each complex component ¢/ labels a component node;
the node is an OR node. Each diagnosis dj, of complex component ¢! is represented by a
descendant node of the component node. Nodes labeled by diagnoses are diagnosis nodes
and they are AND nodes.

Each subcomponent of component c{ which belongs to a diagnosis is a descendant of
the diagnosis node. Diagnosis nodes can be expanded to component nodes and compo-
nent nodes can be expanded to further diagnosis nodes (if diagnoses exist). The highest
complex component in hierarchy is represented by a root of T;. The rest of the tree is
built recursively down according to results of diagnosis of complex components.

Consider a tree modeling the hierarchical diagnostic procedure, such as one presented
in Figure 7.3. Let us introduce the following definition (Oleksiak and Ligeza, 2005a,b):

Definition 7.1 A hierarchical diagnosis for any component c{ at level j is any subtree
satisfying the following conditions:

e the root of the subtree is any of the diagnosis nodes located directly under compo-
nent node ¢/,
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Figure 7.3: Tree of diagnoses Ty for a complex system

o for any component node cf in the tree, at most one subtree with its root node being
a diagnosis node for the component node c¥ is belongs to the tree defining the
hierarchical diagnosis.

With respect to the above definition any component in the tree modeling hierarchical
diagnosis can be expanded (down) and a hierarchical diagnosis for it is developed in this
way; for the leave nodes, however, no expansion is possible (they are elementary diag-
noses). The hierarchical diagnosis for the whole system is built as a subtree satisfying
above definition and with root diagnosis node located directly under component c?.

Note that for a given component, various diagnoses can be defined with respect to the
degree of expansion. For example, there are two different hierarchical diagnoses marked
in Figure 7.4 and Figure 7.5.

The most expanded hierarchical diagnosis is a diagnosis whose all component nodes
have no descendant nodes, i.e. one in which all the component nodes are in fact elemen-
tary components (they have no internal structure of subcomponents). But, in most cases,
such diagnosis is difficult to obtain because of problems with mapping during the hier-
archical diagnostic process. The diagnosis presented in Figure 7.5 ( {c}, ¢, ¢3, 3} ) is
a most expanded hierarchical diagnosis if all its components are elementary components
EC.

The global diagnostic procedure carries on diagnosis of the whole system and the
diagnosis is based on results obtained from the local diagnostic procedure. The global
diagnostic algorithm is based on top—down search in the tree of diagnoses. Such a search
has two basic versions: depth-first search and breadth—first search.

The simplest sketch of the depth—first searching procedure is as follows:
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Figure 7.4: Tree of diagnoses T withFigure 7.5: Tree of diagnoses 7% with

marked hierarchical diagnosis marked hierarchical diagnosis
{clics} {ci cl 3 ci}
1.1 =1, j =0
Pl D]

SELECT p, k THAT "' €d, 1'S NOT PROCESSED AND d, € D!
|F k EXISTS THEN j=j+1, i=k AND GOTO 2

IF =0 THEN EXIT

o g kA w0 N

| F k& NOT EXISTS THEN j=j—1 AND GOTO 3

Detailed form of the depth—first search procedure is presented below (written in pseudo—
code). It is started with a root component at level 0 as parameter and is further called
recursively up to generation of all possible diagnoses.

PROCEDURE gl obal Di agnosti cD( conponent, observations, nodeOR)
i nternmedi ateG aph, attributesF := | ocal Di agnosti cF(
conponent, observations)
| F internedi ateG aph IS EMPTY THEN
RETURN conponent _r ef used
END | F
di agnosi s : = getFirstD agnosi s(i nternedi at eG aph)
VWHI LE di agnosis 1S NOT EMPTY DO
di agnosi sNode : = creat eAndNode()
addNode( nodeOR, di agnosi sNode)
FOREACH subconponent I N di aghosi s DO
subconponent Node : = creat eO Node()
addNode( di agnosi sNode, subconponent Node)
| F subconponent IS el ementary THEN
cl oseNode( subconmponent Node)
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CONTI NUE
END | F
atr := getAttributes(di agnosis, subconponent,

attri but esF)
condi tions : = getConditi onsCND( subconponent)
| F NOT checkConditions(atr, conditions) THEN
EXI T FOREACH
END | F
subobservati ons: =mapAt tri but esH( subconponent, atr)
| F NOT correctSetOf(atr, subobservations) THEN
cl oseNode( subconmponent Node)
CONTI NUE
END | F
| F gl obal Di agnosti cD( subconponent, subobservati ons,
subconponent Node) = conponent refused THEN
cl oseNode( di agnosi sNode)
EXI T FOREACH
END | F
END FOREACH
di agnosi s : = get Next Di agnosi s(i nternedi at eG aph)
END WHI LE
END PROCEDURE

The diagnoses for the whole complex system can be shown when the diagnostic pro-
cedure is finished.

7.3 Computational cost of the global diagnostic algorithm

It is hard to consider the complexity of the hierarchical algorithm because it depends
strongly on the used methodologies in the local diagnostic algorithm. Even more com-
plex is the model-based diagnostic algorithm. There are a few kinds of this procedure
(Darwiche and Provan, 1997) which produce: minimal, kernel (de Kleer et al., 1992) or
MT diagnoses (Friedrich, 1993). They have different complexity, from NP-hard for the
original methodology to polynomial for some methodologies which produce only specific
subsets of diagnoses for specific kinds of systems.

First, it is necessary to determine how many sets of values can be calculated for inputs
and outputs of a subcomponent s which is a part of a diagnosis for a model described
component.

A number of possible different sets of values for a subcomponent s is roughly limited

by )
maxr b
=3 ()

where b is a number of different observed variables (places) in a model where the cal-
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culated values can be different than the observed ones. For further considerations, it is
assumed to be equal to a number of component outputs . We can say that v7*** is the most
pessimistic number of sets for model-described components.

Example 7.3 Let us modify a little bit the arithmetic unit (Figure 7.6). There are the
following conflict sets for the presented observations:

cony; = {al, ml, m2},

cony = {a2, m2, m3},

cong = {al, a2, ml, m3},
cony = {al, a3, m3, m2},

cons = {a2,a3, m2,ml},

cong = {al,a2,a3,ml},
con; = {al, a2,a3, m2},
cong = {al, a2,a3, m3}.

There are three diagnoses, among others, which include component m1:

d; = {ml, a2, m3},
dy = {m1, a3, m2},
d3 = {ml,al, m3}.

Values at inputs of component m1 are the same for all diagnoses: 2 and 3. The value
at output of component m1 is different for each one from the three diagnoses:

e d; - output of m1 is equal 17,
e d, - output of m1 is equal 12,

e d3 - output of m1 is equal 1.
We have three sets of values (v,,; = 3):

o {inputl (ml) = 2, input2(ml) = 3, output(ml1) = 17},
e {inputl (ml) = 2,input2(ml) = 3, output(m1) = 12},

o {inputl (ml) = 2, input2(ml) = 3, output(ml1) = 1}.
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A number of unit outputs is equal 3 but a number of outputs where there are differ-
ences between the calculated and the observed values is 2. Therefore,

A=3 g—— [X]
ml —/I
F=23
B=2m al —m
C=2mmum m2 m [Y]
G=17
D=3m a2 A
_ m3 N [Z]
E=3 g—]
H=12

AN a3 C

Figure 7.6: An modified arithmetic unit

Now, let us consider a very simply hierarchical model where each hierarchical level
includes the same number of subcomponents £. Each path from level 0 to the last ele-
mentary component has the same length [, i.e. number of hierarchical levels is the same
for each path. Conflicts between observations and calculated values can occur only at the
component outputs.

The model parameters are:

e | - anumber of hierarchical levels,
e k- anumber of components of each level,
e X - a number of outputs from each component,

e b - a number of observed inconsistencies for one component (a number of compo-
nent outputs),
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= = =
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Figure 7.7: A example of hierarchical model for estimating of computational average cost
of the hierarchical algorithm

e A, - a number of possible different sets of values for each subcomponent.
g
Ap = v = ,0<b< k.
== (o

A single-level model of the same system would include n = k' components.

The refutation procedure for one level with £ subcomponents has to be repeated p
times, where p is:

-1
p=1+kA + ..+ ETIAIT =) (kD)

1=0

The quickest growing part of the above equation is

KA

The quickest growing part of A, is

For further consideration, we can assume that it is proportional to b!; | | means the
floor function. Then we have that

p~ kT = (koD
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Now, we consider different cases of computational complexity for refutation proce-
dure:

1. Polynomial complexity - O(n?). For one level of the hierarchy, it is (kx); for a
non-hierarchical model of the example system, it is (kx)?. Then

(kz)P (kb)) ~ (k)™
(kB! ~ (kx)PUY),
(k) ~ (kz)?,

bl ~ kP lgP,
We can consider the following cases:

(@ b = x = ¢ < k, anumber of possible faulty observations has a pre—defined
maximum ¢ and it is constant value and is not a function of the number of
subcomponents at a hierarchical level. Such situation can happen only when
the number of component outputs is limited to the same value, then we can
write x = ¢. Then

ol ~ kPP,

and the complexity for this case is lower, in most cases, than complexity for
non-hierarchical description.

(b) b=z = k, a number of possible faulty observations is equal to the number of
subcomponents at a hierarchical level. Such situation can happen only when
the number of component outputs is limited to the same value, then we can
write x = k. Then

K~ k21

and the complexity for this case is higher, in most cases, than complexity for
non-hierarchical description.

2. Exponential complexity - O(p™). It is p*® for one level of the hierarchy, for a non—
hierarchical model of the example system it is p*=)’. Then

z - z)!
pk (kb')l 1 Np(k ) )

Similarly to polynomial complexity here are the following cases:
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(@ b=2x=c<k,then

pkckl—l(c!)l—l Np(kc)l’
the fastest growing part on the left side is p*¢, on the right side it is p(*)'.
The complexity for this case is lower than complexity for non-hierarchical
description.

(b) b=z =k, then

_ 21
pkk(kk')l 1 Npk ’

and the situation is strongly depend on a number of levels and components at
levels.

3. Factorial complexity - O(n!). It is (kz)! for one level of the hierarchy, for a non—
hierarchical model of the example system it is ((kz)%)!. Then

(k) (kD) ~ (k)L

(@ b=2x=c<k,then

(k) (k)™ ~ ((ke)M),

the fastest growing part on the left side is (kc)!, on the right side it is ((kc)!)!.
Complexity for this case is lower than complexity for non-hierarchical de-
scription.

(b) b=z =k, then

(B*)(kk)" ™ ~ (k7))

complexity for this case is lower than the complexity for non-hierarchical
description.

Roughly speaking, the limitation of complexity by hierarchization is possible for all
types of refutation procedures, if the number of outputs of components is limited and
lower than the number of components at a diagnosed level. Otherwise, the situation is
depend on complexity of the original refutation procedure.
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Chapter 8
Diagnostic process

The diagnostic process for hierarchical complex systems is similar to a typical diagnostic
process and includes the following three basic steps:

- fault detection,
- generation of diagnoses (fault isolation),

- verification of diagnoses, (with some elimination procedure, additional measure-
ment, tests etc.).

Each stage is shortly presented in the following sections.

8.1 Fault detection

The diagnostic system is working simultaneously with a diagnosed complex system. Some
process variables from the diagnosed system are read by sensors and sent to the diagnostic
system. They become observations OBS.

The observations are compared with either calculated behavior, for model-based com-
ponents, or expected behavior, for graph—described components. If character of the obser-
vations is discrete, what mainly happens when digital units are diagnosed, then diagnostic
process is easier and based on comparison between predicted values of model variables
and their observed values.

A worse case is for continuous variables. They are more common but also more
difficult for fault detection. It is because of measurement noise and temporary process
fluctuations what change observations and make them not so easy to compare. In such a
case, acceptable ranges of errors are defined and fault is detected when errors are outside
of these ranges (Figure 8.1). Frequently, additional time or amplitude conditions have to
be fulfilled.

Faults can be detected at each level of the hierarchical model, where a number of ob-
servations is sufficient for such detection. The sufficient number, for model-described
components, has to allow to generate redundant values for some model variables: calcu-
lated ones and observed ones. For graph—described components, the number and values of
observations have to allow to infer that the component behavior is either faulty or correct.
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error

Figure 8.1: Simple example of error of a continuous observation and its upper and lower
ranges

8.2 Fault isolation

If a fault occurs then all components which are antecedents of the faulty component ¢/ can
be detected as faulty. Theoretically, all components ¢}, that ¢, € ANTECEDENTS (c}) U
c! can be faulty and their observations should be not consistent with their correct behavior.

If set FAULTS includes all faulty components and these mishehaviors are detected
for some components ¢, € DETECTED then diagnosis is started for root component ¢!
such that

! € DETECTED and ANTECEDENTS(c!) ¢ DETECTED,

what allows to find the most complete set of diagnoses. Detection is possible only
in levels where a number of observations is sufficient. Further diagnosis of component
c! is carried out by the global diagnostic procedure. If no diagnosis is found then the
procedure is repeated for next one root component which is found for new set of detected
faulty components:

DETECTED = DETECTED — {c{}.
Example 8.1 Figure 8.2 presents a hypothetical hierarchical model where component ¢3

is faulty and two components are detected as faulty: ¢} and cZ. Diagnosis is started for
the higher component: cj.

8.3 Verification of diagnoses

There are two types of verification for the hierarchical diagnosis:

e Theoretical - based on existing observations and properties of models,
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Figure 8.2: Fault detection in hierarchical model

e Physical - based on additional observations or tests which are performed after fault
detection and give additional observation.

8.3.1 Theoretical verification

As it was mentioned in the previous chapter, the global diagnostic algorithm can reject
some diagnoses in a few cases. Two of them are important for diagnostic verification:

e Values of attributes are out of their domains (physical impossibility),

e Diagnostic procedure at a hierarchical level is finished without any diagnosis.

Moreover, we can add here one more condition:

e Observations OBS’ /eale calculated by the mapping functions ' and H are inconsis-
tent with real world observations OBS?.

The first case is obvious.

Example 8.2 For example, one from the diagnoses for the arithmetic unit in Figure 4.1
is {m1}. The value at the output of the faulty subcomponent m1 should be equal 17 for
observations which are shown in the figure. We calculate it on the basis of components:
m2, al. Multiplier {m1} on a lower hierarchical level can looks like this one in Figure
8.3.

The model on the lower level shows that the multiplier is not capable of producing
output value equal 17 (maximum value is 15) and 17 is out of the domain of the multiplier
output. Hence, diagnosis {m1} will be rejected because of physical impossibility.
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Figure 8.3: Multiplier

Assume that a component is described by set of attributes
ATR = ATR,; U ATR,,
where:

o ATR, are attributes with defined value,

e ATR, are attributes with undefined value.

Now, if the component is refused as a part of a diagnosis then the component will be
refused also for set of attributes such

ATR' = ATR,, U ATR,

where:
ATR!, D ATRq.

A proof of this fact is simple for the refusing based on domain limitations for model-
based components. The refusing based on conflicts in causal AND/OR/NOT graphs ful-
fills also the above property. If it is impossible to explain behavior of the component by
the observed symptoms ATR; and any value of undefined symptoms ATR,,, then the be-
havior will be also unexplained on the basis of superset of the observed symptoms ATR),.

The second case occurs when a component is distinguished as faulty at level j but its
behavior is classificated as normal or undefined at lower level j + 1. The reasons for such
situation can be as follows:

e weakness of component description at level j + 1,
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e intentional elimination of some impossible cases at level j + 1,

e intentional relaxation of the component description at level j.

For example, a logical function, which is represented by an causal graph, cannot be
fulfilled for current values of observed symptoms and any values of undefined symptoms.

Example 8.3 Figure 8.4 presents simple expert graph modeling gate EX-OR, the gate
has two inputs in1(X1) =0, in2(X1) = 0 and one output m1(X1) = 1.

ml

in1(X1) in2(X1) AB(X1)

Figure 8.4: Graph AND/OR/NQOT for XOR gate

The logical function coupled to the graph is:
ml1(X) = (in1(X) XOR in2(X)) AND NOT AB(X).

The above function has three observed symptoms: in1(X1), in2(X1), m1(X1); and one
elementary diagnosis AB(X1). Before mentioned values of symptoms generate conflict in
the function which cannot be explained by any value of diagnosis AB(X).

Inconsistencies between observations_OBSf/ “le calculated by mapping functions (¥
and H) and real word observations OBS? lead also to refusing the considered diagnosis.
Differences should be significant, similarly as during fault detection. If the both observa-
tions are closed then the real word observation is taken to further calculations. Otherwise,
diagnostic algorithm is stopped and returned back to supercomponent, the current exam-
ined diagnosis is skipped.

There is one more chance to theoretical verification of some diagnoses. If the same
component c is reused at a few levels (Figure 8.5) then its diagnoses from the levels, sets
of faulty subcomponents, can be compared.

Reusing is understand here as use of the same component by a few supercomponents,
but without simultaneous influences on the component. If influence is simultaneous then
the influence should be modeled at a higher hierarchical level which is common for all
influenting supercomponents (Figure 8.6).
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FOX

Figure 8.5: An example of reusing of component ¢

t‘.’ [
-
. 8 _> % /’\ [
- =
313
0
= =] = B m = = = =

Figure 8.6: Necessary transformation for components with more than one supercompo-
nent
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A good example of correct reusing is an adder which is used by a few other electronic
units. The simplest strategy for such comparision of diagnoses of the subcomponent is that
only these diagnoses which are repeated will be further considered at lower hierarchical
levels.

8.3.2 \Verification based on physical tests

Tests can be performed during both the local and the global diagnostic procedure. Strat-
egy of verification for the local diagnostic procedure depends on type of component de-
scription. For example, a simple and efficient methodology for verifyng diagnoses for
AND/OR/NOT graphs is described in (Ligeza, 2003).

When we consider verification in the global diagnostic algorithm then the following
conditions seem to be rational:

e a number of tests should be as less as possible, tests are selective i.e. number of
possible diagnoses should be maximally reduced by a single test,

e testsshould be as easy as possible to perform, i.e. the test should be easy to perform.

Assume that after a test on subcomponent ¢ we know that subcomponent c is faulty or
not. D = {di, ds, ..., d;} is a collection of diagnoses. Then a number of diagnoses which
include subcomponent c is defined as follows

n(c) = {d;}| : d; € DA c € d,.
Now, let us define a cost function m as a simple weight function such that:
m(c) = wpn(c) + wpp(c) + w,r(c),
where

e w, is a weight for the number n of diagnoses including subcomponent ¢,

e w, is a weight for the a priori probability p of malfunction of subcomponent ¢
(probability of malfunction is discussed in the next section); this value is usually
below zero (we want to refuse the diagnoses),

e w, isaweight for the function r describing how easy is to check that subcomponent
c is either faulty or not.

The weights can be set for each component either empirically or a priori. Subcomponents
from single—element diagnoses can be also preferred.

The best candidate to testing is the subcomponent for which the cost function has the
highest value, what can be written as

b(e’) = ced{{ld%?.(..,dl(m(c))'
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The global diagnostic procedure diagnoses sometimes the same component a few
times with different sets of values of attributes (input/output values). It is also possi-
ble that a component is reused (not simultaneously). Then a collection of diagnoses D)
is produced as a result of each diagnosis. Now, the verification can be done after finish-
ing the global diagnostic procedure (based on depth—first search). Now, the number of
diagnoses including subcomponent ¢ is formulated as follows:

ng(C):l{diH:(diEDl\/dZ’EDQ\/...VdZ‘EDp)/\CEdZ'.

and

mea(c) = wpne(c) + wyp(c) + wer(c).
As before, the best candidate to testing is the subcomponent for which the new cost func-
tion has the highest value.

8.4 Probabilistic information in the hierarchical diagno-
Sis

Diagnoses generated for a complex system can be ordered according to probability of
particular diagnoses. Such ordering allows to improve diagnostic process. More likely
diagnoses are tested first and probability that real causes of system malfunction will be
found at the beginning is higher. So, estimated time of reparation is shorter and efficiency
of diagnosis is increased.

The next section describes approaches to calculating probability of diagnoses for
model-described and graph—described complex components. After that, a methodology
for calculation probabilities for all system diagnoses is presented.

8.4.1 Probability in the local diagnostic algorithm

A diagnosis d; of a complex component c{ is defined as a set of subcomponents {c1, - - -, Ckn, }
that all have to be faulty for correct explanation of observations. The diagnoses can be
written as

AB(Ckl) VAN AB(C]mk)

If each component in the diagnosis has a priori assigned probability of malfunction P, (c;) =
g; then the simplest way to assign probability to the whole diagnosis is choice a minimum
from these probabilities

Pd(dk) = min(Pm(ckl), ceey Pm(cknk))

Ordering of probabilities ¢; is done according to order relation > that it is possible to
appoint such minimum value even when they are linguistic symbols e.g. ,,less probably”,
»,more probably”. A minimum norm for conjuncted probabilities is popular strategy in
many works, for example: French (1988) - Al, Zadeh (1965) - fuzzy logic.

Probabilities of diagnoses can be also calculated according to a priori probabilities and
the component description. The most popular approach to such calculations is based on
conditional probability. Below short survey presents a few methodologies where proba-
bility is used to improve a diagnostic process.
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Causal AND/OR/NOT graphs

Calculation of probability of diagnoses for graph—described components is based on ab-
ductive analysis of causal structures using ,,qualitative probabilities” French (1988), Fuster-
Parra and Ligeza (1995).

Let us define qualitative probabilities:

e > denote a week order relations, greater event is more probably,

e () denote a set of ordered elements @ = {q¢1,¢2,..., ¢, } thatg, > ¢, 1 = ... =
G2 = q1,

Y

e (Q denote a set of ordered elements Q@ = {q;,Go,...,G,} thatg, = G, > ...
qn—l t qn'

® ¢~ Q.

Generally, the probabilities are linguistic statements (i.e. expert—provided) concerning
the likelihood of certain events e (i.e. ¢; = wvery likely). Qualitative probabilities g are
associated to the events ¢’ which are complementary to e.

Definition 8.1 (Fuster—Parra) Two events e and e’ are called complementary events when:

1. either e or ¢’ has to occur,
2. itis not possible that e and e’ occur at the same time,

3. {e} U{e'} = complete set of possibilities.

Let G = (N, E,, E_) be an AND/OR/NOT causal graph. Qualitative a priori proba-
bilities of fault occurrence for elementary diagnoses D are known, they are elements of
QUQ. Now, we define the way of assigning qualitative probabilities to nodes in the graph
in the following way:

Definition 8.2 (Fuster-Parra) Let Q U @ denote the set of qualitative values under con-
sideration, and let N = D UV U M be the set of graph nodes (D - a set of elementary
diagnoses, V' - a set of pre—specified intermediate symptoms, M - a set of manifestation
symptoms).

A qualitative probability assignment function X is a function such that:

e ) assigns qualitative probabilities directly to elementary faults, i.e.
A:D—QuUQ

in a consistent way (elements of D are mapped into elements of Q U Q),

e in the case of an OR node: let (ny,n;),...,(n;-1,n;) € E?, and let ¢; denote
the qualitative probability assigned to n;, 7 = 1,2,...,¢ — 1, then the qualitative
probability ¢; of n; is calculated as ¢; = \/(s1, s2, - - -, Si—1),
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e in the case of an AND node: let (ny,ns,...,n;1,n;) € E* and let ¢; denote
the qualitative probability assigned to n;, 57 = 1,2,...,¢ — 1, then the qualitative
probability ¢; of n; is determined as ¢; = A(s1, 82, -+, Si—1)

e in the case of a NOT arc: let (ny,n2) € E~, and let ¢; denote the qualitative
probability assigned to ny; the qualitative probability ¢, of n, is calculated as s, =

q.

When we know diagnoses then it is possible to propagate qualitative probabilities,
which are assigned to elementary diagnoses, up to manifestations. In this way, each diag-
nosis will have probability.

Example 8.4 An example expert graph is shown in Figure 8.7. Labels besides intermedi-
ate symptoms describe the propagation rules using for calculation of symptom probabili-
ties.

m
0
vigf’ 5 v2gmin

vigl'o vdmax ¢ vOmax

v/

(Al gl (d2,q2" (d3,g3(d4,g8" (d5,g5"

Figure 8.7: A casual graph for diagnosing

If qualitative probability is not used then sets of potential diagnoses are given by:
1. Dy = {d;/true}

2. Dy = {d;/true,ds/true}

3. D3 ={d;/true,d,/ false}

4. Dy = {dy/true,ds/true}

J. Oleksiak Hierarchical diagnosis of technical systems



8.4. Probabilistic information in the hierarchical diagnosis 83

5. D5 = {dy/true, ds/true}

6. D¢ = {dy/true,ds/true}

7. Dy ={dy/true,ds/ false}

8. Dg = {d3/true}

9. Dy = {ds/true,ds/true}
10. Dyg = {ds/true,ds/ false}

Minimal diagnoses with respect to set inclusion are as follows:

1. Dy = {d;/true}

2. Dy = {d3/true}

3. Dg = {dy/true, ds/true}

4. D; = {dy/true,ds/ false}

When we assume that an order of qualitative probabilities of elementary diagnoses
di,dy...,ds is as follows g5 = ¢; = ... = ¢ then qualitative probabilities assigned to
specific nodes are: v3 = ¢}, va = ¢}, vs = ¢}, v2 = ¢4, v1 = ¢;. The most probably
diagnosis generated by the probabilistic version of search procedure is diagnosis Dy =
{ds/true, ds/true}.

Models

Most model-based approaches, where probability is taken into consideration, are based on
Bayes rule. The result is usually probability of malfunction calculated for each component
when observations have specified values.

Notion of a ,,candidate” is proposed by De Kleer and Wiliams (de Kleer and Williams,
1987). A candidate is a set of components that a malfunction of the components make the
observation compatible with the system description. Rest of components, which do not
belong to the candidate, is considered as working correctly.

The prior probability that a particular candidate C; is the current one is:

where p(m) is the prior probability of behavior mode m being manifested i.e., a partic-
ular component being in a particular mode. Now, some candidates can be eliminated by
additional measurements (e.g. by test when variable x; is measured with value v;;), the
probabilities of the rest of diagnoses are increased and can be calculated by the Bayes
rule. Let z; = v;;, that v, is a measured value of variable z;.

p(ﬂii = Uik\cl)p(cl)
p(frz' = Uik)

p(C’l\xi = Uik) =
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where:
p(C;) - was computed as a result of previous measurement or is the prior probability,
p(x; = vi|C)) - is determined as follows:

o If x; = vy is predicted by C given the evidence so far then p(x; = vi|C)) = 1.
e If z; = vy is inconsistent with C; and the evidence then p(z; = vi|C;) = 0.

e If z; = v; is neither predicted nor inconsistent with C; and the evidence then we
make presupposition (sometimes invalid) that every possible value for z; is equally
likely. Hence, p(z; = vy|C)) = % where m is the number of possible values z;
might have (e.g. in a conventional digital circuit m = 2).

p(Us) .

p(x; = vir) = p(Sik) +

where:
S;k - IS a set of candidates that z; = v;;, is predicted by them. U; - is a set of candidates
that value of z; is undefined.

De Kleer and Williams also show how minimal entropy techniques can be used to
guide the selection of the variable to be observed next. This methodology needs condi-
tional probability of some observed variables (candidates) what may be difficult in some
cases.

Pearl uses Bayesian networks for modeling probability of malfunctions of components
(Pearl, 1991). The model is transformed into causal graph and after that, one more time,
into Bayesian network. Probabilities of input nodes and malfunction of the components
are given a priori, other nodes have defined link probabilities. When some observations on
outputs are known, the posterior probabilities of the nodes corresponding to components
of the circuit are computed using the traditional message propagation algorithm. The
result is a mathematical formula giving the posterior probability that a component is faulty.

8.4.2 Probabilistic information in the global diagnostic algorithm

The global diagnostic algorithm and the test procedure can be improved by use of proba-
bilistic information.

The global diagnostic procedure (depth—first search) can implement the greedy strat-
egy. Collection of diagnoses D = {di,ds,...,dx,}, which is generated by the local
diagnostic algorithm for a complex component ¢, is analyzed in order to probability of
diagnoses P = {p1, pa, - - -, Py }- The order is from the most probably

dmaw - dk : dk € DA Pd(dk) = Pmaz
to the least probably one:
Amin = di = di, € D A Py(di) = Prmin-

The most probably diagnosis d,,.... 1S analyzed first and its subcomponents are diagnosed
on lower hierarchical levels. Such an approach gives possibility to stop the global di-
agnostic procedure after generation of a few most probably diagnoses. When the global
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diagnostic algorithm finishes analyzing diagnosis d,,.., at lower hierarchical levels (depth
first strategy) then collection is modified to D = D — {d,4, } and next maximal probable
diagnosis can be taken.

The test procedure can be improved in a similar, simple way. Assume that probability
g; of malfunction for each subcomponent ¢; in diagnosis d,, is known. The subcomponents
from diagnosis d,, should be tested in order to probability of their malfunction ¢;, from
the least probably subcomponent

Crmin = Ci 1 Ck € dn A Pm(ck) = Gmin
to the most probably subcomponent
Craz = Ck : Ck € dn A Pm(ck) = Gmaz-

The order allows to refuse the diagnosis in a minimal number of tests because all subcom-
ponents in a diagnosis have to be faulty. Therefore the best way to refuse the diagnosis is
to test firstly subcomponents with low possibility of malfunctions.
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Chapter 9

Examples

9.1 Graphical representation of diagnoses

An interaction between a human and the diagnostic system requires a friendly form of
presentation of diagnoses, which should be also capable to explain how diagnoses are
generated. The proposed graphical form is based on the intermediate graphs and can be
easily implemented as a computer application.

Graphical representation of results obtained from the global diagnostic procedure is a
combination of intermediate graphs obtained from the local diagnostic procedure.

Example 9.1 Figure 9.1 presents in graphical form results of the global diagnostic pro-
cedure for a hierarchical model of the arithmetic system in Figure 4.1.

Elementary components are marked as empty squares (e.g. al). Squares with a cross
mean that component has diagnoses and the subcomponents in diagnoses can be dis-
played (e.g. m1). If subcomponents of a component are currently displayed then there is
a minus mark inside a square (e.g. m2). A square is gray if a component is described by
model (e.g. a2). A square is green if a component is described by graph.

There are three multipliers and two adders at the highest level of the model. Conflict
sets for the observations are: {al, m1, m2}, {al, a2, m1, m3}. Minimal hitting sets for
the observations are: {al}, {m1}, {a2, m2}, {m2,m3}. Components a2, m1, m2, m3
include subcomponents.

Diagnoses for a graph—described component can be presented directly as an interme-
diate graph connected to a node which is a representation of the component.

A different situation is with model-described components. There are two solutions of
this problem. The first one is trivial; graphs for model-described components should be
similar to these ones for graph—described components and include all possible diagnoses
(e.g. minimal hitting sets). The second solution is that only one diagnosis can be chosen
from the intermediate graph and only this diagnosis will be graphically “expanded” on
lower hierarchical levels.
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Figure 9.1: Graphical presentation of results

9.2 Conceptual system for hierarchical modeling

The proposed conceptual system is a computer application with graphical interface, its
main aim is to support design of hierarchical models of complex systems. The Diagnosis
Support System (DSS) can be also used for monitoring and control of the diagnostic
process.

Diagnosed systems can be modeled and presented with a few basic views:

e Level view — showing a diagnostic description of a specified level. This view gives
possibility to input current values of observations. There are two basic kinds of this
view:

— AND/OR/NQT view — visualization of graph—described levels,
— Model view — visualization of model-described levels.

e Hierarchical model view — presentation of all components together with marked
dependencies among them. This view gives easy access to level views.

e Diagnostic view — showing calculated diagnoses in graphical form which is pre-
sented in the previous section. This view gives access to level views and can be
used to control diagnostic reasoning.

Hierarchical model views and level views are most important during development of
diagnostic models. The user can define hierarchical structure of a complex system at
hierarchical model view; the type of description of components can be also defined here.

Now, each component in the hierarchical model can be “open” and shown in the sep-
arate level view. All its subcomponents, which were defined at hierarchical model view,
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Figure 9.2: Hierarchical model view

will be accessible. Additionally, the user can add some elementary components and ele-
ments which are specific for a type of description e.g. connections among components for
model—-described components or arcs and intermediate nodes for graph—described com-

ponents.
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Figure 9.3: Diagnostic view

When developing is finished, it is possible to input values of some system variables
i.e. input observations. Now, the user can choose a direction of diagnosis at lower levels
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by selecting a diagnosis from already diagnosed levels; the form of diagnostic view is
presented in Figure 9.3.

9.3 Example |

The next considered system is a part of a larger filling system. The aim of the system
consists in keeping a constant level of liquid in tanks 7'; and 77;. The tank set (Figure 9.4)
includes:

e Ty —main tank,

e T —outlet tank I,

e Ty —outlettank 11,

e V; —main controlled shut-off valve,

e V7 — control valve for outlet tank 7,

e V7 —control valve for outlet tank 77,

e Vs — controlled shut-off valve between tanks M and I,
e V1 — controlled shut-off valve between tanks M and 1,
e Sy —level sensor in main tank M,

e S; —level sensor in main tank 7,

e S —level sensor in main tank 717,

e (' —digital controller,

e P —power supply.

9.3.1 Diagnostic description

The model of the tank system is presented in Figure 9.5. The tanks are controlled sep-
arately. Hence, controller C' can be divided into three virtual controllers C,;, C; and
O[I.

The model of controled valves (“Valve - 17, “Valve - 11”) is shown in Figure 9.7. There
are the following subcomponents and variables:

e Pg - power adapter,
e (Cy - control signal,

e Wp- input water pressure,
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Figure 9.4: Tanks
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Figure 9.5: Schematic diagram of the tank system
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Tanks
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Figure 9.6: The tree of component structure for the tanks

C\ys - valve controller,

D 4 - signal converter,

M - stepping motor, positioner,

Vs - mechanical valve,

x - virtual component recalculating valve opening to flow,

F; - water flow.

There is no point in a deeper diagnosis of valve controller and signal converter, be-
cause they are integrated in one circuit. Let us diagnose a mechanical part of the valve
Vur (Figure 9.8).

Diagnosis on the basis of presented model can be carried out and diagnoses can be
correctly calculated. Because of the feedback loops at level 0 and simple structure of
models at lower levels, there are better results if some additional observations (besides
inputs and outputs of components) are available (e.g. position of valves).

9.4 Examplell

Let us consider a printer as a next diagnosed object. Let the printer include four basic
components at the highest level of the hierarchical model:

J. Oleksiak Hierarchical diagnosis of technical systems



94. Examplell

93

Power
supply

Power
adaptor

Contro
signal

Water

Valve

> 0
L Signal L Stepping

Mech.

Water
supply

controller converter motor

valve

L

flow
D—>0>—1 Flow
T r calculator

Control signal =
"full close"

Encoder =
"open”

Encoder =
"close”

Control signal 5

Valve blocked in ope

Figure 9.7: Valve schema

Mech. valve

lockedl|in close position

"full open”

Flow channel ( Steam j( Encoder j

Figure 9.8: Causal graph for electromagnetic valve V,,

J. Oleksiak

Hierarchical diagnosis of technical systems



94. Examplell 94

feeder of paper - loading of sheets of paper to printing position and unloading after
the printing,

printing unit - printing head with ink cartridge,

power supply - set of cords and power adaptors,

control unit - all electronic devices responsible for printing and communication with
computers.

9.4.1 Diagnostic description

The tree of component structure for presented printer is shown in Figure 9.9. The descrip-
tion is not a full technical description. It includes only these causes of malfunctions which
can be either fixed by an ordinary user or interpreted as a suggestion that the printer has
to be taken to a professional service.

Printer

Controlunit |20 Printing unit [ Power supply [

Feeder

Feeder rolls| ] Paper Power indicator [ side adaptor 220 adapto ]
Feeder drive 220 Holding unit| ] Power cord 2 Adaptor cord [I2]

Figure 9.9: The tree of component structure for the printer

Component Printer at the highest level is graph—described (Figure 9.10). Power
adapter (Figure 9.11) is described below; feeder subsystem (Figure 6.1) is presented in
Chapter 6. The feeder and the printing unit are described by causal AND/OR/NOT graphs,
the power supply - by model.

Diagnosis on the basis of presented model can be carried out and diagnoses can be
calculated. There are a few components which are described by graphs. Therefore, there
are no too much mapped information and quantity of diagnoses is high. Such situation
can be improve by defining values of some additional symptoms for graph—described
components.

J. Oleksiak Hierarchical diagnosis of technical systems



94. Examplell

95

Paper is loaded
correctly

Paper

7

V2

on the tray

Cardridge

is not empty

Power indicator|

7%> Vg
]

ison

N

( Feeder

I

Control unit) (Printing unit) (Power supplﬂ

Figure 9.10: Diagnostic description for level 0 of hierarchical model of the printer
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Chapter 10

Concluding remarks and further works

10.1 Concluding remarks

Let us briefly summarize the most important concepts presented in this thesis. We con-
sider the diagnostic process to be a hierarchical search procedure carried out through
levels of the hierarchical model. This approach allows to divide a large model on less
complicated components and hierarchical levels. Such operation increases the efficiency
of the diagnostic process. Moreover, we assume that components at specified levels can
be described by different kinds of Al based diagnostic knowledge what gives possibility
to more flexible description of technical systems.

The main results of this disertation are:

e Development of a methodology for hierarchical modeling of complex technical sys-
tems with different kinds of diagnostic descriptions for components. The definition
of the generic model and elements of theory were presented. The computer appli-
cation for graphical creating of such hierarchical models was described.

e Development of a methodology for hierarchical diagnostic reasoning in the above
hierarchical model and, based on the methodology, a diagnostic procedure for cal-
culating hierarchical diagnoses. Two functions responsible for inter—level symp-
toms mapping were generally designed, and precisely described for two kinds of
component diagnostic descriptions: models and causal graphs. The computational
complexity of the presented diagnostic procedure is strongly depend on models
and complexity of the local diagnostic procedures, but hierarchical diagnosis is less
costly than single-level diagnosis in most typical cases.

More precisely, the thesis presents the following new solutions and issues:

e the state of the art and existing Al approaches to diagnosis were presented in Chap-
ters 1 — 4. Especially, consistency-based ones in Chapter 4 and causal ones in
Chapter 3,

e definition and a formal concept of a new generic model for modeling hierarchical
structures of complex systems were presented in Chapter 5 and Chapter 6,
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o the methodology for hierarchical diagnostic reasoning were developed in Chapters
7-8,

e conceptual experimental software supporting hierarchical modeling and analysis of
complex technical systems was presented in Chapter 9,

e auxiliary study of computational complexity of diagnostic reasoning in case of hi-
erarchical approach was done in Chapter 7.

Two possible extensions have been put forward, mostly for enhancing the diagnostic
efficiency. They have been as follows:

e \rification of diagnoses in the hierarchical model has been defined and verification
procedure has been developed. The verification procedure uses properties of the
hierarchical model and qualitative solving for selecting efficient tests,

e Search ordering with use of probabilistic information was presented. Diagnoses for
levels and entire systems are ordered with respect to expert knowledge and defect
statistic. The solution efficiently improves verification of diagnoses.

The thesis presented in Chapter 1 about qualitatively new and less complex diagnosis
of technical systems seems to be fully confirmed by the presented theory and results.

Original results of the thesis include:

1. Development of a formal framework and an original methodology for hierarchical
modeling of complex systems with heterogeneous diagnostic descriptions.

2. Design of an efficient diagnostic procedure with “focus” effect (diagnosis of sub-
systems as separate systems) for the hierarchical model.

3. Development of a verification procedure for the hierarchical diagnostic methodol-
ogy. The procedure uses properties of the hierarchical model.

4. Development of a methodology for using expert knowledge and defect statistics for
ordering diagnoses and improving efficiency of the diagnostic procedure.

5. Design of a computer application for supporting diagnostic procedure with hierar-
chical modeling of complex systems.

The biggest weakness of the presented approach seems to consist in the tree structure
of component inclusion. There cannot be situation that two different supercomponents
have simultaneous influences on the same subcomponent, i.e. the component has two
supercomponents. If such situation exist, then the influences have to be modeled at a
higher level which is common for both supercomponents.

All the presented ideas stay in close relations to engineering practice and can be used
in diagnostic support systems what improving efficiency of search for a final diagnosis
and make it more easy for users. This approach allows to describe and diagnose systems
which cannot be described by a single kind of diagnostic description. Moreover, models
are more readable and easier to build.
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10.2 Further works

The most important further work seems consideration of different levels of precision for
component attributes. Sometimes attributes cannot be calculated unambiguous, such sit-
uation occurs when some inputs of components cannot be backward calculated and no
other analytical calculation is possible, e.g. value of output of a component is a compari-
son of two inputs. Then some levels of precision can be defined and the original approach
can be extended e.g.

precise level —a domain of a variable is not limited,

deviation level — a domain of a variable includes only three literal symbols: ,,0” in
norm, ,,-1”” - below norm and ,,+1”” - above norm,

binary level —a domain of a variable includes two symbols: ,,faulty” and ,,correct™.

null level — value is unknown.

A second direction of work is around components which can be described by different
kinds of component models (than ones presented here). A lot of potential approaches can
be taken from both domains: Computer Science and Control Theory.
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Appendix A

Reiter’stheory. Calculation of
diagnoses

A.0.1 Computing hitting sets

This approach to computing hitting sets is based upon theorem 4.1 and its result is a
collection of minimal hitting sets for the collection of conflict sets (Reiter, 1987).

Definition A.1 Suppose F is a collection of sets. An edge-labeled and node-labeled tree
T is an HS-tree for F iff it is the smallest tree with the following properties:

1. Itsroot is labelled by ,, /" if F is empty. Otherwise, its root is labeled by a set of F.

2. If nis a node of T, define H(n) to be the set of edge labels on the path in T from the
root node to n. If n is labeled by +/, it has no successor nodes in T. If n is labeled by
aset X of F, then for each o € X, n has a successor node 7, joined to n by an edge
labeled by o. The label for n, isaset S € F such that SN H(n,) = {} if such a
set S exists. Otherwise, n, is labeled by /.

The following results are obvious for any HS—tree for a collection F of sets:

1. If n is a node of the tree labeled by +/, then H(n) is a hitting set for F'.

2. Each minimal hitting set for F'is H(n) for some node n of the tree labeled by +/.

Example A.1 Figure A.1 is an HS-tree for F={{2,4,5}, {1,2,3}, {1,3,5}, {2,4,6}, {2,4},
{2,3,5}, {1,6}}.

Notice, the sets of the form H(n) for nodes labeled / do not include all hitting sets
for F'. The important point for this purpose is that they include all minimal hitting sets for
F'. The objective is to determine various tree pruning techniques to allow us to generate a
subtree of an HS—tree as small as possible, while preserving the property that the subtree
will give us all minimal hitting sets for F. In addition, it is suitable to minimize the number
of accesses to F' required to generate this subtree.
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Figure A.1: An HS-tree for F={{2,4,5}, {1,2,3}, {1,3,5}, {2,4,6}, {2,4}, {2,3,5}, {1,6}}

Three lemmas for pruning HS-trees are presented in Reiter (1987). Each of them
should preserve the property that the resulting pruned HS-tree will include all minimal
hitting sets for F'.

1. Notice that H(ng) = H(ng) (Figure A.1). Moreover, one could have reused the
label of ng for ng. This means that the subtrees rooted at ng and ng respectively
could be identically generated had we chosen the reused label for ng. Thus ng’s
subtree is redundant, and we can close node ng. Similarly, H(n;) = H(ns) SO we
can close node n;.

2. InFigure A.1, H(ns) = {1, 2} is a hitting set for £'. Therefore, any other node n of
the tree for which H(n3) C H(n) cannot possibly define a smaller hitting set than
H(ng). Since we are only interested in minimal hitting sets, such a node n can be
closed. In Figure A.1, node ng is an example of such a node which can be closed.
The computational advantage of closing node nq is that we need not access F' to
determine that the label of ng is /.

3. The following is a simple result about minimal hitting sets: If F' is a collection of
sets, and if S € F and S’ € F with S a proper subset of S’, then F' — {5’} has the
same minimal hitting sets as F.

F will be implicitly defined as the set of all conflict sets for (SD, COMPONENTS, OBS).
We summarize the method for generating a pruned HS—tree for F' as follows:

1. Generate the HS-tree breadth-first, generating nodes at any fixed level in the tree in
left-to-right order.
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2. Reusing node labels: If node n is labeled by the set S € F', and if n is a node that
H(n')NS = {}, label n’ by S. (We indicate that the label of n’ is a reused label by
underlining it in the tree). Such a node n' requires no access to F'.

3. Tree pruning:

(@) If node n is labeled by 4/ and node 7' is such that H(n) C H(n'), close n/,
i.e. do not compute a label for n’; do not generate any successors of n'.

(b) If node n has been generated and node »n' is such that H(n') = H(n), then
close n’. A closed node in the tree is indicated by marking it with “x”.

(c) If nodes n and n’ have been respectively labeled by sets S and S’ of F', and
if S’ is a proper subset of S, then for each o € S — S’ mark as redundant the
edge form node n labeled by a. A redundant edge, together with the subtree
beneath it, may be removed from the HS-tree while preserving the property
that the resulting pruned HS-tree will yield all minimal hitting sets for F'. A
redundant edge in a pruned HS-tree is indicated by cutting it with *)(”.

It is summarized by the presented below theorem:

Theorem A.1 Let F be a collection of sets, and T a pruned HS-tree for F, as previously
described. Then {H(n) | » is a node of T labeled by ,/ } is the collection of minimal hitting
sets for F.

Example A.2 Figure A.2 is a pruned HS-tree for F={{2,4,5}, {1,2,3}, {1,3,5}, {2,4,6},
{2,4}, {2,3,5}, {1,6}}. The minimal hitting sets are: {1,2}, {2, 3,6}, {2,5,6}, {4,1, 3},
{4,1,5}, {4,3,6}.

A.0.2 Computing diagnoses

A conceptually simple approach to computing diagnoses can be based upon theorems
4.1 and A.1 as follows: First compute the collection F of all conflict sets for (SD,
COMPONENTS, OBS), then use the method of pruned HS—trees to compute the min-
imal hitting sets for F. These minimal hitting sets will be the diagnoses. The problem,
then, is to systematically compute all conflict sets for (SD, COMPONENTS, OBS). Re-
call that {cy, ... ,cx} C COMPONENTS is a conflict set iff SD U OBS U {=AB(c),. ..
,—AB(ck)} is inconsistent. So, using a sound and complete theorem prover, compute all
refutations of SD U OBS U {=AB(c)|c € COMPONENTS} and for each such refuta-
tion, record the AB instances entering into the refutation. If {=AB(c1), ..., ~AB(c)}
is the set of AB instances used in such a refutation, then {ci,... ,cx} is a conflict set.
For example, figure A.3 gives a schematic outline of a resolution style refutation tree
for SD U OBS U {—AB(c)|c € COMPONENTS?} in which the AB instances entering
into the refutation are explicitly indicated. This refutation yields the conflict set {c;, cs,
c7}. Therefore, one approach to computing all conflict sets for (SD, COMPONENTS,
OBS) is to invoke a sound and complete theorem prover which computes all refutations
of SD U OBS U {—AB(c)|c € COMPONENTS}, and which, for each such refutation,
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Figure A.2: A pruned HS-tree for F={{2,4,5}, {1,2,3}, {1,3,5}, {2,4,6}, {2,4}, {2,3,5},
{1.6}}

records the AB instances entering into the refutation in order to determine the corre-
sponding conflict set. Unfortunately, there is a serious problem with this approach: the
conflict sets do not stand in a 1-1 relationship with the refutations of SD U OBS U
{-AB(c)|c € COMPONENTS}. There will be refutations which are redundant.

-~ABlc. -ABlc)

/ ~ABIc,)

-~AB/|cs

Figure A.3: Resolution style refutation tree for SD U OBS U {—=AB(c) | ¢ €
COMPONENTS} (figure for: =AB(c1) A ~AB(cs) A ~AB(cr))

An ,algorithm” for computing all diagnoses for (SD, COMPONENTS, OBS) is de-
veloped. This approach is based upon theorem 4.1 and therefore requires all minimal
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hitting sets for the collection F of conflict sets for (SD, COMPONENTS, OBS). The
minimal hitting set calculation will involve generating a pruned HS—tree for F', as per
theorem A.1, but with one significant difference: F' will not be given explicitly. Instead,
suitable elements of F' will be computed, as required, while the HS—tree is being gener-
ated. Recall that in generating a pruned HS—-tree for a collection, F', of sets, a node n of
the tree can be assigned a label in one of two ways:

1. By reusing a label S previously determined for some other node n’ whenever H (n)N
S = {}; in this case, no access to F'is required since the label for n is obtained
from that part of the pruned HS—tree generated thus far.

2. By searching F foraset S suchthat H(n) NS = {}. If such aset S can be found in
F, nis labeled by S, otherwise by /. In this case the set F' must be accessed; n’s
label can not be determined without F'. Now it should be clear that the set F' need
not be given explicitly. The only time that F' is needed is in case 2) above. There-
fore, to generate a pruned HS-tree for F', we only require a function which, when
given H(n), returns a set S such that H(n) N S = {} if such a set S exists in F,
and / otherwise. We now exhibit such a function when F is the collection of con-
flict sets for (SD, COMPONENTS, OBS). Let TP(SD, COMPONENTS, OBS)
be a function with the property that whenever (SD, COMPONENTS) is a sys-
tem and OBS an observation for that system, TP(SD, COMPONENTS, OBS)
returns a conflict set for (SD, COMPONENTS, OBS) if one exists, i.e. if SD U
OBS U {—=AB(c)|lc € COMPONENTS} is inconsistent, and returns 4/ other-
wise. It is easy to see that any such function TP has the following property: If
C C COMPONENTS, then TP(SD, COMPONENTS — C, OBS) returns a
conflict set S for (SD, COMPONENTS, OBS) such that C N S = {} if such a
set exists, and / otherwise. It follows that we can generate a pruned HS-tree for
F, the collection of conflict sets for (SD, COMPONENTS, OBS) as described
in a former section except that whenever a node n of this tree needs an access to
F to compute its label, we label n by TP(SD, COMPONENTS — H(n), OBS).
From this pruned HS—tree T" we can extract the set of all minimal hitting sets for F,
namely {H (n)|n is a node of 7" labeled by / }. By theorem A.1, this is the set of
diagnoses for (SD, COMPONENTS, OBS).

The final algorithm can be written as procedure DIAGNOSE(SD, COMPONENTS,
OBS) where (SD, COMPONENTS) is a system and OBS is an observation of the sys-
tem. TP is any function with the property that TP(SD, COMPONENTS, OBS) re-
turns a conflict set for (SD, COMPONENTS, OBS) if one exists, i.e. if SD U OBS U
{-AB(c)|c € COMPONENTSY} isinconsistent, and returns / otherwise. DIAGNOSE(SD,
COMPONENTS, OBS) returns the set of all diagnoses for (SD, COMPONENTS,
OBS).

e Step 1. Generate a pruned HS—tree T for the collection F' of conflict sets for
(SD, COMPONENTS, OBS) as described in a former section except that when-
ever, in the process of generating 7" a node n of 7" needs an access to F' to compute
its label, label that node with 7P(SD, COMPONENTS — H(n), OBS).

e Step 2. Return { H(n)|n is a node of 7" labeled by 1/ }.
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Appendix B

Approachesto hierarchy

This appendix presents a few good known approaches to hierarchy. Their original termi-
nology is kept. A more thorough survey of abstraction methodologies and applications is
presented in a few documents e.g. (Giunchiglia et al., 1997), (Ranon, 2002).

B.0.3 Theory of abstraction

In (Giunchigliaand Walsh, 1989), authors present theoretical bases of proving in abstract—
detailed systems. Abstraction is there informally defined as a process of mapping the
original representation of a problem, called a ground representation, onto a new represen-
tation, called a abstract representation. More precisely, there is defined a formal system
(Kleene, 1952) as a formal description of a theory or a problem, and then abstraction as a
pair of such systems.

Definition B.1 (Giunchiglia & Walsh) A formal system ¥ is a triple (A, A, ), where A
is the Language, €2 is the set of axioms and A is the Deductive Machinery of X.

Definition B.2 (Giunchiglia & Walsh) An abstraction, written f : ¥; = ¥, is a pair
of formal systems (X, 35) with languages A; and A, respectively, and an effective total
function f : Ay — As.

Y31 is there called a ground space and Y, an abstract space. f, is called a mapping
function. f, : ¥; = ¥, means that (3;, 3,) and f, constitute an abstraction. The authors
distinguish there a few types of abstraction. Two of them, 7' and NT'I abstractions, are
useful in diagnosis and they are described below.

An abstraction f, : ¥; = Y, is said to be a 7'I abstraction (Theorem Increasing
abstraction) iff, for any well formed formula o, if & € TH(X,) then fa(a) € TH(X,).
T H(X) is the set of theorems, wffs, of a formal system X.. This property is illustrated in
figure B.1. A T'I abstract space T'H(X,) is broader than T'I ground space T H (3,).

Some of solutions from the abstract space can be not valid for the ground space, but
generation of solutions on the abstract space and verification on the ground space is less
computationally costly than generation of solutions directly for the ground space. The TI
abstraction allows to relax a system description on the abstract level what can be under-
stand as relaxation of variables, potential values of variables, constraints and so on.

J. Oleksiak Hierarchical diagnosis of technical systems



APPENDIX B. APPROACHES TO HIERARCHY 112

- OTTO)

TH(Z.)

Figure B.1: Tl-abstraction (Giunchiglia and Walsh, 1989)

The second useful abstraction is NTI (Non Theorem Increasing abstraction). An ab-
straction f : 3; = ¥, is said to be a NTI abstraction iff, for any wff o, if « € NTH (%)
then fa(a) € NTH(X2). NTH(X) is a set of wffs that if added as an assumption to X
make the resulting system inconsistent. This kind of abstraction is useful for methodolo-
gies based on refutation. The idea of NTI abstraction is illustrated in figure B.2.

A Q A, O
TH(Z,) TH(Z.)
SN ()
NTH(Z,) NTH(Z.)

Figure B.2: NTl-abstraction (Giunchiglia and Walsh, 1989)

B.0.4 ABSTRIPS

An another hierarchical approach is ABSTRIPS framework (Sacerdoti, 1974). The frame-
work is based on STRIPS (,,Stanford Research Institute Problem Solver”) planning system
(Fikes and Nilsson, 1971) and (Fikes et al., 1981).

Definition B.3 (Fikes) A STRIPS system S is a triple (L, s, O) where L is a language,
so IS the initial state, and O is the set of operators.

Definition B.4 (Fikes) Anoperator Op of a STRIPS system (L, sq, O) isatriple (P, Dy, As) C
O, where P, C L isthe precondition list, D, C L is the delete list, and A, is the add list.
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The STRIPS operators map states to states. We can say generally that when operator
preconditions are satisfied then the operator can be used and sentences from the delete list
are deleted from the system state, sentences from add list are added.

STRIPS approach is designed for planning, in other words for finding a finite sequence
of operators which transform an initial state to a goal state. ABSTRIPS framework creates
abstraction by selective dropping of preconditions of operators for STRIPS system. AB-
STRIPS abstraction is created only by weakening operators. Dropping of preconditions
is done according to their criticality what corresponds to difficulty of satisfying them.

Knoblock proposes additional function crit which assigns values to each precondition
of each operator (Knoblock et al., 1991). The value is proportional to the length of a plan
necessary to achieve a precondition, in other words to number of operators necessary to
achieve the precondition. Abstraction of a system is on a k-level if all evaluated below k
preconditions are dropped.

Modeling of larger systems, technological or others, is not easy when only operators
can be weak and it is the biggest disadvantage of this approach. There are a few other
systems which are close to ABSTRIPS e.g. ALPINE (Knoblock, 1991), HIGHPOINT
(Bacchus and Yang, 1994) or (Bundy and Giunchiglia et al., 1996).

B.0.5 Clauses abstraction

Plaisted in papers (Plaisted, 1980) and (Plaisted, 1981) presents abstraction based on sub-
sumption between first—order clauses. The abstraction has to fulfill a condition that if C'5
is a resolvent of two clauses C; and C, and they have abstractions f(Cs), f(C1), f(Cs)
then some resolvent of f(C4), f(Cs) has to subsume f(Cs). If the condition is fulfill, what
is not easy, then resolution theorem proving is possible for such abstract clause system.
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