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rodzicom i promotorowi za

wsparcie udzielane podczas

pracy nad opisanymi w tej

rozprawie badaniami.

M. Baran Pattern recognition in superpixel graphs



Abstract

The primary goal of this thesis is development of an algorithm for accurate object recognition in a given

image based on its statistical model of shape. A common approach to this problem is construction of a Point

Distribution Model (PDM), initial placement of these points in an image (either by hand or using feature

detectors) and iterative optimization of their position, minimizing a certain function combining conformity

to the model on one hand and matching image features on the other. Algorithms of this type include Active

Shape Model, Pictorial Structures, Constrained Local Models and Regression-Voting. These methods are

very effective in certain applications but their performance is strongly affected by appropriate selection of

feature descriptors and detectors, correct placement of landmarks in training images and sufficiently good

initialization of landmark positions in an analysed image. In certain applications, for example in quantitative

analysis of medical images, a higher accuracy than provided by state-of-the-art algorithms is needed.

In response to this demand two object segmentation methods based on statistical shape model are pro-

posed and analysed in this thesis. These methods are based on analysing a superpixel segmentation of a given

image, thus constraining the possible shapes to paths in a graph defined by this preprocessing method. In

this way the number of possible shapes is greatly reduced, limiting the search space. It allows for application

of global optimization methods, solving the problem of finding an initial shape match.

Moreover, a continuous approach to shape representation based on Elastic Shape Analysis (ESA) is ex-

plored in this thesis. This approach is well-suited for pattern recognition in superpixel graphs. The standard

Dynamic Programming algorithm of ESA is extended in this thesis. Instead of just comparing two curves,

it can efficiently find a pair of paths in two digraphs that are the closest under an elastic metric of ESA. This

task was solvable only for certain simple classes of graphs using existing methods. The new algorithm is

analysed in this thesis.

Finally, a new machine learning-based approach to extraction of shape features is developed and inte-

grated into the novel ESA-based algorithm. This combined method has comparable accuracy to state-of-the-

art methods, good performance and a low number of free parameters. The thesis ends with a list of possible

directions for further development of the presented image segmentation algorithm.
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Streszczenie

Celem rozprawy jest opracowanie algorytmu pozwalającego na dokładne rozpoznawanie wzorca będącego

obiektem na obrazie w oparciu o jego model statystyczny. Typowym podejściem w tego rodzaju prob-

lemach jest zbudowanie modelu opartego o punkty charakterystyczne (Point Distribution Model, PDM),

wstępne rozmieszczenie tych punktów na zadanym obrazie (ręcznie lub w oparciu o detektory cech) i itera-

cyjne optymalizowanie ich położeń minimalizując pewną funkcję celu wyważającą z jednej strony zgodność

z modelem, a z drugiej dopasowanie do cech obrazu. Do algorytmów tego typu można zaliczyć Active Shape

Model, Pictorial Structures, Constrained Local Models i Regression-Voting. Metody te w wielu zastosowa-

niach cechuje wysoka skuteczność, jednak jest ona zależna od właściwego doboru cech i detektorów cech,

umieszczenia punktów charakterystycznych we właściwych, odpowiadających sobie miejscach obrazów

oraz dostatecznie dobrej inicjalizacji rozmieszczenia tych punktów na analizowanym obrazie. W niektórych

zastosowaniach, na przykład w ilościowej analizie obrazów medycznych, wymagana jest dokładność więk-

sza niż oferowana przez istniejące algorytmy.

W odpowiedzi na to zapotrzebowanie dwie metody rozpoznawania obiektów w oparciu o ich model

kształtu są proponowane i analizowane w tej rozprawie. Metody te opierają się o analizę obrazu po seg-

mentacji superpikselowej, która ogranicza możliwe kształty do ścieżek w grafie określonym wspomnianą

procedurą przetwarzania wstępnego. W ten sposób redukowana jest liczba możliwych przebiegów kształtu,

znacząco zmniejszając przestrzeń rozwiązań którą trzeba przeszukać. Pozwala to na zastosowanie metod

optymalizacji globalnej, rozwiązując problem inicjalizacji.

Rozprawa zajmuje się również kwestią reprezentacji kształtu w oparciu o funkcje ciągłe, inspirowaną

Elastyczną Analizą Kształtu (Elastic Shape Analysis, ESA). Podejście to bardzo dobrze pasuje do rozpoz-

nawania wzorców w grafach superpikselowych. Zamiast porównywać dwie krzywe, zaproponowany algo-

rytm w sposób wydajny znajduje parę ścieżek w dwóch grafach skierowanych które są sobie najbliższe

w metryce elastycznej rozważanej w ESA. Zadanie to było rozwiązywalne z użyciem istniejących metod

tylko dla prostych klas grafów. Rozprawa zawiera analizę omawianego algorytmu.

Wymieniony nowy algorytm jest ponadto zintegrowany ze specjalnie zaprojektowaną metodą ekstrakcji

cech kształtu opartą o uczenie maszynowe. Uzyskana w ten sposób metoda dorównuje skuteczności na-

jlepszych istniejących algorytmów segmentacji obrazu, działając stosunkowo szybko i posiadając niewielką
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liczbę wolnych parametrów. Rozprawa podaje też dalsze możliwe kierunki rozwoju zaproponowanego al-

gorytmu segmentacji.
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Chapter 1

Introduction

Motivation and scope

Segmentation is one of the most important tasks in computer vision (Haralick and Shapiro, 1992, Freixenet

et al., 2002). In this work segmentation is understood in two similar but distinct meanings. First, it is a

task of grouping pixels in a given image into regions that are uniform with respect to a certain property but

distinct between themselves. This meaning is used when referring to, for example, superpixel segmentation.

The second, more narrow meaning is grouping pixels in an image into two regions: an object of interest

(usually of a specified type) and the background. This task is sometimes referred to as binarization (Sauvola

and Pietikäinen, 2000). Segmentation in the second meaning is the primary goal in this thesis.

An important factor with significant impact on the outcome of image segmentation is appropriate us-

age of a priori knowledge about the shape to be found. This knowledge is typically extracted from other

images of a similar type into a statistical model of shape. Many of the most common approaches to shape

representation for segmentation are based on landmarks (Dryden and Mardia, 1998, Cootes et al., 1995).

While they are very successful, the problem of selection and identification of landmarks has not been sat-

isfactorily solved (Zhang and Golland, 2016, Gao et al., 2010). Another problem faced by landmark-based

methods is adequate statistical modelling of nonlinear shape changes. Proper handling of this issue would

significantly increase the computational complexity of algorithms. Additionally, many popular segmentation

methods perform a local search for the best match, making them dependent on sufficiently good initializa-

tion. This initialization is typically obtained using feature detectors (Martins et al., 2016) but they are not

fully reliable (Mukherjee et al., 2015, Mainali et al., 2014).

Commonly used algorithms based on local optimization, applied in standard approaches to landmark-

based segmentation, are sensitive to initialization. One possible solution of this problem is provided by

global optimization methods, receiving an increasing attention for different image processing and computer

vision tasks (El-Zehiry and Grady, 2010, Schoenemann et al., 2009, Bruhn et al., 2014, Chen and Koltun,

1



2 1.1. Motivation and scope

2016). The interest in global methods is supported by their successful applications. Some of the most promi-

nent examples in this category is the graph cut algorithm (Boykov and Jolly, 2001) or Conditional Random

Fields methods (Lafferty et al., 2001).

A significant challenge for global optimization-based image segmentation is efficient combination with

a statistical model of shape to be found in a given image. Machine learning methods are employed to

efficiently construct and apply such a model of shape. Easy comprehensibility of the shape model was

not pursued as a goal, however it may be a future direction of research. While certain existing approaches

rely on approximate global optimization methods (Mesejo et al., 2013, Heimann and Meinzer, 2009), their

performance and robustness is not sufficient for all applications (Hum et al., 2014, Wojciechowski et al.,

2016, Huber and Ronchetti, 2009).

The problem of landmark selection can be solved by placing them uniformly along the boundary. The

performance loss associated with selecting more landmarks than is necessary was mitigated by appropriately

constructed further stages of proposed algorithms. In particular, the most promising approach presented in

this thesis explains the dense landmark selection by using ideas from continuous approaches to shape repre-

sentation pioneered by, among others, Grenander and Miller (1998) and Younes (1998). These approaches,

and in particular Elastic Shape Analysis (Srivastava and Klassen, 2016), provide a very well motivated solu-

tion to landmark identification, extended in this thesis for a new and interesting case of graphs representing

superpixel segmentations.

In this work a superpixel segmentation is used to construct a global optimization algorithms for the

problem of image segmentation. The primary goals are very good accuracy, good efficiency and a small

space of input parameters. Further research in this area is important as it is a promising direction for a new

generation of segmentation algorithms that reduce the problems of achieving efficient and accurate solutions

in particular applications to practical computer vision problems.

The study is limited to digital greyscale images represented by a uniform rectangular grid of pixels. The

task is to find a simply connected area in the image that corresponds to an object of a known type, thus its

border may be represented as a non-intersecting open or closed planar curve. It is assumed that the border

of the searched object coincides with borders between certain superpixels of a superpixel segmentation of

the input image. This is the core assumption that enables application of a certain class of methods based

on global optimization that received only a limited attention in the past (Greig et al., 1989, Shi and Malik,

2000, Boussaid et al., 2014).

The algorithm may be provided a limited amount of information about the position of the searched

object, for example endpoints of the curve representing its border. These points are considered to be correctly

established. Exhaustive search among all pairs of vertices of the superpixel graph would lead to a fully
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global and parallelizable search strategy. The endpoints may also be automatically located in the image

using feature descriptors and detectors but this task is outside of the scope of this thesis.

Objectives and plan of work

The main objective of this thesis is proving that superpixel segmentation methods are a viable prepro-

cessing step for pattern recognition based on global optimization. This goal is divided into three research

hypotheses:

1. It is possible to achieve high segmentation accuracy when the search space is constrained by a super-

pixel segmentation of the input image.

2. There is an efficient, global, low-parameter method of image segmentation that respects the superpixel

constraints.

3. Machine learning methods can be effectively used to augment the above-mentioned algorithm to

match the accuracy of state-of-the-art algorithms with limited parameter tuning.

Chapter 2 reviews the literature relevant the this thesis, primarily the topics of image and shape repre-

sentation, Principal Geodesic Analysis, image segmentation and machine learning. This discussion is ac-

companied by a short introduction to mathematical tools that are used to describe the ideas behind presented

algorithms.

Chapter 3 describes an initial approach to the problem of pattern recognition in superpixel graphs. An

iterative algorithm is designed to find a path in the superpixel graph of a given image that conforms the best

to a statistical model of shape. Results described in this chapter support the first research hypothesis.

Chapter 4 presents an extension of Elastic Shape Analysis to the pairs of graph drawings. The extended

algorithm is thoroughly analysed and it is shown that it can be used to solve the problem of shape match-

ing in superpixel graphs. Under certain conditions, the exact globally optimal matching is returned by the

algorithm. These results support the second research hypothesis.

Next, in Chapter 5, the extended elastic shape matching algorithm is combined with a statistical model

of shape. This model is extracted from raw annotated training data using machine learning methods. A

specialized feature extraction procedure is designed to convert the raw data to input vectors for classification

algorithms. High accuracy of this image segmentation method combined with small space of free parameters

and decent performance for a global optimisation method, as well as high potential for further development,

make this algorithm a promising alternative to state-of-the-art approaches. This proves the third research

hypothesis.

Finally, the thesis is summarized in Chapter 6. Conclusions based on results described in previous chap-

ters are presented. The summary also contains a description of areas left open for future research.
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Contents and original contribution

The following results are the most important original contributions of this thesis:

1. An analysis of the effects of constraining the task of object segmentation by a superpixel segmentation.

2. Extension of curve matching in Elastic Shape Analysis to pairs of planar graphs (presented in Sec-

tion 4.1).

3. Application of machine learning methods to graph-based Elastic Shape Analysis for improved seg-

mentation accuracy (presented in Section 5.1).

Partial results of the research presented in this dissertation were published or accepted for publication in

international journals:

• Mateusz Baran, Zbisław Tabor. Principal Geodesic Analysis Boundary Delineation with Superpixel-

based Constraints, Image Analysis & Stereology, vol. 36, pp. 223–232, 2017. Impact Factor: 1.135

(for 2016).

• Mateusz Baran. Closest Paths in Graph Drawings under an Elastic Metric. Accepted for publication

in International Journal of Applied Mathematics and Computer Science. Impact Factor: 1.420 (for

2016).

Other co-authored works include:

• T. Pięciak, M. Baran, M. Ubrańczyk. Level-set based segmentation of carotid arteries in computer to-

mography angiography images, Journal of Medical Informatics & Technologies, vol. 17, pp. 281–286,

2011.

• M. Baran, L. K. Bieniasz. Experiments with an adaptive multicut-HDMR map generation for slowly

varying continuous multivariate functions, Applied Mathematics and Computation, vol. 258, pp.

206–219, May 2015. Impact Factor: 1.345 (for 2015).

• M. Baran, L. K. Bieniasz. An adaptive multicut-HDMR map generation, in AIP Conference Proceed-

ings, 2016, vol. 1738, p. 480055.

• M. Baran, K. Kluza, G. J. Nalepa, A. Ligęza. A hierarchical approach for configuring business pro-

cesses, in 2013 Federated Conference on Computer Science and Information Systems (FedCSIS),

Krakow, 2013, pp. 915–921.

• M. Baran, A. Ligęza. Rule-Based Knowledge Management in Social Threat Monitor, in Multimedia

Communications, Services and Security, A. Dziech, A. Czyżewski, Eds. Springer Berlin Heidelberg,

2013, pp. 1–12.

• S. Bobek, M. Baran, K. Kluza, G. J. Nalepa. Application of Bayesian Networks to Recommendations

in Business Process Modeling, presented at the AIBP@AI*IA, 2013, pp. 41–50.
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• K. Kluza, M. Baran, S. Bobek. Overview of Recommendation Techniques in Business Process Mod-

eling, presented at the KESE 2013.

• M. Baran, K. Kułakowski, A. Ligęza. A Note on Machine Learning Approach to Analyze the Results

of Pairwise Comparison Based Parametric Evaluation of Research Units, in Artificial Intelligence and

Soft Computing, L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. A. Zadeh, J. M.

Zurada, Eds. Springer International Publishing, 2014, pp. 27–39.

• M. Baran, K. Kluza, G. J. Nalepa, A. Ligęza. A Multi-level Hierarchical Approach for Configuring

Business Processes, in Advances in ICT for Business, Industry and Public Sector, M. Mach-Król, C.

M. Olszak, T. Pełech-Pilichowski, Eds. Springer International Publishing, 2015, pp. 1–18.

• M. Baran. Multivariate function approximation using sparse grids and high Dimensional Model Rep-

resentation – a comparison, Czasopismo Techniczne, Nauki Podstawowe Zeszyt 3 NP (17) 2014, pp.

97–107, Feb. 2015.
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Chapter 2

Literature review

Mathematical preliminaries

This section briefly describes a few mathematical topics that are used further in this thesis. Graph theory

is used as a language for handling superpixel segmentation. Lie theory and even more importantly differ-

ential geometry are the language of Elastic Shape Analysis and geometric statistical methods like Principal

Geodesic Analysis. For this reason and because of more theoretic nature of these topics they are presented

separately.

Graph theory

Graph theory is a popular tool in image processing (Grady, 2004), used even in early image processing appli-

cations (Zahn, 1971). Applications include image denoising (e.g. using graph cuts (Boykov and Jolly, 2001,

Bae et al., 2011)), segmentation (Greig et al., 1989, Felzenszwalb and Huttenlocher, 2004, Zahn, 1971, Shi

and Malik, 2000, Wang and Siskind, 2003, Li et al., 2012), image processing on a foveal sensor using con-

nectivity graphs (Wallace et al., 1994), detection of salient groupings (Perona and Freeman, 1998) or salient

regions (Yang et al., 2013). Graphs are also used in computer vision to describe structure of a scene (Sarkar

and Soundararajan, 2000). Many methods represent images as graphs where vertices correspond to pixels

and edges denote adjacency, although some authors use other approaches.

Hypergraphs (Berge, 1984) gained some popularity for image representation (Bretto, 2004, Bretto and

Gillibert, 2005) and processing (Rital et al., 2001, Li et al., 2013). These methods are, although, significantly

different from other discussed in this dissertation and will not be described here.

Definition 1. A graph (also called an undirected graph) G = (V,E) is an ordered pair where the first

element, V , is a non-empty finite set of vertices and the second element, E, is a set of edges. Each element

e ∈ E is a two-element set (an unordered pair) of vertices e = {v1, v2} where v1, v2 ∈ V (Wilson, 1996,

Harary, 1969).

7



8 2.1. Mathematical preliminaries

(a) A graph (b) A digraph (c) A multigraph (d) A multidigraph

Figure 2.1: Graphical representations of a graph, a digraph, a multigraph and a multidigraph

Definition 2. A digraph (also called a directed graph) G = (V,E) is an ordered pair where the first

element, V , is a non-empty finite set of vertices and the second element, E is a set of edges. Each element

e ∈ E is an ordered pair of different vertices e = (v1, v2) where v1, v2 ∈ V and v1 6= v2 (Wilson, 1996,

Harary, 1969).

Definition 3. A multigraph (called graph in (Bondy and Morty, 1982)) G = (V,E, r) is an ordered triple

where V is a nonempty finite set of vertices, E is a finite set of edges (disjoint from V ) and r : E →

{{v1, v2} : v1, v2 ∈ V } is an incidence function assigning to every edge a set of two not necessarily distinct

vertices.

Definition 4. A multidigraph (called digraph in (Bondy and Morty, 1982)) G = (V,E, r) is an or-

dered triple where V is a nonempty finite set of vertices, E is a finite set of edges (disjoint from V ) and

r : E → {(v1, v2) : v1, v2 ∈ V } is an incidence function assigning to every edge an ordered pair of two not

necessarily distinct vertices.

Although the concept of a graph had existed in science before formal introduction of graph the-

ory (Foulds, 1992), some basic terms like graph or digraph are not consistently defined in literature. Fig-

ure 2.1 contains examples of graphical representations of a graph, a digraph, a multigraph and a multidi-

graph. Vertices are represented by circles, undirected edges by lines and directed edges by arrows. Vertices

in all types of graphs are often labelled to enable distinguishing them easily.

Definition 5. A graph (or a digraph) G1 = (V1, E1) is a subgraph of a graph (or, respectively digraph)

G2 = (V2, E2) if V2 ⊆ V1 and E2 ⊆ E1 (Bondy and Morty, 1982).

Definition 6. A path in a graph or a digraph G = (V,E) is a sequence of vertices v1, v2, . . . , vn ∈ V

such that they are pairwise different (vi 6= vj if i 6= j for i, j ∈ {1, 2, . . . , n}) and each pair of consecutive

vertices vi, vi+1 for i = 1, 2, . . . , n − 1 is connected by an edge (Wilson, 1996, Bondy and Morty, 1982),

that is {vi, vi+1} ∈ E in case of a graph or (vi, vi+1) ∈ E in case of a digraph.
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Definition 7. A cycle in a graph or a digraph G = (V,E) is a sequence of vertices v1, v2, . . . , vn ∈ V such

that n ≥ 2, elements of the sequence are pairwise different except the first and the last ones which are equal

(vi 6= vj if i 6= j for i, j ∈ {1, 2, . . . , n− 1} and v1 = vn) and each pair of consecutive vertices vi, vi+1 for

i = 1, 2, . . . , n − 1 is connected by an edge, that is {vi, vi+1} ∈ E in case of a graph or (vi, vi+1) ∈ E in

case of a digraph (Wilson, 1996).

Definition 8. A routing algebra is a triple (W,⊕,�) such that (W,⊕) is a monoid with zero element and

� is a total order on W with a maximal element equal to the zero element of (W,⊕) (Zubor et al., 2014).

Equivalently, the following conditions hold for all w1, w2, w3 ∈W :

• w1 ⊕ w2 ∈W (closure),

• (w1 ⊕ w2)⊕ w3 = w1 ⊕ (w2 ⊕ w3) (associativity),

• there is an identity element e ∈W such that for all w ∈W the following holds: e⊕w = w⊕ e = w,

• there is a zero element φ ∈W such that for all w ∈W the following holds: φ⊕ w = w ⊕ φ = φ,

• w1 � w1 (reflexivity),

• if w1 � w2 and w2 � w1, then w1 = w2 (antisymmetry),

• if w1 � w2 and w2 � w3, then w1 � w3 (transitivity),

• either w1 � w2 or w2 � w1 (totality),

• there is a maximal element∞ ∈W such that w � ∞ for all w ∈W ,

• maximal element is equal to the zero element (∞ = φ).

Routing algebras, originally proposed by Sobrinho (2002), are a framework for specifying complex

ways of calculating a cost of a path in a graph. In this thesis a simplified definition of a routing algebra

is used (Zubor et al., 2014). More commonly used definitions of a routing algebra (Sobrinho, 2003, 2005)

make the distinction between the set of edge weights and the set of path costs which would be an unnecessary

complication here.

Definition 9. A routing algebra (W,⊕,�) is called commutative if for all w1, w2 ∈ W the equality w1 ⊕

w2 = w2 ⊕ w1 holds (Zubor et al., 2014).

Definition 10. A routing algebra (W,⊕,�) is called monotonic if for all w1, w2 ∈ W the inequalities

w1 � w2 ⊕ w1 and w1 � w1 ⊕ w2 hold (Yang and Wang, 2008).

Definition 11. A routing algebra (W,⊕,�) is called isotonic if for all w1, w2, w3 ∈ W the property

w1 � w2 implies both w1 ⊕ w3 � w2 ⊕ w3 and w3 ⊕ w1 � w3 ⊕ w2 hold (Yang and Wang, 2008).

Zubor et al. (2014) use the term non-decreasing instead of monotonic and monotone instead of isotonic.

All routing algebras considered in this thesis are commutative. For such algebras common routing algo-

rithms, with few exceptions, require them to be isotonic to find an optimal path. Additionally, the Dijkstra’s

algorithm for routing algebras requires monotonicity (Yang and Wang, 2008).
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Functional analysis

Functional analysis studies spaces of functions. It has found many applications in image analysis (Siddiqi,

2003). This area of mathematics introduces a few concepts relevant to this thesis, most notably the space of

square-integrable functions L2.

Definition 12. The space L2([0, 1],Rn) where n > 0 is the space of all square-integrable functions

f : [0, 1] → Rn (Titchmarsh, 1939, Rudin, 1986, 1991). Two functions are considered equal if they dif-

fer at the set of points of Lebesgue measure 0. This space is a Hilbert space with an inner product of two

functions f, g ∈ L2([0, 1],Rn) equal to

〈f, g〉 =

∫ 1

0
〈f(t), g(t)〉Rn dt, (2.1)

where 〈·, ·〉Rn is the standard inner product in Rn.

Differential geometry

Differential geometry is a mathematical theory gaining popularity among image processing researchers. It

provides a formalism for dealing with spaces with non-Euclidean geometry. Many such spaces, like spheres,

arise naturally. Attempts at exploiting their intrinsic properties in image processing were made as early as in

1990 (Lenz, 1990, Grenander and Miller, 1998, Dupuis et al., 1998), although certain manifolds were used

for particular purposes even earlier (Smith and Jain, 1982, Natterer, 1980). These efforts intensified during

the last decade (Fletcher et al., 2003, 2009, Fletcher, 2013, Zhang and Fletcher, 2013, Zhang and Golland,

2016, Miller and Qiu, 2009).

There are numerous mathematical books introducing concepts of differential geometry (Lang, 1985,

1996, Spivak, 1999, Abraham et al., 2001). It is, although, troublesome that many important concepts, like

even the fundamental concept of a differential manifold, do not have a single universally accepted definition.

For this reason some important concepts of differential geometry are introduced in this section.

Definition 13. LetX be a set andE be a Euclidean (or, more generally, Banach) space. An atlas of classCp

(for p ≥ 0) on X is a family of pairs {(Ui, φi)}i∈I called charts satisfying the following conditions: (Lang,

1983)

1. Each Ui is a subset of X and the family {Ui}i∈I covers X , that is X =
⋃
i∈I Ui.

2. Each φi is a bijection of Ui onto an open subset of E, and for every pair i, j of indices the set

φi(Ui ∩ Uj) is open in E.

3. For each pair of indices i, j the map φij : φi(Ui ∩Uj)→ φj(Ui ∩Uj) defined by φij = φj ◦ φ−1
i is a

bijection and a Cp function.
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A differential manifold M is a set E equipped with an atlas. Hereafter, all differential manifolds are

considered to be equipped with an atlas of class C∞ unless noted otherwise. In this thesis the set E is either

a Euclidean space Rn or an L2([0, 1],Rn) space for some n ≥ 1. In the former case the manifold M has a

finite dimension n. Sometimes additional properties are assumed, for example for topological manifolds M

is a Hausdorff space and is second-countable (Tu, 2010).

In a Euclidean space Rn for some n ≥ 1 one can define a tangent vector at a point x ∈ Rn in two

ways. Kinematic tangent vectors at x are derivatives of smooth curves1 c : R → Rn such that c(0) = x at

0. Operational tangent vectors at x are directional derivatives at x of differentiable functions f : Rn → R.

Both definitions result in a vector space that is canonically isomorphic to Rn: a kinematic tangent vector

is identified with the derivative itself and an operational tangent vector is identified with the direction of

derivation. Both definitions can be used as a basis to define a local linearisation of a differential manifold

and, for finite-dimensional manifolds, the definitions coincide (Spivak, 1999). It is, however, not true in

general. For example in case of the space L2([0, 1],Rn) there are operational tangent vectors that do not

correspond to any kinematic tangent vectors (Kriegl and Michor, 1997, 1991). In the relevant literature the

kinematic definition is used (Srivastava and Klassen, 2016), although this issue has not been discussed.

Definition 14. Let M be a differential manifold with a smooth atlas {(Ui, φi)}i∈I . Furthermore, let p ∈M

be any point on the manifold M . Any two differentiable curves α, β : R → M such that α(0) = β(0) = p

are equivalent with respect to the equivalence relation∼ if and only if for any chart (Ui, φi) such that p ∈ Ui

the derivatives of φi ◦ α and φi ◦ β are equal at 0:

d

dt
φi(α(t))

∣∣∣∣
t=0

=
d

dt
φi(β(t))

∣∣∣∣
t=0

. (2.2)

The tangent space (or the kinematic tangent space) to a differential manifold M at p ∈ M , denoted by

TpM , is the quotient vector space of differentiable curves passing through p by the relation ∼ (Spivak,

1999, Srivastava and Klassen, 2016):

TpM = {γ : R→M : γ(0) = p}/ ∼ . (2.3)

Definition 15. Tangent bundle is the disjoint union of all spaces tangent to a manifold M , TM =⋃
p∈M (p, TpM) (Spivak, 1999).

Definition 16. For any curve α : R → M of class C1 one can define a velocity curve α̇ : R → TM such

that

α̇(t) = (α(t), [u 7→ α(u− t)]∼) (2.4)
1Smoothness (when referring to functions on continuous domains) in this work is understood as existence of all derivatives

(C∞) unless noted otherwise. This should not be confused with smoothing of digital images.
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where [u 7→ α(u − t)]∼ is the equivalence class of the curve α shifted by t with respect to relation ∼ (see

Definition 14).

Definition 16 can be extended to curves defined on closed intervals in a straightforward way.

Definition 17. Let M , N be differential manifold with atlases {(Ui, φi)}i∈IM and {(Vj , ξj)}j∈JN of class

Cp for some p ∈ {0, 1, . . . ,∞}. A function f : M → N is said to be of class Cp if for all points p ∈ M

and all pairs of charts (Ui, φi), (Vj , ξj) such that p ∈ Ui and f(p) ∈ Vj the function ξj ◦ f ◦ φ−1
i is of class

Cp (Srivastava and Klassen, 2016, Spivak, 1999).

Definition 18. The differential (or a pushforward) of a smooth function f : M → N at point p ∈M where

M , N are differential manifolds with C∞ atlases is the function dfp : TpM → Tf(p)N such that for each

vector vp ∈ TpM

(dfp(vp))g = vp(g ◦ f) (2.5)

for each real-valued function g ∈ C∞(N) (Tu, 2010). On both sides of Equation (2.5) application of a

vector from the tangent space to a function is understood as a directional derivative in the direction of that

vector.

Some definitions from Riemannian geometry are necessary for understanding certain topics in shape

analysis. Such mathematical tools are gaining popularity. This topic is covered in more depth in e.g. (Michor

and Mumford, 2006).

Definition 19. A vector field on a differential manifold M is any function f : M → TM such that for each

point p ∈M the value of f(p) is a pair (p, vp) where vp ∈ TpM .

Any C∞ atlas on M can be used to define a C∞ atlas on TM , thus equipping it with a structure of a

differential manifold. If a vector field is a smooth function (see Definition 17), then it is called a smooth

vector field.

Definition 20. Riemannian metric gp : TpM × TpM → R is an inner product defined on tangent spaces

TpM for all p ∈M that changes smoothly with p, that is for any two smooth vector fields f, g : M → TM

such that f(p) = (p, vf,p) and g(p) = (p, vg,p) the function e : M → R defined as

e(p) = gp(vf,p, vg,p) (2.6)

is of class C∞ (Srivastava and Klassen, 2016, Spivak, 1999).

Definition 21. Length of a curve α : [0, 1]→M is defined by (Spivak, 1999)

L(α) =

∫ 1

0

√
gα(t)(vt, vt)) dt, (2.7)
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assuming α̇(t) = (α(t), vt).

Definition 22. Energy of a curve α : [0, 1]→M is defined by (Spivak, 1999)

E(α) =

∫ 1

0
gα(t)(vt, vt) dt, (2.8)

assuming α̇(t) = (α(t), vt) for all t ∈ [0, 1].

Definition 23. Geodesic is a critical point of the energy functional (Definition 22) on a manifold (Spivak,

1999).

Geodesics are not only lowest-energy curves between two points p, q on a manifold M , but also lowest-

length curves between these two points. There may exist exactly one geodesic between p and q (up to a

reparametrization), more than one (even infinitely many) or none. Distance between these two points is

defined as an infimum over the lengths of smooth paths α : [0, 1] → M connecting them (α(0) = p and

α(1) = q):

d(p, q) = inf{L(α) : α is a smooth path joining p and q}. (2.9)

Note that in general the distance may be defined even for pairs of functions not connected by any geodesic.

Definition 24. Given a point p ∈M the exponential map expp : TpM ⊇ V →M assigns to a vector v ∈ V

from the tangent space the point γv(1) where γ : [0, 1] → M is the unique geodesic satisfying γ(0) = p

and dγ
dt (0) = v (Spivak, 1999). The domain V of the exponential map is a neighbourhood of the zero vector

containing vectors for which such a geodesic exists.

Definition 25. Logarithmic map logp : M ⊇ N → TpM is the inverse of an exponential map expp (Spivak,

1999).

The concepts of exponential and logarithmic maps are illustrated in Figure 2.2. A vector v ∈ V is

transformed by the exponential map into a point q = expp(v) ∈M , while a point q ∈ N corresponds to the

vector v = logp(q) ∈ TpM through the logarithmic map. Intuitively, a tangent space is a local linearisation

of a manifold M around a given point p ∈ M . Exponential and logarithmic maps are used to translate

between the manifold M and the tangent space TpM .

Lie theory

Lie theory is the theory of groups and algebras that are also differential manifolds.

Definition 26. A groupG is a Lie group if it is also a manifold with aC∞ atlas and both the group operation

and the group inverse are smooth functions (Spivak, 1999).
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Figure 2.2: A manifold M with a selected point p ∈ M . Exponential map transforms a subset V of the
tangent space TpM to M . Logarithmic map transforms a submanifold N ⊆M to TpM

Lie theory is useful in formal analysis of invariants of metrics. For example rotational invariance in

a Euclidean space Rn can be described as invariance under action of the special orthogonal Lie group

SO(n,R), that is the group of all rotations (without reflection) of Rn. This is also true for other operations,

like translation and scaling (Srivastava and Klassen, 2016).

Image representation

Images are represented by functions of two arguments with finite domains (Gonzalez and Woods, 2007,

Jähne, 2002). Some authors use more complex schemes (Pratt, 2007) but since the reasons for their in-

troduction (for example processing of non-monochrome or three-dimensional images, processing of image

sequences) are not considered in this thesis, a more simple formalism is selected. For digital images, the

domain is discrete: f : {1, 2, . . . ,W} × {1, 2, . . . ,H} → R where W is the width of the image represented

by f and H is its height. A rectangular grid is always used. Wherever a continuous image is concerned, its

domain is the unit square: f : [0, 1]2 → R. Only greyscale images are considered in this thesis, hence in

both cases the codomain of f is the set of real numbers. In case of digital images, effects of quantization are

not taken into account.
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Figure 2.3: A comparison of a digital image and a continuous image

Digital and continuous image representations are compared in the Figure 2.3. Problems of coding and

representation of digital image in a computer (for example (Huo, 1999, Bretto, 2004, Bretto and Gillibert,

2005)), including image compression (Shukla et al., 2010), are outside of the scope of this dissertation.

Shape representations and analysis

Shape representation is a problem in image processing of formal encoding shapes of objects and devising

methods of their manipulation. D’Arcy Thompson’s book (Thompson, 2014) (originally printed in 1917) is

considered as one of the earliest attempts in comparing shapes invariantly with respect to certain transfor-

mations.

Shape representations fall into one of two categories: point-based and domain-based. Methods from the

first category use sets or lists of points to represent shapes. These shapes can be compared using a number

of methods:

• Iterative Closest Point (ICP) (Besl and McKay, 1992, Arun et al., 1987, Chen and Medioni, 1992),

• Active Shape Models (ASM) (Cootes et al., 1995),

• Active Appearance Models (AAM), an extension to ASM (Cootes et al., 2001, Elder et al., 2003, Gao

et al., 2010),

• Ordinary Procrustes Analysis (OPA) and Generalized Procrustes Analysis (GPA) (Gower, 1975,

Goodall, 1991), with many variants and extensions (Koschat and Swayne, 1991, Theobald and Wut-

tke, 2006, Turaga and Srivastava, 2016, Brignell, 2007),

• Kendall’s shape spaces (Kendall, 1984, 1989, Kendall et al., 1999), which aims to provide a more

precise mathematical description of shape from Procrustes Analysis,
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16 2.2. Shape representations and analysis

• bicycle chain shape model (Sommer et al., 2009),

• Elastic Shape Analysis (ESA) (Younes, 1998, Mio and Srivastava, 2004, Srivastava et al., 2006, Joshi

et al., 2007, Srivastava et al., 2011),

• deformation-based shape representation (Demisse et al., 2016, 2017),

• shape analysis using conformal mapping (Sharon and Mumford, 2006),

• other energy-based methods (Cohen et al., 1992, Sebastian et al., 2003, Khaneja et al., 1998),

• other PDE-based methods (Frenkel and Basri, 2003).

Remarkably, some of these methods, like ESA and conformal mapping based shape analysis, conceptually

represent shapes as infinite-dimensional objects (Younes, 1998, Sharon and Mumford, 2006). Some methods

like Active Contours (Kass et al., 1988), including variants like Sobolev Active Contours (Sundaramoorthi

et al., 2006, 2007), have different focus than direct shape comparison but they can be used in this way as

well (Schnabel and Arridge, 1995).

Domain-based methods represent shapes as functions whose domain is the entire image, i.e. [0, 1]2 in its

continuous form (see 2.1.5). Among shape representation methods in this category are:

• Level-set methods (Osher and Sethian, 1988, Osher and Fedkiw, 2001, 2003, Pięciak et al., 2011),

• Deformation-based shape analysis (Trouvé, 1998, Grenander and Miller, 1998, Grenander, 1994,

Grenander and Keenan, 1993).

An important topic in shape analysis is the selection of invariants that are assumed to preserve shapes.

Most commonly they are translations, scaling and rotations but in a smaller number of works affine and

projective transformations are also considered (Ambartzumian, 1990, Aguado et al., 2002, Bryner et al.,

2014), see also (Guo et al., 2013).

Elastic Shape Analysis

The most important family of methods for representing and comparing shapes for this thesis is the Elastic

Shape Analysis (ESA). This method was initially described in (Younes, 1998). Many important develop-

ments were made during the last decade (Michor and Mumford, 2006, Mio et al., 2007, Sundaramoorthi

et al., 2011), including introduction of the Square Root Velocity function representation (Joshi et al., 2007)

(although it was actually used earlier (Younes, 1999)), the path straightening method for computation of

geodesics (Srivastava et al., 2011) and a textbook summary of the field (Srivastava and Klassen, 2016). ESA

has also been extended to surfaces (Kurtek et al., 2013) and quotients of Lie group by compact subgroups (Su

et al., 2017).

Elastic Shape Analysis has been applied to many problems, for example palm print identification (Mokni

et al., 2016) and shape morphing (Mio et al., 2007). Biological applications include comparison of axon
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morphology (Mottini et al., 2015), clustering of brain fibres (Kurtek et al., 2012, Mani et al., 2010) and

protein structure alignment (Liu et al., 2010). Very encouraging results were obtained in these cases.

In Elastic Shape Analysis shapes are represented as curves from certain shape spaces. The exact shape

space is determined by the group of transformations that do not change the shape. The most general space

for the case of no invariants is the space of absolutely continuous functions AC([0, 1],Rn), that is functions

f : [0, 1]→ Rn such that

1. f is differentiable almost everywhere and

2. f(t) = f(0) +
∫ t

0 ḟ(u) du for all t ∈ [0, 1].

In the first step a Square Root Velocity (SRV) transformation is applied. A function f ∈ AC([0, 1],Rn) is

changed into a function

q(t) = Q(ḟ(t)), (2.10)

where the function Q : Rn → Rn is defined by

Q(v) =


v√
‖v‖

if ‖v‖ 6= 0

0 if ‖v‖ = 0.

(2.11)

The resulting function q belongs to the space of square-integrable functions L2([0, 1],Rn). As a result of

differentiation, this representation is automatically translation-invariant: for all constants c ∈ Rn and func-

tions f ∈ AC([0, 1],Rn), SRV representation of f and f +c are the same. On the other hand, differentiation

in Equation (2.10) makes the representation more susceptible to noise (Demisse et al., 2017). It is, although,

true for most shape analysis metrics (Mennucci, 2013). Figure 2.4 compares SRVs of two functions where

one is a reparametrization of the other. It shows that the magnitude of the SRV of a function is correlated

with the speed of traversal of a part of its domain. For the selected reparametrization the effect is the most

visible near the endpoints of the domain.

The standard L2 metric on the space of SRV representations can be used for shape analysis. It is an

elastic metric when understood as a metric on the original space AC([0, 1],Rn). This elastic metric can be

seen as an extension to the nonparametric Fisher-Rao metric (Rao, 1945). This metric can be used to define

a distance between shapes described by curves f1, f2 : [0, 1]→ Rn as follows:

dcpre(q1, q2) =

√∫ 1

0
〈q1(t), q2(t)〉Rn dt, (2.12)

where q1 and q2 are SRV transforms of, respectively, f1 and f2, as defined by Equation (2.10)).
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An important property of dcpre is partial reparametrization invariance. Let Γ be the set of orientation

preserving diffeomorphisms from [0, 1] to itself, that is

Γ = {γ : [0, 1]→ [0, 1] : γ is a diffeomorphism, γ(0) = 0 and γ(1) = 1}. (2.13)

The set Γ with function composition is a group, that is composition of two elements of Γ is an element of

Γ, the identity on [0, 1] belongs to Γ and for every reparametrization γ ∈ Γ its inverse γ−1 belongs to Γ as

well. Associativity is provided as a general property of function composition.

Let us first observe that reparametrization of original curve provides an action of the group Γ on the

space of SRV representations of curves. This action is defined by:

(q · γ)(t) ≡ Q
(

d

dt
f(γ(t))

)
= q(γ(t))

√
γ̇(t), (2.14)

where q is an SRV of f and γ ∈ Γ is an arbitrary reparametrization.

Now, let q1 and q2 be two arbitrary SRV functions and γ ∈ Γ be a reparametrization. The partial

invariance can be observed as follows:

(
dcpre(q1 · γ, q2 · γ)

)2
=

∫ 1

0
‖(q1 · γ)(t)− (q2 · γ)(t)‖22 dt =∫ 1

0
‖(q1 ◦ γ)(t)− (q2 ◦ γ)(t)‖22γ̇(t) dt =∫ 1

0
‖q1(t)− q2(t)‖22 dt =

(
dcpre(q1, q2)

)2
,

(2.15)
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where the next to last step involved integration by substitution. Now, a fully invariant distance function can

be defined by minimization over the set of reparametrizations Γ:

dc(q1, q2) ≡ min
γ∈Γ

dcpre(q1, q2 · γ). (2.16)

For this definition it is essential that Γ with function composition is a group that acts by isometries. More

details can be found in (Srivastava and Klassen, 2016).

The terms elastic distance and elastic metric can, in many places, be used interchangeably. The former is

primarily used in places where considering the exact metric space or Riemannian manifold is not important.

The dynamic programming algorithm for calculation of elastic distance

There is no general method for determining the value of the elastic distance dc between a given pair of

curves. Usually the set Γ of reparametrizations is limited to a certain finite subset and the minimization

is performed using a Dynamic Programming algorithm (Srivastava et al., 2011, Bernal et al., 2016). The

algorithm described in this thesis is a minor modification of Algorithm 58 from (Srivastava and Klassen,

2016). Discretization that does not admit any admissible reparametrization is explicitly detected and the

symbol Nij (used in the cited book) is redefined in terms of a set σ, described in Section 4.1.

Algorithm 1 describes the procedure of calculating the elastic distance dc between two functions with

SRV representations q1, q2 discretized at 0 = t1,0 < t1,1 < · · · < t1,M1 = 1 and 0 = t2,0 < t2,1 < · · · <

t2,M2 = 1. The parameter σ encodes allowed slopes of the discretized, piecewise-linear reparametrization

γ. The function Q, describing the discretized dcpre distance between two reparametrized pieces of q̂1 and q̂2,

is defined by

Q(i, j, k, l) = I(t1,i−k, t1,i, t2,j−l, t2,j , q̂1, q̂2), (2.17)

where functions q̂1, q̂2 are SRV representations of first order spline interpolants to curves represented by

q1, q2 sampled at points, respectively, {t1,i}M1
i=0 and {t2,i}M2

i=0. Some authors (Doğan et al., 2015) use higher-

order interpolation but for reasons explained in Chapter 4 it is not used in this work. The function I is the

trapezoidal quadrature of dcpre:

I(t1,i−k, t1,i, t2,j−l, t2,j , q̂1, q̂2) =

∫ t1,i

t1,i−k

∥∥∥q̂1(t)− q̂2(γ(t))
√
γ̇(t)

∥∥∥2

2
dt, (2.18)

where 0 ≤ i− k < i ≤M1, 0 ≤ j − l < j ≤M2 and γ(t) = t2,j−l +
t2,j−t2,j−l
t1,i−t1,i−k (t− t1,i−k).
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20 2.2. Shape representations and analysis

Algorithm 1: Dynamic Programming calculation of dc(q1, q2) discretized at arguments
{t1,i}M1

i=0, {t2,i}
M2
i=0.

Require: {t1,i}M1
i=0, {t2,i}

M2
i=0, q̂1, q̂2, σ

1: E(0, 0) := 0
2: P (i, j) := (−1,−1) for 1 ≤ i ≤M1, 1 ≤ j ≤M2

3: for i ∈ {0, 1, . . . ,M1} do
4: for j ∈ {0, 1, . . . ,M2} do
5: if (i, j) 6= (0, 0) then
6: for (k, l) ∈ σ do
7: if i− k ≥ 0 and j − l ≥ 0 then
8: E(i, j, k, l) := E(i− k, j − l) +Q(i, j, k, l)
9: else

10: E(i, j, k, l) :=∞
11: end if
12: end for
13: E(i, j) = min(k,l)∈σ E(i, j, k, l)
14: if E(i, j) <∞ then
15: (kopt, lopt) = arg min(k,l)∈σ E(i, j, k, l)
16: P (i, j) = (i− kopt, j − lopt)
17: end if
18: end if
19: end for
20: end for
21: (i1, i2) := (M1,M2)
22: γd := {(i1, i2)} {A discrete reparametrization.}
23: while (i1, i2) 6= (0, 0) do
24: (i1, i2) := P (i1, i2)
25: if (i1, i2) 6= (−1,−1) then
26: PREPEND(γd, (i1, i2))
27: else
28: return "ERROR" {There are no reparametrizations satisfying given constraints.}
29: end if
30: end while
31: return E(M1,M2), γd {Returns cost and a reparametrization that realizes this cost.}

The general elastic metric

Historically, a different and more general transformation based on complex numbers was proposed first

for the case planar curves (Younes, 1998) and later extended to curves in higher-dimensional Euclidean

spaces (Mio et al., 2007). SRV representation is, though, often preferred for its relative ease of application. In

this more general version, a function f : [0, 1]→ Rn is first transformed into a pair of functions φ : [0, 1]→

R, θ : [0, 1]→ Sn−1 such that

φ(t) = ln(‖ḟ(t)‖), θ(t) =
ḟ(t)

‖ḟ(t)‖
. (2.19)
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2.3. Principal Geodesic Analysis 21

This pair of functions defines a map from the space of open curves to the set Φ×Θ, where Φ and Θ are sets

of functions, respectively, φ and θ corresponding to open curves f . The tangent space to Φ×Θ at (φ, θ) is

given by

T(φ,θ)(Φ×Θ) = Φ× {v ∈ L2([0, 1],R2) : 〈v(t), θ(t)〉Rn = 0 for all t ∈ [0, 1]}, (2.20)

where a standard embedding of the sphere Sn−1 in Rn as a unit sphere is assumed and the scalar prod-

uct 〈·, ·〉Rn is the standard scalar product in Rn. The general elastic metric is provided by the following

definition.

Definition 27. A general elastic metric on Φ×Θ is given by

〈(u1, v1), (u2, v2)〉(φ,θ) = a2

∫ 1

0
u1(t)u2(t)eφ(t) dt+ b2

∫ 1

0
〈φ1(t), φ2(t)〉Rneφ(t) dt, (2.21)

where a and b are positive real numbers (Mio et al., 2007, Srivastava et al., 2011).

It is easy to prove that the metric from Definition 27 also defines a metric on the original space of

curves. When a = 1
2 and b = 1, this general elastic metric coincides with the L2 metric on the space of SRV

representations (Srivastava et al., 2011).

Other developments in Elastic Shape Analysis

Other developments in Elastic Shape Analysis include tree registration (Mottini et al., 2015), landmark-

guided elastic surface registration and morphing (Kurtek et al., 2013), graph-constrained surface registra-

tion (Zeng et al., 2016) and analysis of trajectories on manifolds through transported SRV function repre-

sentation (Su et al., 2012, 2014).

There is one open source library that implements elastic registration (Huang et al., 2016).

The source code is available at http://www.math.fsu.edu/~whuang2/Indices/index_

ROPTLIB.html, see also http://www.math.fsu.edu/~whuang2/papers/RORCESA.htm.

The discussion of other important topics in Elastic Shape Analysis, such as handling of closed

shapes (Klassen et al., 2004) and statistical modelling of shapes (Srivastava and Jermyn, 2009) is skipped

because it will not be used in this thesis.

Principal Geodesic Analysis

Principal Geodesic Analysis (PGA) (Fletcher et al., 2003, 2004) is an extension of Principal Component

Analysis (PCA) (Jolliffe, 2002) to differential manifolds. Taking properties of manifolds into account leads
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in many cases to more accurate results (Fletcher et al., 2004, Su et al., 2008, Sommer et al., 2010). Addition-

ally, for example many biological shapes change along geodesics in Kendall’s shape spaces (Le and Kume,

2000).

Let x1, x2, . . . , xN ∈M be a set of points from a differential manifoldM . There are two components of

PCA and PGA: mean calculation and mode calculation. Both need to be changed to accommodate manifold-

valued data.

There are two common ways to calculate the mean of a given set of points from a manifold. The first

one in the so-called intrinsic mean, also called the Karcher mean (Karcher, 1977) or Fréchet mean (Fréchet,

1948). The mean µ is defined by the minimization of sum of squared distances over the entire manifold:

µ = arg min
x∈M

N∑
i=1

d(x, xi)
2, (2.22)

where the distance is the intrinsic distance in the manifold (see Equation (2.9)). The formula comes from a

more general definition of mean value for probability distributions on manifolds. Existence and uniqueness

conditions for the intrinsic mean are studied in e.g. (Karcher, 1977, Kendall, 1990).

One of the important downsides of the intrinsic mean is that it is hard to compute for many manifolds.

An alternative way of computing a mean of points on a manifold is the extrinsic mean (Grenander et al.,

1998). It uses an embedding Φ: M → Rn to translate points into a Euclidean space, calculates the standard

mean in this space and projects the result back to the manifold using a projection π : Rn →M :

µ = π

(
arg min

x̄∈Rn

N∑
i=1

‖x̄− Φ(xi)‖2
)
. (2.23)

Averaging on certain classes of manifolds is sometimes considered separately (see for example (Hartley

et al., 2013) for rotation averaging and (Hauberg et al., 2014) for averaging on Grassmann manifolds).

For PGA, other averaging methods like median (Yang, 2010) can also be applied, which is more robust

in certain cases (Fletcher et al., 2009). In particular, while the minimization of sum of squares is optimal

for independent and identically distributed (i.i.d.) Gaussian noise, it is also sensitive to outliers (Torre and

Black, 2003, He et al., 2011, Kwak, 2008).

The second part of PGA is mode calculation. There is, however, no direct generalization of princi-

pal components to general manifolds. Geodesics are one possible generalization but on non-geodesically

complete manifolds they cannot be extended indefinitely which causes problems. Another problem is that

best-fit principal geodesic may not pass through the calculated mean. This line of research is pursued under

the name of Geodesic Principal Component Analysis (Huckemann et al., 2010, Huckemann and Ziezold,

2006). It should be noted that these problems are less severe in Riemannian symmetric spaces (Fletcher
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et al., 2004, Cornea et al., 2016, Lazar and Lin, 2017) which commonly appear in computer vision. Other

approaches to modelling principal components in manifolds are also used like nested manifolds (Jung et al.,

2012), barycentric subspaces (Pennec, 2015), principal submanifolds (Yao and Pham, 2016) or horizontal

component analysis (Sommer, 2013). Variants of PGA include exact PGA (Sommer et al., 2013), proba-

bilistic PGA (Zhang and Fletcher, 2013) and kernel PGA (Awate et al., 2014).

In PGA, all points x1, x2, . . . , xN ∈ M are translated to the tangent space TµM using the logarithmic

map, that is

vi = logµ(xi), (2.24)

for i = 1, 2, . . . , N . Next, since the tangent space is isometric to Rk where k is the dimension of M (it is

assumed that M is a finite-dimensional manifold), standard PCA is performed in the tangent space using

vectors v1, v2, . . . , vN ∈ TµM .

This approach uses the fact that the logarithmic map offers a local linearisation of the manifold. The

results strongly rely on the assumption that given points lie in an area that can be well approximated in

this way. When it is not the case, e.g. for points distributed uniformly across a sphere, a more sophisticated

generalization of PCA is necessary. On the other hand, PGA is quite fast and relatively simple (Sommer

et al., 2010).

Segmentation methods

Image segmentation is one of the most prominent task in image processing. It is understood as a process of

separating an object of interest from the background or dividing an image into constituent parts (Zaitoun and

Aqel, 2015, Fu and Mui, 1981, Withey and Koles, 2008). There are many types of segmentation methods.

One possibility is to divide them to layer-based methods and block-based methods (Zaitoun and Aqel, 2015).

Algorithms in the first category use object detectors to analyse a given image (Yang et al., 2012). Block-

based methods on the other hand operate directly on the image.

Segmentation evaluation

An important aspect of segmentation is its evaluation. In this thesis evaluation of single object segmentation

is the most important (Zhang, 1996). The measure that was selected is the Dice coefficient (Dice, 1945):

QS =
2TP

2TP + FP + FN
, (2.25)
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where TP is the number of pixels correctly classified as belonging to the segmented object, FP is the

number of pixels incorrectly classified as belonging to the segmented object and FN is the number of pixels

incorrectly classified as background. Other evaluation measures include:

• analytical methods which derive bounds on segmentation performance (Liedtke et al., 1987, Abdou

and Pratt, 1979),

• empirical methods that evaluate segmentation algorithms by performance on a certain set of test im-

ages. This group can be divided further into:

– reference-based methods that compare obtained results with reference segmentation of test im-

ages (Jaccard index (Jaccard, 1901), maximum likelihood estimate of the fraction of correctly

detected edges (Fram and Deutsch, 1975), figure of merit (Pratt, 1978)) and

– reference-free methods that use criteria such as uniformity to assess the segmentation (busyness

measure (Weszka and Rosenfeld, 1978), normalized uniformity (Sahoo et al., 1988), entropy-

based methods (Pal and Pal, 1989, Pal and Bhandari, 1993), shape measure (Sahoo et al., 1988)).

• human evaluation, where segmentation results are manually evaluated by humans (Zaitoun and Aqel,

2015).

Analytical methods are only applicable to simple algorithms. Reference-based methods are commonly

used for e.g. single object segmentation while reference-free methods are popular tool in evaluating the

quality of superpixel segmentation. It is important that in the case of reference-based methods, the reference

images may be erroneously segmented (Zhang, 1996), especially in case of non-synthetic images, as a result

of human error. This issue further complicates error analysis but is not considered in this thesis.

Watershed segmentation

The watershed segmentation (or watershed transform) (Beucher, 1982, Beucher and Meyer, 1993, Meyer,

1994, 2005, Meyer and Beucher, 1990), originally proposed in (Digabel and Lantuéjoul, 1978, Beucher and

Lantuéjoul, 1979), is a popular tool for dividing images into constituent parts. It uses the interpretation of

an image as a graph of a function (see Figure 2.3b, it also applies to digital images after interpolation).

The watershed transform consists of several steps. Firstly, local minima in the input image are found.

Secondly, the image is simultaneously flooded from each local minimum. This is depicted in Figure 2.5

where water from each flooding source is on the same level. When this step is proceeded, the water level

raises uniformly as if all flooding sources were connected (all catchment basins can be understood as com-

municating vessels (Prokhorov, 1979)). When water from two different minima meets, a dam is built to sep-

arate them. These dams are built along watershed lines, that is borders between distinct catchment basins.

The flooding is continued until all of the image is covered. Each flooded region corresponds to a single seg-
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Catchment basins
Watershed lines

Local minima

Dam

Flooding sources

Figure 2.5: Explanation of terms related to the watershed transform

ment of the segmentation. This terminology, illustrated in Figure 2.5, is borrowed from geography. Original

meanings of these words (Strahler, 1957) serve as a useful intuition.

The watershed from markers method (Meyer and Beucher, 1990, Meyer, 2005) is a variant of the wa-

tershed segmentation when instead of taking each local minimum as a flooding source, only a certain subset

of these minima is selected. Different strategies have been developed for selection of flooding sources. An

important difference is that in this variant flooding of neighbouring catchment basins may occur. For exam-

ple, if only two leftmost minima in Figure 2.5 were selected as flooding sources, the marked dam would not

be created. As a result, oversegmentation that may occur for example due to noise is reduced (Beucher and

Meyer, 1993).

Other variants of watershed transform include stochastic watershed segmentation (Angulo and Jeulin,

2007), a level set-inspired variant (Tai et al., 2007) and a recent generalization of power watersheds (Couprie

et al., 2011) that reveals the connection with graph cut and shortest path algorithms. Different implemen-

tations of the watershed transform are discussed in (Vincent and Soille, 1991, Verbeek and Verwer, 1990,

Beucher and Meyer, 1993, Najman and Schmitt, 1994, Meyer, 1994).
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Segmentation based on Point Distribution Model

Segmentation methods based on Point Distribution Model (PDM) use a statistical, deformable model of

shape. It is used to ensure that the obtained segmentation represents a shape that is typical for the class

of objects that is expected. PDMs are based on modelling variability in relative positions of landmarks.

Methods based on PDM became popular after the success of the Active Shape Method (ASM) (Cootes

et al., 1995).

PDM based methods need to be trained by supplying a number of sets of landmark positions extracted

from different images. These landmarks need to be identified in the image and corresponding landmarks

have to be matched across images. Significant manual effort is typically needed in this step.

The ASM has been enhanced in many ways, including adaptation to segmentation of neuroanatomic

structures (Duta and Sonka, 1998), Active Appearance Model (Cootes and Taylor, 1999, Cootes et al., 2001),

optimal selection of appearance features (van Ginneken et al., 2002), using a hierarchical processing and

the wavelet transform (Davatzikos et al., 2003, Nain et al., 2007) and an ASM-driven graph cuts boundary

delineation (Chen et al., 2013). As ASM converges to the final shape through local optimization, selection of

initial shape is important (Cosío, 2008). An initial shape localization method based on the Hough transform

has been proposed by Brejl and Sonka (2000). Use of application-driven constraints on boundary location

has been applied by Chen et al. (2011) to three-dimensional image segmentation (Heimann and Meinzer,

2009). In this case constraints represent prior knowledge about relative positions of segmented objects.

Superpixel segmentation

The idea of superpixel segmentation is to divide an image into its natural elementary pieces for segmen-

tation (Ren and Malik, 2003, Moore et al., 2008). There are two main reasons to do this. First, pixels are

not natural elementary pieces of an image but rather a consequence of discretization. Second, global op-

timization at the level of pixels is intractable even for moderately sized images. Thus dividing an image

into relatively uniform areas, known as superpixels, is a viable solution to both of these problems. Such

superpixels can be used for further processing of an image (Zhang and Ji, 2011).

It is worth noting that the watershed segmentation (described in Section 2.4.2), as it typically leads

to an oversegmentation, can be considered a superpixel algorithm (Levinshtein et al., 2009). It is, though,

criticized for irregular borders between superpixels and overall lack of superpixel compactness (Levinshtein

et al., 2009, Achanta et al., 2010). These issues were addressed to some extent in (Neubert and Protzel,

2014).

Superpixel segmentation has gain a lot of popularity in recent years. This led to introduction of many

superpixel algorithms, including normalized cuts (Shi and Malik, 2000), turbopixels (Levinshtein et al.,

2009), simple linear iterative clustering (SLIC) (Achanta et al., 2010, 2012) and other (Veksler et al., 2010,
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Li et al., 2012). Some other approaches like mean shift (Comaniciu and Meer, 2002), quick shift (Vedaldi

and Soatto, 2008) or compact watershed (Neubert and Protzel, 2014) are sometimes also considered as

superpixels algorithms.

Figure 2.6 compares three superpixel algorithms (preemptive SLIC, watershed from markers and com-

pact watershed). The compactness parameter is set to 0.5 for compact watershed and 22 for preemptive

SLIC. The influence of this parameter on these two methods is depicted in Figures ?? and 2.8. The image

used for comparison is an X-ray image of a knee smoothed using an anisotropic diffusion filter (Perona and

Malik, 1990). Superpixel borders were obtained for gradient magnitude images.

Dividing an image into more superpixels increases the chance that the border of a selected object corre-

sponds to boundaries between superpixels. On the other hand, processing of finer oversegmentation is more

costly. For preemptive SLIC and compact watershed algorithms, the compactness parameter represents a

tradeoff between obtaining more compact superpixels (and smoother boundaries between them) and better

adherence to edges in the image. This is important because jagged boundaries have a detrimental influence

on the performance of certain algorithms (see Section 4.2).

Superpixel algorithms have been used for image analysis in conjunction with graph algorithms previ-

ously (Achanta et al., 2010), for example in (Li et al., 2004, Fulkerson et al., 2009). One of the approaches

was to use Conditional Random Fields (Lafferty et al., 2001) on superpixels instead of pixels.

Machine learning

Machine learning is a broad discipline encompassing many different problems, such as classification, re-

gression, clustering, structured learning and other (Russell and Norvig, 2009, Cios et al., 2007, Flach, 2012,
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Figure 2.6: A comparison of preemptive SLIC (first row), watershed from markers (second row) and compact
watershed (third tow) algorithms. Images are segmented into approximately 900 superpixels in the first
column, 3400 in the second one and 12000 in the third one. Only a selected part of the image is shown
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Figure 2.8: A comparison of preemptive SLIC segmentation for approximately 900 superpixels and com-
pactness value equal to 5 for the left image, 10 for the middle image and 22 for the right image

Mohri et al., 2012, Murphy, 2012). The first of these tasks, classification, is relevant for this thesis. This

Section is divided into two parts. In Section 2.5.1 the classification problem is first described. Well known

algorithms are mentioned and briefly discussed. This is followed by a short introduction to feature extrac-

tion. Section 2.5.2 describes various methods of comparing performance of classification algorithms.

Classification and feature extraction

To formulate the classification problem we need to start with a training set of n pairs, D = {(xi, yi)}ni=1

where each xi belongs to a certain set X and each yi belongs to a finite set Y = {c1, c2, . . . , cl} for some

l > 1. The goal is to construct a function h : X → Y that appropriately returns labels h(x) ∈ Y for each

element x of the set X . To precisely specify this problem, a hypothesis space H is also needed, that is the

set of functions h that are taken into consideration. A measure of accuracy A is also necessary to decide

which functions fit the data better. In this way, classification can be expressed as an optimization problem:

h∗ = arg max
h∈H

A(h), (2.26)

where the most accurate function h∗ is searched. Different methods of measuring the accuracy are described

in Section 2.5.2.

Sometimes, as used in Chapter 5, instead of simply ascribing a single label c ∈ Y to each element

of the set X , a probabilistic approach is taken. We assume that there exist a joint probability distribution2

2This definition assumes, for simplicity, a discrete set X . In general, a more complicated measure-theoretic definition should be
used (Çınlar, 2011).
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P : X × Y → [0, 1]. In this setting we expect the function h to return a probability distribution

h(x)j = P (Y = cj |X = x) (2.27)

where j = 1, 2, . . . , l and bold symbols X and Y denote random variables with values in respective sets

X and Y . Methods that solve this problem can be broadly categorized as belonging to one of the following

classes (Murphy, 2012):

• Generative methods, which are based on modelling class-conditional probabilities P (X|Y = cj) and

class priors P (Y = cj), and thus have the capacity to generate new synthetic data points from the set

X (Bishop, 2006). Among generative methods there are naive Bayes classifier (Russell and Norvig,

2009), linear discriminant analysis (Murphy, 2012) and the k-nearest neighbour classifier (Murphy,

2012).

• Discriminative methods, which model h(x) = P (Y |X = x) directly. Most classification algorithms

belong to this category (Murphy, 2012), for example decision tree-based methods (Cios et al., 2007),

logistic regression or neural network-based classification algorithms (Dreiseitl and Ohno-Machado,

2002) and Support Vector Machine (Cortes and Vapnik, 1995, Russell and Norvig, 2009). Methods

based on regression-voting (Gall and Lempitsky, 2009) are an important subcategory, although some

authors consider them separately (Lindner et al., 2015, Bromiley et al., 2016).

Regression-voting is popular in image analysis, for methods based on variants of Constrained Local Mod-

els (Cristinacce and Cootes, 2008, 2006).

In many applications learning multiple classifiers and then aggregating their results is beneficial. This

is the principle of the so-called ensemble learning, comprising techniques such as boosting (Schapire et al.,

1998) or bagging (Breiman, 1996). Random forests (Breiman, 2001) constitute a prominent example of an

ensemble classification method.

Feature extraction (Guyon et al., 2006) is an important tool in applying classification algorithms to

practical problems. In many cases objects that need to be classified can be described by a vast amount

of features or in different but equivalent ways. Appropriate and relevant features need to be selected and

described in a way that facilitates effective object classification. Some authors even use a different formalism

for the classification problem where classified objects and their features are considered separately (Cheng

and Hüllermeier, 2009, Tong et al., 2004, Tomczyk and Szczepaniak, 2005). This highlights the issue of

describing features of an instance but complicates the equations. It is worth noting that the problem of

feature extraction can be automatically solved by very successful deep learning methods (LeCun et al.,

2015, Krizhevsky et al., 2012), although they have limited applicability when the set of training images is

small, as considered in this thesis.
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Measuring performance of classification algorithms

There are many performance measures for classification algorithms. Firstly, one can be interested in time

necessary to construct a classifier based on the training dataset or the time it takes to classify a single

instance. Obviously, the fastest classifier would just return a single selected class. This is done by the ZeroR

algorithm (Devasena et al., 2011). This method has, however, poor accuracy in most datasets and is thus

used only as a baseline for other classifiers.

Typically, the accuracy is measured using a second set of pairs {(x̂i, ŷi)}ntesti=1 , called a test set, by

comparing h(x̂i) and ŷi for a given function h ∈ H and i ∈ {1, 2, . . . , ntest}. This approach, when applied

directly, has several problems. In practice we have only a finite set of instances. When a fraction of them are

used in the testing set and the rest forms the training set, the holdout cross-validation is performed (Kohavi,

1995). The drawback of this method is decreasing the potential of obtaining a more accurate classifier by

not using a part of the data in training (Russell and Norvig, 2009).

The most popular tool for reliable assessment of classifier accuracy is cross-validation (Stone,

1974). The k-fold cross-validation divides the set of all learning instances into k sets Dj for j =

1, 2, . . . , k of approximately equal size. The analysed classifier is learned k times. In the jth iteration,⋃
l=1,2,...,j−1,j+1,...,kDl is used as the training set and Dj is used as the test set. Obtained accuracies are

averaged to get the final accuracy estimate. The cross-validation is called stratified when, additionally, in

each set Dj for j = 1, 2, . . . , k the distribution of classes is similar to their distribution in the entire set D.

Kohavi (1995) suggests using stratified ten-fold cross-validation for model selection.

The accuracy estimation using cross-validation has an inherent statistical uncertainty. One method of

dealing with this problem is construction of confidence intervals, that is we have to select two numbers a,

b such that P (a ≤ A ≤ b) ≈ γ, where A is a random variable describing accuracy of a classifier and

γ ∈ [0, 1] is a desired probability. The issue of formal definition of A is discussed by Vanwinckelen and

Blockeel (2012).

This interval can be constructed in many ways, depending on assumptions about the performed cross-

validation. In (Kohavi, 1995), the confidence interval is constructed based on the De Moivre-Laplace limit

theorem. Another option is considered in (Moore and Lee, 1994, Maron and Moore, 1994) using Hoeffding’s

inequality, which has weaker assumptions about the random variable A. Different bounds are considered

and compared in (Langford, 2005, Kääriäinen and Langford, 2005). Sometimes a box plot of the empirical

distribution across cross-validation folds is given to illustrate the uncertainty (Sing et al., 2005).

Other statistical tools can also be used for measuring the accuracy, for example the bootstrap (Efron and

Gong, 1983) and jackknife (Quenouille, 1949, Tukey, 1958, Miller, 1974) methods. They are, although, less

popular than cross-validation.
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There are also other tools for measuring performance of a classifier. Among the most popular ones are,

for example:

• Receiver Operating Characteristic (ROC) curve, which is sometimes reduced to a single number, area

under the ROC curve (AUC) (see (Pollack and Decker, 1958) for an early usage and (Bradley, 1997)

for a more recent analysis),

• multi-class focused methods like Cohen’s kappa (Cohen, 1960) and Fleiss kappa (Fleiss, 1971),

• single class focused methods, like true positive rate, false positive rate, precision, recall, specificity,

sensitivity or F-measure (Japkowicz and Shah, 2011).

Statistical tests for measuring performance have been proposed (Japkowicz and Shah, 2011, Golland and

Fischl, 2003). Their utility, however, should not be overvalued (Drummond, 2006, Demšar, 2008, Rosenthal,

1979). As machine learning is not the main focus of this thesis and applying advanced statistical methods

is not a standard practice in image segmentation (Zhang, 1996, Zhang et al., 2008, Noble and Boukerroui,

2006), statistical tests are not performed.
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Chapter 3

PGA-based boundary delineation

In this chapter a novel paradigm for fitting a statistical shape models to image data is described. This ap-

proach is influenced by achievements in the field of superpixels algorithms (Neubert and Protzel, 2014). A

given image is divided into superpixels. Their borders can be represented as a multigraph in which edges

are candidate boundary patches.

The PDM-based search for an object boundaries is generally not constrained (except constraints on the

PCA modes within which a reasonable shape model is fitted). In contrast, the method presented in this

chapter performs the search for the boundary with an additional constraint that it must lie within the bound-

aries generated by a superpixel algorithm. As far as I know models considering edges as hard constraints

for combinatorial fitting of a trainable statistical model of shape were not previously considered. As a side

effect, the problem of detecting boundaries of an object can be formulated as a global search. This results

in reduced dependency on good initialization. In contrast, in PDM-based methods the final success of the

boundary detection does depend on both landmark selection and initialization.

Methods

The PGA-based binarization algorithm consists of two phases of operation, training of the statistical shape

model and matching against the trained model. In the first stage the algorithm is given a number of curves

γi : [0, 1] → C, i = 1, 2, . . . ,M representing boundaries of object instances. A continuous image descrip-

tion is assumed, and the curve lies in C instead of R2 for more simple expression of certain operations.

The standard vector space isomorphism between these two spaces is used where necessary. The curves γi

are either extracted from hand-annotated training images or automatically generated for computer-generated

images.

During the second stage the constructed shape model is used to guide boundary delineation in given

images. An algorithm iteratively elongates partially matched shapes and prunes the set of curve fragments
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using a combination of parameters related to either fitness to the model or certain cues extracted from the

analysed image.

Training

Training begins with sampling each training curve γi : [0, 1] → C, i = 1, 2, . . . ,M at n points

{pi1, pi2, . . . , pin}, where n is a selected fixed number. The points are equidistant with respect to the Eu-

clidean metric in C, that is

|pi2 − pi1| = |pi3 − pi2| = · · · = |pin − pin−1|. (3.1)

In practice, curves γi are represented by sequences of neighbouring pixels and the points {pi1, pi2, . . . , pin}

for i = 1, 2, . . . ,M are obtained using first-order interpolation.

In the next step the Ordinary Procrustean Matching (OPA) (Kendall, 1984, Gower, 1975, Goodall, 1991)

of sampled curves is performed with {p1
j}nj=1 selected as the reference. Points adjusted using the OPA are

denoted by pij for i = 1, 2, . . . ,M and j = 1, 2, . . . , n. Two sets of features are extracted from the adjusted

points pij :

1. The angles αij,0 = arg(pij+1 − pij) where j = 1, 2, . . . , n and pin+1 = pi1 is assumed.

2. The angles αij,k = arg(pi
(j+1)2k

− pi
j·2k) where j = 1, 2, . . . ,

⌊
n/2k

⌋
, k = 1, 2, . . . , dlog2(n)− 1e

and pi
(j+1)2k

= pi
(j+1)2k−n is assumed where necessary.

The second set of features, however redundant, increases the robustness of shape representation in a way

similar to a multi-scale approach.

A similar point distribution model based on angles has been discussed in e.g. (Sommer et al., 2009). The

difference is that in that paper the second set of angles is not considered and a different approach to scale

and rotation-invariance is taken, resulting in a different Riemannian metric in the feature space.

The last step of training involves performing of the PGA (see Section 2.3), in the feature space. This is

necessary as the extracted features belong to a torus Tdim(n) (that is, a Cartesian product of dim(n) circles)

where

dim(n) =

dlog2(n)−1e∑
b=0

⌊
n/2b

⌋
. (3.2)

The mean shape, denoted µ,

µ = (µ1,0, µ2,0, . . . , µn,0,

µ1,1, . . . , µbn/2c,1,

. . . ,

µ1,dlog2(n)−1e, . . . , µbn/2dlog2(n)−1ec,dlog2(n)−1e

)
(3.3)
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is calculated using the extrinsic mean algorithm (see Equation (2.23)) (Fletcher et al., 2004) in Cdim(n). The

torus is embedded as a product of unit circles and the projection is based on normalization in each complex

subspace.

Next, the PGA modes wi ∈ TµTdim(n) (where TµTdim(n) is the space tangent to Tdim(n) at point µ,

see Definition 14) and variances λi ∈ R for i = 1, 2, . . . , dim(n) are computed. To ensure the rotation

invariance of the shape model, the mean shape is rotated by a torus diffeomorphism ϕ : Tdim(n) → Tdim(n)

given by equation

ϕ
(
γ1,0, . . . , γbn/2dlog2(n)−1ec,dlog2(n)−1e

)
=(

γ1,0 − µ1,0, . . . , γbn/2dlog2(n)−1ec,dlog2(n)−1e − µ1,0

)
.

(3.4)

The rotated mean (note that rotation corresponds to translation in the angular representation) is hereafter

called µ:

µ = ϕ(µ) (3.5)

and rotated PGA modes are called wi:

wi = dϕµ(wi) (3.6)

for i = 1, 2, . . . , dim(n) where dϕµ is the differential of ϕ at point µ (see Definition 18 on page 12). Finally,

the highest-energy modesw1, w2, . . . , wL are selected. The number 1 ≤ L ≤M is the smallest number such

that tangent vectors w1, w2, . . . , wL correspond to at least Emin percent of total energy (0 ≤ Emin ≤ 100),

as expressed by variances.

This approach is partially similar to Kendall’s shape manifolds (Kendall, 1989). Due to the existence of

additional constraints on the positions of points, defined by Equation (3.1), a lower-dimensional manifold is

obtained.

Matching

Boundary delineation of a given discrete image Imat : {1, 2, . . . ,W} × {1, 2, . . . ,H} → R (see Sec-

tion 2.1.5) starts with edge detection. A number of existing approaches can be used (Torre and Poggio,

1986). For images with low level of noise the gradient magnitude Igm : {1, 2, . . . ,W}×{1, 2, . . . ,H} → R

is sufficient and fast to compute (Jähne, 2002). Central first-order finite difference formulas are used for all

pixels except borders where one-sided first order formulas need to be applied. The image Igm is overseg-

mented to obtain constraints for matching the statistical model of shape. Any superpixel algorithm (see Sec-

tion 2.4.4) can be used, including watershed segmentation (see Section 2.4.2). The watershed from markers

(see Section 2.4.2) algorithm was used since it exhibits very good boundary adherence on test datasets.
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The oversegmentation results in a set of pixels V ⊂ {1, 2, . . . ,W} × {1, 2, . . . ,H}, represented by

their indices in the image, that form the borders between segments. This set can be considered as the set

of vertices of an undirected graph G = (V,E) where the set of edges E is the set of unordered pairs of

Moore-neighbouring pixels in V , that is pixels whose column and row indices are different by at most 1.

Now, delineation of boundaries of an object is reduced to finding a path in the graph G.

The graphG is then reduced to a multigraphGred = (Vred, Ered, rred). LetG′ = (V ′, E′) be a subgraph

(Definition 5) of G that contains only vertices v′ of degree 3 or more and vertices on the edges of image

(v′ ∈ V such that v′ = (1, j), v′ = (W, j), v′ = (i, 1) or v′ = (i,H) for some i ∈ {1, 2, . . . ,W} and

j ∈ {1, 2, . . . ,H}). The set of edges E′ contains all edges from G that connect vertices from the set V ′.

Then Vred is the set of all connected components of the graph G′ and the function κV : V ′ → Vred assigns

to vertex v ∈ V ′ the connected component in V ′ it belongs to. Vertices of Gred correspond to places in the

segmented image where either three or more superpixels have a common boundary or two superpixels meet

at the image boundary. The set of edges Ered contains all paths and cycles v1v2 . . . vk, k ∈ N, k > 1 such

that v1 and vk belong to connected components of G′, vertices vi for i = 2, 3, . . . , k − 1 belong to V and

are of degree 2 and {vi, vi+1} ∈ E for i = 1, 2, . . . , k − 1. The partial function κE : E → Ered assigns

to the edge e ∈ E the edge ê ∈ Ered that contains e (two consecutive vertices in the path or cycle ê are

connected by e in G). Finally, rred : Ered → {{v̂1, v̂2} : v̂1, v̂2 ∈ Vred} is a function that transforms an edge

v1v2 . . . vk in Gred to the set of connected components its endpoints belong to, that is {κV (v1), κV (vk)}.

Figure 3.1 contains an example of graph reduction.

In the next step a path or cycle in the multigraph Gred that matches the model best is searched. This pro-

cess is similar to the Generalized Hough Transform (Ballard, 1981) pattern matching. The key component of

the parametric family of curves is expressed by the exponential map (see Definition 24) at point µ of a linear

combination of PGA modes expµ

(∑L
i=1 ciwi

)
where ci ∈ R for i = 1, 2, . . . , L. Additionally, four param-

eters are needed to account for translation, rotation and uniform scaling. This provides the full description of

a parametrized curve that can be matched using Generalized Hough Transform (GHT) (Ballard, 1981). The

key difference between GHT and the approach proposed in this chapter is a new way of searching the param-

eter space for optimal matching and a different method of selecting the best match. A standard exhaustive

search of GHT is slow and not robust enough for curves with more than a few parameters (Mukhopadhyay

and Chaudhuri, 2015).

To facilitate the description of the process of pattern matching, the following definition is necessary.

Definition 28. A multitrail t in a multigraph Gred = (Vred, Ered, rred) is one of the following:

1. an empty set {}, which is called an empty multitrail,

2. a pair (v̂, (ê1, . . . , êf )) where v̂ ∈ Vred is the first vertex and (ê1, . . . , êf ) is a (possibly empty)

sequence of edges in Gred such that f ∈ N, êi ∈ Ered for i = 1, 2, . . . , f , rred(ê1) = {v̂, v̂1},
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Figure 3.1: A sample fragment of a graph G. Each square corresponds to a single pixel. This part of the
graph G contains four vertices of its reduced graph (v̂1 to v̂4, marked by thick slanted stripes) and eight of
its edges (ê1 to ê8, marked by thin vertical stripes). Two of the vertices (v̂3 and v̂4) are connected by two
edges (ê6 and ê7).
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rred(ê2) = {v̂1, v̂2}, . . . , rred(êf ) = {v̂f−1, v̂f} and v̂, v̂1, . . . , v̂f are pairwise different, except v̂

might be equal to v̂f . The sequence (v̂, v̂1, . . . , v̂f ) is called the vertex sequence of t and is denoted

by V̂ (t).

The algorithm takes an initial multitrail t0 as an input. The multitrail t0 may be empty. In such case a

global search will be performed. Otherwise, the given multitrail will be a part of all considered paths.

Pattern matching is performed iteratively. There are n− |t0| iterations, where n is the number of points

the training curves were sampled at and |t0| is the number of vertices in the multitrail t0. In each of them a

set of elongated multitrails Pi is constructed as follows:

Pi = {(v̂, (ê1, . . . , êk−1, êk)) : (v̂, (ê1, . . . , êk−1)) ∈ P i−1,

êk ∈ Ered and (v̂, (ê1, . . . , êk−1, êk)) is a multitrail}
(3.7)

when i > 0. The set P0 is equal to {(t0, ())} for non-empty t0 and {(v̂, ()) : v̂ ∈ Vred} otherwise. In practice

the set Pi is constructed by considering each multitrail t from the set Pi−1, selecting edges êk incident to

the last vertex of the vertex sequence of t and checking if t elongated with êk is a multitrail.

Let P i−1 be a subset of Pi−1 with nsel multitrails of lowest error Êtotal(t, center(κ−1
V (v̂)), α0) (see

Equation (3.24)), where center : 2V → C is a function that calculates the arithmetic mean of positions of

nodes from a given set, v̂ is the first vertex of t and α0 is the shape rotation:

α0 = arg min
α∈(−π,π]

Êtotal(t, x0, α). (3.8)

Optimal rotation α0 is recalculated when the step number i is a power of 2. The computed value is re-

tained for subsequent steps. For best results α0 should be recalculated after each step but this procedure is

computationally expensive. This optimization follows from an observation that curves change much more

significantly after elongation when they are short. The final match is the multitrail t ∈
⋃
i∈{0,1,...,n−|p0|} Pi

with the lowest total errorEtotal(t, n, x0, α0) (see Equation 3.21). Pseudocode for this algorithm is presented

in Algorithm 2 and demonstration of its operation is shown in Figure 3.2.

Estimation of the multitrail error

A number of different methods of multitrail error estimation has been developed. Each of them either mea-

sures a different kind of discrepancy from the model or evaluates fitness to the given image. In this section

they are described in detail. A way to combine them into a single error function is also proposed.

A submodel extraction procedure is used when a multitrail is compared against a part of the entire

modelled curve. This method describes how a statistical model of initial fragments of curves can be extracted

from the model based on entire curves.
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(a) An input image (b) Gradient magnitude of the input image 3.2a

1

(c) Superpixel segmentation with partial paths after
30 iterations

1

(d) Superpixel segmentation with partial paths after
64 iterations

Figure 3.2: Demonstration of operation of PGA-based boundary delineation algorithm. Small red arrows
indicate edges of the reduced graph Gred belonging to paths in the set multitrails of Algorithm 2.
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Algorithm 2: Searching for the multitrail with the lowest error in the reduced graph Gred.
Require: (µ, {w1, w2, . . . , wL}) is the trained model, t0 is the initial multitrail

1: multitrails ← {t0} {a working set of multitrails}
2: fullPaths ← {} {set of best multitrails matched to full model}
3: for i← 1 to n− |t0| do
4: if i is a power of 2 then
5: for all t ∈ multitrails do
6: RECALCULATEINITIALANGLE(t)
7: end for
8: end if
9: multitrails ← SELECTBESTPATHS(multitrails)

10: fullPaths ← PICKBESTFULLPATHS(multitrails , fullPaths)
11: multitrails ← ELONGATEPATHS(multitrails)
12: end for
13: return GETLOWESTERRORPATH(fullPaths)

Submodel extraction

Let (µ, {w1, w2, . . . , wL}) be the model corresponding to the set of shape samples {pi1, pi2, . . . , pin}, i =

1, 2, . . . ,M . During the construction of the full multitrail it is necessary to estimate the error for multitrails

corresponding to just a part of the full model. Let npart be the number of points the full multitrail needs to be

truncated to. Now, we need to know what model corresponds to samples {pi1, pi2, . . . , pinpart}. In general this

model has to be independently constructed but this can be quite costly, especially when n is large. Instead,

an approximation to the exact truncated model can be extracted from the full model. This results in reduction

of memory complexity of model representation from O(n3) to O(n2).

Let Sub(Tdim(n), npart) be the submanifold of Tdim(n) such that

Sub(Tdim(n), npart) ∼={(
β1,0, β2,0, . . . βnpart,0, µnpart+1,0, . . . , µn,0,

β1,1, β2,1, . . . βnpart,1, µnpart+1,1, . . . , µbn/2c,1,

. . .

β1,dlog2(n)−1e, . . . , βnpart,dlog2(n)−1e, µnpart+1,dlog2(n)−1e, . . . ,

µbn/2dlog2(n)−1ec,dlog2(n)−1e

)
: βj,k ∈ (−π, π] ,

j = 1, 2, . . . ,
⌊
n/2k

⌋
; k = 0, 1, 2, . . . , dlog2(n)− 1e

}
⊆ Tdim(n).

(3.9)
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The truncated model is then given by

(µ, {PTµSub(Tdim(n),npart)
w1, PTµSub(Tdim(n),npart)

w2, . . . ,

PTµSub(Tdim(n),npart)
wL})

(3.10)

where PTµSub(Tdim(n),npart)
denotes the orthogonal projection onto space tangent to submanifold

Sub(Tdim(n), npart) at point µ.

Eigenface-like error

The first error estimator is inspired by the eigenface method (Sirovich and Kirby, 1987). The idea of pattern

matching based on shape alone is also present in the Active Shape Model approach (Cootes et al., 1995).

The description below is given for the case of matching the given multitrail t in multigraph Gred to the full

model. The procedure for matching against a submodel is analogous.

The multitrail t = (v̂, (ê1ê2 . . . êF )), where F is the number of edges in t, is first converted into a curve

Ξ(t) – a polygonal chain defined by the following points:

(center(κ−1
V (v̂)), v1,1, v1,2, . . . , v1,J1 , center(κ−1

V (v̂1)), . . . ,

vF,1, vF,2, . . . , vf,JF , center(κ−1
V (v̂F )))

(3.11)

where (v̂, v̂1, . . . , v̂F ) = V̂ (t) is the vertex sequence of t and center(κ−1
V (v̂i)) is the coordinate-wise arith-

metic mean of coordinates of nodes in the set κ−1
V (v̂i) for i = 1, 2, . . . , F . Furthermore, the sequence

vi,1, vi,2, . . . , vi,Ji is equal to κ−1
E (êi) for i = 1, 2, . . . , F . The order of vertices in this sequence is deter-

mined by their order on the edge êi, that is vi,1 is the vertex closest to its predecessor in the sequence defined

in Equation (3.11) and vi,ji−1 and vi,ji+1 are the only neighbours of vi,ji in the eight pixel neighbourhood

for ji = 2, 3, . . . , Ji − 1, i = 1, 2, . . . , F .

The curve Ξ(t) is then sampled at n equidistant points

z(Ξ(t)) = (z1, z2, . . . , zn) (3.12)

where z : C → Cn is the sampling function and C is the set of polygonal chains in C. The points are con-

verted into a collection of angles like in Section 3.1.1 and the first angle in subtracted like in Equation (3.5).

As a result, a point in ω(z(Ξ(t))) ∈ Tdim(n) is obtained, where ω : Cn → Tdim(n) performs the described

conversion.

The point ω(z(Ξ(t))) is transferred into the tangent space TµTdim(n) using the logarithmic map (the

inverse of the exponential map) logµ : Tdim(n) → TµTdim(n). The result of this operation is then compared to
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the model and the error is calculated:

Eeig(t, npart) = ‖(I − UUT )(logµ(ω(z(Ξ(t))))‖2 (3.13)

where npart is the number of points in the employed submodel Sub(Tdim(n), npart) (used in the general

case) andU = [w1, w2, . . . , wL] is the matrix composed of coordinates of selected orthonormal eigenvectors

and (logµ(ω(z(Ξ(t))))) is the column matrix of coordinates of that vector. Both matrices of coordinates

are computed in the same orthonornal basis Bµ composed from basis vectors from spaces tangent to the

submanifold

Sµ;j,k =
{(
µ1,0, . . . , µn,0, . . . , µj−1,k, βj,k, µj+1,k, . . . ,

µ1,dlog2(n)−1e, . . . , µbn/2dlog2(n)−1ec,dlog2(n)−1e)

: βj,k ∈ (−π, π]} ⊆ Tdim(n)

(3.14)

at µ for j = 1, 2, . . . ,
⌊
n/2k

⌋
, k = 0, 1, 2, . . . , dlog2(n)− 1e.

In the general case of matching against a submodel, a few changes are necessary. First, the curve is sam-

pled at a lower number of points (npart). Second, next steps after sampling are performed in a submanifold

Sub(Tdim(n), npart). Finally, the martix U is constructed from vectors wi, i = 1, 2, . . . , L truncated to the

tangent space of the submanifold Sub(Tdim(n), npart).

High deviation error

In the PCA (and therefore PGA) method the eigenvalues λ are the empirical variances. It is possible that a

certain vector lies in the PCA subspace but much further from the mean than the training vectors. Such a

vector does not fit the data well despite its low eigenface error. Therefore the high deviation error term is

introduced to reject such vectors.

The high deviation error is defined as:

Ehde(t) =

√∑L
i=1 λi
L

L∑
i=1

ci√
λi

(3.15)

where ci = 〈logµ(ω(z(Ξ(t)))), wi〉 and L is the number of selected eigenvectors. The factor appearing in

the Equation (3.15) before the sum is introduced to normalize the high deviation error.

Gradient error

The information carried by the image Imat can be used in one more way, apart from analysis of superpixel

segmentation of gradient magnitude image. It can be observed that the training shapes cover areas of training
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images where the magnitude of gradient is relatively high. This property is exploited to define the gradient

error term:

Egrad(t) = exp

 −1

agrad|Ξ(t)|

|Ξ(t)|∑
i=1

‖∇Imat (bqi,1c, bqi,2c)‖2

 (3.16)

where Ξ(t), defined by Equation (3.11), is equal to (q1, q2, . . . , q|Ξ(t)|) and agrad is a gradient magnitude

rescaling constant. Terms qi,1 and qi,2 are coordinates of qi for i = 1, 2, . . . , |Ξ(t)|. First order central finite

difference formulas are used to compute the gradient.

The value of agrad has been determined experimentally and fitted all of the tested images. In the fu-

ture a more robust way of determining its value should be explored, such as using parameter optimization

frameworks (Hutter et al., 2011).

Scale error

In certain cases it has been observed that the described algorithm has a tendency to overestimate the scale

of the curve. It is especially likely when the initial part of the curve is approximately a straight line. The

algorithm sometimes fails to correct this overestimation later while matching against longer submodels. To

overcome this tendency a scale error term is introduced:

Escale(t) =
1

n− 1

n−1∑
i=1

|z(Ξ(t))i+1 − z(Ξ(t))i|. (3.17)

In an ideal case, the expression in Equation (3.17) is equivalent to Escale(t) = |z(Ξ(t))2 − z(Ξ(t))1|.

In practice, though, the points z(Ξ(t)) are only approximately equidistant and Equation (3.17) gives a result

that is more closely related to the actual scale of the shape represented by t.

Curve distance error

Let us assume for the moment that a multitrail t is matched to the full model at an initial angle α0, initial

position x0 and scale d. The curve distance error is the distance between curves Ξ(t) and the polygonal

chain defined by points ω(β1,0, . . . , βn−1,0, x0, d, α0) where βi,0 for i = 1, 2, . . . , n− 1 is defined by

(
β1,0, . . . , βbn/2dlog2(n)−1ec,dlog2(n)−1e

)
=

expµ(PSpan{w1,w2,...,wL} logµ(ω(z(Ξ(t)))))

(3.18)
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and the function ω is given by the following formula:

ω(β1,0, . . . , βn−1,0, x0, d, α0) =(
x0, x0 + dei(α0+β1,0), . . . , x0 + d

(
n−1∑
i=1

ei(α0+βi,0)

))
.

(3.19)

Using these symbols the curve distance error can be defined by

Ecde(t, npart, x0, α0) = 1/n ‖z(Ξ(t))−

ω(β1,0, . . . , βn−1,0, x0, d, α0)‖1 .
(3.20)

Curve distance model for partial matches (that is, while matching against a submodel) can be obtained

by truncating the full model and using the formulas for the extracted submodel (see Section 3.1.3, Submodel

extraction subsection). Necessary changes are analogous to adaptations described for eigenface-like error

(see Section 3.1.3, Eigeface-like error subsection).

Total error

The total error is a linear combination of eigenface error, high deviation error, gradient error, scale error and

curve distance error multiplied by an occlusion factor Occl(t):

Etotal(t, npart, x0, α0) = Occl(t) (eeigEeig(t, npart)+

ecdeEcde(t, npart, x0, α0) + egradEgrad(t)+

escale Escale(t) + ehdeEhde(t))

(3.21)

where eeig, ehde, egrad, escale and ecde are nonnegative coefficients of the linear combination.

The occlusion factor is introduced to help reject model matchings where the model curve is not fully

contained within the image Imat. An expected continuation of the model fitted to the multitrail t is calculated

by taking the dot products ci = 〈PTµSub(Tdim(n),npart)
wi, logµ(ω(p))〉, i = 1, 2, . . . , L in the appropriate

submodel Sub(Tdim(n), npart) and using them in the full model:

(
β1,0, . . . , βbn/2dlog2(n)−1ec,dlog2(n)−1e

)
= expµ

(
L∑
i=1

ciwi

)
(3.22)

(see Equation (3.18)). The occlusion factor is then defined as an exponential of fraction of points W (t) in

the multitrail given by ω(β1,0, . . . , βn−1,0, x0, d, α0) that lie outside of the image Imat:

Occl(t) = eaocclW (t) (3.23)
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where aoccl is an occlusion error coefficient.

The minimization of total error over npart between nmin(t) and nmax(t) results in the submanifold-

minimized total error:

Êtotal(t, x0, α0) =

arg min
i=nmin(t),nmin(t)+1,...,nmax(t)

Etotal(t, i, x0, α0).
(3.24)

The following formulas are used for the functions nmin and nmax:

nmin(t) = max

{
2,

l(t)n

(W +H)smin
, nlast(t)− cminn

}
nmax (t) = min

{
n,

l(t)n

(W +H)smax
, nlast(t) + cmaxn

} (3.25)

where l(t) is the length of the polygonal chain described by Equation (3.11), nlast(t) is the number i that

minimized the error in Equation (3.24) before the last elongation of t (or zero if t ∈ P0) and smin, smax,

cmin and cmax are certain constants that depend on the dataset.

Experiments

The algorithm was tested on four datasets: two medical sets (50 standing frontal X-ray images of the knee

and 34 lateral X-ray images of the foot, see Figure 3.4) and two generated sets (40 stars obscured by noise

and a mixed set of 20 images of triangles and 20 images of squares obscured by noise, see Figure 3.5).

Additionally, all artificially-generated shapes are distorted (i.e. corners are rounded and sides are uneven).

All images have been rescaled to contain approximately fifty thousand pixels. In case of the foot dataset the

heel bone was detected, the femur was matched in the knee datasets and respective shapes were detected on

stars and triangles and squares datasets. In the foot dataset it was necessary to introduce a hand-drawn line

separating the heel bone from the talus bone. These two bones significantly overlap on the X-ray images

which results in poorly selected boundaries of superpixels.

The number n of sampling points is chosen as the smallest power of two that accurately represents fea-

tures of detected objects. The choice of n is limited to powers of two because the multiscale approach is

applied. The value of n cannot be too large as it significantly increases computation time and introduces ad-

ditional errors due to equidistance assumption (see Eq. (3.1)) being only approximately satisfied. Figure 3.3

presents the mean squared error from this source by comparing angles {αij,0}i=1,...,M,j=1,...,n obtained from

reduced-scale images used for testing to angles {α̂ij,0}i=1,...,M,j=1,...,n obtained from higher-resolution im-
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Figure 3.3: Relation between error ds (defined in Equation (3.26)) introduced by unequal distances between
successive points. Error for knee dataset is marked by circles while error for triangles and squares dataset is
marked by triangles

ages having 1 to 1.5 megapixels. The formula for mean squared error is

ds =
1

(n− 1)M

M∑
i=1

n∑
j=2

(αij,0 − αi1,0 − (α̂ij,0 − α̂i1,0))2, (3.26)

where all angles are assumed to be in (−π, π].

The chosen oversegmentation algorithm is the watershed from markers method (Meyer and Beucher,

1990), see Section 2.4.2. The selected markers are local minima of the gradient magnitude image in a

square 2nm+1×2nm+1 neighbourhood centred on the pixel where nm is a certain constant. The compact

watershed and SLIC algorithms (Neubert and Protzel, 2014) were also tested but found inferior due to worse

adherence to the real boundaries in the images.

Depending on the selected oversegmentation method the graph G may or may not be biconnected.

Typically there is a single largest biconnected component of the graph G containing the shape to be found

and other, much smaller ones, can be removed to speed up the computations.

The minimization in Equation (3.8) is calculated using single-variable optimization algorithm from the

dlib library (King, 2009). The accuracy parameter is set to 0.01 and at most thirty iterations are allowed.
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(a) (b)

Figure 3.4: Example images from the foot (Figure 3.4a) and knee (Figure 3.4b) datasets.

(a) (b)

Figure 3.5: Example images from the squares and triangles (Figure 3.5a) and the star (Figure 3.5b) datasets.
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For each dataset a separate model was created. The given shape was matched in each image of the

respective dataset given initial paths with three edges. For each dataset the mean Dice coefficient (Dice,

1945) dmean, standard deviation dsd of Dice coefficients, minimum dmin and maximum dmax of Dice coef-

ficients were calculated. The sets of pixels inside the true object boundary and inside the curve found by the

proposed algorithm were used to calculate the Dice coefficient.

The algorithm parameters were hand-selected for each dataset. Relatively high dimensionality of the

parameter space and long matching time (a few minutes to half an hour for a single image analysed on a

typical desktop computer) make use of general purpose optimization algorithms infeasible. Application of

specialized parameter-fitting algorithms may be considered in the future as a possible improvement of the

method (Hutter et al., 2011, Birattari et al., 2010, Hutter et al., 2009, Ansótegui et al., 2009, Burke et al.,

2013).

Results

The results (the mean Dice coefficients, standard deviation of Dice coefficients, minimum and maximum

Dice coefficient in a dataset obtained using the leave-one-out cross-validation) and selected parameters are

summarized in Table 3.1. The obtained mean Dice coefficients are comparable with state-of-the-art pattern

matching algorithms. Very high mean Dice coefficient in the dataset with triangles and squares indicates that

the algorithm can learn more than one shape at the same time. This can also be an indication of robustness

for families of shapes that exhibit significant variation.

Figure 3.6 displays the results of pattern matching in two cases from different datasets. The accuracy

of matching is very good in areas of high gradient magnitude. In areas of low gradient magnitude the

oversegmentation does not follow the edges of the object and, as a result, the accuracy decreases. Application

of a better oversegmentation algorithm or matching the parts of shape in low gradient magnitude areas using

a different approach might improve the accuracy of the match.

In a few cases, the object was not found. This may happen when there is a large area of low gradient

magnitude instead of a sharp boundary. In many such cases increasing the parameter nsel leads to better

results at the cost of significantly increased matching time. Dynamic adjustment of nsel could reduce this

issue.

One example of incorrect object segmentation is depicted in Figure 3.7. An image from the stars dataset

(see Subfigure 3.7a) has been segmented using parameters from Table 3.1. Black lines in Subfigures 3.7b

to 3.7j correspond to the underlying superpixel segmentation. Red lines in Subfigures 3.7b to 3.7i represent

edges of paths in the set multitrails (see Algorithm 2), whereas the red line in Subfigure 3.7j corresponds to

edges of the best fit. For comparison, Figure 3.8 depicts a successful process of segmentation of a different

image.

M. Baran Pattern recognition in superpixel graphs



3.3. Results 49

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.6: An example of pattern matching on an image from the knee dataset ((a)–(c)), foot dataset ((d)–
(f)), star dataset ((g)–(i)) and triangles and squares ((j)–(l)) dataset. From the left column to the right column:
the watershed segmentation of the selected image ((a), (d), (g) and (j)), watershed segmentation overlaid on
top of the original image ((b), (e), (h) and (k)), the shape (nodes in the graph G) matched using the proposed
approach, coloured black, on top of the watershed segmentation ((c), (f), (i) and (l)).
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Table 3.1: Algorithm parameters selected for the used datasets and matching results (mean Dice coefficients
dmean, minimum dmin and maximum dmax of Dice coefficients in a set, standard deviation dsd of Dice
coefficients) and results obtained for the knee dataset using the AAM method

dataset knee (AAM) knee foot star
triangle,
square

n - 128 64 128 64
nsel - 300 500 300 500
nm - 5 6 5 5
eeig - 1 1 1 1
ehde - 0.005 0 0.005 0
egrad - 10 10 0.02 70
escale - 1.0 0.6 2.0 1.0
ecde - 0.01 0.1 0.001 0.01
aoccl - 10 10 10 10
smin - 2.0 1.5 2.0 3.0
smax - 1.0 0.3 0.5 0.5
cmin - 0.1 0.1 0.1 0.1
cmax - 0.1 0.3 0.3 0.3
Emin - 95 95 95 95
agrad - 70 70 70 70

dmean 0.94 0.95 0.91 0.94 0.97
dmin 0.77 0.47 0.66 0.21 0.74
dmax 0.985 0.996 1 1 1
dsd 0.06 0.07 0.1 0.16 0.05

In both depicted cases initially broad search is narrowed in subsequent iterations. It can be observed that

in Figure 3.7 the correct shape has been removed from consideration between steps 48 and 64 due to the

tendency of the algorithm to overestimate the size of searched shape. A separate problem can be spotted

in Subfigures 3.7f and 3.7g. A number of very similar paths exhaust the maximum capacity nsel of the

multitrails set. Elimination of very similar paths from this set would improve the performance of presented

algorithm.

Discussion

The proposed method is a very promising pattern recognition algorithm. Good accuracy has been achieved

on multiple test sets. The algorithm is a successful proof of concept of a new approach to pattern matching.

The most significant issue is lack of clear method for parameter selection. Machine learning methods,

and in particular parameter optimization algorithms (Hutter et al., 2011, Birattari et al., 2010, Hutter et al.,
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(a) Input image

1

(b) After 8 steps

1

(c) After 16 steps

1

(d) After 32 steps

1

(e) After 48 steps

1

(f) After 64 steps

1

(g) After 80 steps

1

(h) After 96 steps

1

(i) After 112 steps

1

(j) Final path

Figure 3.7: An example of incorrect pattern matching
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(a) Input image

1

(b) After 8 steps

1

(c) After 16 steps

1

(d) After 32 steps

1

(e) After 48 steps

1

(f) After 64 steps

1

(g) After 80 steps

1

(h) After 96 steps

1

(i) After 112 steps

1

(j) Final path

Figure 3.8: An example of successful pattern matching
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2009, Ansótegui et al., 2009, Burke et al., 2013), are expected to provide a solution to this problem. This

area of research is left open to be pursued as a future work.

The possibility of recognition of multiple shapes, as seen in results for the triangles and squares dataset,

is a remarkable quality of the proposed algorithm since it was not designed with this goal in mind. A more

sophisticated shape model, for example a geodesic variant of Generalized PCA (Vidal et al., 2005), can be

expected to give even better results. Additionally, a strategy similar to the diverse M -best solutions (Batra

et al., 2012) can be used for more efficient management of the set of considered paths.

M. Baran Pattern recognition in superpixel graphs



54 3.4. Discussion

M. Baran Pattern recognition in superpixel graphs



Chapter 4

Elastic shape analysis for superpixel graphs

Shape in Computer Vision is commonly represented using landmarks (Dryden and Mardia, 1998, Cootes

et al., 1995) by Point Distribution Models (PDMs). Despite the unquestionable success of these methods

selection and identification of landmarks remains a challenging problem and very often requires manual

assistance (Zhang and Golland, 2016). The developing area of Elastic Shape Analysis (ESA), pioneered

by Younes (1998), offers a solution. In this approach shape representation is parametrization-invariant. The

problem of landmark matching is automatically solved and a continuous object boundary is provided. Re-

cent developments in ESA (Michor and Mumford, 2006, Mio et al., 2007, Sundaramoorthi et al., 2011,

Younes, 2012, Srivastava et al., 2012, Turaga and Srivastava, 2016), including the Square Root Velocity

(SRV) function representation (Joshi et al., 2007) provide a method for effective computation of elastic

distance between shapes and shape modelling, as well as variability modelling (Xie, 2017, Xie et al., 2017).

In this chapter the well-known Dynamic Programming method for computing elastic distance between

curves (Bernal et al., 2016) is extended. The new algorithm selects two paths from two planar directed

graphs whose drawings are closest under the elastic metric among all paths between selected nodes in these

digraphs. A theoretical analysis of the problem is performed and conditions for the existence of an efficient

algorithm are provided. A positive result for a class of digraphs of practical importance is reported.

The extension is primarily motivated by an application to pattern recognition using a superpixel seg-

mentation of an image (see Section 2.4.4). Such an oversegmentation constitutes a constraint on shapes that

may be present in an image (Mori et al., 2004). This division into superpixels can be interpreted as a draw-

ing of a certain planar digraph, as described in Section 4.1.1. A curve, obtained by averaging over training

shape boundaries, corresponds to the drawing of the second directed graph. Finding a path in the superpixel

segmentation digraph whose drawing is the closest to the mentioned curve in the elastic metric, defines a

segmentation of the given image.
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The elastic metric is described in Section 2.2.1. Section 4.1 describes the extension of elastic curve

registration to planar digraphs. Experiments in which the new algorithm is applied to boundary delineation

are described in Section 4.2. Finally, the conclusions are presented in Section 4.3.

Methods

The new algorithm described in this chapter is an extension of the ESA framework (Srivastava et al., 2011)

to drawings of planar digraphs. Figure 4.1 shows a sample pair of digraph drawings that constitute the input

to the algorithm. The output, consisting of a pair of paths (one in each digraph) together with a matching

between their nodes is also depicted. Drawings of these paths are the closest among drawings of all paths

between given nodes and the matching realizes the optimal registration represented by the reparametrization

γ from Equation (2.16). The set σ constrains the number of edges in one path that may correspond to

a fragment of the other path. Each pair (i, j) in σ means that i consecutive edges in a path in G1 may

correspond to j consecutive edges in a path in G2.

Notation

Let G1 = (V1, E1), G2 = (V2, E2) be two given digraphs. Their planar drawings are defined by vertex

position functions φk : Vk → R2 and edge functions ξk : Ek → L2([0, 1],R2) for k = 1, 2. It is assumed that

the edges cross only at vertices, that is ξk(emk)(t) = ξk(elk)(u) for any two different edges elk , emk ∈ Ek,

elk 6= emk implies that t, u ∈ {0, 1}, except for edges (v, v̄), (v̄, v) connecting the same pair of vertices,

where it is assumed that ξk((v, v̄))(t) = ξk((v̄, v))(1 − t) for all t ∈ [0, 1] and all v, v̄ ∈ Vk, v 6= v̄, for

k = 1, 2. It is also assumed that there is a vertex vk ∈ Vk incident to both edges elk and emk such that

0

1 2 3

4 5 6

7 8 9

10 11

12

0

1

2

3 4 5

6 7

8 9

10

Figure 4.1: A pair of directed graphs G1 (left) and G2 (right) with a pair of most similar paths between
nodes 0 and 12 in G1 and 0 and 10 in G2, drawn in solid line. Other edges are drawn as dashed lines while
matched nodes are connected with dotted lines. In this example σ = {(1, 1), (1, 2), (2, 1)}.
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v1 v2

v3

e1

e2
e3

R2

0 1

φ(v1)

ξ(e3)

Figure 4.2: The correspondence between a digraph and its drawing

φk(vk) = ξk(elk)(t) = ξk(emk)(u) for k = 1, 2 and some u, t ∈ {0, 1}. It is known that all planar digraphs

can be drawn in this way, even when all edges are required to correspond to straight line segments (Fáry,

1948, Tutte, 1960, 1963).

The correspondence between a discrete digraph and its drawing is depicted in Figure 4.2. On the left

hand side, there is a digraph G = (V,E) with three vertices (V = {v1, v2, v3}) and three edges (E =

{e1, e2, e3}). On the right hand side there is a drawing of G defined by functions φ, which maps vertices to

their positions, and ξ, which maps edges to parametric descriptions of line segments.

The new algorithm described in this chapter translates the problem of finding a pair of paths in digraphs

G1, G2 with the smallest elastic distance to a minimum weighted average path problem in a digraph called

the σ-product of digraphs G1 and G2. This fact is formally stated in Theorem 1 and proven in Appendix B.

The construction of the σ-product of two digraphs is described by Definitions 29, 30 and 31.

As stated in Section 2.2.1, some authors use higher-order interpolation for calculating elastic distance

between sampled curves. This work assumes first order spline interpolation between sampling points, or

drawings of nodes of graphs. These nodes naturally impose continuity of path drawings but there is no clear

way to ensure the continuity of their first derivatives.

Definition 29. Let σ be a set of pairs of positive integers. Then a pair of paths (sequences of edges) p1 in a

digraph G1 = (V1, E2), p2 in a digraph G2 = (V2, E2) is called a σ-pair of paths between (vb,1, vb,2) and

(ve,1, ve,2) if and only if:
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• p1 starts in vb,1 and ends in ve,1,

• p2 starts in vb,2 and ends in ve,2,

• if p1 has l1 edges and p2 has l2 edges, the pair (l1, l2) belongs to σ.

Definition 30. If for each i = 1, 2, . . . , N a pair (p1,i, p2,i) is a σ-pair of paths between (v1,i−1, v2,i−1) and

(v1,i, v2,i) in digraphs G1, G2, then (p1,i, p2,i)
N
i=1 is a sequence of σ-pairs of paths in G1, G2.

A fixed parametrization is needed to consider drawings of paths as parametrized curves. This

parametrization is defined by functions ∆tk : Ek → R for k = 1, 2. One could for simplicity assume

that ∆tk is equal to 1 for all edges and k = 1, 2. On the other hand parametrization by arc length is more

natural. In this case

∆tk(ek) =

∫ 1

0

√√√√ 2∑
d=1

(
dξk,d(ek)

dt
(t)

)2

dt, (4.1)

where ξk,1(ek)(t) and ξk,2(ek)(t) for t ∈ [0, 1] are the coordinates of ξk(ek)(t) in the standard basis of R2

and ek is an edge from the set Ek for k = 1, 2.

Definition 31. The σ-product of two digraphs G1 = (V1, E1), G2 = (V2, E2) with drawings φ1, ξ1, φ2, ξ2

is a weighted digraph G1 ×σ G2 = (V,E,w) such that:

• the set of vertices of the σ-product is the Cartesian product of the sets of vertices of digraphs G1, G2,

that is V = V1 × V2,

• an edge ((vb,1, vb,2), (ve,1, ve,2)) belongs to the set E of edges of the σ-product if and only if there is

a pair of σ-paths p1, p2 between (vb,1, vb,2) and (ve,2, ve,2),

• assuming that wI(e) for an edge e = (vb,1, vb,2), (ve,2, ve,2) is the minimum value of

I

0, 1, 0, 1, ηq1(p1), ηq2(p2)

√√√√∑n2,0

j=1 ∆t2(e2,0,j)∑n1,0

j=1 ∆t1(e1,0,j)

 , (4.2)

where I is the function defined by Equation (2.18) and ηq1(p1) and ηq2(p2) are SRV representations

of functions defined by Equation (4.7), over all σ-pairs (p1, p2) = ((e1,0,j)
n1,0

j=1 , (e2,0,j)
n2,0

j=1) of paths

between (vb,1, vb,2) and (ve,2, ve,2), the weight w(e) of an edge e is the pair

w(e) =

wI(e), n1,0∑
j=1

∆t1(e1,0,j)

 , (4.3)

where ((e1,0,j)
n1,0

j=1 , (e2,0,j)
n2,0

j=1) is the σ-pair of paths that minimizes the value of Equation (4.2) for

the edge e.

It is worth noting that the choice of ∆t1 over ∆t2 in Equation (4.3) follows from the same choice in

Equation (2.18). The consequences of this asymmetry are more profound in the graphical setting.
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A few examples of digraphs and their σ-products are given in Figures 4.3 and 4.4. The non-weighted

part of the σ-product of digraphs G1, G2 generalizes a few standard digraph products (although they are

more commonly applied to non-directed graphs):

• When σ = {(0, 1), (1, 0)}, then the σ-product is equivalent to the Cartesian product (Harary, 1969).

• When σ = {(1, 1)}, then the σ-product is equivalent to the tensor product (McAndrew, 1963, Harary

and Trauth Jr., 1966), also called the direct product (Hellmuth and Marc, 2015).

• When σ = {(0, 1), (1, 0), (1, 1)}, then the σ-product is equivalent to the strong product (Hellmuth

and Marc, 2015).

Additionally, when G2 is strongly connected then G1 ×{(1,i) : i∈N}∪{0,1} G2 is equivalent to the lex-

icographical product of G1 and G2 (Ng, 1998). If both G1 and G2 are strongly connected, then

G1×{(1,i) : i∈N}∪{(i,1) : i∈N}G2 is equivalent to the co-normal product of G1 and G2 (Galluccio et al., 1994).

The functions ∆tk can be used to define drawings of paths in a σ-product and, subsequently, SRV rep-

resentations of these drawings. Let p = ((e1,i,j)
n1,i

j=1, (e2,i,j)
n2,i

j=1)Ni=1 be a sequence of σ-pairs in digraphs

G1 = (V1, E1), G2 = (V2, E2). Considered functions of p are piecewise linear. Their domains are subdi-

vided at Tk,i(p) ∈ [0, 1] defined by

Tk,i(p) =


0 if i = 0∑i

z=1

∑nk,z
j=1 ∆tk(ek,z,j)∑N

z=1

∑nk,z
j=1 ∆tk(ek,z,j)

if i > 0
(4.4)

for k = 1, 2 and i = 0, 1, . . . , N and

Tk,i,j(p) =


0 if j = 0∑j

w=1 ∆tk(ek,i,w)∑nk,i
w=1 ∆tk(ek,i,w)

if j > 0
(4.5)

for k = 1, 2, i = 1, . . . , N and j = 0, 1, 2, . . . , nk,i.

The drawings of a sequence of σ-pairs of paths p = ((e1,i,j)
n1,i

j=1, (e2,i,j)
n2,i

j=1)Ni=1 in digraphs G1 =

(V1, E1), G2 = (V2, E2) in R2, denoted by ρ1(p) and ρ2(p), are defined by

ρk(p)(t) =



ηk((ek,1,j)
nk,1
j=1 )

(
t−Tk,0(p)

Tk,1(p)−Tk,0(p)

)
if Tk,0(p) ≤ t < Tk,1(p)

ηk((ek,2,j)
nk,2
j=1 )

(
t−Tk,1(p)

Tk,2(p)−Tk,1(p)

)
if Tk,1(p) ≤ t < Tk,2(p)

...

ηk((ek,N,j)
nk,N
j=1 )

(
t−Tk,N−1(p)

Tk,N (p)−Tk,N−1(p)

)
if Tk,N−1(p) ≤ t ≤ Tk,N (p)

(4.6)
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v1

v2

v3

×{(0,1),(1,0)} v̂1 v̂2 v̂3 =

(v1, v̂1)

(v2, v̂1)

(v3, v̂1)

(v1, v̂2)

(v2, v̂2)

(v3, v̂2)

(v1, v̂3)

(v2, v̂3)

(v3, v̂3)

v1

v2

v3

×{(0,1),(1,0),(1,1)} v̂1 v̂2 v̂3 =

(v1, v̂1)

(v2, v̂1)

(v3, v̂1)

(v1, v̂2)

(v2, v̂2)

(v3, v̂2)

(v1, v̂3)

(v2, v̂3)

(v3, v̂3)

v1

v2

v3

×{(0,1),(1,0),(1,2)} v̂1 v̂2 v̂3 =

(v1, v̂1)

(v2, v̂1)

(v3, v̂1)

(v1, v̂2)

(v2, v̂2)

(v3, v̂2)

(v1, v̂3)

(v2, v̂3)

(v3, v̂3)

Figure 4.3: Paths and their σ-products
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v1
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v3 v4

×{(0,1),(1,0)} v̂1 v̂2 v̂3 =

(v1, v̂1)

(v2, v̂1)

(v3, v̂1)

(v4, v̂3)

(v1, v̂2)

(v2, v̂2)

(v3, v̂2)

(v4, v̂3)

(v1, v̂3)

(v2, v̂3)

(v3, v̂3)

(v4, v̂3)

v1

v2

v3 v4

×{(0,1),(1,0),(1,1)} v̂1 v̂2 v̂3 =

(v1, v̂1)

(v2, v̂1)

(v3, v̂1)

(v4, v̂3)

(v1, v̂2)

(v2, v̂2)

(v3, v̂2)

(v4, v̂3)

(v1, v̂3)

(v2, v̂3)

(v3, v̂3)

(v4, v̂3)

Figure 4.4: Digraphs and their σ-products
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e1,1

e1,2 e1,3

e1,4 e1,5

e2,1
e2,2

e2,3
e2,4

e2,5

T1,0 = 0

T1,2 = 1

T2,0 = 0

T2,2 = 1

T1,1

T2,1

T1,1,0 = 0

T1,1,1 = 1

T1,2,0 = 0

T1,2,1

T1,2,2 = 1

T2,1,0 = 0

T2,1,1

T2,1,2 = 1

T2,2,0 = 0

T2,2,1 = 1

Drawing of G1 Drawing of G2

η1 η2ξ1 ξ2

Figure 4.5: A graphical interpretation of ρ1(p) and ρ2(p) for two digraphs G1, G2 and p =
(((e1,1), (e2,2, e2,3)), ((e1,3, e1,5), (e2,5)))

for k = 1, 2 where ηk is defined by

ηk((ek,i,j)
nk,i
j=1)(t) =

ξk(ek,i,1)
(

t−Tk,i,0(p)
Tk,i,1(p)−Tk,i,0(p)

)
if Tk,i,0(p) ≤ t < Tk,i,1(p)

ξk(ek,i,2)
(

t−Tk,i,1(p)
Tk,i,2(p)−Tk,i,1(p)

)
if Tk,i,1(p) ≤ t < Tk,i,2(p)

...

ξk(ek,i,nk,i)

(
t−Tk,i,nk,i−1(p)

Tk,i,nk,i (p)−Tk,i,nk,i−1(p)

)
if Tk,i,nk,i−1(p) ≤ t ≤ Tk,i,nk,i(p)

(4.7)

for k = 1, 2, i = 1, 2, . . . , N . Figure 4.5 graphically describes the construction of ρ1(p) and ρ2(p) for two

digraphs and a sequence of σ-paths p. Natural parametrization is assumed.

The SRV representations of ρk(p), ηk((ek,i,j)
nk,i
j=1) and ξk(ek,i,nk,i) for k = 1, 2, i = 1, 2, . . . , N , j =

1, 2, . . . , nk,i are denoted by, respectively, ρqk(p), ηqk((ek,i,j)
nk,i
j=1) and ξqk(ek,i,nk,i). Additionally, p defines a
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reparametrization γ(p) : [0, 1]→ [0, 1] as follows

γ(p)(t) =

T2,1(p)−T2,0(p)
T1,1(p)−T1,0(p)(t− T1,0(p)) + T2,0(p) if T1,0(p) ≤ t < T1,1(p)

T2,2(p)−T2,1(p)
T1,2(p)−T1,1(p)(t− T1,1(p)) + T2,1(p) if T1,1(p) ≤ t < T1,2(p)

...

T2,N (p)−T2,N−1(p)
T1,N (p)−T1,N−1(p)(t− T1,N−1(p)) + T2,N−1(p) if T1,N−1(p) ≤ t ≤ T1,N (p).

(4.8)

Note that two different sequences of sigma paths may pass the same edges in respective di-

graphs but define a different reparametrization. For example, for digraphs in Figure 4.5, p̂ =

(((e1,1, e1,3), (e2,2, e2,3)), ((e1,5), (e2,5))) corresponds to the same paths in G1 and G2 as the p defined

in caption but the reparametrization it defines is different.

The elastic distance dcpre between ρq1(p) and ρq2(p) · γ(p), where the dot is the action defined by Equa-

tion (2.14), is equal to

dcpre(ρ
q
1(p), ρq2(p) · γ(p)) =

∫ 1

0

∥∥∥∥ρq1(p)(t)− ρq2(p)(γ(p)(t))

√
˙γ(p)(t)

∥∥∥∥2

2

dt =

N∑
i=1

(T1,i(p)− T1,i−1(p))

∫ 1

0

∥∥∥∥∥∥ηq1((e1,i,j)
n1,i

j=1)(τi)− ηq2((e2,i,j)
n2,i

j=1)(τi)

√√√√∑n2,i

j=1 ∆t2(e2,i,j)∑n1,i

j=1 ∆t1(e1,i,j)

∥∥∥∥∥∥
2

2

dτi =

N∑
i=1

(T1,i(p)− T1,i−1(p))I

0, 1, 0, 1, ηq1((e1,i,j)
n1,i

j=1), ηq2((e2,i,j)
n2,i

j=1)

√√√√∑n2,i

j=1 ∆t2(e2,i,j)∑n1,i

j=1 ∆t1(e1,i,j)

 ,

(4.9)

where τi =
t−T1,i−1(p)

T1,i(p)−T1,i−1(p) . Each integral is equivalent to the value specified by Equation (2.18). Note that

if p corresponds to a path p̄ in a σ-product of digraphs, the value obtained in Equation (4.9) is a weighted

average of weights of edges in p̄.

The algorithm, given two pairs of vertices vb,1, ve,2 ∈ V1, vb,2, ve,2 ∈ V2 from digraphs G1 = (V1, E1)

and G2 = (V2, E2), finds a sequence of σ-pairs of paths p = ((e1,i,j)
n1,i

j=1, (e2,i,j)
n2,i

j=1)Ni=1 in, respectively,

G1 and G2 such that the distance between their drawings in R2, ρ1(p) and ρ2(p) ◦ γ(p), defined by Equa-

tion (4.6), is minimal with respect to a discretized version of dc. This simultaneously solves the problems of

finding the optimal reparametrization and finding the most similar paths in G1 and G2.
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Table 4.1: Table of the binary operation⊕. Symbols a and c represent nonnegative real numbers while b and
d represent positive real numbers

⊕ (0, 0) (a, b) (∞,∞)

(0, 0) (0, 0) (a, b) (∞,∞)

(c, d) (c, d)
(
ab+cd
b+d , b+ d

)
(∞,∞)

(∞,∞) (∞,∞) (∞,∞) (∞,∞)

Algorithm

Algorithm 3 describes the procedure of finding a pair of the closest paths in digraphs G1, G2 between

(vb,1, vb,2) and (ve,2, ve,2). The method is scale- and rotation-independent by assuming that drawings of

vertices lie in fixed points, namely φk(vb,k) = (0, 0) and φk(ve,k) = (0, 1) for k = 1, 2. Any drawings can

be made to satisfy these conditions by a pair of similarity transform, one for each digraph. The minimum

weighted average path search is performed using the generalized Dijkstra’s algorithm (Dijkstra, 1959) for

routing algebras (see Definition 8 in Section 2.1.1). A similar technique is described in (Wang et al., 2005),

where a minimum (non-weighted) average path algorithm is utilized for an analysis of wireless sensor net-

works. Boundary delineation using a shortest path algorithm is also described in (Martelli, 1976), although

only pixel intensity levels are used to construct the cost function. A model-free segmentation algorithm

based on local edge detection operators and iterative boundary elongation is described in (Lineberry, 1983).

There are, however, no other similarities between Lineberry’s approach and the algorithm described in this

chapter.

Let A = (W,⊕,�) be a routing algebra. The set W = {(x, y) : x ∈ R≥0, y ∈ R+} ∪ {(0, 0), (∞,∞)}

is a set of pairs of numbers where the first one is nonnegative and the other is strictly positive, together

with an identity element (0, 0) and a zero element (∞,∞). Table 4.1 contains the definition of the binary

operation ⊕. The total order � is the lexicographical order, that is (a, b) � (c, d) if a < c or a = c and

b ≤ d, assuming ∞ is greater than any real number and ∞ = ∞. The properties of A are discussed in

Appendix A. Elements of the set W are used as weights in the product digraph G1 ×σ G2 = (V,E,w),

according to Equation (4.3). A path e1, e2, . . . , ez in the product digraph for some z ≥ 1 is considered more

optimal than a path ê1, ê2, . . . , êẑ for some ẑ ≥ 1 if and only if

w(e1)⊕ w(e2)⊕ · · · ⊕ w(ez) � w(ê1)⊕ w(ê2)⊕ · · · ⊕ w(êẑ), (4.10)

where w : E → A is the weight function given by Equation (4.3).

Finding the optimal path with respect to weight function w corresponds to the optimal path problem

where the path cost is defined by Equation (4.9). This observation can be shown by comparing the total

weights of paths p = e1, e2, . . . , ez and p̂ = ê1, ê2, . . . , êẑ in a σ-product digraph for some z ≥ 1 and
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ẑ ≥ 1:

w(e1)⊕ w(e2)⊕ · · · ⊕ w(ez) � w(ê1)⊕ w(ê2)⊕ · · · ⊕ w(êẑ) (4.11)

which is equivalent to ∑z
i=1w(ei)

∑n1,i

j=1 ∆t1(e1,i,j)∑z
i=1

∑n1,i

j=1 ∆t1(e1,i,j)
,
z∑
i=1

n1,i∑
j=1

∆t1(e1,i,j)

 �
∑ẑ

i=1w(êi)
∑n̂1,i

j=1 ∆t1(ê1,i,j)∑ẑ
i=1

∑n̂1,i

j=1 ∆t1(ê1,i,j)
,

ẑ∑
i=1

n̂1,i∑
j=1

∆t1(ê1,i,j)

 .

(4.12)

Since

T1,i(p)− T1,i−1(p) =

∑n1,i

j=1 ∆t1(e1,i,j)∑z
i=1

∑n1,i

j=1 ∆t1(e1,i,j)
(4.13)

for i = 1, 2, . . . , z and, analogically,

T1,i(p̂)− T1,i−1(p̂) =

∑n̂1,i

j=1 ∆t1(ê1,i,j)∑ẑ
i=1

∑n̂1,i

j=1 ∆t1(ê1,i,j)
(4.14)

for i = 1, 2, . . . , ẑ, the Equation (4.12) can be rewritten as z∑
i=1

(T1,i(p)− T1,i−1(p))w(ei),

z∑
i=1

n1,i∑
j=1

∆t1(e1,i,j)

 �
 ẑ∑
i=1

(T1,i(p̂)− T1,i−1(p̂))w(êi),

ẑ∑
i=1

n̂1,i∑
j=1

∆t1(ê1,i,j)

 .

(4.15)

Using Equations (4.2) and (4.9), Equation (4.15) is equivalent todcpre(ρq1(p), ρq2(p) · γ(p)),
z∑
i=1

n1,i∑
j=1

∆t1(e1,i,j)

 �
dcpre(ρq1(p̂), ρq2(p̂) · γ(p̂)),

ẑ∑
i=1

n̂1,i∑
j=1

∆t1(ê1,i,j)

 .

(4.16)

As the relation � represents the lexicographical order, this inequality holds if either the elastic distance

defined by Equation (4.9) is smaller for p than for p̂, or the distances are equal and the length of ρ1(p) is

shorter than the length of ρ1(p̂).

The (commutative) routing algebra A is, in general, neither monotonic nor isotonic (see Defini-

tions 8, 9, 11 and 10 and Appendix A). Commonly used optimal path algorithms do not guarantee optimality

for such routing algebras (Yang and Wang, 2008). This problem does not occur in Algorithm 1 because de-
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nominators in Equations (4.4) and (4.5) are known in advance for all possible paths from the start node to the

end node. The numerators, on the other hand, can be easily factored into the edge weight. It is true because

the paths and their lengths are determined and the problem is reduced to finding an optimal reparametriza-

tion. Observe that in the simplified case each element of the sum in Equation (4.9) depends only on a single

edge of a product digraph.

Under certain conditions the classical Dijkstra’s algorithm can be used to find the optimal path in a

digraph weighted by elements of a routing algebra A. Let B = (R≥0 ∪ {∞},+,≤) be the routing algebra

of the classical Dijkstra’s algorithm. A function h : A → B defined by

h((a, b)) = ab (4.17)

can be used to translate weights between two routing algebrasA and B. One can verify that h is a homomor-

phism of monoidal parts of respective routing algebras, that is monoids that are obtained by removing the or-

der relation. Let (a, b) and (c, d) be any elements ofA, then h((a, b)⊕(c, d)) is equal to h((a, b))+h((c, d)):

h((a, b)⊕ (c, d)) = h

((
ab+ cd

b+ d
, b+ d

))
= ab+ cd = h((a, b)) + h((c, d)), (4.18)

thus h can be seen as a homomorphism of monoids.

In general, h is not a homomorphism of routing algebras since it does not preserve the order. As a

counterexample, (1, 4) � (2, 1) while h((1, 4)) = 4 � 2 = h((2, 1)). When the homomorphism h preserves

the order for all paths between two given nodes, then by replacing weights of edges e ∈ E, w(e) ∈ A, by

h(w(e)) ∈ B the problem of finding an optimal path between these nodes is reduced to the standard shortest

path problem solvable by the Dijkstra’s algorithm. As an example, h preserves the order when the digraph

G1 is a path. This approach can be extended to more complicated cases using the idea behind Algorithm 1

from (Zubor et al., 2014).

The optimal path problem with the weight of an edge e ∈ E given by h(w(e)), disregarding the order

preservation, can be interpreted as minimization of the product of the length of the drawing of a path in

G1 and the elastic distance between its drawing and the drawing of a path in G2. This interpretation can be

potentially applicable to simultaneous path planning for two robots (Švestka and Overmars, 1998) where

the paths are required to be both as similar and as short as possible.

The Algorithm 3 builds the σ-product of input digraphs, translates the weights to the routing algebra A

and invokes a procedure for finding the optimal path. This procedure can either use a standard algorithm

for algebra A and obtain an approximate solution or, when applicable, employ the homomorphism h and

perform a standard shortest path search in B. Correctness of the Algorithm 3 in the second case is asserted by
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Algorithm 3: Finding the closest sequence of σ-pairs of paths between (vb,1, vb,2) and (v,2, ve,2) in
digraphs G1 = (V1, E1), G2 = (V2, E2).

Require: graphs G1 = (V1, E1), G2 = (V2, E2), drawings φ1, ξ1, φ2, ξ2, vertices
vb,1, ve,1 ∈ V1, vb,2, ve,2 ∈ V2, discretization σ.

1: V := V1 × V2 {Set of vertices V is the cartesian product of V1 and V2.}
2: E := {} {List of edges.}
3: w := {} {Weights of edges.}
4: for (u1, u2) ∈ V do
5: for each σ-pair of paths (p1, p2) starting in u1, u2 do

6: s :=

√∑
e2∈p2

∆t2(e2)∑
e1∈p1

∆t1(e1)

7: W := I (0, 1, 0, 1, ηq1(p1), ηq2(p2)s)
8: v1 := end of p1

9: v2 := end of p2

10: e := ((u1, u2), (v1, v2))
11: if e not in E or w[e] > W then
12: add e to E
13: w[e] := (W ,

∑
e1∈p1 ∆t1(e1))

14: end if
15: end for
16: end for
17: (p1, p2), c := FIND-OPTIMAL-PATH (V,E,w, (vb,1, vb,2), (ve,1, ve,2)) {Compute optimal path and its

cost.}
18: return p1, p2, c

Theorem 1. In particular it follows from this theorem that when both graphs G1, G2 are paths Algorithms 1

and 3 return the same results.

Theorem 1. If the optimal path finding procedure is exact, then among all sequences of σ-pairs of paths

in digraphs G1, G2 between (vb,1, vb,2) and (ve,1, ve,2) the one returned by Algorithm 3 has the minimum

elastic distance.

This theorem is proved in Appendix B.

Computational complexity

In this analysis of computational complexity it is assumed that the optimal path finding is performed using

the (generalized) Dijkstra’s algorithm. The Algorithm 3 is given two planar digraphs G1 = (V1, E1) and

G2 = (V2, E2) as well as the set σ. The Euler’s formula states that the number of edges in such digraphs

is linearly bound by the number of vertices. The time complexity of the first step, that is building the σ-

product digraph, is O(|V1||V2|+ k(σ,G1, G2)) where the number of elements in a set V is denoted by |V |

and k(σ,G1, G2) is the number of σ-pairs of paths in digraphsG1 andG2. To see how fast does k(σ,G1, G2)
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. . .

n squares

Figure 4.6: Graphical representation of a digraph GR(n)

grow, let us first observe that

k(σ,G1, G2) = k

 |σ|⋃
i=1

{(k1,i, k2,i)}, G1, G2

 =

|σ|∑
i=1

k ({(k1,i, k2,i)}, G1, G2) , (4.19)

because each pair of paths has a unique pair of lengths.

It is difficult to characterize the asymptotic behaviour of k({(k1, k2)}, G1, G2). Firstly, for fixed G1 and

G2 the value of k({(k1, k2)}, G1, G2) is bounded as there are no paths with more than |Vi| − 1 edges in Gi

for i = 1, 2. One possible solution is to replace fixed digraphs by certain families of digraphs parametrized

by an integer, namely k({(k1, k2)}, G1(n1), G2(n2)) where n1, n2 ∈ N. Now an upper bound can be found

by taking Gi(ni) to be the complete digraph with ni nodes, Kd(ni) = ({1, 2, . . . , ni}, {(u, v) : u, v ∈

{1, 2, . . . , ni}, u 6= v}), for i = 1, 2. By counting paths one can obtain

k({(k1, k2)},Kd(n1),Kd(n2)) =
n1!n2!

(n1 − k1 − 1)!(n2 − k2 − 1)!
, (4.20)

which in general grows faster than exponentially, although full digraphs with more than four vertices are not

planar (Kuratowski, 1930)1. A useful lower bound can be obtained using digraphsGR depicted in Figure 4.6.

After substituting these digraphs and selecting k1 = 2n1 and k2 = 2n2 the value of k is

k({(2n1, 2n2)}, GR(n1), GR(n2)) = 2n1+n2 . (4.21)

As shown, k can grow at least exponentially with values in pairs in σ. This strongly constraints σ for

practical applications. However, the results described in Section 4.2 indicate that in practice it is not a

significant limitation.

The second step of Algorithm 3 performs shortest path search in the digraph G = G1 ×σ G2 = (V,E).

Using the Fibonacci heap-based Dijkstra’s algorithm (Fredman and Tarjan, 1987) the time complexity of

1Planarity of a digraph is understood as planarity of the underlying graph.
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this step is O(|E| + |V | log(|V |)). Since the digraph G has no more than |E| ≤ min(|V |2, k(σ,G1, G2))

edges, the total time complexity of Algorithm 3 is O(|V | log(|V |) + k(σ,G1, G2)).

This is a significant improvement over state-of-the-art approaches, as they would require separate com-

parison of each pair of paths in G1, G2. A well-known result in graph theory states that just counting the

number of paths between two vertices is a #P-complete problem (Valiant, 1979), which makes the approach

feasible only for very simple graphs.

Experiments

Pattern recognition is an important task of image analysis. There are many different approaches to detect-

ing shapes but it is sometimes very challenging to achieve satisfactory accuracy in localization of shape

boundary (Hum et al., 2014, Wojciechowski et al., 2016). This results in prevalence of application-oriented

algorithms. Algorithm 3, in conjunction with superpixel segmentation (see Section 2.4.4), offers a new,

well-motivated solution.

In this application, the drawing of a digraph G1 is a representative shape of the object that is to be

found in a given image. The nodes ofG1 are points obtained by sampling the representative shape, while the

edges connect neighbouring points ordering them in a preselected direction. The digraph G2 is the result of

orienting edges both ways in the graph of the superpixel segmentation applied to the gradient magnitude of

the analysed image. The boundary is required to be an open curve, so the algorithm is best suited to partially

occluded objects where the occlusion occurs at a known place.

The superpixel segmentation is obtained using the watershed from markers algorithm (Meyer and

Beucher, 1990). It was selected for its good adherence to the edges of the original image and the possi-

bility to constrain the size of a superpixel. Markers are placed at pixels that are the local minima of the

gradient magnitude image in a square 2nm + 1× 2nm + 1 neighbourhood centred on the considered pixel

where nm is a certain constant.

Conversion of a superpixel segmentation to a digraph is performed by constructing a mask where each

pixel of the original image is marked either black or white. White pixels constitute borders between super-

pixels while black pixels are their interior. Groups of white pixels with at least three white neighbours in

the Moore neighbourhood (the 8-neighbourhood) are nodes of the superpixels digraph. White pixels with

two white neighbours are the other nodes of that digraph. Neighbouring nodes are connected with edges in

both directions. Drawing of such a digraph is naturally defined by the image. The drawing of each edge is

assumed to be a straight line.

The following types of images were used in the experiments: standing frontal X-ray images of the knee,

standing frontal X-ray images of the hip bone area, images of distorted 20-corner stars with a single corner

removed and images of a clothes iron. Each image has approximately 1.0 to 1.5 megapixels. Figure 4.7
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Figure 4.7: A sample image and its superpixel segmentation using the watershed from markers algorithm
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Figure 4.8: A fragment of an image where each pixel corresponds to a square. Grey vertically striped squares
are the pixels with two white neighbours and squares with slanted grey stripes have at least three white
neighbours. The black lines correspond to the drawing of a superpixel digraph with every second vertically
striped pixel removed
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shows a sample image from the set and its watershed from markers segmentation with nm = 15. To reduce

resource utilization every second pixel was removed from the target pattern and every second node with

two white neighbours was removed from the superpixel digraph (see Figure 4.8). The values of ∆t follow

a constant-speed parametrization of the target boundary. Since the digraph G1 is a path, the generalized

Dijkstra’s algorithm returns an exact solution to the optimization problem. In the experiments the set σ

was equal to {(1, 1), (1, 2), (2, 1), (1, 3), (2, 3), (3, 1), (3, 2), (1, 4), (3, 4), (4, 1), (4, 3)}. The resulting σ-

product digraphs have about 108 nodes and 109 edges.

Figures 4.9 and 4.10 depict a few samples of segmentation results in different datasets. High accuracy

of detection has been achieved in most cases. The algorithm needs about 20 to 30 seconds on an Intel Core

i7 CPU and about 7 to 12 GB of RAM for processing a single image. When part of the object boundary

has poor contrast, as in Figure 4.10a, the most accurate path in the superpixel digraph is noisy. Due to the

differentiation in the definition of SRV transform (see Equation (2.10)), such noise significantly increases

the elastic distance. Appropriate preprocessing of the input image reduces this issue. In all datasets except

the knee dataset the original image and gradient magnitude image were smoothed using anisotropic dif-

fusion (Perona and Malik, 1990). Using a different superpixel algorithm with compactness control could

decrease the problem at the cost of worse boundary adherence. Additionally, the proposed algorithm works

well even for objects with complex boundary (Figure 4.10d) and partially occluded objects (Figure 4.10f).

Figure 4.10h shows a case where the algorithm did not find the correct shape because the boundary of the

edges in the original image was not pronounced enough to result in smooth superpixel boundaries.

The proposed approach has been compared with the Active Appearance Model (AMM) algo-

rithm (Cootes et al., 2001) using the set of X-ray knee images. The AAM algorithm has been trained on

a subset of 30 images and tested on 20 different images. The described elastic metric-based algorithm was

supplied with a reference knee shape from the set of training images and tested on the same set of images

as the AAM algorithm. The mean Dice coefficient (Dice, 1945), used to compare automatic and reference

segmentations, is equal to 0.986 for the AAM algorithm and 0.881 for the proposed method.

Conclusions

In this chapter an extension of the framework of Elastic Shape Analysis to pairs of digraph drawings is

described. An algorithm for finding pairs of paths in digraphs with closest drawings is described and anal-

ysed. It was shown to be efficient for a class of digraphs important to an application in pattern recognition,

whereas the state-of-the-art approach of considering each pair of paths separately is feasible only for very

simple graphs.

Experimental verification confirmed that the described algorithm is applicable to boundary delineation.

In this version the only information about the image that the method uses is its superpixel segmentation.
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Figure 4.9: Sample results of pattern recognition using the described algorithm. White lines correspond to
the superpixel segmentation, light and dark grey area represent the reference segmentation, dashed lines are
patterns the algorithm matches against and the dotted line is the boundary found using the described method
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(a) Upper extremity of a femur (b) Segmentation result

(c) A star-like shape (d) Segmentation result

Figure 4.10: Recognition of several types of images. Left pictures are parts of input images containing
searched objects. Their segmentations obtained using Algorithm 3 are presented on the right hand side. The
same symbols are used as in Figure 4.9
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(e) A partially occluded clothes iron (f) Segmentation result

(g) Upper extremity of a femur (h) Segmentation result

Figure 4.10: Recognition of several types of images. Left pictures are parts of input images containing
searched objects. Their segmentations obtained using Algorithm 3 are presented on the right hand side. The
same symbols are used as in Figure 4.9
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It leaves some space for future improvements to the algorithm which could use more complicated cost

functions, combining both more features of the image and a comprehensive statistical model of the searched

shape. However even at this stage good accuracy has been achieved for images of different types.

The new algorithm, though, is not a competitor to existing segmentation algorithms. It is a framework

for constructing segmentation algorithms of a new type. A competing algorithm would have to take into

account other features of input images which would be incorporated into a more complex routing algebra. A

statistical model should be used to describe representative shapes. Additionally a variant for closed shapes

needs to be developed.

There are still a few open questions:

• Would it be feasible to perform a search without fixing the endpoints?

• Could the path straightening method of calculating the elastic distance (Srivastava et al., 2012) be

extended to digraphs?

• What the guidelines for obtaining the superpixel segmentation should be?

However, considering solid theoretical foundations and encouraging experimental results, the new method

is a good basis for developing new pattern recognition methods. The generality of the solved problem makes

the algorithm likely to also find applications in other fields. Possible application to robot path planning is

explained in Section 4.1.2. In syntactic pattern recognition and shape retrieval (Mehrotra and Gary, 1995,

Tagougui et al., 2013) a collection of shapes, for example described by a set of chain codes (Freeman,

1961) or a grammar, can also be represented by a graph whose drawing represents superimposition of these

shapes. It is also possible to apply the developed algorithm in alternative plan search (Felner et al., 2003).

As demonstrated, the presented algorithm extends the applicability of an elastic metric to new problems.
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Chapter 5

Machine learning approach to

superpixel-constrained segmentation

This chapter describes a modification of the approach described in Chapter 4. The primary difference is in-

troduction of a statistical model that describes the probability of a particular edge from the superpixels graph

being a part of the contour (see Figure 4.8). This is modelled using probabilistic classifiers and probabilities

obtained in this way are used to augment the edge weights in the σ-product of graphs used in Algorithm 3.

Section 5.1 describes the applied machine learning methodology and algorithm modifications. Sec-

tion 5.2 details experiments conducted to assess the new method. Results of the experiments are discussed

in Section 5.3 and the conclusions are drawn in Section 5.4.

Methods

There are two novel ideas that need to be developed to apply machine learning to the problem of image

segmentation. First, a feature extraction procedure that describes edges in a superpixel graph with a sequence

of numbers is needed. This is described in Subsection 5.1.1. Next, well-known classification algorithms are

applied to the datasets obtained this way as described in Section 5.2. Finally, the classifiers are used to define

a new weight function for the σ-product graph as described in Subsection 5.1.2.

Feature extraction for machine learning

One of the current trends in machine learning is automatic feature extraction, or representation learning.

This is featured in recent work on deep learning (LeCun et al., 2015, Krizhevsky et al., 2012), including for

example manifold learning (Lin and Zha, 2008, Lunga et al., 2014). Such methods, however, require a large

amount of input data and the success of classification algorithms is generally dependent on using a right
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Figure 5.1: First step of feature extraction.

feature representation (Bengio et al., 2013). A custom feature extraction procedure is designed to make the

algorithm faster and applicable to small sets of images.

Consider an edge e ∈ E of the σ-product digraph G1 ×σ G2 = (V,E,wN ) where G2 is constructed

from a superpixel segmentation of an analysed image, as in Section 4.2. The edge e corresponds to a σ-

pair ((e1,0,j)
n1,0

j=1 , (e2,0,j)
n2,0

j=1) that minimizes the value of Equation (4.2) for e. For each edge e2,0,j where

j = 1, 2, . . . , n2,0 a number of features are determined.

Let (x1, y1), (x2, y2), . . . , (xF , yF ) be the F coordinates of pixels that correspond to e2,0,j , in the or-

der determined by the drawing ξk,2(e2,0,j), that is (x1, y1) is the pixel nearest to A = ξk,2(e2,0,j)(0) and

(xF , yF ) is the pixel nearest to B = ξk,2(e2,0,j)(1). At each pixel (xj , yj) for j = 1, 2, . . . , F a gradient

vector gj is calculated using the second order central difference formulas (see Figure 5.1). Each vector gj

is then expressed in terms of polar coordinates (rj , θj) and a mean gradient vector g, expressed as (r, β) in

polar coordinates, is calculated as follows:

r =
1

F

F∑
j=1

rj , (5.1)

β = arg
F∑
j=1

eiθj . (5.2)

In the next step, the vector
−−→
AB is cast onto a reference contour represented by points (pi)

M−1
i=0 . This

is performed by separately casting points A and B onto the contour. Each of these points is cast using

Algorithm 4. Casting the point A results in a point A′ and a number tA while casting the point B results in

a point B′ and a number tB (see Figure 5.2). If the points A′ and B′ are different, then a vector v =
−−→
A′B′ is

calculated. Otherwise the vector v is taken to be the forward first order finite difference tangent vector to the
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closed polygonal polygonal chain (pi)
M−1
i=0 . The angles formed by expressing vectors

−−→
AB and v are called,

respectively, α and γ (both are marked on Figure 5.2).

Algorithm 4: Casting a point P onto a reference contour represented by points (pi)
M−1
i=0 .

Require: Point P , contour represented by points (pi)
M−1
i=0 .

1: pM ← p0

2: pc ← undefined
3: d←∞
4: for i ∈ {0, 1, . . . ,M − 1} do
5: if angles between

−−→
piP and −−−→pipi+1 and between

−−−→
pi+1P and −−−→pi+1pi are acute then

6: P ′i ← point from the line segment pipi+1 that is closest to P .
7: di ← ‖P ′i − P‖
8: if di < d then
9: pc ← P ′i

10: d← di
11: end if
12: end if
13: end for
14: if pc is undefined then
15: for i ∈ {0, 1, . . . ,M − 1} do
16: di ← ‖pi − P‖
17: if di < d then
18: pc ← pi
19: d← di
20: end if
21: end for
22: end if
23: t← the distance between p0 and pc along the closed polygonal chain defined by the sequence of points

(pi)
M
i=0, in the direction indicated by indices.

24: return pc, t

Finally, for each edge e2,0,j the following features are considered as input for the machine learning

algorithms:

• The norm of mean gradient vector, ‖g‖ = r.

• A number indicating the position of the edge e2,0,j along the polygonal chain (pi)
M−1
i=0 , tmean =

tA+tB
2 .

• The angles γ − α and γ − β.

• The mean distance dmean = ‖A−A′‖+‖B−B′‖
2 .

Thus the feature extraction defines a function f : E2 ×R2M → R≥0 ×R≥0 × [0, 2π)× [0, 2π)×R≥0 that

transforms an edge in the graph G2 given a reference contour to a sequence of feature values:

f(e2,0,j , (pi)
M−1
i=0 ) = (r, tmean, γ − α, γ − β, dmean). (5.3)
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Figure 5.2: Second step of feature extraction.

A classifier c, c : R≥0×R≥0× [0, 2π)× [0, 2π)×R≥0 → [0, 1] assigns the probability that an edge with

given feature values does not belong to the real object boundary. A set of standard classification algorithms

was considered as described in Section 5.2.

Modified edge weight function

The new weight function wN : E → R for the σ-product G1 ×σ G2 = (V,E,wN ) is given by

wN (e) = h(w(e)) +
wML

n2,0

n2,0∑
j=1

c(f(e2,0,j , (pi)
M−1
i=0 )), (5.4)

where h is given by Equation (4.17), w is given by Equation (4.3), wML ∈ R≥0 is a parameter, the edge

e corresponds to a σ-pair ((e1,0,j)
n1,0

j=1 , (e2,0,j)
n2,0

j=1) that minimizes the value of Equation (4.2) for e and

(pi)
M−1
i=0 is a sequence of points that correspond to the reference contour. If the drawing of G1 is given

by ξ1 and φ1 (see Section 4.1.1) and G1 = (V1, E1) is a path such that V1 = {v0, v1, . . . , vM−1} and

E1 = {(v0, v1), (v1, v2), . . . , (vM−2, vM−1)}, then pi = φ1(vi) for i = 0, 1, . . . ,M − 1.
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Experiments

Two sets of images were used in the experiments: 50 standing frontal X-ray images of the knee and 30

standing frontal X-ray images of the hip bone area. Each image has approximately 1.0 to 1.5 megapixels.

Images of the hip bone area were smoothed using an anisotropic diffusion filter (Perona and Malik, 1990)

to reduce noise. In preprocessing, all images were rescaled to 50% of original width and height. The same

superpixel segmentation approach was used as described in Section 4.2, with nm equal to 10.

Selection of classification method

The following classification methods were compared:

• Naive Bayes (Russell and Norvig, 2009), denoted NB,

• Random Forest Classifier (Breiman, 2001), denoted RF,

• Random Trees embedding (Geurts et al., 2006) of original data, followed by Logistic Regression (Yu

et al., 2011) on the transformed feature space, denoted RT+LR,

• Random Forest Classifier-based feature transformation, followed by the One Hot Encoder and Logis-

tic Regression on the transformed feature space, denoted RF+LR,

• Gradient Boosting Classifier (Friedman, 2001), denoted GRD,

• Gradient Boosting Classifier-based feature transformation, followed by the One Hot Encoder and

Logistic Regression on the transformed feature space, denoted GRD+LR.

Applying Support Vector Machine with Platt’s scaling (Platt, 1999) for obtaining class probabilities was also

attempted but this method was rejected due to very poor performance. In cases where Logistic Regression

was applied, the training set was split into two equal parts: one for training the classifier performing the

embedding into a higher-dimensional feature space and the second half for training the Logistic Regression

classifier.

The machine learning was performed using algorithms from the scikit-learn library (Pedregosa et al.,

2011). The number of trees in Random Forest and Random Trees classifiers was equal to 300, maximum

depth of trees was equal to 6, the number of boosting stages for the Gradient Boosting Classifier was equal

to 300 and other parameters were set to their default values.

Testing of image segmentation

To reduce resource utilization every third pixel was retained from the target pattern and every third node

with two white neighbours was retained from the superpixel digraph (see Figure 4.8). The values of ∆t

follow a constant-speed parametrization of the target boundary. In the experiments the set σ was equal to

{(1, 1), (1, 2), (2, 1), (1, 3), (2, 3), (3, 1), (3, 2), (1, 4), (3, 4), (4, 1), (4, 3)}.
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Table 5.1: AUC coefficients for ROC curves depicted in Figures 5.3 and 5.4.

dataset knee hip bone

NB 0.9917 0.9887
RF 0.9943 0.9911

RT+LR 0.9953 0.9920
RF+LR 0.9953 0.9921

GRD 0.9974 0.9944
GRD+LR 0.9968 0.9954

Ten-fold cross-validation was applied to evaluate the proposed algorithm. A given set of images was

divided into ten parts with equal number of images. In each fold of the cross-validation images from nine of

the sets are used to train probabilistic classifiers and find the optimal value of the wML parameter. The tenth

set is used to assess performance of the method.

Optimization of the wML parameter is performed using the SciPy (Jones et al., 2001–) brute function on

a uniform nopt-point grid on the interval [0, 0.2] with the default local optimization function. The parameter

nopt was equal to 11 for both sets of images. The optimization objective is maximization of the average

Dice coefficient over all test images, each one analysed using five different contours selected from reference

segmentations of training images.

Results

Figures 5.3 and 5.4 depict ROC curves of classifiers described in Section 5.2.1 tested on, respectively, knee

and hip bone datasets. The ROC curves were obtained by varying the threshold T ∈ [0, 1] for classifying

an edge e2,0,j as not belonging to the contour, that is when c(f(e2,0,j , (pi)
M−1
i=0 )) ≥ T . For both knee and

hip bone datasets the data extracted from training images for the first fold of cross-validation were used.

80% of the training data was used to train classifiers and 20% was used to construct the ROC curves. As

indicated in Table 5.1, the NB classifier has the lowest area under the ROC curve (AUC) while GRD and

GRD+LR classifiers have the highest AUC on both datasets. Based on these results, the GRD+LR classifier

was selected for edge classification.

Figure 5.7 shows box plots for different values of the wML parameter for both datasets of images.

For each value of wML a full cross-validation was performed as described in Section 5.2.2. The box plots

illustrate statistical distributions of the mean Dice coefficient across different folds. Horizontal lines in each

plot denote respectively, from bottom to top, minimum, first quartile, median, third quartile and maximum

value of mean Dice coefficients for a given value ofwML. Minimum values and first quartiles as well as third

quartiles and maximum values are connected by single centred vertical lines. First and third quartiles are
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Figure 5.3: ROC curves of the tested machine learning algorithms (see Section 5.2.1) on the first fold of
cross-validation on the knee dataset, with 80% of training data used to train classifiers and 20% used to
construct the ROC curves. Subfigure 5.3a depicts entire ROC curves and Subfigure 5.3b shows the top left
corner of the ROC plot.
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Figure 5.4: ROC curves the tested machine learning algorithms (see Section 5.2.1) on the first fold of cross-
validation on the hip bone dataset, with 80% of training data used to train classifiers and 20% used to
construct the ROC curves. Subfigure 5.4a depicts entire ROC curves and Subfigure 5.4b shows the top left
corner of the ROC plot.
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additionally connected by pairs of vertical lines that form rectangles. Squares on plots in Figure 5.7 denote

the average of lowest Dice coefficients obtained in different folds while triangles stand for the lowest Dice

coefficient across all folds, for the value of wML indicated by the horizontal axis.

Sample results of the machine learning classifier are depicted in Figure 5.5. The edges of superpixel

segmentation are coloured according to the probability of belonging to the shape boundary, as predicted

by classifiers constructed in the first fold of cross-validation. Images used in this Figure were taken from

respective test sets. Predicted probabilities closely match true boundaries of the objects in selected images. In

certain areas the predictions are less accurate due to for example lower edge gradient or distracting features

in the image.

Local optimization of the wML parameter resulted in a small further improvement. In the knee dataset,

the average Dice coefficient (averaged across all folds of cross-validation) increased by 5.483× 10−5, and

by 8.518× 10−5 for the hip bone dataset. For each fold, the difference in average Dice coefficient ranged

between 4.000× 10−7 and 5.972× 10−4.

The performance of the machine learning solution is satisfactory. It takes about 90 to 100 seconds to

construct a GRD+LR classifier with approximately 267 000 edges in the training set. Calculating probabili-

ties for edges in a single image using the constructed classifier takes one to two seconds. The time it takes

to perform shape matching using Algorithm 3 for graph with modified edge weights varies between 52 and

121 seconds per image for the knee dataset and between 98 and 227 seconds per image for the hip bone

dataset. The time is typically lower for the optimal value of wML than for the pure ESA algorithm (the case

when wML = 0). The tests were performed on an Intel Core i7 processor.

Conclusions

The obtained results indicate that the proposed approach to augmenting the Elastic Shape Analysis-based

image segmentation with additional parameters computed using probabilistic classification algorithms sig-

nificantly improve obtained results. As indicated in Figure 5.7, the new approach offers significantly better

average and worst-case performance than the pure ESA-based algorithm while taking a comparable amount

of time to process a single image. What is also important, decreased Dice coefficients for large values ofwML

show that the weight component originating from probabilistic classification alone would not be enough to

achieve satisfactory results. Combining ESA-based pattern matching and machine learning is necessary to

achieve accurate boundary delineation.

The presented algorithm is not fully invariant with respect to scaling and rotations. This issue is inherited

from the framework developed in Chapter 4, where the relative rotation and scale between the given pattern

and shape to be found in an image is selected in an arbitrary way. Nevertheless, the algorithm proved to be

quite robust to non-optimal selection scale and rotation, as shown e.g. in Figure 4.9. In certain cases (see
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(a) (b)

(c) (d)

Figure 5.5: Sample segmentations of images from the knee dataset (Subfigures 5.5a and 5.5b) and the hip
bone dataset (Subfigures 5.5c and 5.5d). Edges with probability of belonging to the shape boundary higher
than 0.001 are coloured according to the probability, as denoted by the vertical bars.
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(a) (b)

Figure 5.6: A comparison of results of segmentation using the pure ESA-based algorithm described in
Chapter 4 (Subfigure 5.6a) and machine learning-based segmentation with wML = 0.02 (Subfigure 5.6b)
for a sample image from the knee dataset. Notation is described in the caption for Figure 4.9.

Figure 5.6) the machine learning-based weight calculation method further reduces the issue of suboptimal

scale and rotation adjustment. Full solution of this problem is left for future work on the algorithm.

One of the drawbacks of using complex machine learning methods is poor comprehensibility of con-

structed shape models. This was not considered as a requirement for this research, however in the future it

is possible to limit the choice of machine learning algorithms that only use simple to understand models of

data. For example, the AAM and ASM algorithms use PCA for modelling of shape variability.
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Figure 5.7: Box plots for different values of wML in cross-validation for the knee dataset (Subfigure 5.7a)
and hip bone dataset (Subfigure 5.7b).
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Chapter 6

Conclusions

Concluding remarks

The main objective of this work was to show that it is possible to effectively apply global optimization

methods to the problem of boundary delineation by constraining the search to borders of a superpixel seg-

mentation of the image. This goal was achieved by proving three research hypotheses in subsequent chapters.

First it was shown that it is possible to achieve high segmentation accuracy when the search space is

constrained by the input image. This was proved by explicitly constructing an algorithm for this task and

testing it on four different sets of images. One of the major flaws of this approach was a considerable number

of free parameters that need to be separately determined for each particular set of images.

In the next chapter an algorithm based on Elastic Shape Analysis is described that provides a principled,

global and, for many practical situations, exact way to find the best match in a superpixel graph for a given

pattern. The algorithms has few free parameters that have relatively weak influence on the quality of the

resulting segmentation. The main drawback of this method is worse accuracy compared to state-of-the-art

algorithms.

Finally, the ESA-based algorithm is combined with a statistical shape model constructed using machine

learning methods. This is a natural extension the framework that introduces only one free parameter with

significant impact on the segmentation accuracy. The influence of this parameter is analysed on two sets of

images proving that the algorithm provides average accuracy comparable to state-of-the-art methods while

avoiding the need to introduce a Point Distribution Model in an arbitrary way and requiring only very limited

initialization data. The algorithm is at the same time quite efficient.

Obtained results suggest that the proposed approach to boundary delineation is very promising. It has

good theoretical properties and the results of experiments are encouraging. The next section describes a few

directions for future improvements of the presented method.
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Future work

One of the sources of plans for future research is weakening the assumptions given in Section 1.1. This

includes the following:

• Extending described algorithms to colour and hyperspectral images (Lunga et al., 2014).

• Combining the algorithm with feature detectors and descriptors capable of automatic extraction of

boundary endpoints. This extension would make the algorithm perform a fully global search.

• Segmentation of objects that are not simply connected (Mikolajczyk et al., 2003). This would re-

quire simultaneous detection of several distinct curves corresponding to different parts of the object

boundary.

Furthermore, it is not clear how the algorithm should be modified to handle boundaries of objects that

do not align with boundaries between superpixels. This may issue may arise for example when an object is

partially occluded. Figure 4.10e depicts such a case. Feature detectors, considered in this thesis, would not

improve the outcome as the features themselves are not visible in the picture.

Finally, one of the drawbacks of the methods presented in Chapters 4 and 5 is the lack of rotational

and scale invariance. It is worth checking to what extent the algorithms can be extended to feature these

two properties while remaining computationally efficient. Affine and projective invariance may also be

considered (Bryner et al., 2014). Certain additional directions for further work are described in conclusions

to Chapters 3, 4 and 5.

M. Baran Pattern recognition in superpixel graphs



Appendix A

Properties of the routing algebra A

The routing algebra A is defined by a triple (W,⊕,�) where W = {(x, y) : x ∈ R≥0, y ∈ R+} ∪

{(0, 0), (∞,∞)}, ⊕ is defined in Table 4.1 and � is the lexicographic order, that is for any two elements of

the algebra (a, b) and (c, d) the inequality (a, b) � (c, d) is true if and only if a < c or a = c and b ≤ d,

assuming that∞ is greater than any real number and∞ =∞. Let us verify that A possesses the properties

of a (commutative) routing algebra (Definition 8).

• Closure. Let w1 = (a, b), w2 = (c, d) be any elements of W . The value of w1 ⊕ w2 is either (0, 0),

w1, w2, (∞,∞) or
(
ab+cd
b+d , b+ d

)
. Using basic arithmetic one can show that in all of these cases the

pair belongs to W .

• Commutativity. Letw1 = (a, b), w2 = (c, d) be any elements ofW . Commutativity (w1⊕w2 = w2⊕

w1) is obvious from the symmetry of Table 4.1 and commutativity of the addition and multiplication

of real numbers.

• Associativity. Let w1 = (a, b),w2 = (c, d) and w3 = (e, f) be any elements of W . Associativity

is proved case-by-case in Table A.1. Note that rows and columns are interchangeable since A is

commutative.

• Identity element. The identity element of A is (0, 0). It can be easily verified using Table 4.1.

• Zero element. The zero element of A is (∞,∞). It can be easily verified using Table 4.1.

• Reflexivity. There are three cases:

– (0, 0) � (0, 0) is true since 0 = 0 and 0 ≤ 0.

– (a, b) � (a, b) where a is a nonnegative real number and b is a positive real number is true

because a = a and b ≤ b.

– (∞,∞) � (∞,∞) is true because, as assumed,∞ =∞ and∞ ≤∞.

• Antisymmetry. Let w1 = (a, b) and w2 = (c, d) be two elements of W . From the assumption it is

known that w1 � w2 and w2 � w1. This is equivalent to (a < c ∨ (a = c ∧ b ≤ d)) ∧ (c < a ∨ (a =

91



92

Table A.1: Validation of associativity of the routing algebra A

(a) Values of w1 ⊕ (w2 ⊕ w3). Columns contain values of w1 and rows contain values of
w2 ⊕ w3

⊕ (0, 0) (a, b) (∞,∞)

(0, 0)⊕ (0, 0) (0, 0) (a, b) (∞,∞)

(c, d)⊕ (0, 0) (c, d)
(
ab+cd
b+d , b+ d

)
(∞,∞)

(∞,∞)⊕ (0, 0) (∞,∞) (∞,∞) (∞,∞)

(0, 0)⊕ (e, f) (e, f)
(
ab+ef
b+f , b+ f

)
(∞,∞)

(c, d)⊕ (e, f)
(
cd+ef
d+f , d+ f

) (
ab+cd+ef
b+d+f , b+ d+ f

)
(∞,∞)

(∞,∞)⊕ (e, f) (∞,∞) (∞,∞) (∞,∞)

(0, 0)⊕ (∞,∞) (∞,∞) (∞,∞) (∞,∞)

(c, d)⊕ (∞,∞) (∞,∞) (∞,∞) (∞,∞)

(∞,∞)⊕ (∞,∞) (∞,∞) (∞,∞) (∞,∞)

(b) Values of (w1 ⊕ w2) ⊕ w3. Columns contain values of w3 and rows contain values of
w1 ⊕ w2

⊕ (0, 0) (e, f) (∞,∞)

(0, 0)⊕ (0, 0) (0, 0) (e, f) (∞,∞)

(a, b)⊕ (0, 0) (a, b)
(
ab+ef
b+f , b+ f

)
(∞,∞)

(∞,∞)⊕ (0, 0) (∞,∞) (∞,∞) (∞,∞)

(0, 0)⊕ (c, d) (c, d)
(
cd+ef
d+f , d+ f

)
(∞,∞)

(a, b)⊕ (c, d)
(
ab+cd
b+d , b+ d

) (
ab+cd+ef
b+d+f , b+ d+ f

)
(∞,∞)

(∞,∞)⊕ (c, d) (∞,∞) (∞,∞) (∞,∞)

(0, 0)⊕ (∞,∞) (∞,∞) (∞,∞) (∞,∞)

(a, b)⊕ (∞,∞) (∞,∞) (∞,∞) (∞,∞)

(∞,∞)⊕ (∞,∞) (∞,∞) (∞,∞) (∞,∞)
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c ∧ d ≤ b)). If a < c then the second part of conjunction is false and if c < a then the first part of

conjunction is false, thus a = c. Now we can infer that b ≤ d and d ≤ b. If both b and d are finite real

numbers then b = d from antisymmetry of standard ordering relation ≤ for real numbers. If one of

these numbers is equal to∞ then the other one is also equal to∞ because from our assumptions∞

is the only solution to∞ ≤ x where x ∈ R≥0 ∪ {∞}.

• Transitivity. Let w1 = (a, b), w2 = (c, d), w3 = (e, f) ∈ W such that w1 ≤ w2 and w2 ≤ w3. The

possible cases are:

– a = c = e. In this case b ≤ d and d ≤ f . If b, d and f are finite, then from the transitivity of

standard ordering ≤ of real numbers b ≤ d and w1 � w3 follows. If any of b, d, f is equal to∞

then so must be f . As a result b ≤ f and therefore w1 � w3.

– a = c < e, a < c = e or a < c < e. In these cases a < e and thus w1 � w3.

• Totality. Let w1 = (a, b), w2 = (c, d) be elements of W . If a = ∞ (c = ∞), then w2 � w1

(w1 � w2). Otherwise, there are three cases:

– a < c. In this case w1 � w2.

– a = c. Using the totality of the standard ordering of real numbers extended by positive infinity

either b ≤ d or d ≤ b, thus either w1 � w2 or w2 � w1.

– a > c. In this case w2 � w1.

• Maximal element. The maximal element is (∞,∞).

• Equality of maximal element and zero element. The maximal element (∞,∞) is equal to the zero

element (∞,∞) directly from the assumptions.

Monotonicity (Definition 10) and isotonicity (Definition 11) do not hold forA. A simple counterexample

for monotonicity is w1 = (2, 1) and w2 = (1, 1). The condition for isotonicity is false when w1 = (1, 1),

w2 = (1, 2) and w3 = (2, 1).
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Appendix B

Proof of Theorem 1

LetG1 = (V1, E1),G2 = (V2, E2) be digraphs with drawings onR2 defined by φ1, ξ1, φ2, ξ2. The following

lemma is used in the proof of Theorem 1.

Lemma 1. If p = (p1,i, p2,i)
N
i=1 is a sequence of σ-pairs of paths in G1, G2 between (vb,1, vb,2) and

(ve,1, ve,2), then there is a sequence p̂ = (p̂1,i, p̂2,i)
N
i=1 of σ-pairs of paths in G1, G2 between the same

pairs of nodes such that dcpre(ρ
q
1(p̂), ρq2(p̂) · γ(p̂)) ≤ dcpre(ρ

q
1(p), ρq2(p) · γ(p)) and for each i = 1, 2, . . . , N

the pair (p̂1,i, p̂2,i) minimizes the value of Equation (4.2) for a certain edge in G1 ×σ G2.

Proof. From the third condition in Definition 31 for each i = 1, 2, . . . , N either p1,i, p2,i is a σ-pair of paths

that corresponds to an edge in G1 ×σ G2 or there is a σ-pair of paths p̄1,i, p̄1,i between the same pairs of

nodes that gives a lower value of I . Sequence of σ-pairs p̂ = (p̂1,i, p̂2,i)
N
i=1 where p̂j,i is pj,i in the first case

and p̄j,i in the second case, for j = 1, 2, is the required sequence.

A proof of Theorem 1 is given below.

Proof. From Lemma 1 it is known that the closest sequence of σ-pairs of paths must correspond to a path

in G1 ×σ G2. On the other hand, since the optimal path finding procedure is exact, it returns the minimum

weighted average path between a given pair of nodes. Thus there can be no sequence of σ-pairs of paths

with smaller elastic distance.
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